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Abstract. The inference of a lexicographic rule from paired comparisons, ranking, or
choice data is a discrete optimization problem that generalizes the linear ordering problem.
We develop an approach to its solution using randomized algorithms. First, we show that
maximizing the expected value of a randomized solution is equivalent to solving the
lexicographic inference problem. As a result, the discrete problem is transformed into
a continuous and unconstrained nonlinear program that can be solved, possibly only to
a local optimum, using nonlinear optimization methods. Second, we show that a maxi-
mum likelihood procedure, which runs in polynomial time, can be used to implement the
randomized algorithm. The maximum likelihood value determines a lower bound on the
performance ratio of the randomized algorithm. We employ the proposed approach to
infer lexicographic rules for individuals using data from a choice experiment for electronic
tablets. These rules obtain substantially better fit and predictions than a previously de-
scribed greedy algorithm, a local search algorithm, and a multinomial logit model.

Keywords: lexicographic rules • noncompensatory choice • consumer search • discrete optimization • randomized algorithms •
analysis of algorithms • maximum likelihood

1. Introduction
Online retailers often design web pages to facilitate
product search. Figure 1 shows the example of Amazon.
com, which on a recent day had more than 6,000 dif-
ferent electronic tablets available for sale. The menu on
the left allows a shopper to search for alternatives using
one or more criteria: flash size, display size, weight, etc.
The set ofmatching alternatives, shown on the right side
in Figure 1, is reduced each time a criterion is added.
This sequential screening represents a lexicographic
rule. Often, it uses only a few steps to identify attrac-
tive options among hundreds or thousands of alter-
natives. Research in marketing and psychology suggests
that people use lexicographic rules in several situations
(see Section 2), one of which is illustrated by the pre-
ceding example: there are many options, and a decision
maker has insufficient time, information, and/or ability
to make trade-off comparisons across all the alternatives.

Lexicographic inference is the problem of deducing
a lexicographic rule from consumer preferences or
choices over alternatives, each of which is described
using discrete (or discretized) attributes. For example,
in Figure 1, each attribute, such as brand name or price,
has a small number of discrete “levels” (values). Kohli
and Jedidi (2007) and Yee et al. (2007) describedmethods
for solving the lexicographic inference problem using

paired comparisons data. These data may be directly
obtained or inferred from individual choices or rank-
ings of alternatives. The solution to the problem is
a lexicographic ordering of the attribute levels con-
sistent with the maximum number of paired com-
parisons. Yee et al. (2007) described an (exponential
time) dynamic program,which can be used for solving
small problems; for larger problems, they and Kohli
and Jedidi (2007) proposed a greedy heuristic. Schmitt
and Martignon (2006) considered a generalization of
the lexicographic inference problem in which alter-
natives can have different numbers of attribute levels.
They showed that, unless P=NP, no polynomial-time
algorithm can guarantee a solution that exceeds any
constant fraction of the optimal solution value. How-
ever, this result extends only partly to the problem
considered by Yee et al. (2007) and Kohli and Jedidi
(2007), in which each alternative has the same number
of levels, one level per attribute. As we show, in this
case the problem remains NP-hard (it generalizes the
linear ordering problem) but allows polynomial-time
approximation algorithms with nontrivial performance
bounds.
We consider randomized algorithms for solving the

lexicographic inference problem. Unlike the determin-
istic algorithms just described, a randomized algorithm
introduces uncertainty in assigning a value to a decision
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variable. A randomized algorithm can be a Las Vegas
algorithm, which obtains an optimal solution but has
uncertain running time, or a Monte Carlo algorithm,
which has a deterministic running time but an uncertain
solution value. We consider Monte Carlo algorithms in
this paper, using the data for a problem instance to
determine the probability with which it selects a solu-
tion. The performance of such an algorithm can be
assessed by comparing the expected value of its solution
to the optimal solution value.

The proposed randomized algorithm is based on
a random utility formulation of the lexicographic in-
ference problem that was shown by Kohli and Jedidi
(2015) to be equivalent to Tversky’s (1972) elimination
by aspects. Let uj � vj + εj denote the utility of attri-
bute level j (for example, the utility associated with a
particular brand name or price level), where vj is a
deterministic utility component and εj is a stochastic
utility component with an independent extreme value
distribution. Suppose we knew the vj values. Then we
could use the following method to obtain a solution:

generate independent εj values, calculate uj, and obtain
a feasible ordering of the attribute levels by arranging
them in decreasing order of their uj values. The key
step is determining the vj values using the data for
a problem instance. We consider two methods:
(1) maximizing the expected value of the solution
obtained by a randomized algorithm and (2) maximiz-
ing a likelihood function. To our knowledge, these are
both new approaches to designing randomized algo-
rithms. We obtain the following results:

(1) We show that maximizing the expected value of
the solution obtained by the randomized algorithm is
equivalent to optimally solving the lexicographic in-
ference problem. Because the problem is NP-hard, we
cannot maximize the expected value in polynomial time
unless P=NP. However, the expected value formulation
is useful because it transforms the discrete problem into
an unconstrained and continuous nonlinear optimiza-
tion problem. This allows using continuous optimization
procedures to obtain at least locally optimal solutions. To
our knowledge, maximizing an expected value is a new

Figure 1. (Color online) Online Retail Store Featuring Multiple Criteria (Brand, Price, Operating System, etc.) for Screening
Electronic Tablets
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way of formulating a discrete optimization problem as
a continuous nonlinear optimization problem (see Floudas
and Visweswaran 1995 for other methods that can be
used to obtain such reformulations).

(2) We propose a randomized algorithm inwhich the
vj values are obtained by maximizing a likelihood
function. This is a convex optimization problem that can
be solved in polynomial time. We use the maximum
likelihood values of vj to implement a Monte Carlo al-
gorithm and select the best solution across runs (which,
in turn, can be used as a starting solution to the non-
linear optimization problem described in (1)).

We obtain a relation between the maximum likeli-
hood solution and the optimal solution to the lexico-
graphic inference problem. The relation is based on the
observation that maximizing a likelihood function is
equivalent to maximizing a geometric mean of prob-
abilities, and maximizing an expected value is equiv-
alent to maximizing an arithmetic mean of the same
probabilities. The relation between arithmetic and geo-
metric means provides a lower bound on the expected
value of the randomized solution in terms of the max-
imum likelihood value. This bound can be computed for
each problem instance.

We present an application to illustrate the proposed
methods using data from a choice experiment for tablet
computers. We examine the performance of aggregate
and individual level lexicographic rules inferred by (1)
a randomized algorithm using the maximum likelihood
approach and (2) maximizing the expected value of the
randomized algorithm. We compare these solutions to
those obtained by using (1) the greedy algorithm de-
scribed by Yee et al. (2007) and Kohli and Jedidi (2007),
(2) a local search algorithm, (3) the ordering of the max-
imum likelihood values of vj, and (4) a logit model. The
proposed algorithms perform substantially better than
these methods at both aggregate and individual levels.

1.1 Organization of the Paper
Section 2 provides a background on lexicographic rules,
the lexicographic inference problem, the linear ordering
problem, and randomized algorithms. Section 3 first
obtains a discrete formulation of the lexicographic in-
ference problem and shows that it is NP-hard. Then
it describes the continuous formulation obtained by
maximizing the expected value of the randomized al-
gorithm. Section 4 describes the maximum likelihood
approach and characterizes the worst-case performance
of the randomized algorithm. Section 5 describes the
empirical application.

2. Background
2.1. Lexicographic Preferences
We consider discrete (or discretized) attributes. Re-
gardless of whether it is nominal or ordered, we

refer to each discrete value of an attribute as a level.
A lexicographic rule orders alternatives over attri-
bute levels in the same way that a dictionary orders
words over letters. It is a noncompensatory rule: one
alternative is preferred to another if it is better on the
most important attribute level on which two alter-
natives are different.
A substantial literature in psychology andmarketing

documents the use of lexicographic rules. Consumers
use themwhen it is costly to retrieve information about
alternatives (Bröder 2000, Bröder and Schiffer 2003),
when they have to make choices or directly compare
alternatives (Payne 1982, Billings and Scherer 1988,
Tversky et al. 1988, Schkade and Johnson 1989,
Bettman et al. 1998), when they have emotional reasons
to avoid trade-offs (Drolet and Luce 2004), and when
they need to break ties among equally valued alter-
natives (Slovic 1975). Kohli and Jedidi (2007) and Yee
et al. (2007) reported that approximately two thirds of
their subjects used lexicographic rules for ranking per-
sonal computers and smartphones, respectively. Some-
times, people use a lexicographic rule when making
judgments based on cues. For example, they may judge
a city to be larger if it has a professional soccer team;
see Bröder (2000), Gigerenzer et al. (1991), andDieckmann
et al. (2009).
Parallel to this literature, theoretical research has

examined the representation of lexicographic prefer-
ences by utility functions. It has been known at least
since Debreu (1954) that no utility function can rep-
resent lexicographic preferences over two or more
real-valued attributes. However, it is possible to ob-
tain a representation using a two-function order ho-
momorphism; that is, a pair of real-valued functions u
and v satisfying u(x)> v(y) if and only if x is lexico-
graphically preferred to y (Fishburn 1974, Bridges 1983,
Chateauneuf 1987). Wakker (1988) obtained the nec-
essary and sufficient conditions for the existence of an
order homomorphism from a given binary relation
to the lexicographic order on R × {0, 1}. Knoblauch
(2000) described preference representation via order
homomorphisms to the lexicographic order on Eu-
clidean n-space. Martignon and Hoffrage (1999, 2002)
described how a linear compensatory model can
represent lexicographic preferences over discrete or
discretized attributes with finite numbers of levels.
Kohli and Jedidi (2007) obtained the necessary and
sufficient conditions under which a linear utility func-
tion over discrete attributes represents lexicographic
preferences. They showed that a number system in
which the radix changes from one digit to another is
sufficient for representing lexicographic preferences.
Tversky (1972) introduced elimination by aspects, a
probabilistic lexicographic rule that allows violations
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of order independence (and its special case, inde-
pendence of irrelevant alternatives).

