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Abstract. Marketing managers are responsible for understanding and predicting cus-
tomer purchasing activity. This task is complicated by a lack of knowledge of all of the
calendar time events that influence purchase timing. Yet, isolating calendar time vari-
ability from the natural ebb and flow of purchasing is important for accurately assess-
ing the influence of calendar time shocks to the spending process, and for uncovering
the customer-level purchasing patterns that robustly predict future spending. A com-
prehensive understanding of purchasing dynamics therefore requires a model that flex-
ibly integrates known and unknown calendar time determinants of purchasing with
individual-level predictors such as interpurchase time, customer lifetime, and number
of past purchases. In this paper, we develop a Bayesian nonparametric framework based
on Gaussian process priors, which integrates these two sets of predictors by modeling
both through latent functions that jointly determine purchase propensity. The estimates
of these latent functions yield a visual representation of purchasing dynamics, which
we call the model-based dashboard, that provides a nuanced decomposition of spending
patterns. We show the utility of this framework through an application to purchasing in
free-to-play mobile video games. Moreover, we show that in forecasting future spending,
our model outperforms existing benchmarks.
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1. Introduction
Marketers in multi-product companies face the daunt-
ing task of understanding the ebb and flow of aggre-
gate sales within and across many distinct customer
bases. Such spending dynamics stem from the natural
stochastic process of purchasing characterized by cus-
tomers’ interpurchase times, lifetimes with the firm,
and number of past purchases, and from the influence
of managerial actions and shocks operating in calen-
dar time. These other shocks are often outside the con-
trol of the company, and include events such as holi-
days, barriers to purchasing such as website outages,
and competitor actions. While individual-level factors
such as the recency of purchasing are often powerful
predictors of future spending activity, managers think
and act in calendar time. Hence, to successfully execute
a customer-centric marketing strategy, managers need
to understand how calendar time events interact with
individual-level effects in generating aggregate sales.
An accurate accounting of the underlying drivers of

spending is not possible unless individual-level and
calendar time effects are simultaneously modeled. For
example, in spending models that omit calendar time

and rely solely on individual-level effects, momentary
disruptions in spending that occur in calendar timemay
be erroneously conflated with predictable, individual-
level purchase propensities. Similarly, a small bump in
spending on any given calendar day could represent
random noise if many customers are still active on that
day, or a significant calendar time event if only a few
customers are still active. Significantly, activity level is
unobserved, but can be captured by individual-level
variables such as interpurchase time. Flexibly includ-
ing both types of effects in an individual-level purchase
propensity model is thus crucial for dynamic customer
base analysis, and the development of such a frame-
work is our primary objective.

In this paper, we describe a flexible and robust
Bayesian nonparametric framework for customer base
analysis that accomplishes that objective by proba-
bilistically modeling purchase propensities in terms
of underlying dynamic components. We demonstrate
the utility of our new framework on spending data
from mobile video games. Our model uses Gaussian
process (GP) priors over latent functions to integrate
events that occur at multiple time scales and across
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different levels of aggregation, including calendar time
and individual-level time scales such as interpurchase
time, time since first purchase (customer lifetime), and
number of past purchases. Its nonparametric specifica-
tion allows for the flexible modeling of different pat-
terns of effects, such that the model can be seamlessly
applied across different customer bases and dynamic
contexts. The resulting latent function estimates facil-
itate automatic model-based visualization and predic-
tion of spending dynamics.
Customer base analysis is central to modern market-

ing analytics. Contributions in this area have focused
on the stochastic modeling of individuals in terms
of interpurchase time and lifetime, in contractual
and noncontractual settings (Fader et al. 2005, 2010;
Schmittlein et al. 1987; Schweidel and Knox 2013).
These papers show that customer-level effects can
explain much of the variability of spending over time.
However, they typically omit, or assume a priori
known, calendar time effects. Events in calendar time,
includingmarketing efforts and exogenous events such
as competitor actions, holidays, and day-of-the-week
effects, can substantially impact spending in many
industries. For digital products, such as those in our
application, relevant calendar events include product
changes simultaneously launched to all customers, and
exogenous shocks such as website or e-commerce plat-
form outages and crashes. Moreover, many of these
events pose a common problem to marketing analysts:
Although calendar time events undoubtedly influence
spending rates, analysts may be unaware of the form
of that influence or of the very existence of certain
events. This problem is exacerbated in larger compa-
nies where the teams responsible for implementing
marketing campaigns or managing products may be
distinct from the analytics team, and where informa-
tion may not flow easily across different organizational
silos.

To cope with such information asymmetries and
with unpredictable spending dynamics, sophisticated
managers often rely on aggregate data methods, in-
cluding exploratory data analyses, statistical process
control, time series models (Hanssens et al. 2001),
and predictive data mining methods (Neslin et al.
2006). These tools can forecast sales, model the impact
of calendar time events, and provide metrics and
visual depictions of dynamic patterns that are easy to
grasp. Unfortunately, these methods typically ignore
individual-level predictors of spending, such as those
captured by customer base analysis models, which
precludes their use in characterizing customer-level
spending behaviors and in performing tasks relevant
to customer relationship management (CRM). Fur-
thermore, not including these individual-level effects
means that these models cannot account for the latent
activity level of customers, which may, in turn, lead

to an inaccurate understanding of the true nature of
calendar time events.

