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Abstract. In a multi-armed bandit problem, a gambler needs to choose at each round one
of K arms, each characterized by an unknown reward distribution. The objective is to
maximize cumulative expected earnings over a planning horizon of length T, and per-
formance is measured in terms of regret relative to a (static) oracle that knows the identity of
the best arm a priori. This problem has been studied extensively when the reward distri-
butions do not change over time, and uncertainty essentially amounts to identifying the
optimal arm. We complement this literature by developing a flexible non-parametric model
for temporal uncertainty in the rewards. The extent of temporal uncertainty is measured via
the cumulative mean change in the rewards over the horizon, a metric we refer to as
temporal variation, and regret is measured relative to a (dynamic) oracle that plays the point-
wise optimal action at each period. Assuming that nature can choose any sequence of mean
rewards such that their temporal variation does not exceed V (a temporal uncertainty
budget), we characterize the complexity of this problem via the minimax regret, which de-
pends on V (the hardness of the problem), the horizon length T, and the number of arms K.
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1. Introduction
1.1. Background and Motivation
In the prototypical multi-armed bandit (MAB) problem, a gambler needs to choose at each round of play
t � 1, . . . ,T one of K arms, each characterized by an unknown reward distribution. Reward realizations are
only observed when an arm is selected, and the gambler’s objective is to maximize cumulative expected
earnings over the planning horizon. To achieve this goal, the gambler needs to experiment with multiple
actions (pulling arms) in an attempt to identify the optimal choice while simultaneously taking advantage of
the information available at each step of the game to optimize immediate rewards. This trade-off between
information acquisition via exploration (which is forward looking) and the exploitation of the latter for
immediate reward optimization (which is more myopic in nature) is fundamental in many problem areas;
examples include clinical trials (Zelen 1969), strategic pricing (Bergemann and Valimaki 1996), investment in
innovation (Bergemann and Hege 2005), online auctions (Kleinberg and Leighton 2003), assortment selection
(Caro and Gallien 2007), and online advertising (Pandey et al. 2007), to name but a few. The broad appli-
cability of this class of problems is one of the main reasons MAB problems have been so widely studied, since
their inception in the seminal papers of Thompson (1933) and Robbins (1952).

In the MAB problem, it has become commonplace to measure the performance of a policy relative to an
oracle that knows the identity of the best arm a priori, with the gap between the two referred to as the regret. If
the regret is sublinear in T, this is tantamount to the policy being (asymptotically) long-run-average optimal, a
first-order measure of “good” performance. In their seminal paper, Lai and Robbins (1985) went further and
identified a sharp characterization of the regret growth rate: no policy can achieve (uniformly) a regret that is
smaller than order logT, and there exists a class of policies, predicated on the concept of upper confidence
bounds (UCBs), that achieve said growth rate of regret and hence are (second-order) asymptotically optimal.
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The premultiplier in the growth rate of regret encodes the “complexity” of the MAB instance in terms of problem
primitives; in essence, it is proportional to the number of arms K and inversely proportional to a term that
measures the “distinguishability” of the arms—roughly speaking, the closer the mean rewards are, the harder
it is to differentiate the arms and the larger this term is. When the aforementioned gap between the arms’ mean
reward can be arbitrarily small, the complexity of the MAB problem, as measured by the growth rate of regret,
is of order

̅
T̅

√
(see Auer et al. 2002a). For overviews and further references, the reader is referred to the monographs

by Berry and Fristedt (1985), Gittins (1989) for Bayesian/dynamic programming formulations, and Bubeck and
Cesa-Bianchi (2012), which covers the machine learning literature and the so-called adversarial setting.

The parameter uncertainty in the MAB problem described is purely spatial, and the difficulty in the problem
essentially amounts to uncovering the identity of the optimal arm with “minimal” exploration. However, in
many application domains, temporal changes in the reward distribution structure are an intrinsic characteristic
of the problem, and several attempts have been made to incorporate this into a stochastic MAB formulation.
The origin of this line of work can be traced back to Gittins and Jones (1974), who considered a case in which
only the state of the chosen arm can change, giving rise to a rich line of work (see, e.g., Gittins (1979) and
Whittle (1981) as well as references therein). In particular, Whittle (1988) introduced the term restless bandits, a
model in which the states (associated with reward distributions) of arms change in each step according to an
arbitrary yet known stochastic process. Considered a “hard” class of problems (cf. Papadimitriou and Tsitsiklis
1994), this line of work has led to various approximations (see, e.g., Bertsimas and Nino-Mora 2000), relaxations
(see, e.g., Guha and Munagala 2007), and restrictions of the state transition mechanism (see, e.g., Ortner et al.
(2014) for irreducible Markov processes and Azar et al. (2014) for a class of history-dependent rewards).

An alternative and more pessimistic approach views the MAB problem as a game between the policy
designer (gambler) and nature (adversary) in which the latter can change the reward distribution of the arms
at every instance of play. These ideas date back to the work of Blackwell (1956) and Hannan (1957) and have
since seen significant development; Foster and Vohra (1999), Cesa-Bianchi and Lugosi (2006), and Bubeck and
Cesa-Bianchi (2012) provide reviews of this line of research. Within this so-called adversarial formulation, the
efficacy of a policy over a given time horizon T is measured relative to a benchmark that is defined by the
single best action in hindsight, the best action that could have been taken after seeing all reward realizations.
The single best action represents a static oracle, and the regret in this formulation uses that as a benchmark. For
obvious reasons, this static oracle can perform quite poorly relative to a dynamic oracle that follows the
dynamic optimal sequence of actions because the latter optimizes the (expected) reward at each time instant.1

Thus, a potential limitation of the adversarial framework is that even if a policy exhibits a “small” regret
relative to the static oracle, there is no guarantee that it will perform well with respect to the more stringent
dynamic oracle.

1.2. Main Contributions
In this paper, we provide a non-parametric formulation that is useful for modeling non-stationary rewards
and allows benchmarking performance against a dynamic oracle and yet is tractable from an analytical and
computational standpoint, allowing for a sharp characterization of problem complexity. Specifically, our contri-
butions are as follows.

1.2.1. Modeling. We introduce a non-parametric modeling paradigm for non-stationary reward environments,
which we demonstrate to be tractable for analysis purposes yet extremely flexible and broad in the scope of
problem settings to which it can be applied. The key construct in this modeling framework is that of a budget
of temporal uncertainty, which is measured in the total variation metric with respect to the cumulative mean
reward changes over the horizon T. One can think of this as a temporal uncertainty set with a certain
prescribed “radius” VT such that all mean reward sequences that reside in this set have temporal variation that
is less than this value. (These concepts are related to the ones introduced in Besbes et al. (2015) in the context
of non-stationary stochastic approximation.) In particular, VT plays a central role in providing a sharp char-
acterization of the MAB problem complexity (in conjunction with the time horizon T and the number of arms K).
In this manner, the paper advances our understanding of MAB problems and complements existing ap-
proaches to modeling and analyzing non-stationary environments. In particular, the non-parametric for-
mulation we propose allows for very general temporal evolutions, extending most of the treatment in the non-
stationary stochastic MAB literature, which mainly focuses on a finite number of changes in the mean rewards
(see, e.g., Garivier and Moulines 2011). Concomitantly, as indicated, the framework allows for the more
stringent dynamic oracle to be used as a benchmark as opposed to the static benchmark used in the adversarial
setting. (We further discuss these connections in Section 3.2.)

Besbes, Gur, and Zeevi: A Multi-armed Bandit Problem with Non-stationary Rewards
320 Stochastic Systems, 2019, vol. 9, no. 4, pp. 319–337, © 2019 The Author(s)



1.2.2. Minimax Regret Characterization. When the cumulative temporal variation over the decision horizon T is
known to be bounded ex ante by VT, we characterize the order of the minimax regret and hence the
complexity of the learning problem. It is worthwhile emphasizing that the regret is measured here with respect
to a dynamic oracle that knows ex ante the mean reward evolution and hence the dynamic sequence of best
actions. This is a marked departure from the weaker benchmark associated with the best single action in
hindsight, which is typically used in the adversarial literature (exceptions noted herein). First, we establish
lower bounds on the performance of any non-anticipating policy relative to the aforementioned dynamic
oracle and then show that the order of this bound can be achieved uniformly over the class of temporally
varying reward sequences by a suitably constructed policy. In particular, the minimax regret is shown be
of the order of KVT( )1/3T2/3. The reader will note that this result is quite distinct from the traditional sto-
chastic MAB problem. In particular, in that problem, the regret is either of order K logT (in the case of “well
separated” mean rewards) or of order K

̅
T̅

√
(the minimax formulation). In contrast, in the non-stationary MAB

problem, the minimax complexity exhibits a very different dependence on problem primitives. In particular,
even if the variation budget VT is a constant independent of T, then asymptotically the regret grows sig-
nificantly faster, order T2/3, compared with the stationary case, and when VT itself grows with T, the problem
exhibits complexity on a spectrum of scales. Ultimately, if the variation budget is such that VT is of the same
order as the time horizon T, then the regret is linear (and no policy can achieve sublinear regret).