2.2. Linear Ordering Problem
We show that the lexicographic inference problem gen-
eralizes the linear ordering problem. The latter problem
combines multiple rankings or paired comparisons of
alternatives into a single representative ordering. It
has been studied in economics, psychology, statistics,
operations research, and computer science. Well-known
applications include the ranking of political candidates
by combining voter preferences and the ranking of
players/teams in a sport based on the results of
matches. Kemeny (1959) described an optimization
version of the linear ordering problem. Its objective is
to find an ordering of alternatives that is consistent with
the largest possible number of preference compari-
sons between pairs of alternatives (consistent pairs
are called nonreversals, and inconsistent pairs are
called reversals). Bartholdi et al. (1989) showed that
the Kemeny problem is NP-hard. We show that it cor-
responds to a special case of the lexicographic inference
problem.

Martı́ and Reinelt (2011) and Charon and Hurdy
(2007, 2010) reviewed a number of methods for solv-
ing the linear ordering problem. These include cutting
planemethods (Grötschel et al. 1984), tabu search (Laguna
et al. 1999), memetic algorithms (Schiavinotto and Stützle
2004), variable neighborhood search (Garcia et al. 2006),
simulated annealing (Charon and Hudry 2007), scatter
search and greedy randomized adaptive search (Campos
et al. 2001). Ailon et al. (2008) obtained a randomized
algorithm that finds a linear ordering for which the ex-
pected number of reversals in a minimization version of
the problem is no greater than 11/7 times the number of
reversals inanoptimalordering.VanZuylenandWilliamson
(2007) described a polynomial time-approximation
algorithm for which the number of reversals is no
more than 8/5 times the number of reversals in an
optimal ordering.

2.3. Randomized Algorithms
Motwani and Raghavan (1995) describe the basic con-
cepts in the design and analysis of randomized al-
gorithms. They observe that for many problems a
randomized algorithm is the simplest algorithm avail-
able or the fastest or both. As noted in the introduction,
there are two types of randomizedalgorithms.ALasVegas
algorithmalwaysfinds an optimal solution, but its running
time can differ from one run to another. A Monte Carlo
algorithm does not always find the optimal solution
but has a known running time. We use a Monte Carlo
algorithm in this paper.

The probability with which a randomized algo-
rithm selects a solution is often based on the solu-
tion to a related optimization problem that can be

efficiently solved. For example, a 0–1 linear integer
program may be computationally difficult, but relaxing
the integer constraints on the decision variables re-
sults in a linear program that can be solved in poly-
nomial time. The fractional solution values may then
be used as probabilities when assigning zero or one
values to the decision variables. Following Goemans
and Williamson (1995), semidefinite programming
relaxations have also been used to design randomized
algorithms.
We use a different method for generating random-

ized solutions to the lexicographic inference problem.
Let n denote the total number of levels across all at-
tributes in a problem. We assign a distinct (index)
number j � 1, . . . ,n to each level. Let uj � vj + εj denote
the utility of the level (that is assigned the index) j,
where vj is a deterministic component and εj is a sto-
chastic component. We assume that each εj has an
independent extreme value distribution. We maximize
a likelihood function to estimate the vj values from
paired comparisons data. This problem can be solved
in polynomial time. Given the vj values, we imple-
ment a single run of the Monte Carlo algorithm by
(1) generating values uj � vj + εj for all j � 1, . . . ,n;
(2) arranging the uj values in a decreasing order
uj1 > · · · > ujn ; and (3) using the sequence of attribute
levels j1, . . . , jn in a lexicographic rule to evaluate al-
ternatives. Each Monte Carlo run can obtain a different
solution because it uses different εj values.
We also consider the problem of maximizing the

expected value of the solution obtained by a ran-
domized algorithm. We show that this problem is
equivalent to the lexicographic inference problem.
Thus, by considering a randomized algorithm, we
reformulate a constrained, discrete optimization
problem as an unconstrained, continuous optimiza-
tion problem. This allows us to use nonlinear optimi-
zation methods to find at least locally optimal solutions
to the problem.
We obtain a relation between the maximum likeli-

hood solution and the lower bound on the performance
ratio of the associated randomized algorithm. This
relation between methods of statistical inference and
discrete optimization appears to be new to the litera-
ture. In statistics, the objective is to make inferences
about population parameters from sample data. There
is no estimation problem in the present context. Instead,
the objective is to use the data for a problem instance
to parameterize a randomized algorithm. The proposed
approach is useful if, as in the present problem, the
likelihood function can be maximized in polynomial
time. In Section 6, we discuss how the present approach
can be extended to some other combinatorial optimi-
zation problems.
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3. Formulation and a
Randomized Algorithm

We begin by formulating the lexicographic infer-
ence problem as a discrete optimization problem. We
show that it generalizes the NP-hard linear ordering
problem. Then we describe a randomized algorithm
and show that maximizing the expected value of its
solution is equivalent to solving the lexicographic in-
ference problem.

3.1. Discrete Formulation
As noted in Section 2.1, a lexicographic rule uses
a sequence of attribute levels to evaluate alternatives:
one alternative is preferred to another if it is better on
the most important attribute level on which the two
alternatives are different. The data for the lexicographic
inference problem are preferences over pairs of alter-
natives, which may be directly obtained from con-
sumers or inferred from their choices or rankings of
alternatives (Kohli and Jedidi 2007, Yee et al. 2007). The
objective of the problem is to find an ordering of the
attribute levels for which a lexicographic rule correctly
predicts the preferences for a maximum number of
paired comparisons.

Consider a set of alternatives, each described using
t ≥ 2 discrete attributes. Let attribute l have nl ≥ 2
levels for all l � 1, . . . , t. Some attributes, such as price,
may have ordered levels so that a lower price is
preferred to a higher price. Other attributes, such as
brand name, may be nominal, in which case each
level indicates a different brand. Let n � n1 + · · · + nt
denote the number of levels across the attributes.
We assign a single index j to each of the n levels across
the attributes. For example, suppose attribute 1 has
n1 � 2 levels and attribute 2 has n2 � 3 levels. We
assign the indices j � 1, 2 to the two levels of attri-
bute 1 and j � 3, 4, 5 to the three levels of attribute 2.
In general, we assign the indices nl−1 + 1, . . . ,nl−1 + nl
to the nl levels of attribute l, where n0 � 0 and
l� 1, . . . , t.

Let jk denote the index of the kth most important
attribute level in a lexicographic rule. We call the or-
dered vector s � ( j1, . . . , jn) a (lexicographic) sequence.
Strictly speaking, each element of s is an index asso-
ciated with an attribute level; for brevity, we refer to it
as an attribute level. For example, suppose there are
n � 4 attribute levels. Then the sequence s � (4, 3, 2, 1)
characterizes a lexicographic rule that uses j1 � 4 as the
most important attribute level, j2 � 3 as the second
most important attribute level, j3 � 2 as the third most
important attribute level, and j4 � 1 as the least im-
portant attribute level.

Let S denote the set of all n! possible sequences of
the n attribute levels. Let r � (i, h) denote that alternative
i is preferred to alternative h in a paired comparison.

Let R denote the set of paired comparisons andN � |R|
the total number of paired comparisons. We formulate
the lexicographic inference problem as a 0–1 integer
program in which the objective is to select a sequence
s ∈ S for which a lexicographic rule correctly predicts
the preferences for a maximum number of the pairs
in R.
Let xjk � 1 if level j is the kth most important attribute

level (that is, if it is the kth element in sequence s);
otherwise, xjk � 0. Then

∑n
k�1

xjk � 1, for all 1≤ j ≤ n,

because each attribute level can be assigned exactly one
position in a sequence s. Similarly,

∑n
j�1

xjk � 1, for all 1 ≤ k ≤ n,

because each position in a sequence s can be assigned to
exactly only one attribute level.
Let aij � 1 if attribute level j appears in alternative i

and aij � 0 otherwise for all j � 1, . . . ,n. The vector
(ai1, . . . , ain) is called the profile of alternative i. It has t
nonzero elements, each corresponding to an attribute
level that appears in alternative i. Let

bik �
∑n
j�1

aijxjk, 1 ≤ i ≤ m, 1 ≤ k ≤ n.

Then bik � aij when level j is the kth element in se-
quence s ∈ S; that is, where attribute level j is the kth
most important level in a lexicographic rule. The vector
(bi1, . . . , bin) rearranges the elements of (ai1, . . . , ain) in
order of decreasing importance.
Consider a paired comparison (i, h) ∈ R. We say that

a lexicographic rule obtains a (preference) reversal if it
predicts that h is preferred to i; otherwise, it obtains
a nonreversal.
Let

bi �
∑n
k�1

bik
2k

, 1 ≤ i ≤ m.