Building on the customer base analysis and aggre-
gate data approaches, we use Bayesian nonparamet-
ric GP priors to fuse together latent functions that
operate over calendar time and over more traditional
individual-level inputs, such as interpurchase time,
customer lifetime, and purchase number. In this way,
we integrate calendar time insights into the customer
base analysis framework. We use these latent func-
tions in a discrete hazard specification to dynam-
ically model customer purchase propensities, while
controlling for unobserved heterogeneity. We term
the resulting model the Gaussian Process Propensity
Model (GPPM). While Bayesian nonparametrics have
been successfully applied to marketing problems (e.g.,
Ansari and Mela 2003, Wedel and Zhang 2004, Kim
et al. 2007, Rossi 2014, Li and Ansari 2014), to our
knowledge, our paper is the first in marketing to take
advantage of the powerful GPmethodology. Note that,
although our paper applies GPs in the context of cus-
tomer purchasing, GPs provide a general mechanism
for estimating latent functions, and can be used in
many other substantive contexts. We therefore also
provide an accessible introduction to GPs in general, to
encourage their wider adoption in marketing.

In our application, the GP nonparametric frame-
work means that the shapes of the latent propensity
functions that govern purchasing are automatically
inferred from the data, thus providing the flexibility
to robustly adapt to different settings, and to capture
time-varying effects, even when all of the informa-
tion about inputs may not be available. The inferred
latent functions allow a visual representation of calen-
dar time and individual-level patterns that character-
ize spend dynamics, something that is not possible in
standard probability models, where the output is often
a set of possibly unintuitive parameters. We refer to the
collection of these plots as themodel-based dashboard,
as it gives a visual summary of the spending patterns
in a particular customer base, and serves as a tool for
analyzing the spending dynamics in and across cus-
tomer bases. Note that these model-based dashboards
are distinct from real-time dashboards that continu-
ously stream various marketing metrics, such as those
described in Pauwels et al. (2009).

In this paper, we begin by describing what GP priors
are (Section 2.1), and how they can be used to spec-
ify latent dynamics in a model for dynamic customer
base analysis (Sections 2.2 and 2.3). We then apply our
model to spending data from two mobile video games
owned by a large American video game publisher.
These games are quite distinct, spanning different con-
tent genres and target audiences. We show how the
parameter estimates and accompanying model-based
dashboards generated from our approach can facilitate
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managerial understanding of the key dynamics in each
customer base in the aggregate and at the individual
level (Sections 3.1 and 3.2). We compare the GPPM
to benchmark probability models, including differ-
ent buy-till-you-die (BYTD) variants such as the beta-
geometric/negative binomial distribution (BG/NBD)
(Fader et al. 2005) and the Pareto-NBD (Schmittlein
et al. 1987), hazard models with and without time-
varying covariates (e.g., Gupta 1991, Seetharaman and
Chintagunta 2003), and variants of the discrete hazard
approach, including a sophisticated state-space speci-
fication, and show that the GPPM significantly outper-
forms these existing benchmarks in fit and forecasting
tasks (Section 3.3). We conclude by summarizing the
benefits of our framework, citing its limitations, and
identifying areas of future research.

2. Modeling Framework
In our framework for dynamic customer base analy-
sis, we focus on flexibly modeling individual-level pur-
chase propensity. We model this latent propensity in
terms of the natural variability in purchase incidence
data along four dimensions, i.e., calendar time, inter-
purchase time (recency), customer lifetime, and num-
ber of past purchases. Our focus onmodeling purchase
incidence is consistent with the majority of the litera-
ture on customer base analysis, and also fits nicely with
our application area, wherewe focus on the purchasing
of a single product, and where there is minimal vari-
ability in spending amount.1 We use a discrete-time
hazard framework to specify the purchase propensity,
as most customer-level data are available at a discrete
level of aggregation. This is also the case in our appli-
cation, where daily data are available.
The observations in our data consist of a binary

indicator yi j that specifies whether customer i made a
purchase at observation j, and a corresponding tuple
(ti j , ri j , li j , qi j) containing the calendar time, recency,
customer lifetime, and number of past purchases, re-
spectively. Recency refers to interpurchase time, or the
time since the customer’s previous purchase, while
customer lifetime refers to the time since the customer’s
first purchase. Depending on the context, a vector zi of
demographics or other time invariant variables, such
as the customer acquisition channel or acquisition date,
may also be available. The probability of customer i
purchasing is modeled as

Pr(yi j � 1)� logit−1[α(ti j , ri j , li j , qi j)+ z′iγ+ δi], (1)

where, logit−1(x) � 1/(1 + exp(−x)). We see in Equa-
tion (1) that the purchasing rate is driven by a time-
varying component α( · ) and two time invariant effects,
z′iγ and δi , which capture the observed and unob-
served sources of heterogeneity in base spending rates,
respectively. This setupmodels spending dynamics via

aggregate trajectories, i.e., all customers are assumed
to follow the same dynamic pattern, while maintain-
ing individual heterogeneity in the spending process
via the random effect δi and using other observed
individual-specific variables, zi , when available. In our
application, we will focus exclusively on unobserved
heterogeneity. Note that while calendar time is an
aggregate time scale, the recency, lifetime, and pur-
chase number dimensions are individual-level time
scales. That is, customers may, at any given point in cal-
endar time t, be at different positions in the (ri j , li j , qi j)
subspace; therefore, the aggregate sales at any given
calendar time t are the amalgam of the activities of cus-
tomers who differ widely in their expected purchase
behaviors.