1.2.3. Elucidating Exploration–Exploitation Trade-Offs in the Presence of Non-stationary Rewards. Unlike the
traditional stochastic MAB problem in which the key trade-off is between the information acquired through
exploration of the action space and the immediate reward obtained by exploiting said information, the non-stationary
MAB problem has further subtlety. In particular, although the policy we propose accounts for the explore–
exploit tension, it highlights an additional consideration that concerns memory. More broadly, changes in the
reward distribution that are inherent in the non-stationary stochastic setting require that a policy also
“forgets” the acquired information at a suitable rate.

1.2.4. Toward Adaptive Policies. Our work provides a sharp characterization of the minimax complexity of the
non-stationary MAB via a policy that knows a priori a bound VT on the mean reward temporal variation. This
leaves open the question of online adaptation to said temporal variation. Namely, are there policies that are
minimax or nearly minimax optimal (in order) that do not require said knowledge and hence can adapt to the
nature of the changing mean reward sequences on the fly. This adaption means that a policy can achieve ex
post performance that is as good as (or nearly as good as) the one achievable under ex ante knowledge of the
temporal variation budget. Section 5 of this paper lays out the key challenges associated with adapting to
unknown variation budgets. Although we are not able to provide an answer to the question, we propose a
potential solution methodology in the form of an “envelope” policy that employs several subordinate policies,
each of which is constructed under a different assumption on the temporal variation budget. The subordinate
policies each represent a “guess” of the unknown temporal parameter, and the “master” envelope policy
switches among these policies based on observed feedback, hence learning the changes in variation as they
manifest. Although we have no proof for optimality or strong theoretical indication to believe an optimal
adaptive policy is to be found in this family, numerical results indicate that such a conjecture is plausible.
A full theoretical analysis of adaptive policies is left as a direction for future research.

1.3. Further Contrast with Related Work
The two closest papers to ours are Auer et al. (2002b), which is couched in the adversarial setting, and Garivier
and Moulines (2011), which pursues the stochastic setting. In both papers, the non-stationary reward structure
is constrained such that the identity of the best arm can change only a finite number of times. The regret in
these instances is shown to be of order

̅
T̅

√
. Our analysis complements these results by treating a broader and

more flexible class of temporal changes in the reward distributions. Our framework, which considers a
dynamic oracle as benchmark, adds a further element that was so far absent from the adversarial formulation
and provides a much more realistic comparator against which to benchmark a policy. The concept of variation
budget was advanced in Besbes et al. (2015) in the context of a non-stationary stochastic approximation
problem, complementing a large body of work in the online convex optimization literature. The analogous
relationship can be seen between our paper and the work on adversarial MAB problems, although the
techniques and analysis are quite distinct from Besbes et al. (2015), which deals with continuous (convex)
optimization.
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Hazan and Kale (2011) consider a non-stochastic MAB setting in which regret is measured relative to the more
traditional single best action in hindsight. The regret relative to the latter depends on a quadratic variation/
spread measure of the cost vectors (relative to the empirical average vector of costs). Slivkins (2014) considers a
contextual bandit setting with a regret bound that depends, among other things, on a Lipschitz-type constant
that limits reward differences over the joint space of arms and contexts. Other forms of variation are also
considered in Jadbabaie et al. (2015) in an online convex optimization setting.

Some more recent papers have followed up on ideas presented in this paper in the context of several non-stationary
sequential optimization settings. These include MAB settings in which additional structure is imposed on the
non-stationarity of mean rewards (e.g., Levine et al. 2017) as well as other sequential optimization settings (see,
e.g., Wei et al. (2016) in an expert advice context). A few recent papers focus on the question of how to design
policies that adapt to unknown variation budgets; see, for example, Karnin and Anava (2016) and Luo et al.
(2018), as well as Cao et al. (2019) and Cheung et al. (2019), in different MAB settings and Zhang et al. (2018) in
a full-information online convex optimization setting.

1.4. Structure of the Paper
The next section introduces the formulation of a stochastic non-stationary MAB problem. In Section 3, we
characterize the minimax regret using lower and upper bounds by exhibiting a family of adaptive policies that
achieve rate-optimal performance. Section 4 provides numerical results. In Section 5, we lay out the challenges
associated with adapting to an unknown variation budget. Proofs can be found in the appendix.

2. Problem Formulation
Let _ � 1, . . . ,K{ } be a set of arms. Let t � 1, 2, . . . denote the sequence of decision epochs, in which at each t the
decision maker pulls one of the K arms and obtains a reward Xk

t ∈ 0, 1[ ], where Xk
t is a random variable with

expectation μk
t � E[Xk

t ]. We denote the best possible expected reward at decision epoch t by

μ∗
t � max

k∈_
μk
t

{ }
, t � 1, 2, . . . .

2.1. Temporal Variation in the Expected Rewards
We assume that the expected reward of each arm μk

t may change at any decision point. We denote by μk the
sequence of expected rewards of arm k: μk � {μk

t : t � 1, 2, . . .}. In addition, we denote by μ the sequence of
vectors of all K expected rewards: μ � {μk : k � 1, . . . ,K}. We assume that the expected reward of each arm
can change an arbitrary number of times and track the extent of (cumulative) temporal variation over a given
horizon T using the following metric:

9(μ;T) :�∑T−1
t�1

sup
k∈_

μk
t − μk

t+1
⃒⃒ ⃒⃒

, T � 2, 3, . . . . (1)

Figure 1. Two Instances of Temporal Changes in the Expected Rewards of Two Arms That Correspond to the Same
Cumulative Variation

Notes. (Left) Continuous variation in which a fixed variation (which equals 3) is spread over the whole horizon. (Right) A counterpart instance in
which the same variation is spent in the first and final thirds of the horizon while mean rewards are fixed in between.
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As is further clarified later on, our formulation does not impose a specific structure on μ, but we assume that
these are independent of the realized sample path of past actions. The formulation allows for many different
forms in which the mean rewards may change; for illustration, Figure 1 shows two different temporal patterns
of mean reward changes that correspond to the same variation value 9(μ;T).

2.2. Admissible Policies, Performance, and Regret
Let U be a random variable defined over a probability space U,8,Pu( ). Let π1 : U → _ and πt : [0,1]t−1×U→_
for t� 2,3, . . . be measurable functions. With some abuse of notation, we denote by πt ∈_ the action at time t that
is given by

πt �
π1 U( ) t � 1,
πt Xπ

t−1, . . . ,Xπ
1 ,U

( )
t � 2, 3, . . . .

{
The mappings πt : t � 1, 2, . . .{ } together with the distribution Pu define the class of admissible policies. We

denote this class by 3. We further denote by *t, t � 1, 2, . . .{ } the filtration associated with a policy π ∈ 3,
such that

*1 � σ U( )
and

*t � σ Xπ
j

{ }t−1
j�1

,U
( )

for all

t ∈ 2, 3, . . .{ }.
Note that policies in 3 are non-anticipating; that is, they depend only on the past history of actions and
observations and allow for randomized strategies via their dependence on U.

For a given horizon T and given sequence of mean reward vectors {μ}, we define the regret under policy
π ∈ 3 compared with a dynamic oracle as

Rπ(μ,T) �∑T
t�1

μ∗
t − Eπ

∑T
t�1

μπ
t

[ ]
,

where the expectation Eπ ·[ ] is taken with respect to the noisy rewards as well as to the policy’s actions. The
regret measures the difference between the expected performance of the dynamic oracle that “pulls” the arm
with the highest mean reward at each epoch t and that of any given policy. Note that, in a stationary setting,
one recovers the typical definition of regret in which the oracle rule is constant.

2.3. Budget of Variation and Minimax Regret
Let {Vt : t � 1, 2, . . .} be a non-decreasing sequence of positive real numbers such that V1 � 0, KVt ≤ t for all t,
and for normalization purposes, set V2 � 2 · K−1. We refer to VT as the variation budget over time horizon T. For
that horizon, we define the corresponding temporal uncertainty set as the set of mean reward vector sequences
with cumulative temporal variation that is bounded by the budget VT:

+(VT) � μ ∈ 0, 1[ ]K×T : 9(μ;T) ≤ VT
{ }

.