That is, bi is an n-digit binary number. A number
system arranges digits in lexicographic order. Fol-
lowing Kohli and Jedidi (2007), a lexicographic rule
that uses attribute level j as the kth most important
level obtains a nonreversal only if

bi − bh � ∑n
k�1

∑n
j�1

1
2k

(aij − ahj)xkj ≥ 0.

Observe that bi − bh is also a binary number. It is non-
negative only if (aij − ahj)xkj is nonnegative in its most
significant digit. We use this property to formulate the
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lexicographic inference problem as the following 0–1
integer programming problem, P1.

(P1) Maximize z �∑
r∈R

zr

subject to : 1 +∑n
k�1

∑n
j�1

1
2k

(aij − ahj)xjk ≥ zih,

for all (i, h) ∈ R∑n
k�1

xjk � 1, for all 1 ≤ j ≤ n

∑n
j�1

xjk � 1, for all 1 ≤ k ≤ n

zih ∈ {0, 1}, for all r � (i, h) ∈ R
xjk ∈ {0, 1}, for all 1 ≤ j, k ≤ n.

The first constraint allows zih � 1 only if bi ≥ bh; oth-
erwise, zih � 0. The second and third constraints ensure
that each attribute level is assigned one position in the
importance ordering. The objective functionmaximizes
the number of nonreversals across all paired compar-
isons. Let z* denote the value of the optimal solution to
problem P1.

3.2. Computational Complexity
Schmitt and Martignon (2006) considered a general-
ization of the lexicographic inference problem in which
there are no constraints on the number of attribute
levels that are used to describe an alternative. They
showed that the problem is NP-hard and that, unless
P=NP, it can have no constant-factor approximation
algorithm that runs in polynomial time. We show that
the lexicographic inference problem in which each al-
ternative has one level per attribute is also NP-hard but
that it allows polynomial time-approximation algo-
rithms with nontrivial performance bounds. (Proofs of
lemmas and theorems appear in Appendix A.)

Theorem 1. The lexicographic inference problem is NP-
hard.

The proof of Theorem 1 relies on showing that the
Kemeny problem, described in Section 2.2, can be
transformed into the lexicographic inference problem
in a polynomial number of steps. Because the Kemeny
problem is NP-hard, so is problem P1. The reduction of
the Kemeny problem to the lexicographic inference
problem associates a single, unique attribute level with
each alternative. As a result, the lexicographic inference
problem is NP-hard regardless of the types of (ordered
or nominal) attributes and the number of levels per
attribute.

3.3. Continuous Formulation
Consider a randomized (Monte Carlo) algorithm that
selects sequence s ∈ S with probability p(s), where

∑
s∈S p(s) � 1. For a paired comparison r � (i, h), let

zr(s) � 1 if a lexicographic rule using sequence s cor-
rectly predicts that alternative i is preferred to alter-
native h; otherwise, zr(s) � 0. Then the number of
nonreversals associated with sequence s is given by

z(s) � ∑
r∈R

zr(s), for all s ∈ S.

The expected value of the solution obtained by the
randomized algorithm is

E � ∑
s∈S

p(s)z(s).

We associate a random utility uj � vj + εj with attribute
level j, where vj is a deterministic component and εj
a stochastic component with an independent extreme
value distribution. Given values of v1, . . . , vn, we im-
plement the following randomized algorithm:

(1) Obtain independent and random draws εj. Cal-
culate uj � vj + εj for each j � 1, . . . , n.

(2) Arrange the uj values in a decreasing sequence,
uj1 > · · · > ujn . Choose sequence s � ( j1, . . . , jn) as the
solution to the lexicographic inference problem.
The following lemma gives an explicit expression for

the probability with which the randomized algorithm
chooses a sequence s ∈ S.

Lemma 1 (Beggs et al. 1981). Let attribute level j have
random utility uj � vj + εj, where εj has an independent
extreme value distribution for each j � 1, . . . ,n. Then the
randomized algorithm selects sequence s � ( j1, . . . , jn) ∈ S
with probability

p(s) � p(uj1 > · · · >ujn) �
∏n−1
t�1

evjt
evjt + . . . evjn

, for all s ∈ S.

Beggs et al. (1981) give a proof of Lemma 1. Kohli and
Jedidi (2015) showed that the preceding algorithm
describes a probabilistic lexicographic rule equivalent
to elimination by aspects (Tversky 1972).

We consider twomethods for obtaining the vj values.
The first maximizes the expected value of the ran-
domized algorithm over the parameters v1, . . . , vn. We
consider this method because it yields an exact con-
tinuous formulation of the lexicographic inference
problem. The second method, discussed in Section 4,
uses maximum likelihood to estimate these parameter
values. Its advantage is that the likelihood function
can be maximized in polynomial time, thus allowing
for a practical approximation algorithm for large
problems.
Consider the following problem, P2, which maxi-

mizes the expected value of the solution obtained by
the preceding randomized algorithm.

(P2) Maximize E �∑
s∈S

p(s)z(s).

We prove the following result.
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Theorem 2. Sequence s* ∈ S is an optimal solution to
problem P1 if and only if it is also an optimal solution to
problem P2.

Formulating the lexicographic inference problem as
problem P2 is useful for proving that it is NP-hard.
However, this formulation is not useful for solving
the problem because it expresses the expected value
as a sum over all n! sequences in S. We obtain an
alternative expression for the expected value that
does not require the explicit enumeration of all the
sequences.

Let L � {1, . . . ,n} denote the set of n attribute levels.
For each paired comparison r � (i, h) ∈ R, let Lr1 denote
the subset of m1r � |Lr1| attribute levels with the values
one in i and zero in h. Similarly, let Lr2 denote the subset
of m2r � |Lr2| attribute levels with the values zero in i
and one in h. Let Lr12 � Lr1 ∪ Lr2. Then Lr12 has m1r +m2r
elements. Let Lr0 � L \ Lr12 denote the subset of attribute
levels that are both one or both zero in alternatives i
and h. We make the following observations.

(1) m1r � m2r because each alternative has one level
of each attribute. To see this, suppose the alternatives i
and h in a pair r � (i, h) differ on t′ ≤ t attributes. Then
alternative i has m1r � t′ attribute levels that do not
appear in alternative h (that is, aij � 1 and ahj � 0 for
these levels), and alternative h has m2r � t′ attribute
levels that do not appear in alternative i (that is, aij � 0
and ahj � 1 for these levels).

(2) Regardless of its position in a sequence s ∈ S,
every attribute level j ∈ Lr0 has no effect on the reversal
or nonreversal of the paired comparison r.

(3) If a sequence s ∈ S has an attribute level j ∈ Lr1
that appears before all attribute levels in Lr2, then
a nonreversal is obtained for the paired comparison r.

(4) If a sequence s ∈ S has an attribute level j ∈ Lr2
that appears before all attribute levels in Lr1, then a
reversal is obtained for the paired comparison r.

Because each εj has an extreme value distribution,
attribute level j ∈ Lr1 precedes all other attribute
levels � ∈ Lr1 ∪ Lr2, j �� �, with the multinomial logit
probability

p(uj > u�, for all � ∈ Lr12) �
evj∑

�∈Lr12
ev�

.

Thus, the probability of obtaining a nonreversal for the
paired comparison r ∈ R is

p(r) � ∑
j∈Lr1

p(uj > u�, for all � ∈ Lr12) �
∑
j∈Lr1

evj∑
�∈Lr12

ev�

�
∑
j∈Lr1

evj

∑
�∈Lr12

ev�
, for all r ∈ R

and the expected value of the solution obtained by the
randomized algorithm is

E � ∑
r∈R

p(r) · 1 + (1 − p(r)) · 0[ ]� ∑
r∈R

p(r)

� ∑
r∈R

∑
j∈Lr1

evj∑
�∈Lr12

ev�
.

This expression for E does not require enumerating all
the sequences in S. Problem P2 can be restated as the
following nonlinear optimization problem P3 in which
the decision variables are the parameters v1, . . . , vn.

(P3) Maximize E � ∑
r∈R

∑
j∈Lr1

evj∑
�∈Lr12

ev�
.

Problems P1 and P3 are very different formulations of
the lexicographic inference problem. Problem P1 has
a linear objective function, O(m2 + n2) 0–1 decision
variables and O(m2 + n) linear constraints, where m is
the number of alternatives and n is the total number of
attribute levels. Problem P3 has a nonlinear objective
function, n continuous decision variables, and no
constraints. Because the lexicographic inference prob-
lem is NP-hard, problem P3 cannot be solved in poly-
nomial time unless P=NP. However, we can use
continuous (Newton or quasi-Newton) methods to ob-
tain at least locally optimal solutions to the problem.

4. Randomized Algorithm Using
Maximum Likelihood

Another method for implementing the randomized
algorithm is to use the values of v1, . . . , vn obtained by
maximizing the likelihood function

+ � ∏
r∈R

p(r).

This is equivalent to maximizing the log-likelihood
function

ln+ � ∑
r∈R

ln p(r),

where

ln p(r) � ln
∑
j∈Lr1

evj
( )

− ln

( ∑
�∈Lr12

ev�
)
.

Maximizing ln+ is a convex optimization problem and
can be solved in polynomial time.
Note that in statistical inference, the purpose of max-

imizing a likelihood function is to estimate the pop-
ulation parameters from a sample of observations. Our
purpose is different.Wewish to obtain the values of vj so
that we can implement the randomized algorithm for
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a particular problem instance. The best solution across
multiple runs of the algorithm can be retained as the
solution for a problem instance. This solution can also be
used to initialize a nonlinear programming procedure for
solving problem P3. Algorithm 1 gives an overview of the
proposed method used for inferring lexicographic rules.