The heart of our framework involves specification
of the purchase propensity, α(ti j , ri j , li j , qi j). We treat
α( · ) as a latent function and model it nonparametri-
cally using GP priors (Rasmussen and Williams 2006,
Roberts et al. 2013). The nonparametric approach flex-
ibly models random functions and allows us to auto-
matically accommodate different patterns of spending
dynamics that may underlie a given customer base.
These dynamics operate along all four of our dimen-
sions. Furthermore, these dynamics may operate at
different time scales in a single dimension, including
smooth long-run trends and short-term patterns, as
well as cyclic variations, which are inferred from the
data. To allow such rich structure, we use an additive
combination of unidimensional GPs to specify and esti-
mate the multivariate function α(ti j , ri j , li j , qi j).

2.1. Gaussian Process Priors
We begin by describing GPs and highlight how they
can nonparametrically capture rich, dynamic patterns
in a Bayesian probability model. A GP is a stochas-
tic process { f (τ): τ ∈ T } indexed by input elements
τ such that, for any finite set of input values, τ �
{τ1 , τ2 , . . . , τM}, the corresponding set of function out-
puts, f (τ) � { f (τ1), f (τ2), . . . , f (τM)}, follows a mul-
tivariate Gaussian distribution. The characteristics of
the stochastic process are defined by a mean func-
tion and a covariance function, also called a kernel.
For a fixed set of inputs, a GP reduces to the famil-
iar multivariate Gaussian distribution, with a mean
vector determined by the GP’s mean function, and a
covariance matrix determined by its kernel. However,
unlike a standardmultivariate normal distribution that
is defined over vectors of fixed length, a GP defines a
distribution over outputs for any possible set of inputs.
From a Bayesian perspective, this provides a natural
mechanism for probabilistically specifying uncertainty
over functions. Because the estimated function values
are the parameters of a GP, the number of parameters
grows with the number of unique inputs, making the
model nonparametric.
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While GPs are often defined over multidimensional
inputs, for simplicity of exposition, we begin by assum-
ing a unidimensional input, τ ∈ � (e.g., time). To fix
notation, suppose f is a function that depends on that
input. Let τ be a vector of M input points, and let f (τ)
be the corresponding vector of output function values.
As described above, a GP prior over f is completely
specified by amean function, m(τ)�E[ f (τ)], and a ker-
nel, k(τ, τ′) � Cov[ f (τ), f (τ′)], that defines a positive
semidefinite covariance matrix

K(τ,τ)�
©­­­­«

k(τ1 , τ1) k(τ1 , τ2) . . . k(τ1 , τM)
k(τ2 , τ1) k(τ2 , τ2) . . . k(τ2 , τM)

...
...

. . .
...

k(τM , τ1) k(τM , τ2) . . . k(τM , τM)

ª®®®®¬
, (2)

over all of the outputs. We discuss specific forms of the
mean function and kernel in Sections 2.1.1 and 2.1.2.
Generally, these functions are governed by a small
set of hyperparameters that embody certain traits of
the GP. For instance, the squared exponential (SE)
kernel, which we discuss in detail in Section 2.1.2,
is given by kSE(τi , τ j) � η2 exp{−(τi − τ j)2/(2ρ2)}. This
form encodes the idea that nearby inputs should have
related outputs through two hyperparameters, i.e., an
amplitude, η, and a smoothness, ρ. Intuitively, these
two hyperparameters determine the traits of the func-
tion space being modeled by a GP with this kernel.
Given a fixed vector of inputs τ, letting f (τ) ∼

GP (m(τ), k(τ, τ′)) is equivalent to modeling the vec-
tor of function outputs via a marginal multivari-
ate Gaussian f (τ) ∼ N (m(τ),K(τ, τ)). The mean m(τ)
and covariance matrix K(τ, τ) of the above multivari-
ate normal marginal distribution are parsimoniously
determined through the small set of hyperparameters
underlying the mean function and kernel of the GP.
The fact that the marginal of a GP is a multivariate
normal distribution makes it easy to comprehend how
function interpolation and extrapolation work in this
framework. Conditioned on an estimate for the func-
tion values at the observed inputs, and on the mean
function and kernel hyperparameters, the output val-
ues for the latent function f for some new input points
τ∗ can be predicted using the conditional distribution
of a multivariate normal. Specifically, the joint distri-
bution of the old and new function values is given by[

f (τ)
f (τ∗)

]
∼N

( [
m(τ)
m(τ∗)

]
,

[
K(τ, τ) K(τ, τ∗)
K(τ∗ , τ) K(τ∗ , τ∗)

] )
. (3)

Hence, the conditional distribution of the new outputs
can be written as

f (τ∗) ∼N (m(τ∗)+K(τ∗ , τ)K(τ, τ)−1[ f (τ) −m(τ)],
K(τ∗ , τ∗) −K(τ∗ , τ)K(τ, τ)−1K(τ, τ∗)). (4)