The variation budget captures the constraint imposed on the non-stationary environment faced by the decision
maker. We denote by 5π(VT,T) the regret guaranteed by policy π uniformly over all mean rewards sequences
{μ} residing in the temporal uncertainty set:

5π(VT,T) � sup
μ∈+(VT)

Rπ(μ,T).

In addition, we denote by 5∗(VT,T) the minimax regret, namely, the minimal worst-case regret that can be
guaranteed by an admissible policy π ∈ 3:

5∗(VT,T) � inf
π∈3

sup
μ∈+(VT)

Rπ(μ,T).
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This minimax regret formulation implies that the sequence of mean rewards is selected by a non-adaptive
adversary and is only constrained to belonging to the uncertainty set +(VT). Conditional on the sequence of
mean rewards, our model is one of a MAB with stochastic (noisy) rewards that are generated by non-stationary
distributions. A direct characterization of the minimax regret is hardly tractable. In what follows, we derive bounds
on the magnitude of this quantity as a function of the horizon T that elucidate the impact of the budget of
temporal variation VT on achievable performance; note that VT may increase with the length of the horizon T.

3. Analysis of the Minimax Regret
3.1. Lower Bound
We first provide a lower bound on the best achievable performance.

Theorem 1 (Lower Bound on Achievable Performance). Assume that, at each time t � 1, . . . ,T, the rewards Xk
t ,

k � 1, . . . ,K, follow a Bernoulli distribution with mean μk
t . Then, for any T ≥ 2 and VT ∈ [K−1,K−1T], the worst-case regret

for any policy π ∈ 3 is bounded below as follows:

5π(VT,T) ≥ CK1/3V1/3
T T2/3,

where C is an absolute constant (independent of T and VT).

We note that when reward distributions are stationary and arm mean rewards can be arbitrarily close, there are
known policies that achieve regret of order

̅
T̅

√
up to logarithmic factors (cf. Auer et al. 2002a). Moreover, it has been

established in Auer et al. (2002b) that this regret rate is still achievable even when there are changes in the mean
rewards as long as the number of changes is finite and independent of the horizon length T. Note that such
sequences belong to +(VT) for the special case in which VT is a constant independent of T. Theorem 1 states that
when the notion of temporal variation is broader, as per earlier, then it is no longer possible to achieve the
aforementioned

̅
T̅

√
performance. In particular, any policy must incur a regret of at least order T2/3. At the extreme,

when VT grows linearly with T, then it is no longer possible to achieve sublinear regret (and, hence, long-run-
average optimality). This theorem provides a full spectrum of bounds on achievable performance that range from
T2/3 to linear regret.

3.1.1. Key Ideas in the Proof of Theorem 1. We define a subset of vector sequences +′ ⊂ +(VT) and show that
when μ is drawn randomly from +′, any admissible policy must incur regret of order V1/3

T T2/3. We define a
partition of the decision horizon 7 � {1, . . . ,T} into batches 71, . . . ,7m of size Δ each (except possibly the last
batch). In +′, every batch contains exactly one good arm with expected reward 1/2 + ε for some 0< ε ≤ 1/4,
and all the other arms have expected reward 1/2. The good arm is drawn independently in the beginning of
each batch according to a discrete uniform distribution over _. Thus the identity of the good arm can change
only between batches. See Figure 2 for an example of possible realizations of a sequence μ that is randomly
drawn from +′. By selecting ε such that εT/Δ ≤ VT, any μ ∈ +′ is composed of expected reward sequences
with a variation of at most VT, and therefore, +′ ⊂ +(VT). Given the draws under which expected reward
sequences are generated, nature prevents any accumulation of information from one batch to another because,
at the beginning of each batch, a new good arm is drawn independently of the history.

Using ideas from the analysis of Auer et al. (2002b, proof of theorem 5.1), we establish that no admissible
policy can identify the good arm with high probability within a batch. Because there are Δ epochs in each
batch, the regret that any policy must incur along a batch is of order Δ · ε ≈ ̅̅̅

Δ
√

, which yields a regret of order

Figure 2. Drawing a Sequence from +′

Notes. A numerical example of possible realizations of expected rewards. Here T � 64, and we have four decision batches, each containing
16 pulls. We have K4 equally probable realizations of reward sequences. In every batch, one arm is randomly and independently drawn to have
an expected reward of 1/2 + ε, and in this example, ε � 1/4. This example corresponds to a variation budget of VT � εΔ � 1.
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̅̅̅
Δ

√ · T/Δ ≈ T/
̅̅̅
Δ

√
throughout the whole horizon. Theorem 1 then follows from selecting Δ ≈ T/VT( )2/3, the

smallest feasible Δ that satisfies the variation budget constraint, yielding regret of order V1/3
T T2/3.

3.2. Rate-Optimal Policy
We now show that the order of the bound in Theorem 1 can be achieved. To that end, we introduce the
following policy, referred to as Rexp3.

Rexp3. Inputs: a positive number γ and a batch size Δ.
1. Set batch index j � 1.
2. Repeat while j ≤ T/Δ� :
a. Set τ � (j − 1)Δ.
b. Initialization: For any k ∈ _, set wk

t � 1.
c. Repeat for t � τ + 1, . . . ,min T, τ + Δ{ }:

• For each k ∈ _, set

pkt � 1 − γ
( ) wk

t∑K
k′�1 w

k′
t
+ γ

K
.

• Draw an arm k′ from _ according to the distribution {pkt }Kk�1 and receive a reward Xk′
t .

• For k′, set X̂k′
t � Xk′

t /p
k′
t , and for any k �� k′, set X̂k

t � 0. For all k ∈ _, update:

wk
t+1 � wk

t exp

{
γX̂k

t

K

}
.

d. Set j � j + 1 and return to the beginning of step 2.

Clearly, π ∈ 3. The Rexp3 policy uses Exp3, a policy introduced by Freund and Schapire (1997) for solving a
worst-case sequential allocation problem as a subroutine, restarting it every Δ epochs. At each epoch, with
probability γ, the policy explores by sampling an arm from a discrete uniform distribution over the set _. With
probability (1 − γ), the policy exploits information gathered thus far by drawing an arm according to weights
that are updated exponentially based on observed rewards. Therefore, π balances exploration and exploitation
by a proper selection of an exploration rate γ and a batch size Δ. At a high level, the sampling probability {pkt }
represents the current “certainty” of the policy regarding the identity of the best arm.

Theorem 2 (Rate Optimality). Let π be the Rexp3 policy with a batch size Δ � �(K logK)1/3(T/VT)2/3 and with

γ � min 1 ,

̅̅̅̅̅̅̅̅̅̅̅
K logK
(e − 1)Δ

√{ }
.

Then, for every T ≥ 2 and VT ∈ [K−1,K−1T], the worst-case regret for this policy is bounded from above as follows:

5π(VT,T) ≤ C̄(K logK)1/3V1/3
T T2/3,

where C̄ is an absolute constant independent of T and VT.

This theorem (in conjunction with the lower bound in Theorem 1) establishes the order of the minimax
regret, namely

5∗(VT,T) � (VT)1/3T2/3.

Remark 1 (Dependence on the Number of Arms). Our proposed policy, Rexp3, is driven primarily by its simplicity
and the ability to elucidate key trade-offs in exploration–exploitation in the non-stationary problem setting. We
note that there is a minor gap between the lower and upper bounds insofar as their dependence on K is concerned.
In particular, the logarithmic term in K in the upper bound on the minimax regret can be removed by adapting
other known policies that are designed for adversarial settings, for example, the INF policy that is described in
Audibert and Bubeck (2009).

3.3. Further Extensions and Discussion
3.3.1. A Continuous-Update Near-Optimal Policy. The Rexp3 policy is particularly simple in its structure and
lends itself to elucidating the exploration–exploitation trade-offs that exist in the non-stationary stochastic
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model. It is, however, somewhat clunky in the manner in which it addresses the “remembering–forgetting”
balance via the batching and abrupt restarts. The following policy, introduced in Auer et al. (2002b), can be
modified to present a “smoother” counterpart to Rexp3.

Exp3.S. Inputs: positive numbers γ and α.
1. Initialization: for t � 1, for any k ∈ _, set wk

t � 1.
2. For each t � 1, 2, . . .,

• For each k ∈ _, set

pkt � 1 − γ
( ) wk

t∑K
k′�1 w

k′
t
+ γ

K
.

• Draw an arm k′ from _ according to the distribution {pkt }Kk�1, and receive a reward Xk′
t .