Algorithm 1 (Procedure for Lexicographic Inference)
1. Maximize likelihood function to estimate v̂1, . . . , v̂n
2. For iteration ι � 1, . . . , I, do ⊳ randomized

algorithm
3. For attribute level j � 1, . . . ,n, do
4. Sample ειj ∼ extreme value (0,1)
5. Calculate ûιj � v̂j + ειj
6. End For
7. If ujι1 > · · · > ujιn , set sι � ( jι1, . . . , jιn)
8. Calculate z(sι), the number of nonreversals for

sequence sι
9. End For

10. Set smax � argmax{z(sι), ι � 1, . . . , I} ⊳ best
randomized solution

11. Solve problem P3 using the sequence smax as a
starting solution

Let vj � v̂j, j � 1, . . . ,n denote the vj values obtained
by maximizing the likelihood function. Let +* denote
the maximum likelihood value. Then +* is related as
follows to the expected value of the solution obtained
by a randomized algorithm that uses the parameters
vj � v̂j. Let

a � E
N

� 1
N

∑
r∈R

p(r)

denote the arithmetic mean and

g � ∏
r∈R

p(r)1/N

denote the geometric mean of the nonreversal proba-
bilities p(r) across all paired comparisons. Then a≥ g
because an arithmetic mean is no smaller than a geo-
metric mean of a set of nonnegative numbers. Let

a* � z*
N
, â � 1

N

∑
r∈R

p̂(r) and ĝ � (+*)1/N � ∏
r∈R

p̂(r)1/N ,

where z* is the value of the optimal solution to the
lexicographic inference problem and N is the total
number of paired comparisons. Let

p̂(r) � ∑
j∈Lr1

ev̂j∑
�∈Lr12

ev̂�

denote the maximum likelihood probability of obtain-
ing a nonreversal for the paired comparison r ∈ R. Then

z* � Na* ≥ Nâ ≥ Nĝ � N(+*)1/N .

We use this sequence of inequalities, together with the
following three lemmas, to characterize the perfor-
mance of a randomized algorithm that uses the max-
imum likelihood values v̂1, . . . , v̂n.

Lemma 2. The optimal solution to the lexicographic in-
ference problem with N paired comparisons is no smaller
than N/2.

Lemma 3. The geometric mean of the maximum likelihood
probabilities has the lower bound ĝ � (+*)1/N ≥ 1/2.

Lemma 4 (Pinelis 2015).

â ≥ ĝ +min 2σ2,
κ2σ2

κ2 − σ2

{ }
,

where

σ2 � 1
N

∑
i∈R

�����
p̂(r)√ − μ

( )2
, κ2 � 1

N

∑
r∈R

������
p̂max

√ − �����
p̂(r)√( )2

,

μ � 1
N

∑
r∈R

���
p̂i

√
and p̂max � max

i∈R p̂(r).

Pinelis (2015) gives a proof of Lemma 4 in which the
p̂(r) values may be any nonnegative numbers, not just
probabilities.

Theorem 3 uses Lemmas 2–4 to obtain a lower bound
on the performance ratio of a randomized algorithm
that uses the maximum likelihood values v̂1, . . . , v̂n.

Theorem 3. Let ϕ � Nâ/z* denote the performance ratio of
a randomized algorithm using the maximum likelihood so-
lution vj � v̂j, j � 1, . . . ,n. Then

ϕ ≥ K* ĝ +min 2σ2,
κ2σ2

κ2 − σ2

{ }[ ]
,

where ĝ ≥ 1/2 and K* � N/z* ≥ 1.

In Theorem 3, ĝ ≥ 1/2 follows from Lemma 3 and
K* ≥ 1 because z* ≤ N. The value of z* is not known but
can be replaced by an upper bound in the expression
for K*. A trivial upper bound is z* � N. A possible
improvement in the upper bound is obtained as fol-
lows. Let nih denote the number of paired comparisons
in which alternative i is preferred to alternative h. Then
any feasible solution, including the optimal solution,
can obtain at most max{nih,nhi} nonreversals for the
pair of alternatives i and h. Thus,

z* ≤ M � ∑
(i,h)

max{nih,nhi} ≤ N.

Another upper bound for z* can be obtained by solving
a linear programming relaxation of problem P1. Any
such upper bound for z* can be used to obtain an in-
stance-specific lower bound for ϕ.
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As with the greedy algorithm considered by Yee
et al. (2007) and Kohli and Jedidi (2007), the maxi-
mum likelihood solution obtains the optimal solution
to the lexicographic inference problem when all paired
comparisons can be perfectly predicted by a lexico-
graphic rule. In this case, ĝ � â � 1 because p(r) � 1 for
allN paired comparisons, and so+* � 1. It follows that
K* � N/z* � 1 and ϕ � K*ĝ � K*+*1/N � 1. The maxi-
mum likelihood solution also obtains the optimal so-
lution when z* � N/2. In this case, K* � N/z* � 2.
Because g* ≥ 1/2, ϕ ≥ K*g* � 1. We summarize these
results in the following corollary to Theorem 3.

Corollary 1. The maximum likelihood solution finds an
optimal ordering of attribute levels when z* � N/2 or z* � N.

5. Application
We employed the preceding randomized algorithm
to identify lexicographic rules used by consumers to
choose electronic tablets. A commercial market-research
firm provided the data used for the analysis. These data
were collected from 137 subjects who were screened to
be interested in purchasing an electronic tablet in the
next 12 months. Each subject was shown 15 choice sets,
which could differ across subjects. All choice sets had
three alternatives, none of which dominated the others
across attributes. A subject’s task was to select one
alternative from a choice set.We used the data to obtain
aggregate and individual-level parameter estimates
using maximum likelihood. The aggregate analysis
served as a benchmark for evaluating the individual-
level models. It also allowed an assessment of the
extent to which aggregate lexicographic models can
predict preferences across individuals. We used the
maximum likelihood estimates to implement the ran-
domized algorithm I � 1, 000 times and selected the
solution with the largest number of nonreversals. We
used this solution to provide starting values to a non-
linear programming routine for solving problem P3.

The tablets shown to participants were selected
from 350 product profiles constructed using a frac-
tional factorial plan in which the attributes were used
as design factors. A fractional factorial plan has a subset
of all possible combinations of design factors. Its key
feature is that the subset is chosen to ensure that the
parameter estimates (in a linear model) are orthog-
onal. See Box et al. (1978) for details. The present
experimental plan used the following attributes and
levels:

(1) Brand name: iPad, Galaxy, Surface, Nexus, and
Kindle

(2) Screen size: 7, 8, 9, and 10 inches
(3) Hard-drive capacity: 16, 32, 64, and 128 GB
(4) RAM: One, two, and four GB
(5) Battery life: seven, eight, and nine hours
(6) Price: $169, $199, $299, $399, and $499

We used standard dummy variable coding for the
logit model. For the randomized algorithm, we treated
brand name and screen size as nominal attributes and
used “aspect coding” for price, memory, disk size, and
battery life. The following example illustrates aspect
coding. Let xi1 � 1 if the battery life for tablet i is at
least seven hours, xi2 � 1 if it is at least eight hours,
and xi3 � 1 if it is at least nine hours. Then xi1 � xi2 �
xi3 � 1 for a tablet with a nine-hour battery; xi1 � xi2 � 1,
xi3 � 0 for a tablet with an eight-hour battery; and
xi1 � 1, xi2 � xi3 � 0 for a tablet with a seven-hour
battery. Similarly, suppose xi4 � 1 if the price of tablet i
is no greater than $169 and xi5 � 1 if it is no greater
than $199. Then xi4 � xi5 � 1 for a $169 tablet, and
xi4 � 0, xi5 � 1 for a $199 tablet. Note that for the or-
dered attributes, the dummy variables representing the
least-preferred levels (16-GB hard drive, one-GB RAM,
seven-hour battery life, and $499 price) have values
equal to one in every product profile. Consequently, the
parameters associated with these levels are not identi-
fied. However, the parameter associated with each level
of a nominal attribute is identified.

5.1. Estimation and Validation
We generated paired comparisons between the chosen
alternative and the other two alternatives for each of the
15 × 137 � 2, 055 choice sets.1 We used the 2 × 2, 055 �
4, 110 paired comparisons to estimate the variousmodels.
We randomly selected two paired comparisons per in-
dividual formodel validation.We reestimated themodels
using the remaining 2 × 14 × 137 � 3, 836 paired com-
parisons and used the results to make out-of-sample
predictions for the 2 × 137 � 274 holdout paired com-
parisons. We repeated the procedure 100 times for each
aggregate model described herein. We also repeated
the procedure 100 times for the mixed logit model. For
the other individual-level methods, we held out two
randomly selected paired comparisons per person
and replicated the procedure 10 times; this yielded
2 × 10 × 137 � 27, 400 paired comparisons for vali-
dation across replications and subjects. In each case,
we report the average out-of-sample hit rates across
replications.
We used the following five methods for inferring

lexicographic rules. The first two are proposed methods,
and the next three are benchmarks. We implemented
each method using the R programming language on
a Dell laptop computer with an Intel i5-6440HQ CPU
(2.60 GHz) and eight GB of RAM.