This equation makes clear that the kernel and mean
functions determine the distribution of the output val-
ues for existing and new inputs. As the mean and
covariance of the marginal multivariate normal are
parametrized via the mean and kernel functions, the
GP remains parsimonious, and can seamlessly inter-
polate and extrapolate for any set of input values. The
choice of mean function allows us to model different
a priori expected functional forms, while the kernel
determines how much the functions deviate nonpara-
metrically from that mean function.
2.1.1. Mean Functions. The mean function captures
expected functional behaviors. Within the range of
observed inputs, the mean function often has little
influence over the estimated function values; instead,
the properties of the estimated function are largely
determined by the kernel, as we describe in Sec-
tion 2.1.2. Because of this, in many GP applications, the
mean function is set to a constant, reflecting no prior
assumptions about functional form. However, far from
the range of observed inputs, the posterior expected
function values revert to the mean function.2 In some
applications, this mean reverting behavior combined
with a constant mean function is problematic, as we
may expect the function values to be increasing or
decreasing, in and out of the range of inputs. To cap-
ture this expected behavior, we may choose to use a
nonconstant mean function.
In this paper, we use a constant mean function or

a parametric monotonic power mean function, given
by m(τ) � λ1(τ − 1)λ2 , λ2 > 0. This specification cap-
tures expected monotonic behavior, while allowing for
a decreasing marginal effect over the input.3 We use
τ− 1 and restrict λ2 > 0, to be consistent with our iden-
tification restrictions that we describe in Section 2.2.4.
We emphasize that the mean function sets an expec-
tation over function values, but does not significantly
restrict them. TheGP structure allows functions to non-
parametrically deviate from the mean function, result-
ing in function estimates that differ from the mean’s
parametric form. This is obvious in all panels of Fig-
ure 1, where we plot random draws from GPs with dif-
ferent mean functions and kernels. Across the panels
of Figure 1, we see shapes that are sometimes dramati-
cally different from the respective constant and power
mean functions that generated them. The main role of
themean function is in extrapolating far from the range
of the observed inputs, where it determines expected
function behavior in the absence of data. While we
use only these two mean functions as a simple way of
capturing our prior expectations, any parametric form
could be used as a mean function. Given the capac-
ity of the GP to capture deviations from parametric
forms, it is generally considered best practice to use
simple mean functions, and let the GP capture any
complexities.
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Figure 1. (Color online) Examples of Mean Function/Kernel Combinations
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Note. Top-left, Zero mean function and SE kernel with ρ2 � 50 and η2 ∈ {0.1, 1, 5, 20}; Top-right, zero mean function and SE kernel with
ρ2 ∈ {1, 10, 100, 1,000}; Bottom-left, powermean function m(τ)�±2(τ−1)0.3 and SE kernel with ρ2 � 100 and η2 ∈ {0.1, 5}; Bottom-right, periodic
kernels with η2 � 10, ρ2 ∈ {2, 100}, and ω ∈ {7, 30}.

2.1.2. Kernels. The kernel defines much of the funda-
mental structure of a GP, and combined with the mean
function, determines the latent function space of a GP
prior. As such, kernels are the primary source of model
specification when working with GP priors. Any func-
tion over two inputs that results in a positive semidef-
inite gram matrix can be used as a kernel, and many
different kernel forms have been explored in the GP
literature (Rasmussen and Williams 2006, Chapter 4).
Kernels encode the structure of functions via a small
number of hyperparameters, leading to a highly flexi-
ble yet parsimoniousmodel specification. In this paper,
we use two simple kernels that are suitable building
blocks for describing functions in our context.
The first kernel is the SE defined as

kSE(τ j , τk ; η, ρ)� η2 exp
{
−
(τ j − τk)2

2ρ2

}
, (5)

where the hyperparameter η > 0 is the amplitude, and
ρ > 0 is the characteristic length-scale or “smoothness.”
The amplitude can be best explained by considering
the case when τ j � τk ≡ τ. In this case, k(τ, τ) � η2,
which is the variance of the normal distribution at
the fixed input value τ. More generally, η2 captures
variance around the mean function. If η→ 0, the GP
will largely mirror its mean function. We illustrate this
using the constant and power mean functions in the
left column of Figure 1, where we randomly draw
GPs with a fixed ρ and varying η values. From these
two panels, we can see that small values of η, as in
the light-colored solid (green) and long-dash (yellow)
curves, yield functions that stay closer to their mean
functions, relative to the dark-colored dot-dash (red)

and short-dash (blue) curves with higher η values. The
characteristic length-scale ρ intuitively indicates how
far apart two input points must be for the correspond-
ing outputs to be uncorrelated. Hence, a high value of
ρ corresponds to very smooth functions, while a small
value of ρ yields jagged, unpredictable functions. This
is illustrated in the top-right panel of Figure 1, where
we fix the amplitude η and vary the length-scale ρ. We
can see a clear contrast between the highly jagged solid
(green) curve with ρ2 � 1, and the increasingly smooth
dashed curves, with ρ2 ∈ {10, 100, 1,000}.