• For k′, set X̂k′
t � Xk′

t /p
k′
t , and for any k �� k′, set X̂k

t � 0.
• For all k ∈ _, update

wk
t+1 � wk

t exp
γX̂k

t

K

{ }
+ eα

K

∑K
k′�1

wk′
t .

The performance of Exp3.S was analyzed in Auer et al. (2002b) under a variant of the adversarial MAB
formulation in which the number of switches s in the identity of the best arm is finite. The next result shows that
by selecting appropriate tuning parameters, Exp3.S guarantees near-optimal performance in the much broader
non-stationary stochastic setting we consider here.

Theorem 3 (Near Rate Optimality for Continuous Updating). Let π be the Exp3.S policy with the parameters α � 1
T and

γ � min 1,
4VTK log KT( )

(e − 1)2T
( )1/3{ }

.

Then, for every T ≥ 2 and VT ∈ [K−1,K−1T], the worst-case regret is bounded from above as follows:

5π(9,T) ≤ C̄ K logK
( )1/3 VT logT

( )1/3 ·T2/3,

where C̄ is an absolute constant independent of T and VT.

3.3.2. Minimax Regret and Relation to Traditional (Stationary) MAB Problems. The minimax regret should be
contrasted with the stationary MAB problem in which

̅
T̅

√
is the order of the minimax regret (see Auer et al.

2002a); if the arms are well separated, then the order is logT (see Lai and Robbins 1985). To illustrate the type
of regret performance driven by the non-stationary environment, consider the case VT � C · Tβ for some C> 0
and 0 ≤ β< 1, in which the minimax regret is of order T 2+β( )/3. The driver of the change is the optimal
exploration–exploitation balance. Beyond the “classical” exploration–exploitation trade-off, an additional key
element of our problem is the non-stationary nature of the environment. In this context, there is an additional
tension between remembering and forgetting. Specifically, keeping track of more observations may decrease
the variance of the mean reward estimates, but “older” information is potentially less useful and might bias
our estimates. (See also discussion along these lines for UCB-type policies, although in a different setup, in
Garivier and Moulines (2011).) The design of Rexp3 reflects these considerations. An exploration rate γ ≈
Δ−1/2 ≈ VT/T( )−1/3 leads to an order of γT ≈ V1/3

T T2/3 exploration periods, significantly more than the order of
T1/2 explorations that is optimal in the stationary setting (with non-separated rewards).

3.3.3. Relation to Other Non-stationary MAB Instances. The class of MAB problems with non-stationary rewards
formulated in this paper extends to other MAB formulations that allow rewards to change in a more restricted
manner. As mentioned earlier, when the variation budget grows linearly with the time horizon, the regret
must grow linearly. This also implies the observation of Slivkins and Upfal (2008) in a setting in which
rewards evolve according to a Brownian motion, and hence, the regret is linear in T. Our results can also be
positioned relative to those of Garivier and Moulines (2011), who study stochastic MAB problems in which
expected rewards may change a finite number of times, and Auer et al. (2002b), who formulate an adversarial
MAB problem in which the identity of the best arm may change a finite number of times (independent of T).
Both studies suggest policies that, using prior knowledge that the number of changes must be finite, achieve
regret of order

̅
T̅

√
relative to the best sequence of actions. As noted earlier, in our problem formulation, this
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set of reward sequence instances would fall into the case in which the variation budget VT is fixed and
independent of T. In that case, our results establish that the regret must be at least of order T2/3. Moreover, a
careful look at the proof of Theorem 1 clearly identifies the hard set of sequences as those that have a “large”
number of changes in the expected rewards; hence, complexity in our problem setting is markedly different
from that in the aforementioned studies. It is also worthwhile to note that in Auer et al. (2002b), the per-
formance of Exp3.S is measured relative to a benchmark that resembles the dynamic oracle discussed in this
paper, but even though the latter can switch arms in every epoch, the benchmark in Auer et al. (2002b) is
limited to be a sequence of s + 1 actions (each of them is ex post optimal in a different segment of the decision
horizon). This represents an extension of the single-best-action-in-hindsight benchmark but is still far more
restrictive than the dynamic oracle formulation we develop and pursue in this paper.

4. Numerical Results
We illustrate our main results for the near-optimal policy with continuous updating detailed in Section 3.3.
This policy, unlike Rexp3, exhibits much smoother performance and is more conducive for illustrative
purposes.

4.1. Setup
We consider instances in which two arms are available: _ � 1, 2{ }. The reward Xk

t associated with arm k at
epoch t has a Bernoulli distribution with a changing expectation μk

t :

Xk
t � 1 w.p. μk

t ,
0 w.p. 1 − μk

t ,

{
for all t ∈ 7 � {1, . . . ,T} and for any arm k ∈ _. The evolution patterns of μk

t , k ∈ _, are specified as follows. At
each epoch t ∈ 7, the policy selects an arm k ∈ _. Then the reward Xk

t is realized and observed. The mean loss
at epoch t is μ∗

t − μπ
t . Summing over the horizon and replicating, the average of the empirical cumulative mean

loss approximates the expected regret compared with the dynamic oracle.

4.2. Experiment 1: Fixed Variation and Sensitivity to Time Horizon
The objective is to measure the growth rate of the regret as a function of the horizon length under a fixed
variation budget. We use two basic instances. In the first instance (displayed on the left side of Figure 1) the
expected rewards are sinusoidal:

μ1
t �

1
2
+ 3
10

sin
5VTπt
3T

( )
, μ2

t �
1
2
+ 3
10

sin
5VTπt
3T

+ π

( )
, (2)

Figure 3. Numerical Simulation of the Average Performance Trajectory of the Adjusted Exp3.S Policy in Two Complementary
Non-stationary Mean-Reward Instances

Notes. (Left) An instance with sinusoidal expected rewards with a fixed variation budgetVT � 3. (Right) An instance in which similar sinusoidal
evolution is limited to the first and last thirds of the horizon. In both of the instances, the average performance trajectory of the policy is generated
along T � 1, 500, 000 epochs.
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for all t ∈ 7. In the second instance (depicted on the right side of Figure 1), a similar sinusoidal evolution is
limited to the first and last thirds of the horizon, and in the middle third, mean rewards are constant:

μ1
t �

1
2
+ 3
10

sin
15VTπt

2T

( )
if t<

T
3
,

4
5

if
T
3
≤ t ≤ 2T

3
,

1
2
+ 3
10

sin
15VTπ(t − T/3)

2T

( )
if

2T
3

< t ≤ T,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
μ2
t �

1
2
+ 3
10

sin
15VTπt

2T
+ π

( )
if t<

T
3
,

1
5

if
T
3
≤ t ≤ 2T

3
,

1
2
+ 3
10

sin
15VTπ(t − T/3)

2T
+ π

( )
if

2T
3

< t ≤ T,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
for all t ∈ 7. Both instances describe different changing environments under the same fixed variation budget
VT � 3. In the first instance, the variation budget is “spent” more evenly throughout the horizon, and in the
second instance, that budget is spent only over the first third of the horizon. For different values of T up to
3 · 108, we use 100 replications to estimate the expected regret. The average performance trajectory (as a
function of time) of the adjusted Exp3.S policy for T � 1.5 · 106 is depicted using the solid curves in Figure 3
(the dotted and dashed curves correspond to the mean reward paths for each arm, respectively).

The first simulation experiment depicts the average performance of the policy (as a function of time) and
illustrates the balance between exploration, exploitation, and the degree to which the policy needs to forget
“stale” information. The policy selects the arm with the highest expected reward with higher probability. Of
note are the delays in identifying the crossover points, which are evidently minor; the speed at which the
policy switches to the new optimal action; and the fact that the policy keeps experimenting with the sub-
optimal arm. These imply that the performance does not match the one of the dynamic oracle but rather
falls short.

The two graphs in Figure 4 depict log–log plots of the mean regret as a function of the horizon. We observe
that the slope is close to 2/3 and hence consistent with the result of Theorem 2 applied to a constant variation.
The standard errors for the slope and intercept estimates are in parentheses.

4.3. Experiment 2: Fixed Time Horizon and Sensitivity to Variation
The objective of the second experiment is to measure how the regret growth rate (as a function of T) depends
on the variation budget. For this purpose, we take VT � 3T

β
, and we explore the dependence of the regret on β.

