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Abstract. Auctions are widely used in practice. Although auctions are also extensively
studied in the literature, most of the developments rely on the significant common prior
assumption. We study the design of optimal prior-independent selling mechanisms:
buyers do not have any information about their competitors, and the seller does not know
the distribution of values but only knows a general class to which it belongs. Anchored on
the canonical model of buyers with independent and identically distributed values, we
analyze a competitive ratio objective inwhich the seller attempts to optimize theworst-case
fraction of revenues garnered compared with those of an oracle with knowledge of the
distribution. We characterize properties of optimal mechanisms and in turn establish
fundamental impossibility results through upper bounds on the maximin ratio. By also
deriving lower bounds on themaximin ratio, we are able to crisply characterize the optimal
performance for a spectrum of families of distributions. In particular, our results imply that
a second price auction is an optimal mechanism when the seller only knows that the
distribution of buyers has amonotone nondecreasing hazard rate, and it guarantees at least
71.53% of oracle revenues against any distribution within this class. Furthermore, a second
price auction is near optimal when the class of admissible distributions is that of those with
nondecreasing virtual value function (a.k.a. regular). Under this class, it guarantees a
fraction of 50% of oracle revenues, and no mechanism can guarantee more than 55.6%.
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Supplemental Material: The electronic companion is available at https://doi.org/10.1287/
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1. Introduction
Auctions have been run for many centuries and play
today a prominent role in applications as diverse as
e-commerce, spectrum allocation, antique sales, online
advertising, and procurement. In turn, auction design
has been a central topic of research at the intersection of
operations research, computer science, and economics.
The monograph of Krishna (2009) provides an over-
view of auction theory, and Talluri and Van Ryzin
(2006) detail many revenue management applica-
tions. Although there is an elegant theory of auction
design dating back to the seminal works of, for ex-
ample, Vickrey (1961) and Myerson (1981), the clas-
sical theory of auctions is anchored on a fundamental
assumption: that of a common prior. This assumption
stipulates that the seller aswell as the buyers share the
same common prior on the process generating the
values for the object. In turn, this assumption leads
naturally to the buyers using this common prior
to play equilibrium bidding strategies, forming a
Bayesian Nash equilibrium; the seller, anticipating
such equilibrium behavior, can optimize the selling

mechanismbasedon this prior. This poses a challenge in
practice as such a prior is not available, and it is not
clear how the seller’s belief and the buyers’ beliefs
about values should coincide or how they would be
formed correctly. In turn, a fundamental question
frompractical and theoretical perspectives pertains to
how to relax such an assumption and what perfor-
mance can one expect in its absence. This funda-
mental need tomove beyondmechanisms that rely on
priors is often referred to as the “Wilson doctrine”
(Wilson 1987). Relaxing the assumption on common
priors leads to a trade-off between information about
the distribution of values and performance, which
motivates the following questions: What is the maxi-
mum fraction of revenues that one can guarantee
compared with an oracle that would have access to
the underlying distribution of values? How does this
fraction vary as a function of the information available
about the underlying distribution? These are the central
questions that this paper aims to address.
In the present paper, we aim to address the above in

the canonical private value model of a seller trying to
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sell a good to buyers with independent and identically
distributed values.1 Although mechanism design is
very well understood for this classical model under
the common prior assumption, it remains chal-
lenging in prior-independent environments. (We re-
view shortly in detail related work in Section 1.3.) As
soon as one relaxes the common prior assumption, a
first question is how to formulate the problem. On the
one hand, the common prior affected bidding be-
havior of buyers. On the other hand, it also affects
the seller’s mechanism optimization problem. We
maintain the fact that values are drawn from an un-
derlying distribution (the true distribution of values),
as in the classical framework, but we do not assume
knowledge of this distribution by the buyers or the
seller. In turn, one needs to specify the information
available to the buyers and the resulting equilibrium,
as well as the seller’s knowledge and feasible mech-
anisms, and these two are tightly interconnected. For
the buyers’ side, we will adopt a detail-free approach
and assume that buyers’ optimal decisions are inde-
pendent of any information about the other buyers’
values. For that, we will restrict attention to mecha-
nisms for which truth-telling is a dominant strat-
egy, so-called dominant-strategy incentive compati-
ble (DSIC) mechanisms. Against such a mechanism,
buyers bidding their values represents a dominant-
strategy Nash equilibrium. On the seller’s side, we
will assume that the seller is free to select among such
mechanisms. Given that the seller does not know the
true distribution of values, we will adopt a maximin
ratio approach. We model our problem as a game
between nature and the seller. The seller first selects
a mechanism in the class of DSIC mechanisms. Then,
nature may counter such a mechanism with any dis-
tribution for buyers’ values from a given class of
admissible distributions. In particular, the resulting
equilibrium induced by the mechanism is dominant-
strategy incentive compatible, and the only knowledge
the seller is endowed with is the class of admissible dis-
tributions. For any distribution and mechanism, we
measure the performance of the seller through the
ratio of the revenue she garners using this mechanism
over the optimal revenue she would have obtained
with access to the exact knowledge of the distribution.
We refer to the latter as the oracle revenues. The ratio is
always between 0 and 1, and the higher the ratio, the
better the performance.We focus on amaximin setting
in which the seller attempts to maximize the worst-case
performance ratio (or competitive ratio) over the class of
admissible distributions.

Our results provide a characterization of the maxi-
min ratio across a spectrum of distribution classes.
In particular, we consider three main classes of
distributions. It is possible to show that against the
general class of distributions, no DSIC mechanism

can guarantee a positive fraction of oracle revenues,
and hence there is a need to study how different
structures of the underlying distributions affect the
type of performance that can be achieved. Beyond
the general class of distributions, we will consider a
class that is central to mechanism design (including
under the common prior assumption), that of so-
called regular distributions. These are distributions
that admit increasing virtual value function. In
addition to the class of regular distributions, we will
also analyze the subclass of monotone increasing haz-
ard rate (MHR) distributions (also often referred to as
increasing failure rate distributions), which contains
many distributions often assumed in practice and in the
literature (e.g., uniform, exponential).

1.1. Summary of Contributions
Before laying out our main results, it is important to
highlight the nature of the problem we study. On the
one hand, given a particularmechanism, nature selects
the worst possible distributions in the nonparametric
classes above. So nature, when minimizing the ratio of
revenues compared with oracle performance, is solv-
ing a nonconvex infinite dimensional optimization
problem. In turn, fully understanding the worst-case
performance of a specific mechanism is highly non-
trivial and not necessarily tractable. On the other hand,
the seller, when optimizing over DSIC mechanisms,
is also solving an infinite dimensional problem (over
allocation and payment mappings). An important
contribution of the present paper is to propose an
approach to tackle this class of problems and char-
acterize optimal or near-optimal performance.
For regular distributions, it is known that a sec-

ond price auction2 guarantees, in the worst-case sce-
nario, 50% of the oracle revenues, as articulated in
Dhangwatnotai et al. (2015) through a reinterpreta-
tion of the results in Bulow and Klemperer (1996).
Notably, Fu et al. (2015) recently establish that a
second price auction is not prior-independent opti-
mal. In particular, they exhibit a mechanism that
randomizes between a second price auction and an
auction that inflates the second value, and they es-
tablish that it ensures a competitive ratio of at least
51.2%. Table 1 summarizes the best-known lower
bounds on the maximin ratios as well as implica-
tions of our results. Although there is a lower bound
on the maximin ratio against regular distributions,
there is no notion of what performance one should
aim at and how good are the prior-independent
auctions previously proposed. In the popular sub-
class of MHR distributions, to the best of our knowl-
edge, no lower or upper bounds are available in the
literature.
A first significant layer of contribution pertains to

the methodological domain and allows for obtaining
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the first impossibility results for any mechanism in a
broad class of DSIC mechanisms. We mainly focus on
the case with two buyers, which intuitively is the case
with most tension, while relaxing the common prior
assumption, and then we establish that the bounds
obtained for the case of two buyers also apply to the
case where the number of buyers is adversarially
selected (in Section 7.1).

We first develop families of tractable upper bounds
on the maximin ratio. These are obtained through
successive dimensionality reductions on the space of
mechanisms and the space of distributions. We show
that, under some mild regularity assumption on the
mechanisms, an optimal mechanism is scale-free (see
Theorem 1). In other words, it is sufficient to focus on
mechanisms that rely only on the ratio of values of
buyers. In turn, leveraging properties of the alloca-
tions, we are able to “discretize” the mechanisms
without loss of optimality and reduce the description
of mechanisms to a countable set (Proposition 1).