The second kernel we use is the periodic kernel,
defined by

kPer(τ j , τk ;ω, η, ρ)� η2 exp
{
−

2sin2(π(τ j − τk)/ω)
ρ2

}
.

(6)
This kernel allows for periodic functions with period ω
that are defined by an amplitude η and a length-scale
ρ. Note that this type of variability could also be cap-
tured by the SE kernel; the benefit of using the periodic
kernel is that forecasts based on this kernel will always
precisely mirror the estimated pattern. Hence, any pre-
dictable cyclic variability in the datawould be captured
in and out-of-sample. In the bottom-right panel of Fig-
ure 1, we plot four draws from different periodic ker-
nels. There, we show different cycle lengths (30 days
and 7 days), together with differing smoothness and
amplitude parameters.
Other Possible Kernels. In addition to the above de-
scribed kernels, many other types have been proposed
in the GP literature. In this paper, we use the simplest
kernels that exemplify a given trait (stationary vari-
ability with the SE and cyclicality with the periodic).
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These are by far the most commonly used kernels, the
SE especially serving as the workhorse kernel for the
bulk of the GP literature. Additional kernels include
the rational quadratic, which can be derived as an infi-
nitemixture of SE kernels, and the large class ofMatern
kernels, which can capture different levels of differen-
tiability in function draws.
2.1.3. Additivity. Just as the sum of Gaussian variates
is distributed Gaussian, the sum of GPs is also a GP,
with a mean function equal to the sum of the mean
functions of the component GPs, and its kernel is equal
to the sum of the constituent kernels. This is called the
additivity property of GPs, which allows us to define
a rich structure even along a single dimensional input.
Specifically, the additivity property allows us to model
the latent function f as a sum of subfunctions on the
same input space, f (τ)� f1(τ)+ f2(τ)+ · · ·+ f J(τ), where
each of these subfunctions can have its ownmean func-
tion, m j(τ), and kernel, k j(τ, τ′). The mean function
and kernel of the function f are then given by m(τ) �∑J

j�1 m j(τ) and k(τ, τ′)�∑J
j�1 k j(τ, τ′), respectively. This

allows us to flexibly represent complex patterns of
dynamics even when using simple kernels such as the
SE.We can, for example, allow the subfunctions to have
different SE kernels that capture variability along dif-
ferent length-scales, or add a periodic kernel to isolate
predictable cyclic variability of a given cycle length. It
is through this additive mechanism that we represent
long-run and short-run variability in a given dimen-
sion, for instance, or isolate predictable periodic effects
from unpredictable noise, as discussed in Section 2.2.4
Up to now, we have focused on illustrating GPs in uni-
dimensional contexts. We now show how additivity
can be leveraged to construct GPs formultidimensional
functions.
2.1.4. Multidimensional GPs. In practice, we are often
interested in estimating a multidimensional function,
such as the α( · ) function in Equation (1). Let h( · ) be a
generic multidimensional function from �D to �. The
inputs to such a function are vectors of the form τm ≡
(τ(1)m , τ

(2)
m , . . . , τ

(D)
m ) ∈ �D , for m � 1, . . . ,M, such that the

set of all inputs is an M ×D matrix. Just as in the uni-
dimensional case, h( · ) can also be modeled via a GP
prior. While there are many ways in which multi-input
functions can be modeled via GPs, a simple yet power-
ful approach is to consider h( · ) as a sum of single input
functions, h1( · ), h2( · ), . . . , hD( · ), and to model each of
these unidimensional functions as a unidimensional
GP with its own mean function and kernel structure
(Duvenaud et al. 2013). The additivity property implies
that additively combining a set of unidimensional GPs
over each dimension of the function is equivalent to
using a particular sum kernel GP on the whole, mul-
tidimensional function. We use such an additive struc-
ture to model α(ti j , ri j , li j , qi j) in the GPPM.

Additively separable GPs offer many benefits: First,
they allow us to easily understand patterns along
a given dimension, and they facilitate visualization,
as the subfunctions are unidimensional. Second, the
additivity property implies that the combined stochas-
tic process is also a GP. Finally, the separable struc-
ture reduces computational complexity. Estimating a
GP involves inverting its kernel matrix. This inversion
requires O(M3) computational time and O(M2) stor-
age demands for M inputs. In our case, as the inputs
(ti j , ri j , li j , qi j) can only exist on a grid of fixed values,
we will have L < M inputs, where L corresponds to all
unique observed (ti j , ri j , li j , qi j) combinations. Despite
the reduction, this is a very large number of inputs,
and would result in considerable computational com-
plexity without the separable structure. The additive
specification reduces this computational burden to that
of inverting multiple (in our case, six) T × T matrices,
where T �M is the number of time periods observed
in the data.