Under the sinusoidal variation instance in (2), Table 1 reports the estimates of regret rates obtained via slopes
of the log–log plots for values of β between zero (constant variation, simulated in Experiment 1) and 0.5.2

This simulation experiment illustrates how the variation level affects the policy’s performance. The slopes of
log–log dependencies of the regret as a function of the horizon length were estimated for the various β values
and are summarized in Table 1 along with standard errors. This is contrasted with the theoretical rates for the
minimax regret obtained in previous results (Theorems 1 and 2). The estimated slopes illustrate the growth of
regret as variation increases, and in that sense, Table 1 emphasizes the spectrum of minimax regret rates (of

Figure 4. Log–Log Plots of the Averaged Regret Incurred by the Adjusted Exp3.S as a Function of the Horizon Length T with
the Resulting Linear Relationship (Slope and Intercept) Estimates Under the Two Instances That Appear in Figure 3

Notes. (Left) Instance with sinusoidal expected rewards with a fixed variation budget VT � 3. (Right) An instance in which similar sinusoidal
evolution is limited to the first and last thirds of the horizon. Standard errors appear in parentheses.
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order V1/3
T T2/3) that are obtained for different variation levels. The numerical performance of the proposed

policy achieves a regret rate that matches quite closely the theoretical values established in previous theorems.

Remark 2. Asmentioned earlier, the Exp3.S policy was originally designed for an adversarial setting that considers
a finite number of changes in the identity of the best arm and does not have performance guarantees under the
framework of this paper, which allows for growing (horizon-dependent) changes in the values of themean rewards
as well as in the identity of the best arm. In particular, when there areH changes in the identity of the best arm, the
upper bound that is obtained for the performance of Exp3.S in Auer et al. (2002b) is of order H

̅
T̅

√
(excluding

logarithmic terms). Notably, our experiment illustrates a case in which the number of changes of the identity of the
best arm is growing with T. In particular, when β � 0.5, the number of said changes is of order

̅
T̅

√
; thus the upper

bound in Auer et al. (2002b) is of order T and does not guarantee sublinear regret anymore in contrast with the
upper bound of order T5/6 that is established in this paper. Additional numerical experiments implied that at
settings with high variation levels, the empirical performance of Exp3.S is dominated by the one achieved by the
policies described in this paper. For example, in the setting of Experiment 2, for β � 0.5, the estimated slope
for Exp3.S was 1 (implying linear regret) with standard error of 0.001; similar results were obtained in other
instances of high variation and frequent switches in the identity of the best arm.

5. Adapting to Unknown Variation
5.1. Motivation and Overview
In previous sections, we established the minimax regret rates and have put forward rate-optimal policies that
tune parameters using knowledge of the variation budget VT. This leaves open the question of designing
policies that can adapt to the variation “on the fly” without such a priori knowledge. A further issue, pertinent
to this question, is the behavior of the current policy that is tuned to the “worst case” variation. Specifically,
the proposed Rexp3 policy guarantees rate optimality by countering the worst-case sequence of mean rewards
in +(VT). In so doing, it ends up “overexploring” whether the realized environment is more benign. By contrast,
if the actual variation turns out to exceed the variation budget through which the policy is tuned, the policy should
be expected to incur additional regret as well. To formalize these observations, one can modify the analysis of
Theorem 2 to represent the regret bound in terms of both the input VT and the actual variation 9(μ;T) to
establish that the worst-case regret for Rexp3 is bounded from above as follows:

5π(VT,T) ≤ C̄(K logK)1/3T2/3 ·max V1/3
T ,

9(μ;T)
V2/3

T

{ }
, (3)

where C̄ is the same absolute constant that appears in Theorem 2. A similar result can be obtained for the
adjusted Exp3.S policy, respectively adapting the proof of Theorem 3.

From the expression in (3), it is possible to tease out conditions under which long-run-average optimality is
ensured under an inaccurate input VT, which does not match the actual variation 9(μ;T). This also quantifies
the loss associated with using an inaccurate input VT as opposed to tuning the policy using the actual variation
9(μ;T). On the one hand, Equation (3) implies that whenever the actual variation does not exceed the input
VT, long-run-average optimality is guaranteed. For example, if the policy is tuned using VT � Tα for some
α ∈ (0, 1), and the variation on mean rewards is zero, which is an admissible sequence contained in +(VT), then
the policy incurs a regret of order T(2+α)/3. Although this is long-run-average optimal for any α ∈ (0, 1), it also
includes a regret rate “penalty” relative to the optimal regret rate of order T1/2 that would have been achieved
if it was known a priori that there would be no variation in the mean rewards.

Table 1. Estimated Log–Log Slopes for Growing Variation Budgets of the Structure VT �
3Tβ (Standard Errors Appear in Parentheses) Contrasted with the Slopes (T Dependence)
for the Theoretical Minimax Regret Rates

β-value Theoretical slope (2 + β)/3 Estimated slope

0.0 0.67 0.680 (0.001)
0.1 0.70 0.710 (0.001)
0.2 0.73 0.730 (0.001)
0.3 0.77 0.766 (0.001)
0.4 0.80 0.769 (0.001)
0.5 0.83 0.812 (0.001)
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On the other hand, Equation (3) also implies that long-run-average optimality can be guaranteed when the
actual variation exceeds the input VT as long as VT is “close enough” to the actual variation. In particular, when
the policy is tuned by VT � Tα for some α ∈ (0, 1), it guarantees long-run-average optimality as long as the
actual variation 9(μ;T) is at most of order Tα+δ for some δ< (1 − α)/3. For example, if α � 0 and δ � 1/4, Rexp3
guarantees sublinear regret of order T11/12 (accurate tuning would have guaranteed order T3/4).

Because there are no restrictions on the rate at which the variation budget can be spent, an interesting and
challenging open problem is to delineate to what extent it is possible to design adaptive policies that do not
use prior knowledge of VT yet guarantee good performance. In the rest of this section, we indicate a possible
approach to address this issue. Ideally, one would like the regret of adaptive policies to scale with the actual
variation 9(μ;T) rather than with the upper bound VT. Our approach uses an envelope policy subordinate
to which are multiple primitive restart Exp3-type policies. Each of the latter is tuned to a different guess of
the variation budget, and the master policy switches among the subordinates based on realized rewards.
Although we have no proof of optimality or strong theoretical indication to believe an optimal adaptive policy
is to be found in this family, we believe that the main ideas presented in our approach may be useful for
deriving fully adaptive rate-optimal policies.

5.2. An Envelope Policy
We introduce an envelope policy π̄ that judiciously applies M subordinate MAB policies πm : m � 1, . . . ,M{ }.
At each epoch, only one of these “virtual” policies may be used, but the collected information can be shared
among all subordinate policies (concrete subordinate MAB policies are suggested in Section 5.3).

Envelope Policy (π̄).
Inputs: M admissible policies πm{ }Mm�1 and a number γ̄ ∈ 0, 1( ].
1. Initialization: for t � 1, for any m ∈ 1, . . . ,M{ }, set νmt � 1.
2. For each t � 1, 2, . . ., do

• For each m ∈ 1, . . . ,M{ }, set

qmt � 1 − γ̄
( ) νmt∑M

m′�1 νm
′

t
+ γ̄

M
.

• Draw m′ from 1, . . . ,M{ } according to the distribution {qmt }Mm�1.
• Select the arm k̂ � πm′

t from the set 1, . . . ,K{ } and receive a reward Xk̂
t .

• Set Ŷm′
t � Xk̂

t /q
m′
t , and for any m �� m′, set Ŷm

t � 0.
• For all m ∈ 1, . . . ,M{ }, update:

νmt+1 � νmt exp
γ̄Ŷm

t

M

{ }
.

• Update subordinate policies πm : m � 1, . . . ,M{ } (details of subordinate policy structure follow).

The envelope policy operates as follows. At each epoch, a subordinate policy is drawn from a distribution
{qmt }Mm�1 that is updated every epoch based on the observed rewards. This distribution is endowed with an
exploration rate γ̄ that is used to balance exploration and exploitation over the subordinate policies.

5.3. Structure of the Subordinate Policies
In Section 3.2, we identified classes of candidate Rexp3 and adjusted Exp3.S policies that were shown to
achieve rate optimality when accurately tuned ex ante using the bound VT. We therefore take (π1, . . . , πm), the
subordinate policies, to be the proposed adjusted Exp3.S policies tuned by exploration rates (γ1 . . . , γM) to be
specified. We denote by π̄t ∈ 1, . . . ,M{ } the action of the envelope policy at time t and by πm

t ∈ 1, . . . ,K{ } the
action of policy πm at the same epoch. We denote by {pk,mt : k � 1, . . . ,K} the distribution from which πm

t is

drawn and by {wk,m
t : k � 1, . . . ,K} the weights associated with this distribution according to the Rexp3.S

structure. We adjust the Rexp3.S description that is given in Section 3.3 by defining the following update rule.
At each epoch t and for each arm k, each subordinate Rexp3.S policy πm selects an arm in 1, . . . ,K{ } according
to the distribution {pk,mt }. However, rather than updating the weights {wk,m

t } using the observation from that
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arm, each subordinate policy uses the update rule

X̂k
t �
∑M
m�1

Xk
t

pk,mt
1 π̄t � m{ }1{πm

t � k}, k � 1, . . . ,K,

and then updates weights as in the original Rexp3.S description

wk,m
t+1 � wk,m

t exp
γmX̂k

t

K

{ }
+ eα

K

∑K
k′�1

wk′,m
t .