(1) The randomized algorithm using the maximum
likelihood values v̂1, . . . , v̂n. We obtained n independent
random draws ε1, . . . , εn from an extreme value dis-
tribution and calculated ûj � v̂j + εj for each j � 1, . . . ,n.
If ûj1 ≥ . . . ≥ ûjn , we used the lexicographic sequence
s � ( j1, . . . , jn) as the randomized solution. We repeated
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the procedure 1,000 times and selected a solution for
which the number of nonreversals, z(s), was the highest.

(2) The solution obtained by maximizing the ex-
pected value of a randomized algorithm. We used
the best maximum likelihood solution as the starting
solution. We used the limited memory version of the
Broyden–Fletcher–Goldfarb–Shanno algorithm, avail-
able in the RStan package in R, to maximize the ex-
pected value (Byrd et al. 1994). The algorithm uses
a quasi-Newton method and is suited to problems with
large numbers of decision variables.

(3) A probabilistic lexicographic rule, the solution to
which is the ordering of attribute levels obtained by
arranging the maximum likelihood values v̂1, . . . , v̂n in
a decreasing sequence.

(4) The greedy algorithm described by Yee et al.
(2007) and Kohli and Jedidi (2007).

(5) A local search algorithm that begins with an
arbitrary sequence s, exchanges the positions of a pair
of attribute levels if this improves the solution value,
and repeats this exchange until no further improve-
ment in the solution value can be obtained (see
Papadimitriou and Steiglitz (1998) for a discussion of
local search). We implemented the local search algo-
rithm 100 times, each time using a random initial se-
quence. We report the best solution value across the
100 runs.

(6) A logit model estimated using paired compari-
sons for consistency with the other methods (virtually
identical results were obtained using the choice data).
We usedmaximum likelihood to estimate the aggregate-
level parameters and a hierarchical Bayesian approach
to estimate the individual-level parameters. (Individ-
ual-level estimates using only the 15 choices—30 paired
comparisons—per person overfit the data, obtaining
almost perfect in-sample hit rates but an average out-
of-sample hit rate of only 0.76 for the logit model.) We
implemented the hierarchical Bayesian approach by
assuming that the prior distribution of the population
means was normal with mean zero and variance 100 (a
large value) and that the prior of the covariance matrix
had an inverse Wishart distribution. We used Hamilto-
nian Monte Carlo (HMC) to obtain sample draws for the
parameter estimates. HMC is similar to the Metropolis–
Hasting algorithm but uses Hamiltonian dynamics for
sampling and converges more quickly to the mode of
the joint posterior distribution. Appendix B gives a
brief overview of HMC.

5.2. Results
Table 1 reports the parameter estimates for the ag-
gregate models. It also reports the importance weights
for the attribute levels in the randomized algorithm.
For the nominal attributes, brand name and screen size,
the importance weight of a level is defined to be equal
to the exponential of its parameter estimate. For the

ordinal attributes, the importance weight of a level
reflects the aspect coding. For example, consider hard
disk size. Its base level of 16 GB has zero importance
weight. The next highest level (32 GB) has a parameter
estimate of 1.39 in the aggregate model and, thus, an
importance weight of e1.39 � 4.01. The 64-GB hard drive
satisfies the two conditions “no less than 32 GB” and
“no less than 64 GB.” Its parameter estimate in the ag-
gregate model is 1.79, and thus, its importance weight
is e1.39 + e1.79 � 10.00. The results suggest a greater mar-
ginal change in the importance weight at higher
prices. For example, a price decrease from $399 to
$299 increases the importance weight from e2.13 �
8.41 to e2.13 + e2.50 � 20.60.

5.2.1. Aggregate Solutions. All logit parameter esti-
mates, except for “Surface,” are statistically significant
at the 5% confidence level. The values of the estimates
suggest that increasing battery life from eight hours to
nine hours and hard drive from 64 GB to 128 GB
provides no incremental value to a consumer; that a
nine-inch screen is preferred to a 10-inch screen; and

Table 1. Aggregate-Level Parameter Estimates for the Logit
Model and the Randomized Algorithm

Atttribute
Logit

estimate

Randomized
algorithm
estimate

Importance
weight

Brand
Nexus 0 0 1.00
Kindle 0.24 0.78a 2.18
iPad 1.01 2.88 17.81
Galaxy 0.35 1.55 4.71
Surface 0.14a 0.9a 2.46

Screen size, inches
7 0 −3.67a 0.03
8 0.22 0.96a 2.61
9 0.46 1.70 5.47
10 0.35 1.39a 4.01

Hard drive, GB
16 0
32 0.23 1.39a 4.01
64 0.59 1.79 10.00
128 0.59 −0.16a 10.86

RAM, GB
1 0
2 0.31 1.28a 3.60
4 0.65 1.70 9.07

Battery life, hours
7 0
8 0.12 0.07a 1.07
9 0.13 −0.01a 2.06

Price, $
169 0 1.74 33.68
199 −0.34 2.00 27.99
299 −0.73 2.50 20.60
399 −1.29 2.13 8.41
499 −1.73

aNot significant at the 95% confidence level.
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that iPad is the most-preferred brand, followed by
Galaxy, Kindle, and Surface. As expected, the parameter
estimates for price become increasingly more negative
at higher prices.

Statistical significance of the parameter estimates is
not relevant for the randomized algorithm. This is
because a randomized algorithm does not have estimates
but can be implemented using any set of parameter
values. A randomized algorithm using the aggregate
parameter values in Table 1 assigns the highest im-
portance weights to the prices (below $169, below
$199, below $299), iPad, hard drive (at least 128 GB,
then at least 64 GB), and RAM (at least four GB).

Figure 2 shows the distribution of the in-sample hit
rates for 1,000 lexicographic rules identified using the
randomized algorithm. The worst rule has an in-
sample hit rate of 0.48. The best lexicographic rule has
the highest in-sample (0.671) and out-of-sample (0.652)
hit rates. Table 2 shows the ordering of attribute levels
for this solution. The most important attribute levels
are the three lowest prices, followed by iPad, 128 GB
hard drive, and 64 GB hard drive. The least important
attribute levels are eight-hour battery, Nexus, and
7-inch screen. The least-preferred levels of the ordered

attributes do not appear in Table 2 because, as noted,
their parameters are not identified.
Table 3 compares the hit rates across the different

methods used for inferring an aggregate lexicographic
rule. The solution obtained by maximizing the ex-
pected value has the best in-sample and out-of-sample
hit rates. The best solutions obtained by the random-
ized algorithm and the local search algorithm obtain
only slightly lower hit rates. The probabilistic lexico-
graphic rule, which orders attribute levels in decreasing
order of the v̂j values, performs as well as the greedy
algorithm. The logit model had the lowest hit rate.
Table 4 shows the computational time for each of

the seven models. The greedy algorithm took the least
time of 0.03 seconds. The local search algorithm took
0.1387 seconds per iteration and, thus, a total of 13.87
seconds for the 100 iterations. The maximum likeli-
hood estimation for the probabilistic lexicographic rule
took 1.33 seconds. This solution was used to imple-
ment the randomized algorithm, which took 0.004
seconds per iteration and 4.14 seconds for the 1,000
iterations. The maximum expected value solution was
obtained in 10.58 seconds when it used the best ran-
domized solution as the initial solution. Thus, the total
time for obtaining the maximum likelihood parameters,
implementing the randomized algorithm and maxi-
mizing the expected value was 1.33 + 4.14 + 10.58 =
16.05 seconds; 9% of this time was used for obtaining
the maximum likelihood parameters, 26% for imple-
menting the randomized algorithm, and 65% for maxi-
mizing the expected value.
Recall that z* ≤ M � ∑

(i,h)∈R max(nih,nhi). In the
present case,M � 2, 986, which implies that the highest
possible hit rate is 2, 986/4, 110 � 0.73. Thus, the in-sample

Figure 2. Distribution of Hit Rates Across 1,000 Runs of the
Randomized Algorithm for Aggregate Data

Table 2. Aggregate-Level Lexicographic Ranking of
Attribute Levels Identified by the Randomized Algorithm

Rank Attribute level Rank Attribute level

1 $169 11 10-inch screen
2 $199 12 32 GB hard drive
3 $299 13 2 GB RAM
4 iPad 14 8-inch screen
5 128 GB hard drive 15 Surface
6 64 GB hard drive 16 Kindle
7 4 GB RAM 17 Nine-hour battery
8 $399 18 Eight-hour battery
9 9-inch screen 19 Nexus

10 Galaxy 20 7-inch screen

Table 3. In-Sample and Out-of-Sample Hit Rates for
Different Aggregate Models

Aggregate model In-sample Out-of-sample

Logit model 0.604 0.602
Greedy algorithm 0.657 0.655
Local search algorithm 0.669 0.668
Probabilistic lexicographic rule 0.652 0.652
Randomized algorithm 0.671 0.652
Maximum expected value solution 0.677 0.676

Table 4. Computational Time in Seconds for Different
Aggregate Models

Model CPU time

Logit model 0.18
Greedy algorithm 0.03
Local search algorithm 13.87
Probabilistic lexicographic rule 1.33
Randomized algorithm 4.14
Maximum expected value solution 10.58
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hit rate obtained by the randomized algorithm is 0.68/
0.73 � 0.93 times the maximum achievable hit rate.
BecauseM is an upper bound for the optimal solution
value, the performance ratio of the randomized algo-
rithm is at least 0.93. The Pinelis lower bound for the hit
rate is 0.59 (μ � 0.763, σ2 � 0.019, κ2 � 0.067, ĝ � 0.559),
which is close to the in-sample hit rate obtained by
the logit model.