2.1.5. GPs vs. Other Function EstimationMethods. As
GP priors are new to marketing, it is worthwhile to
briefly summarize the rationale for using them, instead
of other flexible methods for modeling latent functions
such as simple fixed effects, splines or state space mod-
els. Foremost, GPs facilitate a structured decomposi-
tion of a single process into several subprocesses via
the additivity property. This additive formulation facil-
itates a rich representation of a dynamic process via
a series of kernels that capture patterns of different
forms (e.g., periodic versus nonperiodic) and operate
at different time scales. Yet, as the sum of GPs is a GP,
the specification remains identified, with a particular
mean and covariance kernel. Achieving a similar rep-
resentation with other methods is infeasible or more
difficult.5 Moreover, GPs are relatively parsimonious,
and when estimated in a Bayesian framework, tend to
avoid overfitting. Bayesian estimation of GPs involves
jointly estimating the function values and hyperparam-
eters, thus determining the traits of the function and
the function values themselves. As the flexibility of the
latent functions is controlled via a small number of
hyperparameters, we retain parsimony. Moreover, the
structure of the marginal likelihood of GPs, obtained
by integrating out the function values, clearly shows
how the model makes an implicit fit versus complex-
ity trade-off whereby function flexibility, as captured
by the hyperparameters, is balanced by a penalty that
results in the regularization of the fit (for details, see
Rasmussen and Williams 2006, Section 5.4.1).

2.2. Full Model Specification
The flexibility afforded by GP priors makes them es-
pecially appropriate for modeling our latent, time-
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varying function, α(ti j , ri j , li j , qi j). Recall that the basic
form of the GPPM is

Pr(yi j � 1)� logit−1[α(ti j , ri j , li j , qi j)+ z′iγ+ δi]. (7)

For ease of exposition, we subsequently omit the i j
subscripts. For simplicity and to reduce computational
complexity, we assume an additive structure

α(t , r, l , q)� αT(t)+ αR(r)+ αL(l)+ αQ(q), (8)

and model each of these functions using separate GP
priors. This structure and the nonlinear nature of the
model implies an interaction between the effects: For
example, if the recency effect is very negative, calendar
time events can do little to alter the spend probabil-
ity. While additivity is a simplifying assumption, in
our application, this compensatory structure seems to
explain the data well.
To specify each of these additive components, we

return to the mean functions and kernels outlined in
Sections 2.1.1 and 2.1.2, and to the additivity property
of GPs from Section 2.1.3. Recall that themean function
encodes the expected functional behavior: With the
constant mean function, we impose no expectations;
with the power mean function, we encode expected
monotonicity. The kernel choice endows the GP with
additional properties: A single SE kernel allows flexi-
ble variation with one characteristic length-scale, while
the periodic kernel allows the GP to exhibit predictable
cyclic behavior of a given periodicity. Additivity allows
us to combine these kernel properties, to achieve vari-
ation along more than one length-scale or to isolate
predictable cyclic behavior in a given dimension. We
can use these general traits of mean function and ker-
nel combinations to specify our model based on the
expected nature of the variation along a given dimen-
sion. Below, we explain the specification used in our
application. The GPPM framework is highly flexible:
Throughout the following sections, we also explain
how this specification can be modified to handle more
general settings.

2.2.1. Calendar Time. In calendar time, we expect two
effects to operate, i.e., long-run trends and short-run
disturbances. These short run events could include
promotions, holidays or other shocks to the purchas-
ing process. Furthermore, we expect cyclicality such
that purchasing could be higher on weekends than on
weekdays, or in particular months or seasons. As we
describe in Section 3, in our application, given the span
of our data, we expect only one periodic day of the
week (DoW) effect. Together, this description of spend-
ing dynamics implies a decomposition of αT into three
subcomponents

αT(t)� α
Long
T (t)+ αShort

T (t)+ αDoW
T (t), (9)

where we model each component such that,

α
Long
T (t) ∼ GP (µ, kSE(t , t′; ηTL , ρTL)),
αShort
T (t) ∼ GP (0, kSE(t , t′; ηTS , ρTS)),
αDoW
T (t) ∼ GP (0, kPer(t , t′;ω � 7, ηTW , ρTW)).

Without loss of generality, we impose ρTL > ρTS,
to ensure that the long-run component captures a
smoother variation than the short-run component. We
use constant mean functions here because, a priori, we
do not wish to impose any assumptions about calen-
dar time behavior. The constant mean µ in the long-
run component captures the base spending rate in the
model. Far from the range of the data, this specifica-
tion implies that the posterior mean of these effects will
revert to this base spending rate, reflecting our lack of
a priori knowledge about these effects.

This specification is very general, and has shown
good performance in our application, where we illus-
trate the kinds of trends and disturbances that can be
captured across these two components.6 Furthermore,
the modularity of the additive GP specification allows
easy modifications to accommodate different settings.
Longer spans of data may contain variability in spend-
ing along different length-scales, which may require
additional SE components. There may also be sev-
eral periodicities requiring additional periodic compo-
nents. These can be easily included additively.
2.2.2. Individual-Level Effects. The remaining effects,
i.e., recency, lifetime, and purchase number, operate
at the customer level. In most applications, we do
not expect short-run shocks along these inputs. We
do, however, expect monotonicity. For instance, intu-
itively, we expect spending probability to be generally
decreasing in interpurchase time. Similarly, we expect
spending probability to be generally increasing in pur-
chase number,7 and to be generally decreasing in cus-
tomer lifetime. Furthermore, while we expect mono-
tonicity, we also expect a decreasing marginal effect.
For example, we expect a priori that the difference
between having spent 5 versus 10 days ago is quite dif-
ferent than the difference between having spent 95 ver-
sus 100 days ago. Together, these expected traits justify
using our power mean function

αR(r) ∼ GP (λR1(r − 1)λR2 , kSE(r, r′; ηR , ρR)),
αL(l) ∼ GP (λL1(r − 1)λL2 , kSE(l , l′; ηL , ρL)),
αQ(q) ∼ GP (λQ1(r − 1)λQ2 , kSE(r, r′; ηQ , ρQ)).