We note that at each time step, the variables X̂k
t are updated in an identical manner by all the subordinate Rexp3.S

policies (independent of m). This update rule implies that information is shared between subordinate policies.

5.4. Numerical Analysis
We consider a case in which there are three possible levels for the realized variation 9(μ;T). With slight abuse
of notation, we write 9(μ;T) ∈ {VT,1,VT,2,VT,3} with VT,1 � 0 (no variation), VT,2 � 3 (fixed variation), and
VT,3 � 3T0.2 (increasing variation). The envelope policy does not know which of the latter variation levels
describes the actual variation. We measured the performance of the envelope policy, tuned by

γ̄ � min 1,
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
M log M( ) · (e − 1)−1 · T−1
√{ }

,

and with three input policies that guess VT,1 � 0, VT,2 � 3, and VT,3 � 3T0.2, respectively. More formally, the
input policies are selected as follows: π1 being the Exp3.S policy with

α � 1/T

and

γ1 � min 1,
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K log KT( ) · T−1
√{ }

(the parametric values that appear in Auer et al. (2002b)); π2 and π3 are both Exp3.S policies with

α � 1/T

and

γm � min 1,
2VT,mK log KT( )

(e − 1)2T
( )1/3{ }

with the respective VT,m values. Each subordinate Exp3.S policy uses the update rule described in the pre-

ceding paragraph.
We measure the performance of the envelope policy in three different settings corresponding to the different

values of the variation 9(μ;T) specified. When the realized variation is 9(μ;T) � VT,1 � 0 (no variation), the
mean rewards were μ1

t � 0.2 and μ2
t � 0.8 for all t � 1, . . . ,T. When the variation is 9(μ;T) � VT,2 � 3 (fixed

variation), the mean rewards followed the sinusoidal variation instance in (2). When the variation is 9(μ;T) �
VT,3 � 3T0.2 (increasing variation), the mean rewards follow the same sinusoidal pattern in which variation
increased with the horizon length. We then repeat the experiment while considering an envelope policy with
only two subordinate policies, one that guesses VT,1 � 0 (no variation) and one that guesses VT,3 � 3T0.2

(increasing variation), but measuring its performance under each of the cases.

5.5. Discussion
The left side of Figure 5 depicts the three log–log plots obtained for the three scenarios. The slopes illustrate
that the envelope policy seems to adapt to different realized variation levels. In particular, the slopes appear
close to those that would have been obtained with prior knowledge of the variation level. However, the
uncertainty regarding the realized variation may cause a larger multiplicative constant in the regret ex-
pression; this is demonstrated by the higher intercept in the log–log plot of the fixed variation case (0.352)
relative to the intercept obtained when the same variation level is known a priori (−0.358); see left part of
Figure 4.
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The envelope policy seems effective when the set of possible variations is known a priori. The second part of
the experiment suggests that a similar approach may be effective even when one cannot limit a priori the set of
realized variations. The right side of Figure 5 depicts the three log–log plots obtained under the three cases
when the envelope policy uses only two subordinate policies, one that guesses no variation and one that
guesses an increasing variation. Although performance was sensitive to the initial amplitude of the sinusoidal
functions, the results suggest that, on average, the envelope policy achieved comparable performance to the
one using three subordinate policies, which include the well-specified fixed variation case.
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Appendix. Proofs of Main Results

Proof of Theorem 1
At a high level, the proof adapts a general approach of identifying a worst-case nature “strategy” (see proof of theorem 5.1 in
Auer et al. (2002b), which analyzes the worst-case regret relative to a single best action benchmark in a fully adversarial
environment), extending these ideas appropriately to our setting. Fix T ≥ 1, K ≥ 2, and VT ∈ [K−1,K−1T]. In what follows, we
restrict nature to the class9′ ⊆ 9 that was described in Section 3 and show that when μ is drawn randomly from9′, any policy
in 3 must incur regret of order KVT( )1/3T2/3.

Step 1 (Preliminaries). Define a partition of the decision horizon 7 to m � �TΔ batches 71, . . . ,7m of size Δ each (except
perhaps 7m), according to 7j � {t : (j − 1)Δ + 1 ≤ t ≤ min{jΔ,T}} for all j � 1, . . . ,m, where m � �T/Δ is the number of
batches. For some ε> 0 that is specified shortly, define 9′ to be the set of reward vector sequences μ such that

• μk
t ∈ 1/2, 1/2 + ε{ } for all k ∈ _, t ∈ 7;

•
∑

k∈_ μk
t � K/2 + ε for all t ∈ 7;

• μk
t � μk

t+1 for any (j − 1)Δ + 1 ≤ t ≤ min{jΔ,T} − 1, j � 1, . . . ,m, for all k ∈ _.
For each sequence in 9′ in any epoch, there is exactly one arm with expected reward 1/2 + ε, and the rest of the arms
have expected reward 1/2, and expected rewards cannot change within a batch. Let ε � min{14 ·

̅̅̅̅̅̅
K/Δ

√
,VTΔ/T}. Then, for

any μ ∈ 9′, one has

∑T−1
t�1

sup
k∈_

μk
t − μk

t+1
⃒⃒ ⃒⃒ ≤∑m−1

j�1
ε � T

Δ

⌈ ⌉
− 1

( )
· ε ≤ Tε

Δ T
≤ VT ,

where the first inequality follows from the structure of 9′. Therefore, 9′ ⊂ 9.

Step 2 (Single-Batch Analysis). Fix some policy π ∈ 3, and fix a batch j ∈ 1, . . . ,m{ }. Let kj denote the good arm of batch j.
We denote by P

j
kj
the probability distribution conditioned on arm kj being the good arm in batch j and by P0 the probability

distribution with respect to random rewards (i.e., expected reward 1/2) for each arm. We further denote by E
j
kj
[·] and E0[·]

the respective expectations. Assuming binary rewards, we let X denote a vector of |7j| rewards; that is, X ∈ 0, 1{ } 7j| |. We

Figure 5. Adapting to Unknown Variation: Log–Log Plots of Regret as a Function of the Horizon Length T Obtained Under
Three Different Variation Levels: No Variation, Fixed Variation, and Increasing Variation of the Form VT � 3T0.2

Notes. (Left) Performance of an envelope policy with three subordinate policies, each corresponding to one of the former variation levels. (Right)
Performance of the envelope policy with two subordinate policies: one corresponding to no variation and one corresponding to the increasing
variation case (standard errors appear in parentheses).
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denote by Nj
k the number of times arm k was selected in batch j. In the proof we use lemma A.1 from Auer et al. (2002b),

which characterizes the difference between the two different expectations of some function of the observed rewards vector.

Lemma A.1 (lemma A.1 from Auer et al. 2002b). Let f : 0, 1{ } 7j| | → 0,M[ ] be a bounded real function. Then, for any k ∈ _,

E
j
k f (X)[ ] − E0 f (X)[ ] ≤ M

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
−E0 Nj

k

[ ]
log 1 − 4ε2( )

√
.

Recalling that kj denotes the good arm of batch j, one has

E
j
kj
μπ
t

[ ] � 1
2
+ ε

( )
P

j
kj
πt � kj
{ } + 1

2
P

j
kj
πt �� kj
{ } � 1

2
+ εP

j
kj
πt � kj
{ }

,

and therefore,

E
j
kj

∑
t∈7j

μπ
t

[ ]
� 7j
⃒⃒ ⃒⃒
2

+∑
t∈7j

εP
j
kj
πt � kj
{ } � 7j

⃒⃒ ⃒⃒
2

+ εE
j
kj
Nj

kj

[ ]
. (A.1)

In addition, applying Lemma A.1 with f (X) � Nj
kj
(clearly Nj

kj
∈ {0, . . . , |7j|}), we have

E
j
kj
Nj

kj

[ ]
≤ E0 Nj

kj

[ ]
+ 7j
⃒⃒ ⃒⃒
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
−E0 Nj

kj

[ ]
log 1 − 4ε2( )

√
.