5.2.2. Individual-level Solutions. Table 5 reports the in-
sample and out-of-sample hit rates for the different
individual-level models. We make the following
observations:

(1) The mixed logit model has the lowest in-sample
and out-of-sample hit rates.

(2) The greedy algorithm obtains better hit rates
than the mixed logit model.

(3) The local search algorithm obtains a better in-
sample hit rate but a slightly lower out-of-sample hit
rate than the greedy algorithm.

(4) The probabilistic lexicographic rule obtains bet-
ter in-sample and out-of-sample hit rates than the
mixed logit model, the greedy algorithm, and local
search.

(5) The randomized algorithm obtains further im-
provements in the hit rates. The in-sample hit rate (0.95)
is slightly higher than the Pinelis lower bound of 0.92

for the randomized algorithm (μ � 0.953, σ2 � 0.013,
κ2 � 0.015, ĝ � 0.892).

(6) Maximizing the expected value obtains about
the same in-sample (0.95) and out-of-sample (0.82) hit
rates as the randomized algorithm using maximum
likelihood.
Figure 3 shows the distribution of in-sample hit

rates for the individual lexicographic rules obtained
by the randomized algorithm. These rules correctly
predict all paired comparisons for 39% of the sample
(53 individuals). The number of incorrectly predicted
paired comparisons is one for 23% of the sample
(32 individuals), two for 12% of the sample (16 indi-
viduals), three for 13% of the sample (18 individuals),
and four or more for the remaining 12% of the sample
(16 individuals).
Table 6 shows the computational time for each of the

six individual-level models. The mixed logit model,
estimated across the 137 subjects, had a running time of
1,119.7 seconds (18.67 minutes) for 2,000 HMC draws.
The greedy heuristic and the probabilistic lexicographic
rule took less than 0.001 second per person, which is
less than 0.001 × 137 ≈ 0.14 second across the subjects.
The running time for the local search algorithm in-
creases linearly with the number of runs. It took 0.0038
second for each run, 0.0038 × 100 � 0.38 second across
100 runs per subject and 0.38 × 137 � 52.06 seconds
across the subjects. The randomized algorithm took
0.00051 second per iteration and 0.00051 × 1, 000 � 0.51
second across 1,000 iterations. Its running time was
0.51 × 137 � 69.87 seconds (1.165 minutes) across the
subjects. Maximizing the expected value took an ad-
ditional 0.02 second per person and 0.02 × 137 � 2.74
seconds across the subjects. The total time for estimating
the maximum likelihood parameters, implementing the
randomized algorithm and maximizing the expected
value was less than 0.137 + 69.87 + 2.74 � 72.747 seconds

Figure 3. Distribution of In-Sample Hit Rates for the Individual Lexicographic Rules Obtained by the Randomized Algorithm

Table 5. Hit Rates for Different Individual-Level Models

Model In-sample Out-of-sample

Mixed logit model 0.844 0.764
Greedy algorithm 0.873 0.784
Local search algorithm 0.915 0.768
Probabilistic lexicographic rule 0.923 0.808
Randomized algorithm 0.947 0.818
Maximum expected value solution 0.949 0.816
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(1.21 minutes) across the subjects; 96% of this time was
used for the 1,000 runs of the randomized algorithm.

5.3. Individual Lexicographic Rules
As noted, the hit rates obtained by the randomized
algorithm are practically indistinguishable from those
obtained by additionally maximizing the expected
value. For this reason, we only examine the solutions
obtained by the randomized algorithm.

Figure 4 shows the percentage of individuals using
different attribute levels as the first screening criterion.
We make the following observations:

(1) The three most commonly used attribute levels
were $399 maximum price (22% of sample), iPad (20%
of sample), and $299 maximum price (19% of sample).

(2) Only 13% of the sample used Kindle, Galaxy,
Surface, or Nexus as the first screening criterion.

(3) If tablets with each of the 17 attribute levels were
available, their share of purchases would be at least as
large as the percentages shown in Figure 4. For example,
an iPadwould obtain at least 20% share of purchases. Its
share could be higher if an individual began with an-
other attribute level at the first stage (say $169) and then
used iPad as a later screening criterion.

The criteria shown in Figure 4 can be grouped into
three categories: brand first, price first, and features

first. Figure 5 shows the groups. We make the fol-
lowing observations:

(1) Forty-six percent of the sample used price as the
most important lexicographic criterion. Among these
consumers, 48% used $399, 41% used $299, and 10%
used $199 as the cutoff price. Only 2% would not
consider a tablet priced above $169.

(2) Thirty-one percent of the sample used brand as
the first screening criterion. Among these consumers,
63% sought an iPad, 21% Kindle, 12% Galaxy, and 2%
Surface and Nexus, each.

(3) Twenty-three percent of the sample first screened
alternatives using a feature other than price or brand.
Forty-five percent of these consumers considered hard
drive, 29% RAM, and 26% screen size. Among those
considering hard drive, 36% sought at least 128 GB;
among those considering RAM, 78% sought at least
two GB; and among those seeking screen size, 50%
sought a 9-inch screen and 38% a 10-inch screen.
Figure 5 can be extended to represent the other criteria

used for the sequential screening of alternatives. For
example, consider the consumers who used iPad as
the first screening criterion. Figure 6 shows the dis-
tribution of the criteria they used for a second-stage
screening: 33% considered price and screen size each,
19% hard drive, 11% RAM, and 4% battery life. Among
those looking at price, 44%would pay atmost $399, 33%
at most $199, and 22% at most $169. Among the 33%
using screen size as the second screening criterion,
44% consider a 9-inch screen, 33% a 10-inch screen,
and 22% a 7-inch screen. Similar interpretations can
be obtained for the other branches in Figure 6.
We can also examine the effect of an attribute level

not being available to consumers. For example, sup-
pose an iPad were not available. Then the 20% con-
sumers who used iPad as the first screening criterion
would switch to another feature. Figure 7 shows that

Figure 4. Percentage of Individuals Using Different Attribute Levels as the First Screening Criterion in a Lexicographic Rule

Table 6. Computational Time in Seconds for Different
Individual-Level Models

Model CPU time

Mixed logit model 1,119.700
Greedy algorithm ≤ 0.14
Local search algorithm 52.06
Probabilistic lexicographic rule ≤ 0.14
Randomized algorithm 69.87
Maximum expected value solution 0.020
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4% of these consumers would switch to at least two GB
RAM and at least nine-hour battery life; 15% to hard
drive size; 19% to price and screen size; and 41% to
another brand. Among the consumers using another
brand as the first screening criterion, 73% would look
for a Galaxy tablet.

The information in Figures 5 and 7 can be combined
to obtain the following observations about how the
first-stage screening would change if iPad were not
available.

(1) The percentage of consumers using brand as the
first screening criterion would decrease from 31% to
(31 − 20) + (0.41 × 20) � 19.2%. Galaxy would benefit
the most: with iPad available, only 4% of consumers
use Galaxy as the first screening criterion; without iPad,
4 + (20 × 0.41 × 0.73) � 9.99% would use Galaxy as the
first screening criterion.

(2) The percentage of consumers using price as the
first screening criterion would increase from 46% to
46 + (20 × 0.19) � 49.8%.

(3) The percentage of consumers using a feature other
than brand or price as the first screening criterion would

increase from 23% to 23 + (20 × 0.4) � 28%. Hard drive
would be used as the first screening criterion by an
additional 20 × 0.15 � 3% of consumers, screen size
by an additional 20 × 0.19 � 3.8% of consumers, and
each of (at least) nine-hour battery life and (at least)
two GB RAM by an additional 20 × 0.04 � 0.8% of
consumers.

6. Conclusion
Inferring a lexicographic rule frompaired comparisons,
ranking, or choice data is an NP-hard problem. We
considered a randomized algorithm and showed that
maximizing its expected value is equivalent to solving
the lexicographic inference problem. An approximate
solution to the problem can be obtained in polyno-
mial time by using a maximum likelihood method to
estimate the parameters for the randomized algorithm.
The maximum likelihood value is related to a lower
bound on the expected value of the solution obtained
by the algorithm. We illustrate the proposed approach
using data from a choice set experiment for electro-
nic tablets. The solutions obtained in this way are

Figure 5. (Color online) First Criterion Used to Screen Alternatives by Different Individuals
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substantially better than those obtained using a pre-
viously proposed greedy algorithm, a local search al-
gorithm, and a logit model.

A useful area of future research is to consider how
the design of products and product lines changes when
consumers use a lexicographic rule (Bertsimas and
Mišić 2019). The present research on the subject mostly
assumes that consumers have compensatory preferences
(e.g., Green and Krieger 1985, Kohli and Krishnamurti
1987, Chen and Hausman 2000, Belloni et al. 2008, and
Bertsimas and Mišić 2017). Another area of research is
to develop data-collection methods for inferring lexico-
graphic preferences. Such methods have previously
been developed for compensatory preferences by Toubia
et al. (2003). DeSarbo et al. (2005) developed dynamic
models of utility evolution, examining how the pref-
erence structure changes over repeated measurements.
Similar methods for lexicographic preferences would
be useful.