Given the result above, we then introduce general
subsets of distributions. These abstract subsets are
developed in order to, on the one hand, be “hard” for
any mechanism and, on the other hand, allow for
further reduction of the complexity of the set of mech-
anisms under consideration, leading to a new generic
upper bound (Theorem 2). By customizing this bound
through appropriate concrete classes and leveraging
additional properties of the classes, we obtain para-
metric upper bounds for the maximin ratio against
regular distributions (Theorem 3) and MHR distri-
butions (Theorem 4). In turn, these upper bounds lead
to the first impossibility results for general random-
ized mechanisms against these two central classes of
distributions. No DSIC mechanism considered can
guarantee more than 55.6% of oracle performance
against all regular distributions, and no DSIC mech-
anism considered can guarantee more than 71.53% of
oracle performance against all regular distributions.

These results have a significant implication for
regular distributions. They imply that the mecha-
nisms proposed to date in the literature are, in fact,
near optimal. A second price auction is within 5.6% of

optimal, and the mechanism proposed in Fu et al.
(2015) is within 4.4% of optimal. These impossibility
results allow for quantifying the quality of any mech-
anism comparedwith optimalperformance in the class
of DSIC mechanisms.
As a second layer of contribution, we also develop

lowerboundson themaximin ratio.Wedevelopaseriesof
generic parametric lower bounds (Propositions 4 and 5)
and in turn obtain lower bounds on the worst-case
performance of specific mechanisms. For the case of
regular distributions, we establish that there exists a
mechanism that guarantees at least 51.9%, improving
the best-known lower bound and further closing the
gapwith the upper boundwe have developed. For the
case of MHR distributions, we establish that a par-
ticular mechanism, a second price auction, guaran-
tees at least 71.53% of oracle performance.
Whereas we improve the lower bound on regular

distributions, the significant implication of the lower
bounds is for theMHR class. Thefirst implication stems
from comparing it to the novel upper bound we derive
for regular distributions. In particular, our results
show how refined class information (from regular to
MHR) translates into improved performance. Against
MHR distributions, even with only two buyers, a seller
is guaranteed 71.53%of oracle performance. The second
implication is evenmorenotable. The conjunction of our
upper and lower bounds imply that a second price
auction is actually optimal against MHR distributions
and that we have exactly characterized the maximin
ratio for that class. Overall, the results above provide
a crisp characterization of the maximin ratio as in-
formation regarding distributions is refined.
In addition, the results shed light on the trade-off

that an auctioneer might face between running an
auction with limited information and the cost of col-
lecting additional information to approach the oracle
optimal revenue. Our results highlight how this trade-
off might be affected by the nature of distributions that
a decision maker might face, for example, if distribu-
tions aremore “concentrated” (as is the case forMHR).
From a different angle, in practice, there is also

often a trade-off between revenue maximization and

Table 1. Maximin Performance

Distribution class

Maximin ratio (%)

Lower bounds Upper bounds

Best known This paper This paper Best known

Regular 51.2 51.9 55.6 X
MHR X 71.53 71.53 X

Notes. The table contrasts known results in the existing literature with the bounds derived on the
maximin ration through the analysis in the present paper. X, no known bound.
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social efficiency. In the canonical class studied, our
results highlight that, in a prior-independent envi-
ronment, a second price auction is near optimal for the
wide class of regular distributions and optimal for the
large subclass of MHR distributions. As such, when
limited information about the underlying distribution
of values is available, a simple, practical, and socially
efficient mechanism appears “sufficient” from a rev-
enue maximization perspective. Hence, there is a
weak trade-off between revenue maximization and
social efficiency when facing regular distributions
and no trade-off when facing MHR distributions.

1.2. The Remainder of the Paper
After relating our paper to the existing literature, we
formulate our problem and set up our framework for
two buyers. In Section 3, we establish that one may
restrict attention to scale-free mechanisms and char-
acterize the maximin ratio for general distributions. In
Section 4, we derive a family of upper bounds on the
maximin ratio against subsets of regular distribu-
tions. In Section 5, we investigate the case of regular
distributions, whereas the subset of MHR distribu-
tions is the focus of Section 6. Then, in Section 7, we
extend our results to the case in which the number of
buyers is arbitrary and adversarially selected, andwe
discuss future directions. All proofs are presented in
the electronic companion.

1.3. Literature Review
Our work relates to a rich literature on auction de-
sign. Since the seminal work Myerson (1981) that
characterized the structure of an optimal revenue-
maximizing mechanism when the seller has access to
the exact distributions of values of buyers, the research
community has raised early on the need of designing
auctions that do not rely on such informational as-
sumptions, often referred to as the “Wilson doctrine”
(Wilson 1987). Our work belongs to the stream that
aims to relax such assumptions. There are different
layers of informational assumptions that have been
analyzed in the literature. Some layers relate to the
seller’s knowledge about the distributions of values of
buyers or the number of participating buyers. Other
layers relate to the knowledge of buyers about their own
values as well as the values or number of competitors.

When relaxing informational assumptions in auc-
tion design, there are two implications. On the one
hand, the information affects the type of mechanisms
that the seller can adopt. On the other hand, the in-
formation also affects the type of equilibrium played
by the competing buyers.

In terms of the assumption that each buyer makes
on the value-generating process of his competitors,
various alternatives have been analyzed. One extreme
is to assume that the buyers know their competitors’

distributions of values. In this case, Caillaud and
Robert (2005) show that the seller could exploit this
and recover the optimal oracle revenue even if she does
not have access to the distributions of values through
a dynamic mechanism. A first relaxation is to assume
that the buyers know some ambiguity sets charac-
terizing the distributions; see Bose et al. (2006), Chiesa
et al. (2015), and Koçyiğit et al. (2020). A further re-
laxation is to assume that buyers do not have access to
any information about values of other buyers; this is
typically done by assuming DSIC mechanisms. We
refer the reader to Chung and Ely (2007), who give a
formal foundation of such an assumption by showing
that a dominant-strategy mechanism always domi-
nates in terms of revenue any other mechanisms,
when the buyers’ beliefs about the distribution of
their competitor are selected adversarially. Our work
aims to make minimum assumptions on both the
seller’s and the buyer’s side, and in turn, we focus on
DSICmechanisms. Furthermore, we do not make any
assumption on the buyer’s knowledge on the number
of competitors.
Another line of work relaxes the knowledge of the

buyers regarding her true value, by assuming that the
buyer observes some signal related to the true value.
We refer the reader to, for example, Bergemann et al.
(2016), who aim to characterize optimal auctionswhen
there is uncertainty on the information structure of the
buyers. See also Bergemann and Morris (2013) for a
broader overview. We would like to note that in this
line of work, it is typically assumed that the seller
knows the distribution of values of buyers. Compared
with our work, we assume that the seller does not
know the distribution of values of buyers but knows
the information structure of the buyers. Furthermore,
the DSIC assumption also implies that the equilib-
rium of buyers does not depend on the underlying
distributions of values. The buyers’ strategies also does
not depend on the number of buyers. In that regard,
we also note that another dimension of information
on the side of buyers pertains to the number of buyers.
Harstad et al. (1990) and Levin and Ozdenoren (2004)
relax this while maintaining knowledge of the dis-
tribution of values.
Once information on the buyers’ side is formulated,

the next dimension relates to the layer of information
that the seller has. In that regard, there are at a high
level three main classes of information structures
assumed on the knowledge of distributions of values
of buyers: nonparametric canonical classes of distri-
butions (Dhangwatnotai et al. 2015), statistics of the
distributions (Azar et al. 2013), and uncertainty sets
on the distributions (Koçyiğit et al. 2020) or the values
(Bandi and Bertsimas 2014).
Finally, a fundamental other dimension pertains to

howperformance of amechanism ismeasured in such
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an environment. One approach, typically referred to
as “robust,” is to use the absolute worst-case perfor-
mance based on the information available; see, for
example, Carrasco et al. (2015), Bandi and Bertsimas
(2014), and Koçyiğit et al. (2020). Another approach is
to measure worst-case performance relative to a full
information benchmark; see, for example, Neeman
(2003) and Dhangwatnotai et al. (2015). A more de-
tailed discussion on various candidate objectives can
be found in Borodin and El-Yaniv (1998). Our work
relates to the last branch of literature because we
characterize the optimal competitive ratio when the
seller has only access to the class of distributions of
buyers. The ratio we analyze is unitless and has
a physical interpretation in terms of the fraction of
oracle performance one can obtain compared with an
oracle.3