Summing over arms, one has

∑K
kj�1

E
j
kj
Nj

kj

[ ]
≤∑K

kj�1
E0 Nj

kj

[ ]
+∑K

kj�1

7j
⃒⃒ ⃒⃒
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
−E0 Nj

kj

[ ]
log 1 − 4ε2( )

√

≤ 7j
⃒⃒ ⃒⃒ + 7j

⃒⃒ ⃒⃒
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− log 1 − 4ε2( ) 7j

⃒⃒ ⃒⃒
K

√
,

(A.2)

for any j ∈ 1, . . . ,m{ }, where the last inequality holds because
∑K

kj�1 E0[Nj
kj
] � |7j|, and thus, by Cauchy–Schwarz inequality,

∑
K
kj�1

̅̅̅̅̅̅̅̅̅̅
E0 Nj

kj

[ ]√
≤
̅̅̅̅̅̅̅
7j
⃒⃒ ⃒⃒

K
√

.

Step 3 (Regret Along the Horizon). Let μ̃ be a random sequence of expected rewards vectors in which in every batch the
good arm is drawn according to an independent uniform distribution over the set _. Clearly, every realization of μ̃ is in 9′.
In particular, taking expectation over μ̃, one has

5π(9′,T) � sup
μ∈9′

∑T
t�1

μ∗
t − Eπ

∑T
t�1

μπ
t

[ ]{ }
≥ Eμ̃

∑T
t�1

μ̃∗
t − Eπ

∑T
t�1

μ̃π
t

[ ][ ]
≥∑m

j�1

∑
t∈7j

1
2
+ ε

( )
− 1
K

∑K
kj�1

EπE
j
kj

∑
t∈7j

μ̃π
t

[ ]( )
(a)≥∑m

j�1

∑
t∈7j

1
2
+ ε

( )
− 1
K

∑K
kj�1

7j
⃒⃒ ⃒⃒
2

+ εEπE
j
kj
Nj

kj

[ ]( )( )
≥∑m

j�1

∑
t∈7j

1
2
+ ε

( )
− 7j
⃒⃒ ⃒⃒
2

− ε

K
Eπ
∑K
kj�1

E
j
kj
Nj

kj

[ ]( )
(b)≥ Tε − Tε

K
− Tε
2K

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− log 1 − 4ε2( )ΔK
√

(c)≥ Tε
2

− Tε2

K

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
log 4/3( )ΔK√

,

where (a) holds by (A.1); (b) holds by (A.2) because
∑m

j�1 |7j| � T, because m ≥ T/Δ, and because |7j| ≤ Δ for all j ∈ 1, . . . ,m{ };
and (c) holds by 4ε2 ≤ 1/4, and − log(1 − x) ≤ 4 log(4/3)x for all x ∈ 0, 1/4[ ] and because K ≥ 2. Set Δ � �K1/3( T

VT
)2/3. Because

ε � min 1
4 ·
̅̅̅̅̅̅
K/Δ

√
T ,VTΔ/T

{ }
, one has

5π(9′,T) ≥ Tε
1
2
− ε

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ΔT log(4/3)

K

√( )
≥ Tε

1
2
−
̅̅̅̅̅̅̅̅̅̅̅̅
log(4/3)√

4

( )
≥ 1
4
·min

T
4
·
̅̅̅
K
Δ

√
,VTΔ

{ }

≥ 1
4
·min

T
4
·
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

K
2K1/3(T/VT)2/3
√

, KVT( )1/3T2/3

{ }
≥ 1

4
̅̅
2

√ · (KVT)1/3T2/3.

This concludes the proof. □
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Proof of Theorem 2
The structure of the proof is as follows. First, we break the horizon into a sequence of batches of size Δ each and analyze the
performance gap between the single best action and the dynamic oracle in each batch. Then we plug in a known performance
guarantee for Exp3 relative to the single best action and sum over batches to establish the regret of Rexp3 relative to the dynamic
oracle.

Step 1 (Preliminaries). Fix T ≥ 1, K ≥ 2, and VT ∈ [K−1,K−1T]. Let π be the Rexp3 policy, tuned by

γ � min 1 ,

̅̅̅̅̅̅̅̅̅̅̅
K logK
(e − 1)Δ

√{ }
and Δ ∈ 1, . . . ,T{ } (to be specified later). Define a partition of the decision horizon 7 to m � �TΔ batches 71, . . . ,7m of size Δ
each (except perhaps 7m), according to 7j � {t : (j − 1)Δ + 1 ≤ t ≤ min{jΔ,T}} for all j � 1, . . . ,m, where m � �T/Δ is the
number of batches. Let μ ∈ 9, and fix j ∈ 1, . . . ,m{ }. We decompose the regret in batch j:

Eπ
∑
t∈7j

μ∗
t − μπ

t

( )[ ]
� ∑

t∈7j

μ∗
t − E max

k∈_
∑
t∈7j

Xk
t

{ }[ ]
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

J1,j

+E max
k∈_

∑
t∈7j

Xk
t

{ }[ ]
− Eπ

∑
t∈7j

μπ
t

[ ]
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

J2,j

. (A.3)

The first component, J1,j, is the expected loss associated with using a single action over batch j. The second component,
J2,j, is the expected regret relative to the best static action in batch j.

Step 2 (Analysis of J1,j and J2,j). Defining μk
T+1 � μk

T for all k ∈ _, we denote the variation in expected rewards along batch 7j

by Vj � ∑t∈7j maxk∈_ |μk
t+1 − μk

t |. We note that∑m
j�1

Vj �
∑m
j�1

∑
t∈7j

max
k∈_

μk
t+1 − μk

t

⃒⃒ ⃒⃒ ≤ VT . (A.4)

Let k0 be an arm with best expected performance over 7j: k0 ∈ argmaxk∈_{
∑

t∈7j μ
k
t }. Then

max
k∈_

∑
t∈7j

μk
t

{ }
�∑

t∈7j

μk0
t � E

∑
t∈7j

Xk0
t

[ ]
≤ E max

k∈_
∑
t∈7j

Xk
t

{ }[ ]
, (A.5)

and therefore, one has

J1,j �
∑
t∈7j

μ∗
t − E max

k∈_
∑
t∈7j

Xk
t

{ }[ ]
(a)≤
∑
t∈7j

μ∗
t − μk0

t

( )
≤ Δmax

t∈7j

μ∗
t − μk0

t

{ } (b)≤ 2VjΔ, (A.6)

for any μ ∈ 9 and j ∈ 1, . . . ,m{ }, where (a) holds by (A.5) and (b) holds by the following argument: otherwise, there is an
epoch t0 ∈ 7j for which μ∗

t0 − μk0
t0 > 2Vj. Indeed, suppose that k1 � argmaxk∈_μ

k
t0 . In such a case, for all t ∈ 7j, one has

μk1
t ≥ μk1

t0 − Vj >μk0
t0 + Vj ≥ μk0

t because Vj is the maximal variation in batch 7j. This, however, contradicts the optimality of k0
at epoch t, and thus, (A.6) holds. In addition, corollary 3.2 in Auer et al. (2002b) points out that the regret incurred by Exp3

(tuned by γ � min{1 ,
̅̅̅̅̅̅̅
K logK
(e−1)Δ
√

}) along Δ epochs, relative to the single best action, is bounded by 2
̅̅̅̅̅̅̅
e − 1

√ ̅̅̅̅̅̅̅̅̅̅̅̅
ΔK logK
√

.

Therefore, for each j ∈ 1, . . . ,m{ }, one has

J2,j � E max
k∈_

∑
t∈7j

Xk
t

{ }
− Eπ

∑
t∈7j

μπ
t

[ ][ ]
(a)≤ 2

̅̅̅̅̅̅̅
e − 1

√ ̅̅̅̅̅̅̅̅̅̅̅̅
ΔK logK
√

, (A.7)

for any μ ∈ 9, where (a) holds because within each batch arms are pulled according to Exp3(γ).