Methodologically, the absence of constraints in the
expected value formulation of the lexicographic
inference problem can be useful. As noted, the linear
ordering problem, which is a special case of the lexi-
cographic inference problem, has a standard integer
programming formulation with O(m2) decision vari-
ables and O(m3) constraints, where m is the number of

alternatives. Such a problemwith 1,000 alternatives has
about a million decision variables and a billion con-
straints. Even representing such a large problem on
a computer can be difficult.We have used the nonlinear
formulation described in the paper to solve linear
ordering problems with up to 2,000 alternatives in
minutes on a laptop computer. Similar formulations are
feasible for several other discrete optimization prob-
lems, including maxcut, minimum vertex cover, and
maximum satisfiability problems. For example, given
an undirected graph G(V,E) and nonnegative weights
wij � wji on the edges (i, j) ∈ E, the maximum cut
(maxcut) problem is to find the set of vertices S ⊂ V that
maximizes the weight of the edges in the cut (S, S̄), that
is, the weight of the edges with one end point in S and
the other in S̄. Consider a randomized algorithm that
assigns vertex i to subset 1 with probability pi and to
subset 2with probability 1 − pi. Then the probability that
an edge between nodes i and j appears across the cut is
pij � pi(1 − pj) + (1 − pi)pj. Let pi � (1 − yi)/2, where
−1 ≤ yi ≤ 1. Then pi � 1 when yi � −1, pi � 0 when
yi � 1, and pij � (1 − yiyj)/2. Let E[z] be the expected
value of the number of edges across the cut. Then

E[z] � ∑
(i,j)∈E

pij � 1
2

∑
(i,j)∈E

wij(1 − yiyj).

Figure 6. (Color online) Second Criterion Considered by Individuals Who Use iPad as the First Screening Criterion
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The problem of maximizing E[z], subject to the con-
straints −1 ≤ yi ≤ 1 for all i ∈ V, is identical to Goemans
and Williamson’s formulation for the maxcut problem.
The difference is that, in our development, yi by def-
inition is linearly related to the probabilities pi (yi/2 is
the deviation of pi from 1/2), whereas it is a decision
variable with ±1 values in Goemans and Williamson’s
formulation. The corresponding problem of maximiz-
ing the likelihood function

∏
(i,j)∈E wij(1 − yiyj) is a con-

vex optimization problem. As in the present paper,
the maximum likelihood value can be used to obtain
a lower bound for a randomized algorithm.
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Appendix A. Proofs of Theorems and Lemmas

Proof of Theorem 1. We prove the result by showing that
Kemeny’s formulation of the linear ordering problem can be
transformed in a polynomial number of steps into the lexi-
cographic inference problem.

The linear ordering problem is to find a single ranking of
a number of political candidates that best represents the pref-
erences of individual voters. Kemeny’s version of the problem
converts the individual rankings into paired comparisons,
where r � (i, h) if a particular voter prefers candidate i to can-
didate j. Let R � {(i, h)} denote the set of all paired comparisons
across candidates and voters. The objective of Kemeny’s
problem is to find an ordering of the alternatives thatmaximizes
the number of nonreversals across all paired comparisons in R.
Bartholdi et al. (1989) showed that this is an NP-hard problem.

A Kemeny problem withm alternatives can be represented
as the following lexicographic inference problem with n � m
attribute levels. Let aij � 1 if i � j and aij � 0 otherwise for
all i, j � 1, . . . ,m. Then

bik �
∑n
j�1

aijxjk � aiixik,

bi �
∑m
k�1

bik
2k

�∑m
k�1

aiixik
2k

and

bi − bh �
∑m
k�1

1
2k

(aiixik − ahhxhk), for each r � (i, h) ∈ R.

Let xik � 1 for k � ki and xhk � 1 for k � kh. Then

bi − bh � 1
2ki

− 1
2kh

.

Figure 7. (Color online) How the Absence of iPad Affects First-Stage Screening by Individuals Who Would Otherwise Have
Looked for an iPad at the First Stage
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Thus, bi − bh > 0 if ki < kh, and bi − bh < 0 otherwise. Equiva-
lently, an ordering of attribute levels obtains a nonreversal
of the paired comparison (i, h) ∈ R if attribute level i has
a higher rank than attribute level h in the linear ordering;
otherwise, it obtains a reversal. It follows that maximizing the
number of nonreversals in the lexicographic inference problem
is equivalent to maximizing the number of nonreversals in the
Kemeny problem. Because the linear ordering problem is NP-
hard, so is the lexicographic inference problem. □

Proof of Theorem 2. Without loss of generality, let s* �
(1, . . . , n) denote an optimal sequence of attribute levels for an
instance of the lexicographic inference problem. Consider the
feasible solution vk � (n − k)v to the problem of maximizing
E, where v> 0 is a constant and k � 1, . . . ,n. From Lemma 1,
the probability of choosing the optimal sequence is given by

p(s*) � p(u1 > · · · > un) �
∏n−1
k�1

evk

evk + · · · + evn

� ∏n−1
k�1

1
1 + evk+1−vk + . . . evn−vk

.

The exponents of the denominator terms in the last expression
have the values

vk+j − vk � [n − (k + j)]v − (n − k)v � − jv, for all 1≤ j ≤ n − k.

Thus,

p(s*) � ∏n−1
k�1

1
1 + e−v + · · · + e−(n−k)v

.

A lower bound on the value of p(s*) is obtained by replacing
each exponent −(n − j)v in the denominator by −v:

p(s*) ≥ ∏n−1
k�1

1
1 + (n − k)e−v .

Let ε> 0 be any arbitrary value close to zero. Because the
denominator on the right-hand side of this expression is
a decreasing function of v, we can choose a value of v> 0 for
which

∏n−1
k�1

1
1 + (n − k)e−v ≥ 1 − ε.

It follows that

E �∑
s∈S

p(s)z(s) ≥ p(s*)z(s*)> (1 − ε)z*,

where z(s) ≥ 0 is the number of nonreversals associated with
the sequence s. On the other hand, E ≤ z* because the expected
value of the number of nonreversals cannot exceed the max-
imum number of nonreversals across the sequences in S. Thus,

(1 − ε)z* <E ≤ z*.

As the value of v increases, the value of ε decreases, and the
lower and upper bounds in the preceding expression con-
verge to E � z*. □

Proof of Lemma 2. Consider the feasible solution vj � v for
all j � 1, . . . , n. Then, for any r � (i, h) ∈ R, the probability that

the highest ranked level in alternative i precedes the highest
ranked level in alternative h has the value m1r/(m1r +m2r) �
1/2 because m1r � m2r. Because vj � v is a feasible but not
necessarily an optimal solution to the lexicographic inference
problem,

z* ≥∑
r∈R

m1r

m1r +m2r
� N

2
. □

Proof of Lemma 3. Consider the feasible solution vj � v for
all j � 1, . . . , n. Then p(r) ≥ 1/2 for all r ∈ R. The corresponding
value of the likelihood function is + ≥ 1/2N . Because +* is the
maximum value of +, ĝ � (+*)1/N ≥ +1/N � 1/2. □

Proof of Theorem 3. We separately consider the two cases
z* � N and z* ≤ N − 1.

(1) Case 1: z* � N. The maximum likelihood solution
obtains the optimal ordering of the attribute levels, say
1, . . . , n, when v̂j − v̂j+1 � v for all j � 1, . . . , n − 1, where v>0
is an arbitrarily large number. It follows that ϕ � â � ĝ � 1
when z* � N.

(2) Case 2: z* ≤ N − 1. Because z* ≥ Nâ, the lower bound
in Lemma 4 gives

z* ≥ Nâ ≥ Nĝ +Nmin 2σ2,
κ2σ2

κ2 − σ2

{ }
.

Thus,

ϕ � Nâ
z*

≥ K* ĝ +min 2σ2,
κ2σ2

κ2 − σ2

{ }[ ]
,

where K* � N/z* ≥ 1 and ĝ ≥ 1/2 from Lemma 3. □

Appendix B. Overview of Hamiltonian Monte
Carlo Algorithm

We provide a brief overview of the HMC algorithm. See Neal
(1998) for details.

Let v � (v1, . . . , vn) denote the vector of deterministic
utilities associated with the n attribute levels. The joint
posterior density represents a well of potential energy. HMC
assigns a fictitiousmomentum variable}k to each component
vk of v. All momentum variables are simultaneously updated
in aMetropolis algorithm. The momentum vector determines
the jumping distribution of v. A mass matrix, M, gives a
weighting of the different components of the parameters
vector. The momentum } is sampled from a normal distri-
bution 1(}|v,M). The values of v and the momentum are
updated using the joint density p(v,}|R) � p(v|R)p(}), where
R denotes the set of paired comparisons.

The momentum is only an auxiliary parameter, used to
make the convergence of the algorithm faster. Updated draws
of the parameters v are retained but the momentum updates
are ignored. Practically, dynamics are incorporated by speci-
fying a step size, ε; the mass matrix, M; and a number of
leapfrog steps, L, to simulate the dynamics of the sampler on
the potential surface. Finding the right values of these auxiliary
parameters can be difficult. We use the Stan probabilistic pro-
gramming language (Hoffman and Gelman 2014) that incor-
porates a variant ofHMCcalled theNoU-turn (NUTS) sampler.
In Stan, the auxiliary parameters are systematically and
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automatically updated across theHMC iterations, allowing for a
convergence of theMarkov chain in fewerMarkovChainMonte
Carlo iterations than the Metropolis–Hastings algorithm. More
details of NUTS are provided by Hoffman and Gelman (2014).
Algorithm 2 specifies the steps for a single HMC iteration.