In this stream, an important set of results pertain to
“existence” of mechanisms with good guarantees.
Looking at different classes of distributions, Neeman
(2003) derives an early result and establishes a guar-
antee for the English auction, compared with the
social optimum. In particular, the author character-
izes tight lower bounds as a function of some sum-
mary statistics on the performance of an English
auction with or without reserve price. The setting we
focus on is the independently and identically dis-
tributed values case. In this setting, if the seller knows
that the distribution of values of buyers belongs to the
regular class of distributions, then an implication of
classical results of Bulow and Klemperer (1996), based
on the interpretation of Dhangwatnotai et al. (2015), is
that there exists a particular mechanism—namely, a
second price auction—that extracts 50% of the oracle
revenue had one known the true distribution, against
any regular distribution. Recently, Fu et al. (2015)
show that a second price auction is suboptimal
against regular distributions by exhibiting a ran-
domizedmechanism that has a higher guarantee than
a second price auction. In the present work, we fo-
cus on optimizing over a very broad class of DSIC
mechanisms and in turn establish fundamental im-
possibility results for any such mechanism. The re-
sults complement the literature by not only charac-
terizingwhat is achievable by a particular mechanism
but also characterizing optimal performance through
upper bounds on the maximin ratio. Furthermore,
by focusing on the widely considered subclass of
MHR distributions, we establish that a second price
auction is actually the exact optimal mechanism in
that case. This also sheds light on the role of ran-
domization and its relationship to the class of dis-
tributions one faces.

In the case of multiple goods, Goldberg et al. (2006)
introduce and analyze the competitive ratio, where
the worst case is taken with respect to any possible

inputs, and then establish that some auctions are
competitive compared with a fixed pricing bench-
mark. In more general environments, Dhangwatnotai
et al. (2015) leverage the connection to Bulow and
Klemperer (1996) to propose a mechanism that has a
nontrivial performance even in general allocation
environments. Relatedly, Sivan and Syrgkanis (2013)
extend a result of Bulow and Klemperer (1996) to the
case in which the distributions of values of buyers are
a convex combination of regular distributions.
A related stream of literature focuses on alterna-

tive information about the distribution. For instance,
Azar and Micali (2012) and Azar et al. (2013) propose
mechanisms in cases in which the seller has access to
some summary statistics of the distributions of values
of buyers (mean ormedian). They exhibitmechanisms
that have performance guarantees compared with an
oracle using these. In the present paper, we do not
assume that the seller has access to some summary
statistics, and we focus on the optimal mechanism
among a broad set of randomized mechanisms.
In our paper, we focus on a static model with limited

information. Other examples of directions analyzed
pertain to the amount information available or the
dynamics. Cole and Roughgarden (2014) analyze the
size of the sample that the seller needs to observe from
past data in order to design a near optimal mecha-
nism. Dynamic models have also been considered
in the literature; see, for example, Bose and Daripa
(2009) for a dynamic model under ambiguity. We
refer the reader to review papers of Hartline and
Roughgarden (2009), Hartline (2013), and Carroll
(2019) for a broader overview.
Another information assumption from seller’s

perspective that the literature has tried to relax is the
knowledge of the exact number of buyers. For instance,
while maintaining the common prior assumption,
McAfee and McMillan (1987) characterize the opti-
mal auctions when the seller has some prior on the
number of buyers, and Levin and Ozdenoren (2004)
study the seller’s best response when the number of
buyers is picked adversarially from some ambigu-
ity set.
Our work also relates to pricing under limited in-

formation. Monopoly pricingwith unknown demand
information was analyzed with various consider-
ations in Bergemann and Schlag (2008) for a minimax
regret objective and in Eren and Maglaras (2010) for
the competitive ratio. Caldentey et al. (2016) extend
this line of work to account for the presence of stra-
tegic customers. Cohen et al. (2016) derive perfor-
mance guarantees for pricing heuristicswhen thefirm
has some knowledge about the demand shutdown
price. More recently, Chen et al. (2017) study robust
single-item and bundle pricing based on summary
statistics of buyers’ values distribution. Leveraging
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existing data, Huang et al. (2015) focus on pricing
based on a finite sample of values. There is also an
extensive body of work on joint learning and pricing
with various informational structures. We refer the
reader to Kleinberg and Leighton (2003), Keskin and
Zeevi (2014), and Besbes and Zeevi (2015) for various
informational structures, as well as to Besbes and
Zeevi (2009), Araman and Caldentey (2009), Farias
and Van Roy (2010), and Wang et al. (2014) for
inventory considerations in such pricing problems.
den Boer (2015) provides a survey of this line of work.

2. Problem Formulation
We consider a seller offering an indivisible object for
sale to two buyers. For now, we focus on the two-
buyers case because it is the case with minimum
competition, and it isolates the impact of relaxing the
common prior assumption. We return to the case of
more than two buyers in Section 7. The two buyers
have values identically and independently distrib-
uted according to a distribution F with support SF in
[0,∞). We will denote by F(·) :" 1 − F(·) the comple-
mentary cumulative distribution function (ccdf) of
values.

We assume that the seller does not know exactly the
distribution of values of buyers; however, she knows
that it belongs to a particular class. The goal of the
seller is to design a mechanism that maximizes her
revenue given the limited information about the
underlying distribution of values of buyers.

2.1. Seller’s Problem
We model our problem as a game between the seller
and nature, in which the seller selects a prior-
independent selling mechanism and then nature may
counter such a mechanism with any distribution of
buyers’ values from an admissible class.

A selling mechanism m " (x, t) is characterized by
an allocation mapping x and a payment mapping t,
where x : R2 → [0, 1]2 and t : R2 → R. In particular,
given reports b1, b2 by buyers 1 and 2, a mechanism
would allocate the good to buyer i with probability
xi(bi, b−i) and the expected payment of buyer i is
ti(bi, b−i). Here, and in all that follows, the notation
(vi, v−i) is the vector that has value vi at position i and
v−i at the other position.

We do not make any assumption on the buyer’s
knowledge of the distribution. Given this, we will
restrict attention to DSIC mechanisms. For such mech-
anisms, buyers need not make any assumptions about
the underlying distribution of values and will find
it optimal to report their true value, independent of
the realization of value of the other buyers.4

More formally, we focus on the class ofmechanisms
m " x, t( ) that satisfy the following constraints:

vi xi(vi,v−i)− ti(vi,v−i) ≥ 0,

for all i and vi,v−i in R2
+ (IR)

vi xi(vi, v−i) − ti(vi, v−i) ≥ vi xi(v̂i, v−i) − ti(v̂i, v−i),
for all i and vi, v−i, v̂i in R3

+, (IC)
∑

i"1,2
xi(vi, v−i) ≤ 1, for all v in R2

+. (AC)

The first constraint (IR) captures ex post individual
rationality and states that buyer i should be willing to
participate compared with his outside option, nor-
malized to 0. The second constraint (IC) captures ex
post incentive compatibility and imposes that a buyer
should always find it optimal to report his true value,
independent of the value of the other buyer. Finally,
(AC) is a constraint on the allocation probabilities that
captures that the seller can allocate at most one good.
Note here that we allow for randomized mechanisms
by the seller. In addition, we will introduce a regu-
larity assumption on mechanisms. We denote by
TV(xi, [a, b] × [c, d]) the Arzelà total variation of the
allocations on the set [a, b] × [c, d].5 We assume that
the allocations around 0 have finite Arzelà total
variation. In particular, we will be focusing on the
following set of mechanisms:

} " x, t( ) : (IR), (IC), (AC) and
{

max
i"1,2

TV xi, [0, ε]2
( ){ }

< ∞ for some ε > 0
}
. (1)

This class of mechanisms is a rich one, containing, for
example, the second price auction with a determin-
istic reserve price and most mechanisms typically
considered in the literature. The assumption on the
boundedness of the total variation of allocations
around 0 is technical in nature6 but could also be
seen as a way to avoid potentially overly complex
mechanisms that might be hard to implement in
practice, given the high burden this would put on
the buyers.7

The revenue of the seller using a feasible mecha-
nism m in }, if nature is selecting a distribution F, is
given by

EF
∑2

i"1
ti(vi, v−i)

[ ]
.