This specificationallows for long-runmonotonic behav-
ior, even out-of-sample, as captured by the mean
function, and for nonparametric deviations from this
expected functional form, as captured by the SE ker-
nel. We believe that this specification is very general
and widely applicable. In some cases, however, more
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nuance may be required in specifying these effects to
accommodate companyactions that occur on these time
scales. If, for instance, the company offers promotions
based on loyalty, these effectswill operate along the life-
time dimension. In that case, the lifetime component
can be modeled similar to the calendar time compo-
nent, with an additive SE component to capture these
short-run deviations from the long-run, decreasing
trend embodied in the above specification. See Online
Appendix B for an example of this modification.

2.2.3. Heterogeneity, Random Effects, and Priors. We
accommodate unobserved heterogeneity by assuming
that the random effect δi comes from a normal pop-
ulation distribution, i.e., δi ∼ N (0, σ2). In our applica-
tion, we found no significant time-invariant effects zi ;
hence, we omit z′iγ from our model going forward.
We estimate the model in a fully Bayesian fashion, and
therefore specify priors over all unknowns, including
the GP hyperparameters. We use the fact that mean-
ingful variation in the inverse logit function occurs
for inputs between −6 and 6; hence, meaningful dif-
ferences in the inputs to the GPPM will also occur
between −6 and 6 to select proper weakly informative
Normal and Half-Normal prior distributions that give
weight to variations in this range. Specifically, we let
the population variance σ2 ∼ Half-Normal(0, 2.5) and
the base spending rate µ ∼N (0, 5). For the SE hyperpa-
rameters, we specify η2 ∼ Half-Normal(0, 5) and ρ2 ∼
Half-Normal(T/2,T). For the mean function, we let
λ1 ∼ N (0, 5), and let λ2 ∼ Half-Normal(0, 5). Signifi-
cantly, the fully Bayesian approach, whereby the GP
function values and their associated hyperparameters
are estimated from the data, allows us to automati-
cally infer the nature of the latent functions that drive
spending propensity.

2.2.4. Identification. We need to impose identification
restrictions because of the additive structure of our
model. Sums of two latent functions, such as α1(t) +
α2(t), are indistinguishable from α∗1(t) + α∗2(t), where
α∗1(t) � α1(t) + c, and α∗2(t) � α2(t) − c for some c ∈ �,
as both sums imply the same purchase probabilities.
To address this indeterminacy, we set the initial func-
tion value (corresponding to input τ � 1) to zero for
all of the latent functions, except for αLong

T (t). In this
sense, αLong

T (t), with its constant mean function µ, cap-
tures the base spending rate for new customers, and
the other components capture deviations from that, as
time progresses. Whenever we implement a sum of SE
kernels, as in the calendar time component, we also
constrain the length-scale parameters to be ordered to
prevent label switching. All of these constraints are eas-
ily incorporated in our estimation algorithm, described
below.

2.3. Estimation
We use a fully Bayesian approach for inference. For
concision, let αi j ≡ α(ti j , ri j , li j , qi j), which in our spec-
ification, is equivalent to αi j � α

Long
T (ti j) + αShort

T (ti j) +
αDoW
T (ti j)+ αR(ri j)+ αL(li j)+ αQ(qi j). To further simplify

notation, we let the independent components of the
sum be indexed by k, with generic inputs τk , such that
this GP sum can bewritten as αi j �

∑K
k�1 αk(τki j

). Each of
these components is governed by a set of hyperparame-
ters, as outlined in Section 2.2, denoted here asφk , with
the collection of all hyperparameters denoted as φ.
Finally, for each component, we let the vector of func-
tion values over all possible inputs along that dimen-
sion be denoted asαk .With this simplified notation, the
joint density of the data and the model unknowns is

p(y, {αk},δ,φ, σ2)�
[ I∏

i�1

Mi∏
j�1

p(yi j | αi j , δi)p(δi | σ2)
]

·
[ K∏

k�1
p(αk | φk)

]
p(σ2)p(φ). (10)

As the full posterior distribution p({αk},δ,φ, σ2 | y)
is not available analytically, we use Markov Chain
Monte Carlo (MCMC) methods to draw samples of
the unknown function values, random effects, popu-
lation parameters, and GP hyperparameters from the
posterior.

As the function values and the hyperparameters do
not have closed-form full conditionals, our setup is
nonconjugate, and Gibbs sampling is not an option.
Moreover, as the function values and the hyperparam-
eters typically exhibit strong posterior dependence,
ordinaryMetropolis–Hastings procedures that explore
the posterior via a random walk are not efficient. We
therefore use the Hamiltonian Monte Carlo (HMC)
algorithm that leverages the gradient of the posterior
to direct the exploration of the Markov chain to avoid
random-walk behavior. HMC methods are ideal for
nonconjugate GP settings such as ours, as they can
efficiently sample the latent function values as well as
the hyperparameters (Neal 1998). In particular, we use
the No U-Turn Sampling (NUTS) variant of HMC as
implemented in the Stan probabilistic programming
language (Hoffman and Gelman 2014, Carpenter et al.
2017). SeeOnlineAppendixA for an overview ofHMC.