Algorithm 2 (HMC Iteration Given the Current Position v(0),
Step Size ε, MassMatrixM, and Number of Leapfrog Steps L)

1. Initialize v(0) ← vcurrent
2. For l � 0, . . . , L − 1, do ⊳ leapfrog steps
3. }(l+1/2) ← }(l) + 1

2 ε∇v log p(v(l)|y)
4. v(l+1) ← v(l) + εM−1}(l+1/2)
5. }(l+1) ← }(l+1/2) + 1

2 ε∇v log p(v(l+1)|R)
6. End For
7. α � min 1, p(v(L) |R)p(}(L))

p(v(0) |R)p(}(0))
( )

⊳ acceptance rate

8. u ∼ 8(0, 1) ⊳ uniform(0,1) draw
9. Return v(0) + δu>α(v(L) − v(0)) ⊳ δu>α � 1 if u>α,

0 otherwise

Endnote
1The authors thank a reviewer for pointing out that generating paired
comparisons from choice data has the limitation that it makes it
impossible to identify certain effects, such as the decoy effect.
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Bröder A, Schiffer S (2003) Take the best versus simultaneous feature
matching: Probabilistic inferences from memory and effects of
representation format. J. Experiment. Psych. General 132(2):277–293.

Byrd RH, Nocedal J, Schnabel RB (1994) Representations of quasi-
Newton matrices and their use in limited memory methods.
Math. Programming 63(4):129–156.

Campos V, Glover F, Laguna M, Martı́ R (2001) An experimental
evaluation of a scatter search for the linear ordering problem.
J. Global Optim. 21(4):397–414.

Charon I, HudryO (2007) A survey on the linear ordering problem for
weighted or unweighted tournaments. 4OR 5(1):5–60.

Charon I, Hudry O (2010) An updated survey on the linear ordering
problem for weighted or unweighted tournaments. Ann. Oper.
Res. 175(1):107–158.

Chateauneuf A (1987) Continuous representation of a preference
relation on a connected topological space. J. Math. Econom.
16(2):139–146.

Chen KD, Hausman WH (2000) Technical note: Mathematical prop-
erties of the optimal product line selection problem using
choice-based conjoint analysis. Management Sci. 46(2):327–332.

Debreu G (1954) Representation of a preference ordering by a nu-
merical function. Thrall RM, CoombsCH,Davis RL, eds.Decision
Processes (John Wiley, New York), 159–165.

DeSarbo WS, Fong DKH, Liechty JC (2005) Dynamic models in-
corporating individual heterogeneity: Utility evolution in con-
joint analysis. Marketing Sci. 24(2):285–293.

Dieckmann A, Dippold K, Dietrich H (2009) Compensatory versus
noncompensatory models for predicting consumer preferences.
Judgment Decision Making 4(3):200–213.

Drolet A, Luce MF (2004) Cognitive load and trade-off avoidance.
J. Consumer Res. 31(1):63–77.

Fishburn P (1974) Lexicographic orders, utilities and decision rules:
A survey. Management Sci. 20(11):1442–1471.

Floudas CA, Visweswaran V (1995) Quadratic optimization. Horst R,
Pardalos PM, eds. Handbook of Global Optimization, Nonconvex
Optimization and Its Applications, vol. 2 (Springer, Boston),
217–269.

Garcia CG, Pérez-Brito D, Campos V, Martı́ R (2006) Variable
neighborhood search for the linear ordering problem. Comput.
Oper. Res. 33(12):3549–3565.

Gigerenzer G, Hoffrage U, Kleinbolting H (1991) Probabilistic mental
models: A Brunswikian theory of confidence. Psych. Rev. 98(4):
506–528.

Goemans MX, Williamson DP (1995) Improved approximation al-
gorithms for maximum cut and satisfiability problems using
semidefinite programming. J. ACM 42(6):1115–1145.

Green PE, Krieger AM (1985) Models and heuristics for product line
selection. Marketing Sci. 4(1):1–19.

Grötschel M, JüngerM, Reinelt G (1984) A cutting plane algorithm for
the linear ordering problem. Oper. Res. 32(6):1195–1220.

Hoffman M, Gelman A (2014) The no-U-turn sampler: Adaptively
setting path lengths in Hamiltonian Monte Carlo. J. Machine
Learn. Res. 15(1):1351–1381.

Kemeny JG (1959) Mathematics without numbers. Daedalus 88(4):
577–591.

Knoblauch V (2000) Lexicographic orders and preference represen-
tation. J. Math. Econom. 34(2):255–267.

Kohli R, Jedidi K (2007) Representation and inference of lexicographic
preference structures and their variants.Marketing Sci. 26(3):380–399.

Kohli R, Jedidi K (2015) Error theory for elimination by aspects.Oper.
Res. 63(3):512–526.

Kohli R, Krishnamurti R (1987) A heuristic approach to product
design. Management Sci. 33(12):1523–1533.

Laguna M, Martı́ R, Campos V (1999) Intensification and di-
versification with elite tabu search solutions for the linear
ordering problem. Comput. Oper. Res. 26(12):1217–1230.

Martı́ R, Reinelt G (2011) The Linear Ordering Problem: Exact and
Heuristic Methods in Combinatorial Optimization, Applied Mathe-
matical Sciences, vol. 175 (Springer-Verlag, Berlin, Heidelberg).

Martignon L, Hoffrage U (1999) Why does one reason decision
making work? Gigerenzer G, Todd PM, the ABC Research
Group, eds. Simple Heuristics That Make Us Smart (Oxford Uni-
versity Press, New York), 119–140.

Martignon L, Hoffrage U (2002) Fast, frugal and fit: Simple heuristics
for paired comparison. Theory Decision 52(1):29–71.

Kohli, Boughanmi, and Kohli: Randomized Algorithms for Lexicographic Inference
374 Operations Research, 2019, vol. 67, no. 2, pp. 357–375, © 2019 INFORMS



Motwani R, Raghavan P (1995) Randomized Algorithms (Cambridge
University Press, New York).

Neal RM (1998) Regression and classification using Gaussian process
priors. Bernardo JM, Berger JO, Dawid AO, Smith AFM, eds.
Bayesian Statistics, vol. 6 (Oxford University Press, New York),
475–501.

Papadimitriou CH, Steiglitz K (1998) Combinatorial Optimization:
Algorithms and Complexity (Dover Publications, New York).

Payne JW (1982) Contingent decision behavior. Psych. Bull. 92(2):
382–402.

Pinelis I (2015) Exact upper and lower bounds on the difference
between the arithmetic and geometric means. Bull. Australian
Math. Soc. 92(1):149–158.

Schiavinotto T, Stützle T (2004) The linear ordering problem: In-
stances, search space analysis and algorithms. J. Math. Model.
Algorithms 3(4):367–402.

Schkade DA, Johnson EJ (1989) Cognitive processes in preference
reversals. Organ. Behav. Human Decision Processes 44(2):203–231.

Schmitt M, Martignon L (2006) On the complexity of learning lexi-
cographic strategies. J. Machine Learn. 7(29):55–83.

Slovic P (1975) Choice between equally valued alternatives. J. Ex-
periment. Psych. Human Perception Performance 1(3):280–287.

Toubia O, Hauser JR, Simester DI, Dahan E (2003) Fast polyhedral
adaptive conjoint estimation. Marketing Sci. 22(3):273–303.

Tversky A (1972) Choice by elimination. J. Math. Psych. 9(4):341–367.
Tversky A, Sattath S, Slovic P (1988) Contingent weighting in judg-

ment and choice. Psych. Rev. 95(3):371–384.

van Zuylen A, Williamson DP (2008) Deterministic algorithms for
rank aggregation and other ranking and clustering problems.
Kaklamanis C, Skutella M, eds. Approximation and Online Algo-
rithms. WAOA 2007. Lecture Notes in Computer Science, vol.
4927 (Springer, Berlin, Heidelberg), 260–273.

Wakker P (1988) Continuity of preference relations for separable
topologies. Internat. Econom. Rev. 29(1):105–110.

Yee M, Dahan E, Hauser JR, Orlin J (2007) Greedoid-based non-
compensatory inference. Marketing Sci. 26(4):532–549.

Rajeev Kohli is the Ira Leon Rennert Professor of Business
at the Graduate School of Business, Columbia University,
New York. His research interests are in choice models, prod-
uct design, combinatorial optimization, and algorithms.

Khaled Boughanmi is a PhD candidate in the marketing
division at the Graduate School of Business, Columbia
University, New York. His research interests are in the area of
data-driven decision making, Bayesian nonparametrics, and
machine learningwith a focus on applications in e-commerce,
personalization, online marketing, and service systems.

Vikram Kohli is an undergraduate computer science
student in the McCormick School of Engineering at North-
western University, Evanston, Illinois. His research interests
are in machine learning, statistical natural language pro-
cessing, artificial intelligence, and algorithms.

Kohli, Boughanmi, and Kohli: Randomized Algorithms for Lexicographic Inference
Operations Research, 2019, vol. 67, no. 2, pp. 357–375, © 2019 INFORMS 375


	Randomized Algorithms for Lexicographic Inference
	Introduction
	Background
	Formulation and a Randomized Algorithm
	Randomized Algorithm Using Maximum Likelihood
	Application
	Conclusion