We will use the subscript F to emphasize that the
expectation is taken with respect to that distribution.
The challenge in the present paper is that the seller

does not know the distribution F and as a result
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cannot evaluate the objective above to select a “good”
or optimal mechanism. We next introduce a perfor-
mance benchmark and pose a proper objective for the
seller for this environment with an unknown distri-
bution of values.

2.1.1. Oracle Benchmark. The benchmark we will use,
opt(F), is the maximal performance one could achieve
with knowledge of the exact distribution of buyers’ values
when selecting mechanisms in }. More formally,

opt(F) :" sup
m∈}

EF
∑2

i"1
ti(vi, v−i)

[ ]
. (2)

2.1.2. Seller’s Objective. For an arbitrary mechanism
in}, we define its performance against a distribution
F such that opt(F) > 0 as follows:

R(m,F) " EF
∑2

i"1 ti(vi, v−i)
[ ]

opt(F) .

In other words, R(m,F) represents the fraction of the
oracle benchmark performance themechanism is able
to achieve. The ratio R(m, F) always lies in [0, 1], and
the closest the ratio is to 1, the better the performance
of the mechanism.

Let & denote the set of distributions with support
included in [0,∞)withfinite andnonzero expectation;
that is,

& " F : [0,∞) → [0, 1] :F is a cdf and 0<EF v[ ] < ∞{ }.
(3)

Note that EF v[ ] > 0 if only if opt(F) > 0. Hence the
ratio R(m,F) is well defined for any element of the
class &.

The objective of the present paper is to characterize
for classes ^ ⊆ & the maximin ratio:

5(},^) " sup
m∈}

inf
F∈^

R(m, F). (4)

In other words, we are interested in designing mech-
anisms that admit “good” performance indepen-
dently of the underlying distribution of values. In
particular, the value 5(},^) represents the maximal
fraction of oracle revenues (obtained with knowledge
of the distribution of values) that can be recovered
when nature may select any distribution in ^.

Definition 1. A cdf F is said to be regular on its support SF if
it admits a density f and if the corresponding virtual value
function φF : v *→ v − (1 − F(v))/f (v) is nondecreasing over
SF. We will further say that the distribution has MHR if
v *→ f (v)/(1 − F(v)) is nondecreasing over SF.

The class of regular distributions is very widely
used and plays a central role in mechanism design

(with knowledge of the distribution of buyers), and
the class of monotone hazard rate distributions is
a wide subclass of the set of regular distribution
that encompasses all distributions with log-concave
densities (e.g., uniform, exponential). In particular,
beyond &, we will analyze the two subclasses of
distributions:

^reg " {F ∈ & : F is regular},
^mhr " F ∈ & : F has a monotone nondecreasing

{

hazard rate
}

It is clear that we have ^mhr ⊂ ^reg ⊂ &, and hence

5(},&) ≤ 5(},^reg) ≤ 5(},^mhr).

In the coming sections, we will be interested in quanti-
fying the three quantities above and characterizing
optimal or near-optimal mechanisms.

2.1.3. Review of Some Known Results. Although, to
the best of our knowledge, the problem above has not
been addressed in the literature, some mechanisms m
have been exhibited and their performance charac-
terized.A classicalmechanism in} is the second price
auction mspa, defined by

xi(vi, v−i) " 1{vi > v−i} + .5 1{vi " v−i},
ti(vi, v−i) " v−i1{vi > v−i} + .5 v−i 1{vi " v−i}.

The results of Bulow and Klemperer (1996) and their
reinterpretation for the performance of the second
price auction (see, e.g., Dhangwatnotai et al. 2015)
imply that

inf
F∈^reg

R(mspa,F) " 50%.

Recently, Fu et al. (2015) exhibited a mechanism m
that randomizes between the identity and a mapping
that inflates the second-highest value and established
that

inf
F∈^reg

R(m,F) ≥ 51.2%.

The results above imply a lower bound on 5(},^reg)
through specific mechanisms but leave open the
question of optimalperformance. In the present paper,
we aim at characterizing the maximin ratio (4) and
corresponding near-optimal solutions not only for
^reg but also for & and ^mhr.

3. Optimality of Scale-Free Mechanisms
The goal of this section is to establish that one may
reduce the space of mechanisms to a simpler class,
without loss of optimality. In particular, we will es-
tablish that one may restrict attention to scale-free
mechanisms (as defined later in Equation (5)).
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We first state a classical result from the mechanism
design literature (see Myerson 1981) that links pay-
ments and allocations for any incentive compatible
mechanism.

Lemma 1. A mechanism x, t( ) verifies (IC) if and only if
xi(·, v−i) is nondecreasing for any v−i ≥ 0 and the payment
mapping satisfies

ti(vi, v−i) " vi xi(vi, v−i) −
∫ vi

0
xi(l, v−i)dl + ti(0, v−i),

for all vi, v−i ≥ 0.

Note that by the constraint (IR), ti(0, v−i) ≤ 0. Hence,
we can restrict attention to mechanisms that set
ti(0, v−i) " 0 without loss of optimality. With some
abuse of notation, we impose this additional con-
straint in the class of mechanisms }. In other words,
given (IC), we can restrict attention to allocations that
are monotone in own values, and payments are fully
determined by the allocations.

Before stating the main result of this section, let us
now introduce some definitions pertaining to scaled
distributions as well as a scale-invariant classes of
distributions.

For any distribution F in &, and θ > 0, we define
Fθ(·) :" F(θ ·) to be the θ-scaled distribution.

Definition 2 (Scale Invariance). A class of distributions ^ ⊆
& is said to be invariant under scaling if for any element F in
^, the distribution Fθ also belongs to ^ for any θ > 0.

Note that &, ^reg, and ^mhr are all scale invariant.
The scale invariance of & follows from the fact that
EFθ[v] " θ−1EF[v]. For ^mhr and ^reg, note that for any
F, we have, for all v in its support,

fθ(v)
1 − Fθ(v)

" θ
f (θv)

1 − F(θv) and

v − 1 − Fθ(v)
fθ(v)

" 1
θ

θv − 1 − F(θv)
f (θv)

( )
.

Hence, the MHR and regularity properties of any
distributions Fθ are inherited from the original dis-
tribution F.

3.1. Scale-Free Mechanisms
Recall the class of mechanisms } introduced in (1).
We next introduce the subclass of scale-free mecha-
nisms }sf ⊂ }, defined as follows:

}sf " m ∈ } : xi(θvi,θv−i) " xi(vi, v−i){
for all v1, v2 ≥ 0, θ > 0, i " 1, 2}. (5)

This subclass of mechanisms have the property that
the allocations do not depend on the scale of values.
With these definitions in place, we may now state the
main result of this section.

Theorem 1. For any class ^ ⊆ & that is invariant under
scaling, when solving (4), it is sufficient to consider scale-free
mechanisms. Namely, we have

5(}sf ,^) " 5(},^).

This result establishes that we can restrict attention to
the scale-free mechanisms without loss of optimality.
Intuitively, an optimal prior-independentmechanism
should not depend on the scale of buyers’ values. If
that were the case, then nature could leverage it to
significantly affect the performance of the seller. The
proof builds on this idea by evaluating a mechanism
in } against a particular distribution and noting that
the performance of thismechanism against any scaled
version of the distribution serves as an upper bound
on the worst-case performance of this mechanism.
(For this step, we leverage the boundedness of the
total variation of feasible mechanisms around 0.) In
turn, by “swapping” the scale from the distribution to
the mechanism, we establish that the limiting per-
formance of the mechanism against a scaled version
of the distribution as the scale goes to ∞ can be re-
interpreted as the performance of a scale-free mech-
anism against the original distribution. In otherwords,
we obtain that there exists a scale-free mechanism that
performs at least as well (in the worst case) as the
original mechanism.
The reduction to scale-free mechanisms signifi-

cantly simplifies the set of mechanisms under con-
sideration, and we will leverage this property to fur-
ther reduce the space of mechanisms in upcoming
sections when we consider regular distributions and
its subsets. Before that, we directly leverage Theorem 1
to characterize the maximin ratio under arbitrary
distributions &, defined in (3).
In the previous literature, it was alluded to that

without restrictions, the seller cannot have any guar-
antee (Dhangwatnotai et al. 2015). For completeness,
we formalize this here in our specific context.