Step 3 (Regret Along the Horizon). Summing over m � T/Δ�  batches, we have

5π(9,T) � sup
μ∈9

∑T
t�1

μ∗
t − Eπ

∑T
t�1

μπ
t

[ ]{ }
(a)≤
∑m
j�1

2
̅̅̅̅̅̅̅
e − 1

√ ̅̅̅̅̅̅̅̅̅̅̅̅
ΔK logK
√ + 2VjΔ

( )
(b)≤

T
Δ
+ 1

( )
· 2 ̅̅̅̅̅̅̅e − 1
√ ̅̅̅̅̅̅̅̅̅̅̅̅

ΔK logK
√ + 2ΔVT � 2

̅̅̅̅̅̅̅
e − 1

√ ̅̅̅̅̅̅̅̅̅̅
K logK
√ · T̅̅̅
Δ

√ + 2
̅̅̅̅̅̅̅
e − 1

√ ̅̅̅̅̅̅̅̅̅̅̅̅
ΔK logK
√ + 2ΔVT ,

(A.8)
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where (a) holds by (A.3), (A.6), and (A.7), and (b) follows from (A.4). Selecting Δ � �(K logK)1/3(T/VT)2/3, one has

5π(9,T) ≤ 2
̅̅̅̅̅̅̅
e − 1

√
K logK · VT
( )1/3T2/3 + 2

̅̅̅̅̅̅̅
e − 1

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K logK
( )

1/3 T/VT( )2/3 + 1
( )

K logK
√

+ 2 K logK
( )1/3 T/VT( )2/3 + 1
( )

VT

(a)≤ 2 + 2
̅̅
2

√( ) ̅̅̅̅̅̅̅
e − 1

√ + 4
( )

K logK · VT
( )1/3T2/3,

where (a) follows from T ≥ K ≥ 2, and VT ∈ [K−1,K−1T]. This concludes the proof. □

Proof of Theorem 3
We prove that by selecting the tuning parameters to be α � 1

T and

γ � min 1,
4VTK log KT( )

(e − 1)2T
( )1/3{ }

,

Exp3.S achieves near-optimal performance in the non-stationary stochastic setting. The structure of the proof is as follows.
First, we break the decision horizon into a sequence of decision batches and analyze the difference in performance between
the sequence of single best actions and the performance of the dynamic oracle. Then we analyze the regret of Exp3.S
relative to a sequence composed of the single best actions of each batch (this part of the proof roughly follows the proof
lines of theorem 8.1 in Auer et al. (2002b) while considering a possibly infinite number of changes in the identity of the best
arm). Finally, we select tuning parameters that minimize the overall regret.

Step 1 (Preliminaries). Fix T ≥ 1, K ≥ 2, and VT ∈ [K−1,K−1T]. Let π be the Exp3.S policy described in Section 3.2, tuned by
α � 1

T and

γ � min 1,
4VTK log KT( )

(e − 1)2T
( )1/3{ }

,

and let Δ ∈ 1, . . . ,T{ } be a batch size (to be specified later). We break the horizon 7 into a sequence of batches 71, . . . ,7m of
size Δ each (except possibly 7m) according to 7j � {t : (j − 1)Δ + 1 ≤ t ≤ min{jΔ,T}}, j � 1, . . . ,m. Let μ ∈ 9, and fix
j ∈ 1, . . . ,m{ }. We decompose the regret in batch j:

Eπ
∑
t∈7j

μ∗
t − μπ

t

( )[ ]
� ∑

t∈7j

μ∗
t −max

k∈_
∑
t∈7j

μk
t

{ }
⏟̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅ ⏟

J1,j

+max
k∈_

∑
t∈7j

μk
t

{ }
− Eπ

∑
t∈7j

μπ
t

[ ]
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

J2,j

. (A.9)

The first component, J1,j, corresponds to the expected loss associated with using a single action over batch j. The second
component, J2,j, is the regret relative to the best static action in batch j.

Step 2 (Analysis of J1, j). Define μk
T+1 � μk

T for all k ∈ _, and denote Vj � ∑t∈7j maxk∈_ |μk
t+1 − μk

t |. We note that

∑m
j�1

Vj �
∑m
j�1

∑
t∈7j

max
k∈_

μk
t+1 − μk

t

⃒⃒ ⃒⃒ ≤ VT . (A.10)

Letting k0 ∈ argmaxk∈_{
∑

t∈7j μ
k
t }, we follow Step 2 in the proof of Theorem 2 to establish for any μ ∈ 9 and j ∈ 1, . . . ,m{ },

J1,j �
∑
t∈7j

μ∗
t − μk0

t

( )
≤ Δmax

t∈7j

μ∗
t − μk0

t

{ }
≤ 2VjΔ. (A.11)

Step 3 (Analysis of J2,j .). We next bound J2,j, the difference between the performance of the single best action in 7j and that
of the policy, throughout 7j. Let tj denote the first decision index of batch j, that is, tj � (j − 1)Δ + 1. We denote by Wt the
sum of all weights at decision t: Wt � ∑K

k�1 w
k
t . Following the proof of theorem 8.1 in Auer et al. (2002b), one has

Wt+1
Wt

≤ 1 + γ/K
1 − γ

Xπ
t + (e − 2)(γ/K)2

1 − γ

∑K
k�1

X̂k
t + eα. (A.12)

Taking logarithms on both sides of (A.12) and summing over all t ∈ 7j, we get

log
Wtj+1

Wtj

( )
≤ γ/K

1 − γ

∑
t∈7j

Xπ
t + (e − 2)(γ/K)2

1 − γ

∑
t∈7j

∑K
k�1

X̂k
t + eα7j

⃒⃒ ⃒⃒
, (A.13)
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where, for 7m, set Wtm+1 � WT . Let kj be the best action in 7j: kj ∈ argmaxk∈_{
∑

t∈7j X
k
t }. Then

wkj
tj+1 ≥ wkj

tj+1 exp
γ

K

∑tj+1−1
tj+1

X̂kj
t

{ }
≥ eα

K
Wtj exp

γ

K

∑tj+1−1
tj+1

X̂kj
t

{ }
≥ α

K
Wtj exp

γ

K

∑
t∈7j

X̂kj
t

{ }
,

where the last inequality holds because γX̂kj
t /K ≤ 1. Therefore,

log
Wtj+1

Wtj

( )
≥ log

wkj
tj+1

Wtj

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ≥ log

α

K

( )
+ γ

K

∑
t∈7j

Xπ
t . (A.14)

Taking (A.13) and (A.14) together, one has

∑
t∈7j

Xπ
t ≥ 1 − γ
( )∑

t∈7j

X̂kj
t − K log K/α( )

γ
− e − 2( ) γ

K

∑
t∈7j

∑K
k�1

X̂k
t −

eαK 7j
⃒⃒ ⃒⃒
γ

.

Taking expectation with respect to the noisy rewards and the actions of Exp3.S, we have

J2,j � max
k∈_

∑
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t

{ }
− Eπ
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,

(A.15)

for every batch 1 ≤ j ≤ m, where (a) holds because
∑

t∈7j μ
kj
t ≤ |7j| and ∑t∈7j

∑K
k�1 μ

k
t ≤ K|7j|.

Step 4 (Regret Throughout the Horizon). Taking (A.11) together with (A.15) and summing over m � T/Δ�  batches, we have

5π(9,T) ≤∑m
j�1

e − 1( )γ 7j
⃒⃒ ⃒⃒ + K log K/α( )

γ
+ eαK 7j

⃒⃒ ⃒⃒
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γ
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γ
+ 2VTΔ

≤ e − 1( )γT + eαKT
γ

+ 2KT log K/α( )
γΔ

+ 2VTΔ, (A.16)

for any Δ ∈ 1, . . . ,T{ }. Setting the tuning parameters to be α � 1
T and γ � min{1, ( 4VTK log KT( )

(e−1)2T
)1/3}, and selecting a batch size

Δ � �(e−12 )1/3 · (K log(KT))1/3 · ( TVT
)2/3, one has

5π(9,T) ≤ e · e − 1
2

( )2/3 K2/3T1/3

VT log KT( )( )
1/3

+ 3 · 22/3(e − 1)2/3 KVT log KT( )( )1/3T2/3

≤ e · e − 1
2

( )
2/3 + 4 · 22/3(e − 1)2/3

( )
· KVT log KT( )( )1/3T2/3,

where the last inequality holds by recalling K<T. Whenever T is unknown, we can use Exp3.S as a subroutine over
exponentially increasing pulls epochs T� � 2�, � � 0, 1, 2, . . ., in a manner that is similar to the one described in corollary 8.4
in Auer et al. (2002b) to show that because, for any �, the regret incurred during T� is at most C(KVT log(KT�))1/3 · T2/3

�

(by tuning α and γ according to T� in each epoch �), and for some absolute constant C̃, we get that 5π(9,T) ≤ C̃(log(KT))1/3 ·
KVT( )1/3T2/3. This concludes the proof. □

Endnotes
1Under a non-stationary reward structure, it is immediate that the single best action may be suboptimal in a large number of decision epochs,
and the gap between the performance of the static and the dynamic oracles can grow linearly with T.
2We focus here on β values up to 0.5 because for high values of β, observing the asymptotic regret requires a horizon significantly longer than
the 3 · 108 that is used here.
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