Lemma 2. No mechanism in} can achieve a positive max-
min ratio against the general class &—namely,

5(},&) " 0.

Lemma 2 shows that it is impossible for the seller to
design amechanism that achieves positiveworst-case
performance against arbitrary distributions. The
proof relies on two main ideas. Given Theorem 1, one
may restrict attention to scale-free mechanisms. In
turn, we establish that if the value of a buyer is 0, then
necessarily, a scale-free mechanism charges 0 to the
other buyer, independent of its value. Given this,
we establish that the performance of any scale-free
mechanism when facing the family of the Bernoulli
distribution of values can be arbitrarily small.

Allouah and Besbes: Prior-Independent Optimal Auctions
4424 Management Science, 2020, vol. 66, no. 10, pp. 4417–4432, © 2020 INFORMS



In the rest of the paper, we focus on characterizing the
maximin ratio for the set of regular distributions^reg and
the set of monotone hazard rate distributions ^mhr.

4. Maximin Ratio for Subsets of
Regular Distributions

In this section, we focus on the development of a
family of upper bounds on5(},^) for any ^ that is a
subset of the class of regular distributions ^reg. In
particular, the analysis of this section applies to both
^reg and ^mhr, and we will leverage these results in
Sections 5 and 6, when we specialize the analysis to
those classes.

In Section 4.1, we establish that one may, without
loss of optimality, restrict attention to a simpler set of
mechanisms that are characterized by a sequence of
thresholds. In Section 4.2, we focus on a simplification
of the set of distributions againstwhich one competes,
which leads to a further simplification of the set of
mechanisms one needs to consider. The conjunction
of results leads to a generic family of upper bounds on
5(},^) presented in Theorem 2.

Regarding the oracle performance for regular dis-
tributions, note that when the distribution of values F
is known and is regular, it is a standard result (see
Myerson 1981) that an optimal mechanism is given by
a second price auction with the reserve price given by
rF :" φ−1

F (0), and in turn,

opt(F) " EF φF(max{v1, v2})1{max{v1, v2} ≥ rF}
[ ]

.

In particular, the optimal oracle mechanism depends
on the knowledge of the distribution through the
reserve price. In what follows, we denote by qF " 1 −
F(rF) the quantile associated with rF.

4.1. From General Mechanisms to Discrete
Threshold Mechanisms

Our first result consists of a reduction of the set of
mechanisms that one needs to focus on when the
seller faces a subset of regular distributions. To that
end, we introduce the subset of mechanisms }′

sf
defined by

}′
sf " m ∈ }sf : for i " 1, 2, xi(vi, v−i)

{

"
∑N

n"1

1
N

1{vi > γnv−i}1{vi -" v−i} + c 1{vi " v−i},

for some N ≥ 1, γ ∈ RN and c ∈ [0, 1/2]
}
.

Note first that this set }′
sf is nonempty. For example,

the second price auction (without reserve price) be-
longs to this set. (To see that, one can take N " 1,
γ1 " 1, and c " 1/2.) This set represents a subset of the

scale-free mechanisms }sf ; it consists of mechanisms
that are constructed using a randomization over
prices to be paid by the buyer that is a linear trans-
formation of the value of the competitor.8 The next
result characterizes the performance of mechanisms
in }′

sf .

Proposition 1. For any subclass ^ of the set of regular
distributions ^reg, it is sufficient to focus on mechanisms in
}′

sf ; that is,

5(}′
sf ,^) " 5(}sf ,^).

Proposition 1 shows that, without loss of optimality,
we can focus on mechanisms that belong to }′

sf .
Furthermore, note that this result allows one to move
from a (potentially intractable) functional space of
mechanisms, }sf , to the union of finite dimensional
vector spaces, }′

sf .
The result relies on three key ingredients. We

first leverage the monotonicity of the allocations (see
Lemma 1) to establish that one may approximate
those from below by a combination of step functions,
where the steps are chosen so that the new alloca-
tion stays appropriately close to the original alloca-
tion. This leads to a new mechanism in }′

sf . Then,
leveraging the scale-free property of mechanisms and
the fact that the distributions are regular, we can
establish that, necessarily, the performance (in terms
of the ratio of revenues achieved compared the op-
timal oracle revenues) of the new mechanism is
necessarily appropriately close to that of the original
mechanism.

4.2. Family of Upper Bounds on 5(},^)
Having reduced the strategies of the seller to a more
tractable space by discretizing the allocation function,
we next reduce the complexity of the space of dis-
tribution functions under consideration ^ ⊂ ^reg. To
that end, we introduce the subclass of distributions,

0 :" F ∈ & : vF < ∞, F admits a density on

{

[vF, vF) and sup
v∈[vF ,vF)

φF(v) ≤ 0

}
,

where for any distribution F ∈ &, we let vF " inf{x :
x ∈ SF} and vF " sup{x : x ∈ SF}. In particular, 0 de-
notes the class of distributions with bounded support
that have nonpositive virtual value function on the
interior of the support and a potential mass at the
upper limit of the support. Note that this set is clearly
nonempty, and we will consider explicit examples in
Sections 5 and 6. Moreover, note also that for each
element of 0, the expectation of the virtual value
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function is not necessarily equal to the expected
revenue. The expected revenue is given by

EF ti(vi, v−i)[ ] "
∫ v̄

0
φi(vi)x̄i(vi)f (vi)dvi

+ F̄(v̄) v̄x̄i(v̄) −
∫ v̄

0
x̄i(s)ds

( )
,

where x̄i(vi) "
∫ ∞
0 xi(vi, u)f (u)du is the interim alloca-

tion to buyer i. In addition to the “classical” first term
on the right-hand side, a second term, driven by the
mass at v̄, is also present.

Note that the payment of anymechanism in}′
sf takes

the form (see Lemma B-5 in the electronic companion)

ti(vi, v−i) "
∑N

k"1

1
N

γkv−i 1{vi > γkv−i}1{vi -" v−i}

+ c′ v−i 1{vi " v−i},

for some appropriate c′. In particular, when evaluat-
ing the expected revenues of a mechanism in}′

sf , one
needs to consider terms of the form EF v21{v1 > αv2}[ ].
The next result establish that one may characterize
the performance of terms of EF v21{v1 > αv2}[ ], not
only for elements of ^reg but also for limits of such
elements.

Lemma 3. Suppose that a sequence {Fn : n ≥ 1} in ^reg,
with supn≥1{v̄Fn} < ∞, converges weakly to a distribution F,
where the latter has at most a discontinuity at vF < ∞. Then,
for any α ≥ 0,

lim
n↑∞

EFn v21{v1 > αv2}[ ]

" EF v21{v1 > αv2}[ ], if α -" 1,
1
2 EF min(v1, v2)[ ] if α " 1.

{
(6)

This result is established by leveraging the weak con-
vergence in conjunction with the regularity of the dis-
tributions Fn’s. This result is a key step in linking the
performance against elements of0 to that against ^.

Proposition 2. Fix a nonempty subset ^ of ^reg and a
nonempty subset 0′ of 0. Suppose that for any element of
0′, there exists a sequence of distributions in ^ that weakly
converges to that element. Then we have

5(}′
sf ,^) ≤ 5(}′

sf ,0
′).

In other words, although0′ is not a subset of^reg, the
result states that the maximin ratio against the class
of distributions 0′ upper bounds the maximin ratio
against the class^reg. The proof of this result leverages
the fact that we are working under the tractable space
of mechanisms }′

sf in conjunction with the limits
established in Lemma 3. Indeed, the worst-case
performance of any mechanism in }′

sf against ^ is
upper bounded by that against any element of a

sequence Fn that converges weakly to an element F of
0′. In the proof, we characterize an asymptotic upper
bound on the performance of any mechanism in }′

sf
against Fn. Then, we establish that the asymptotic
upper bound may be expressed as the performance of
a new mechanism in}′

sf when facing the distribution
corresponding to the weak limit F.

4.2.1. Subclass ofOptimalMechanismsAgainst0. Next,
we exploit the structure of the distributions in 0 to
further simplify the maximin ratio against subclasses
0′ of 0, 5(}′

sf ,0
′). Let us introduce the following

subset of mechanisms of }sf :

}max
sf "

{
m ∈ }sf : for i " 1, 2, xi(vi, v−i)

"
∑N

n"1

1
N

1{vi > γnv−i}1{vi -" v−i} + c 1{vi " v−i},

for some N ≥ 1,γ ∈ ([1,∞))N and c ∈ [0, 1/2]
}
.

Note that }max
sf is a subset of }′

sf and is the set
of mechanisms in }′

sf that never allocate to the mini-
mum value of buyers (when both values are different).

Proposition 3. For any subset of distributions 0′ of 0,

5(}′
sf ,0

′) " 5(}max
sf ,0′).

This proposition shows that, without loss of opti-
mality, when facing distributions in0, one can focus
on mechanisms that never allocate to the minimum
value (if the latter is different from the maximum
value). The intuition behind the result is that under
the class of distributions 0, the seller would like to
set a reserve price equal to the upper bound of the
support if she would know the distribution (see
Lemma B-4 in the electronic companion). In addi-
tion, allocating to a buyer with value strictly below
this reserve price yields a negative contribution to
the revenue of the seller (cf. Myerson 1981).When the
seller sees two values, although she does not know
the distribution, she knows that it belongs to 0, and
hence she still knows that both values are weakly
below the optimal oracle reserve price. In turn, the
seller neverwants to allocate to theminimumvalue (if
it is different from the maximum value).
We are now ready to put together all earlier results

and state the main result of this section.

Theorem 2. Fix a nonempty scale-invariant subset ^ of
^reg and a nonempty subset 0′ of 0. Suppose that for any
element of 0′, there exists a sequence of distributions in ^
that weakly converges to that element. Then we have

5(},^) ≤ 5(}max
sf ,0′).

This result provides a family of upper bounds on the
maximin ratio associated with any subset of the set of
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regular distributions and in particular applies to^mhr
and ^reg. In Section 5, we apply this upper bound to
^ " ^reg, and in Section 6, we apply it to ^ " ^mhr,
where for each, we select a suitable set 0′.

5. Maximin Ratio for Regular Distributions
In this section, we develop upper and lower bounds
on 5(},^reg), leading to a narrow interval to which
5(},^reg) belongs.

5.1. Upper Bound

Theorem 3 (Upper Bound for Regular Distributions). The
maximin ratio 5(},^reg) is upper bounded as follows:

5(},^reg) ≤ sup
N≥1

sup
γ∈[1,+∞)N

inf
q∈(0,1)

N − |(+|
N

1
2 − q

+ |(+|
N

q
2 − q

+
∑

k∈(+

1
N
ψ γk, q
( )

,

where (+ " {k ∈ [1,N] : γk > 1} and

ψ γk, q
( )

:" 2
γk

γk − 1
1

1 − q
1

2 − q
1 − q

1 − q + γkq

[

− 1
γk − 1

ln
γk

1 − q + γkq

( )]
.

Theorem 3 provides a fundamental limit on the per-
formance of any mechanism in }. At a high level, the
upper bound captures the complexity of the space
of mechanisms through a vector γ ∈ [1,+∞)N , and the
space of distributions has been distilled down to a
scalar q ∈ [0, 1]. This is in stark contrast with the initial
space of mechanisms } and the space of regular
distributions. The sharpness of this upper bound will
be apparent in the coming subsections, when we
evaluate it and compare it to a lower bound.

The upper bound in Theorem 3 also explicitly
highlights the tension associated with the design of a
prior-free mechanism. On the one hand, onemaywant
to put weight on values γk " 1 to guarantee perfor-
mance in line with a second price auction, which
hedges against deterministic values. This corresponds
to the first term in the upper bound (i.e., 1/(2 − q)). On
the other hand, putting weight on terms γk > 1 may
yield higher performance if nature selects a distri-
bution with a heavy tail.

5.1.1. Key IdeasUnderlying theProof of Theorem 3. The
first step in the proof is to derive an upper bound on
5(},^reg) through Theorem 2. Given the latter, the
key then is to identify an appropriate subset of dis-
tribution0reg that verifies the conditions of Theorem 2,
and the rest of the proof is organized around identifying
such a subset and explicitly deriving an upper bound
on the worst-case performance of any mechanism in
}max

sf against 0reg.

The family of distributions for which the revenue
curve in the quantile space is a triangle has the fol-
lowing expression:

Fa(v) "
1 − 1

v+1 , if v < a,
1, if v ≥ a,

{
(7)

for some a ≥ 0, and it has received attention in the
literature in various contexts. If we introduce the
following class of distribution 0reg :" {Fa : a > 0},
then one can show that each element in this class of
distribution0reg can be approached by a sequence of
elements of ^reg (see Lemma C-1 in the electronic
companion). As a result,5(}max

sf ,0reg) is a valid upper
bound for 5(},^reg). The proof then relies on de-
riving an analytical expression for 5(}max

sf ,0reg).

5.2. Lower Bound
We have just established an upper bound on5(},^reg).
We next focus on deriving a lower bound.

Proposition 4 (Lower Bound for Regular Distributions).
Consider any mechanism m " (x, t) in }max

sf and the cor-
responding parameters N ≥ 1, γ ∈ [1,∞)N , and c ∈ [0,
1/2]. Let (+ " {k ∈ [1,N] : γk > 1}. If |(+|/N ≤ 1/3, then
the performance of such a mechanism in the presence of two
buyers against a distribution F with optimal quantile qF is
lower bounded as follows:

R(m,F) ≥ N − |(+|
N

1
2 − qF

+
∑

k∈(+

1
N
ψ(γk, qF),

where

ψ(γk, qF)

:" γk

γk − 1
1 − qF −

1
γk − 1

ln
γk

1 + (γk − 1)qF

[ ]( )
1

1 − qF

− 2 γk qF
1 + γk − 1

( )
qF

1
2 − qF

.

The proposition above gives an explicit lower bound
for any mechanism in }max

sf that satisfies |(+|/N ≤ 1/3
(i.e., which does not inflate the second pricemore than
a third of the time). In particular, the lower bound
admits the same structure as the function character-
izing the upper bound up to a correction factor. In
particular, it is possible to see that the difference
between the upper and lower bounds goes to 0 as q
approaches 0.

5.2.1. Comparison with the Lower Bound Obtained in
Fu et al. (2015). The authors study a mechanism that
randomizes between a second price auction and an
inflation factor of γ, which can be viewed as a spe-
cial instance of the mechanisms in }max

sf .
For γ " 2, and using the second price auction with

probability 1 − p and inflation γ with probability p,
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one may establish that the lower bound obtained in
Proposition 4 is tighter and higher by a factor of

p
2 q2F (1 − qF)

(1 + qF) (2 − qF)
.

The key drivers of the improvement are dual. A first
improvement stems from bounding in a dependent
fashion the contributions of the second price auction
(γk " 1) and that of the inflation mechanisms (γk > 1).
A second improvement stems from obtaining a
tighter bound on the contributions of high γk terms.

5.3. Characterization of 5(},^ reg)
We next evaluate numerically values for upper and
lower bounds on 5(},^reg). Using Theorem 3, we
derive an upper bound on the maximin ratio. To that
end,wefix q " 0.17. For such a value,wehave 1/(2 − q) "
54.64%. Furthermore, the function ζ : (1,+∞) → R

defined by

ζ(γ) " 2 γ
1

1 − q
1

2 − q
1

γ − 1
1 − q

1 − q + γq

[

− 1
γ − 1
( )2 ln

γ
1 + (γ − 1)q

[ ]]
+ q
2 − q

reaches its maximum at about γ " 1.5, and its maxi-
mal value is 55.59%. From the above, we deduce that
maximin ratio is upper bounded by 55.59%.

Applying Proposition 4, we evaluate numerically
the lower bound by taking γ " (1, 1, 1, 1, 2) and a
vector q of values from 0 to 1with a step 0.001.We find
that the lower bound is 51.9%. We conclude that

51.9% ≤ 5(},^reg) ≤ 55.59%.

In other words, we have characterized the maximin
ratio up to less than 4%. There is an important im-
plication of the results above. In the face of regu-
lar distributions, although randomization is helpful
compared with a second price auction (that guaran-
tees 50% of oracle revenues), the extent to which one
may improve performance is limited to atmost 5.59%.
An interpretation of our results is that the second
price auction is near optimal in environments with
unknown regular distributions.

6. Maximin Ratio for MHR Distributions
In this section, we focus on the maximin ratio when
nature can only select distributions in^mhr, which is a
subset of the regular class of distributions ^reg. In
other words, the seller now has more information
about the distribution of buyers compared with the
setting analyzed in Section 5.

6.1. Upper Bound

Theorem 4 (Upper Bound for MHR Distributions). The
maximin ratio 5(},^mhr) is upper bounded as follows:

5(},^mhr) ≤ inf
q∈[e−1,1]

1 − q2

2 q (2 − q) ln(1/q) .

Theorem 4 provides a fundamental limit on the
performance of any mechanism against distributions
in ^mhr. Quite notably, this upper bound comes in
quasi-closed form and takes a significantly much
simpler form than for the broader class of regular
distributions. We next highlight the main ideas in the
proof and highlight the role of theMHR knowledge in
the derivation of this upper bound.
The proof of this result follows initially the same

structure as that of Theorem 3. As earlier, we leverage
Theorem 2, but now, we use a different family, 0mhr,
suited to the increasing hazard rate family of distri-
butions ^mhr. In particular, we define0mhr to be the set
of distribution F parametrized by a ≥ b > 0 such that

Fa,b(v) " 1 − exp − v
a

( )
, if v < b,

1, if v ≥ b.

{

This family is constructed by truncating the expo-
nential family distribution. This family is rich enough
to cover the range of all possible optimal oracle
quantiles (qF) of MHR distributions. We establish that
any such element can be “approached” by a sequence
in ^mhr, and in turn,5(}max

sf ,0mhr) is an upper bound
on 5(},^mhr). The role of the MHR assumption
comes into play whenwe evaluate the performance of
any mechanism in }max

sf against 0mhr. In this context,
we are able to establish that the optimal performance
against0mhr is given by that of a second price auction.
In particular, it is suboptimal to randomize the al-
location when facing the family 0mhr.

6.2. Lower Bound
Wenext establish a lowerboundon5(},^mhr)by lower
bounding the performance of a second price auction.
It is worthwhile to note that a first coarse lower

bound may be readily obtained from existing results
by simply noting that the oracle optimal quantile qF
cannot be less than e−1 for MHR distributions; see, for
example, Hartline et al. (2008). Combining this with
the lower bound on the performance of a second price
auction of 1/(2 − qF) obtained in Fu et al. (2015) for
regular distributions, one readily obtains that

R(mspa, F) ≥
1

2 − e−1
≈ 61.2%.

One can already see that a significantly higher per-
formance is possible with the additional knowledge
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that the distributions belong to the MHR class. Next,
we establish a sharp lower bound on R(mspa,F).
Proposition 5 (Lower Bound for MHR Distributions). For
any F in^mhr, the performance of the second price auction in
the presence of two buyers is bounded below as follows:

R(mspa, F) ≥
1
2

1 − q2F
qF(2 − qF)(− ln(qF))

,

where qF " 1 − F(rF) is the oracle optimal quantile.

The key idea underlying this result is to leverage the
structural properties that the MHR distribution im-
poses on the structure of the revenue curve in the
quantile space. In particular, leveraging a single
crossing property between the ccdf of any MHR dis-
tribution and any exponential tail developed in the
reliability theory literature (Barlow and Proschan
1975), we establish a lower bound on the ccdf of
the distribution of anyMHRdistribution through that
of a particular exponential distribution. This leads to a
lower bound on the revenue curve in the quantile
space, ultimately leading to the bound above.

We discuss the implications of this result next.

6.3. Optimality of Second Price Auction and
Characterization of 5(},^mhr )

We are now ready to state the main result of Section 6,
which follows from the two earlier results.

Theorem 5 (Optimality of Second Price Auction). The
second price auction is optimal in } when facing two
buyers with MHR distributions—namely,

inf
F∈^mhr

R(mspa,F) " 5(},^mhr).

Furthermore,

5(},^mhr) " inf
q∈[e−1,1]

1 − q2

2 q (2 − q) ln(1/q) ≈ 71.53%.

We conclude that the second price auction and an
element in 0mhr represent a (quasi) saddle point for
themaximin ratio5(},^mhr).9 Theorem 5 provides an
exact characterization of the maximin ratio and the
corresponding optimal prior-free auction.

Interestingly, whereas randomization of the allo-
cation helped the seller counter nature when facing
regular distributions, such randomization does not
help anymore when facing the subclass of monotone
hazard rate distributions. It is quite notable that this
simple mechanism, a second price auction, which is
also efficient, is actually optimal in this environment.

The result above also quantifies the value of ad-
ditional knowledge of the distributions. If a seller
knows that the distribution is MHR, then she gains
at least 71.53% − 55.59% " 15.94% in guaranteed per-
formance (compared with an oracle). Indeed, MHR
distributions have limited variability as measured

(e.g., through the coefficient of variation). The latter
is bounded by 1 (Barlow and Proschan 1975), whereas
it is unbounded for regular distributions. With such
limited variability, a second price auction appears
“sufficient.”

7. Extensions and Concluding Remarks
We have analyzed the problem of optimally selling
one indivisible good to two symmetric and inde-
pendent buyers when one relaxes the common prior
assumption. For that, we look at the model where
the buyers are not assumed to know any informa-
tion about the other buyers and the seller does not
know the exact distribution. We characterize the
maximin ratio for a broad subclass of DSIC mecha-
nisms against the classes of regular and MHR dis-
tributions. We refer the reader back to Table 1 for
a summary of some implications of our results.
Whereas we have done so while focusing on the case
of two buyers, we establish next that the bounds we
have derived apply to the case when the number of
buyers is selected adversarially.

7.1. Extension to the Case of an Adversarially
Selected Number of Buyers

In this section, we will show that our bounds apply to
the case inwhich the number of buyers is arbitrary but
adversarially selected.
We assume as earlier that the seller does not know

exactly the distribution of values of buyers but knows
it belongs to some class of distribution^ in the general
class of distributions &. Moreover, we assume also
that the seller does not know the exact the number of
buyersK ≥ 2.Wemodel the seller’s problem as a game
between the seller and nature, where the seller will
first pick a collection of prior-independent mecha-
nisms contingent on the number of bids K, and then
nature picks both the number of buyers and their
distribution of values from some class.
A seller’s mechanism is now a set of allocations and

payment functions contingent on the number of bids
received K ≥ 2. The seller will apply a mechanism
characterized by an allocation mapping xK and a
payment mapping tK, where xK : RK → [0, 1]K and
tK : RK → RK. We focus on DSIC mechanisms that
verify for any K ≥ 2

vi xKi (vi,v−i) − tKi (vi,v−i) ≥ 0,

for all i and vi,v−i in RK
+, (IR-K)

vi xKi (vi,v−i) − tKi (vi,v−i) ≥ vi xKi (v̂i,v−i) − tKi (v̂i,v−i),
for all i and vi, v−i, v̂i in RK+2

+ , (IC-K)

xK(vi, v−i) belongs to ∆K,

for all vi, v−i in RK
+, (AC-K)
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where ∆K is the probability simplex of RK. These
constraints are similar to those introduced earlier (see
(IR), (IC). and (AC)).

More formally, the seller’s strategy is a collection of
mechanisms from the set }̃, where

}̃ " xK, tK
( )

K≥2: xK, tK
( )

satisfies (IR-K),
{

(IC-K), (AC-K) andmax
i"1,2

{TV(x2i , [0, ε]2)}

< ∞ for some ε > 0
}
.

Similarly, we define the oracle benchmark, as well as
the performance of each mechanism contingent on
having K buyers, by

optK(F) :" sup
m∈}

EF
∑K

i"1
tKi (vi,v−i)

[ ]
and

RK(m, F) " EF
∑K

i"1 t
K
i (vi, v−i)

[ ]

optK(F) .

In the case of an arbitrary but adversarially selected
number of buyers, the objective of the seller is now
given by

5̃(}̃,^) " sup
m∈}̃

inf
K≥2

inf
F∈^

RK(m,F).

Next, we state the main result of this section.

Proposition 6. (1) The maximin ratio for the regular class
of distributions verifies

51.9% ≤ 5̃(}̃,^ref ) ≤ 55.6%.

(2) A second price auction is an optimal mechanism when
facing MHR distributions. Furthermore,

5̃(}̃,^mhr) " inf
F∈^mhr

R2(mspa, F) ≈ 71.53%.

Note that a priori it is not clear that the case of two
buyers is the worst case, because the oracle benchmark
also varies with the number of buyers. In the proof
of Proposition 6, we show formally that the smallest
maximin ratio is achieved when only two buyers par-
ticipate in the auction. The proof of these results relies
fundamentally on the case of two buyers studied earlier
in the paper in conjunction with some known results in
the literature. Hence,when nature can pick adversarially
any number of buyers K ≥ 2, a second price auction is
still near optimal against regular distributions and is
actually optimal against MHR distributions.

7.2. Future Directions
A direct and complementary direction would be to
characterize the maximin ratio as a function of the
number of buyers, when this number cannot be se-
lected adversarially by nature.

Also, in our analysis we havemainly focused on the
regular and MHR classes, which are subsets of the
α-strongly regular class of distributions; see Ewerhart
(2013), Cole and Roughgarden (2014), Cole and Rao
(2015), and Schweizer and Szech (2016) for more
details about this class of distributions. The results
developed in Section 4 for the upper bounds have
the potential to be applied to any subclass of the
α-strongly regular class where α would be a param-
eter that would capture the degree of knowledge of
the seller. As such, an interesting direction is to char-
acterize the maximin ratio as a function of the degree
of knowledge of the seller.
Another way to incorporate the knowledge of the

seller is to assume that she has access to extra infor-
mation such as the moments, and a potential research
question is how one could leverage such additional
information to improve the performance and what
the structure of optimal mechanisms is in such cases.
(We refer the reader to, e.g., Azar et al. (2013), who
study deterministic mechanisms that incorporate
such information.)
More generally, our work tries to relax the common

prior assumption and we have focused on the ca-
nonical setting of one indivisible good and sym-
metric buyers with independent values that are reg-
ular. There are various generalizations that naturally
emerge. For example, it would be interesting to see if
one can develop results of a similar nature when the
class of distribution is a “structured” irregular class
(see, e.g., Sivan and Syrgkanis 2013 for an example of
such a subclass). Similarly, developing parallel lower
and upper bounds on the maximin ratio for general
environments that would allow, for example, for
correlation among values or asymmetric buyers is a
promising direction.
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Appendix. Auxiliary Definition
Here, we recall the definition of the Arzelà total variation
definition for functions of two variables; see, for example,
Clarkson and Adams (1933).

Definition A.1. The Arzelà total variation of a mapping h : [a, b]×
[c, d] → R is given by

TV(h, [a, b] × [c, d])

:" sup
N≥1

sup
u∈[a,b]N

u1≤...≤uN

sup
v∈[c,d]N

v1≤...≤vN

∑N

j"1
h(uj+1, vj+1) − h(uj, vj)
⃒⃒ ⃒⃒

.

Furthermore, h is said to have finite total variation in [a, b] × [c, d]
if TV(h, [a, b] × [c, d]) < ∞.
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Endnotes
1We initially focus on two buyers and then return to the case of an
arbitrary and adversarially selected number of buyers in Section 7.1.
2Here and throughout the paper, whenever we refer to a “second
price auction,” unless otherwise noted, it is implicitly assumed that
there is no reserve price.
3 It is worthwhile noting here that against the classes we consider
(regular and mhr), a worst-case absolute performance analysis
would lead to a value of 0, and all feasible mechanisms would be
optimal. The relative benchmark approach allows for control-
ling the environment and deriving guarantees on broader sets of
distributions.
4We also refer the reader to Chung and Ely (2007) for an in-depth
discussion of DSIC mechanisms.
5We recall the definition of Arzelà total variation in the appendix.
6Although it is needed for the proofs, we conjecture that it does not
imply a loss of optimality.
7 In recent years, there has been growing literature advocating for
simple mechanisms (see, e.g., Hartline and Roughgarden 2009 and
Daskalakis and Pierrakos 2011). In that sense, the mechanisms in }
could be thought as a formalization of some broad class of “simple”
mechanisms.
8Note also that this set captures explicitly the probability of allocation
to a buyer when the value of buyers are equal. Although seemingly
unimportant in the class^reg, because ties happen with probability 0,
this explicit inclusion of the case of ties will play an important role
when we will be dealing with the limiting performance of a mech-
anism against an appropriate sequence of distributions that con-
verges weakly to a point outside of ^reg (see Proposition 3).
9Technically speaking, it is not exactly a saddle point given that the
elements of 0mhr do not belong to ^mhr.

References
Araman VF, Caldentey RA (2009) Dynamic pricing for non-

perishable products with demand learning. Oper. Res. 57(5):
1169–1188.

Azar P,Micali S (2012) Optimal parametric auctions. CSAIL Technical
Report MIT-CSAIL-TR-2012-015, Massachusetts Institute of
Technology, Cambridge.

Azar P, Daskalakis C, Micali S, Weinberg SM (2013) Optimal and
efficient parametric auctions. Khanna S, ed. Proc. 24th Annual
ACM-SIAM Sympos. Discrete Algorithms (ACM, New York),
596–604.

Bandi C, Bertsimas D (2014) Optimal design for multi-item auc-
tions: A robust optimization approach. Math. Oper. Res. 39(4):
1012–1038.

Barlow RE, Proschan F (1975) Statistical theory of reliability and life
testing: Probability models. Technical report, Florida State Uni-
versity, Tallahassee.

Bergemann D, Morris S (2013) An introduction to robust mechanism
design. Foundations Trends Microeconom. 8(3):169–230.

Bergemann D, Schlag KH (2008) Pricing without priors. J. Eur.
Econom. Assoc. 6(2–3):560–569.

Bergemann D, Brooks, BA, Morris S (2016) Informationally robust
optimal auction design. Cowles Foundation Discussion Paper
2065, Yale University, New Haven, CT.

Besbes O, Zeevi A (2009) Dynamic pricing without knowing the
demand function: Risk bounds and near-optimal algorithms.
Oper. Res. 57(6):1407–1420.

Besbes O, Zeevi A (2015) On the (surprising) sufficiency of linear
models for dynamic pricing with demand learning. Management
Sci. 61(4):723–739.

Borodin A, El-Yaniv R (1998) Online Computation and Competitive
Analysis (Cambridge University Press, New York).

Bose S, Daripa A (2009) A dynamic mechanism and surplus ex-
traction under ambiguity. J. Econom. Theory 144(5):2084–2114.

Bose S, Ozdenoren E, Pape A (2006) Optimal auctions with ambi-
guity. Theoret. Econom. 1(4):411–438.

Bulow J, Klemperer P (1996) Auctions vs. negotiations.Amer. Econom.
Rev. 86(1):180–194.

Caillaud B, Robert J (2005) Implementation of the revenue-
maximizing auction by an ignorant seller. Rev. Econom. De-
sign 9(2):127–143.

Caldentey R, Liu Y, Lobel I (2016) Intertemporal pricing under
minimax regret. Oper. Res. 65(1):104–129.

Carrasco V, Farinha Luz V, Monteiro P, Moreira H (2015) Robust
selling mechanisms. Discussion Paper 641, Pontifical Catholic
University of Rio de Janeiro, Rio de Janeiro.

Carroll G (2019) Robustness in mechanism design and contracting.
Annual Rev. Econom. 11(1):139–166.

Chen H, Hu M, Perakis G (2017) Distribution-free pricing. Working
paper, Chinese Academy of Sciences, Beijing.

Chiesa A, Micali S, Zhu ZA (2015) Knightian analysis of the Vickrey
mechanism. Econometrica 83(5):1727–1754.

Chung K-S, Ely JC (2007) Foundations of dominant-strategy mech-
anisms. Rev. Econom. Stud. 74(2):447–476.

Clarkson JA, Adams CR (1933) On definitions of bounded variation
for functions of two variables. Trans. Amer. Math. Soc. 35(4):
824–854.

Cohen MC, Perakis G, Pindyck RS (2016) Pricing with limited
knowledge of demand. Proc. 2016 ACM Conf. Econom. Comput.
(ACM, New York), 657.

Cole R, Rao S (2015) Applications of α-strongly regular distributions
to Bayesian auctions. Markakis E, Schäfer G, eds. Proc. 11th
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