Stan has recently gained traction as an efficient
and easy-to-use probabilistic programming tool for
Bayesian modeling. We use Stan as it is an efficient
implementation of adaptive HMC. Stan programs are
simple to write and modify, and therefore facilitate
easy experimentation, without the need for extensive
reprogramming. This is important for the wider adop-
tion of this framework in practice.8 Finally, given the
efficiency of HMC and Stan, convergence, as measured
by the R̂ statistic (Gelman and Rubin 1992), is achieved
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in as few as 400 iterations, although in this paper all
estimation is done with 4,000 iterations; the first 2,000
are used for burn-in.

3. Application
We apply our framework to understand the spending
dynamics in two free-to-play mobile games from one
of the world’s largest video game companies. The data
take the form of simple spend incidence logs, with user
IDs and time stamps.9 In free-to-play (or “freemium”)
settings, users can install and play video games on
their mobile devices for free, and are offered oppor-
tunities to purchase within the game. These spend-
ing opportunities typically involve purchasing in-game
currency, such as coins, that may subsequently be used
to progress more quickly through a game, obtain rare
or limited edition items to use with their in-game char-
acters or to otherwise gain a competitive edge over
nonpaying players. Clearly, the nature of these pur-
chases will depend on the game, which is why it is
important for a model of spending behavior to be fully
flexible in its specification of the regular, underlying
drivers of purchasing. We cannot name the games here
because of nondisclosure agreements. Instead, we use
the general descriptors Life Simulator (LS) and City
Builder (CB) to describe the games.
The games and ranges of data used were selected by

our data provider to understand spending dynamics
over specific periods of time. We use a random sam-
ple of 10,000 users for each of the two games. Each
sample is drawn from users who installed the game
in the first 30 days, and spent at least once during the
training window. We used 8,000 users for estimation,
and 2,000 for cross-validation. In the LS game, play-
ers create an avatar, and then live a digital life as that
avatar. Purchases in this context can be rare or lim-
ited edition items to decorate or improve their avatar
or its surroundings. Oftentimes, limited edition items
are themed according to holidays such as Christmas or

Figure 2. (Color online) Spend Incidence by Day (Calendar Time) in Each Game
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Note. Bars indicate time periods of interest, as specified by the company, and as discussed further in Section 3.2.1.

Halloween. Our data come from a 100 day span of time
covering the 2014 Christmas and New Year season. In
the CB game, players can create (or destroy) a city as
they see fit. Customers make purchases to speed up the
building process or to build unique or limited edition
additions to their cities. Our data come from an 80-day
period of time at the start of 2015, at the end of the
Christmas and New Year holidays.

The time series of spending for the two games are
shown in Figure 2. We have also marked specific time
periods of interest to the company, which we will dis-
cuss in more detail in Section 3.2.1. From these figures,
it is difficult to parse out what exactly is driving the
aggregate pattern of purchases. The figure includes
customers who installed the game any time in the first
30-day window. Typically, customers are most active
when they start playing a game, so we expect to see
more spending in the first 30–40 days simply because
there are likelymore people playing in that period, and
new players are entering the pool of possible spenders.
This rise and subsequent fall is, in essence, the joint
impact of the recency, lifetime, and purchase number
effects. We see, however, that even the general rise-
fall pattern varies across the two games. This could be
due to different patterns in these underlying drivers
of spending, or it could be because of the influence of
calendar time events. In essence, it is unclear what else
underlies the aggregate spends.

We also seemany peaks and valleys in spending over
the entire time horizon, the significance of which can-
not be diagnosed without deeper analysis. For exam-
ple, it is difficult to discern which “bumps” in the plots
are meaningful, and which represent random noise.
If 5,000 players are active on any given day, then a
jump of 50 spends may represent a random fluctua-
tion. By contrast, if only 1,000 players are active, the
same jump of 50 spends may be very meaningful. In
other words, the significance of a particular increase
in spending depends on how many customers are still
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actively spending at that time, which in turn depends
on the individual-level recency, lifetime, and purchase
number effects. An accurate accounting of the impact
of calendar-time events cannot be made without con-
sidering these individual-level predictors of spending.
Thus, it is important to develop a model-based under-
standing of the underlying spend dynamics, which is
what we do via the GPPM.

3.1. Model Output and Fit
TheGPPMoffers a visual and highly general system for
customer base analysis driven by nonparametric latent
spending propensity functions. These latent curves are
the primary parameters of the model, and their poste-
rior estimates are shown in Figure 3 for LS, and Figure 4
for CB. We call these figures the GPPM dashboards,
as they visually represent latent spending dynamics.
As we will see in Section 3.2, these dashboards can be
used toaccomplishmanyof thegoalswehavediscussed
throughout theprevious sections, including forecasting
spending, understanding purchasing at the individual-
level, assessing the influence of calendar time events,
and comparing spending patterns across products.
These dashboards are underpinned by a set of hy-

perparameters, and estimated jointly with a random
effects distribution capturing unobserved heterogene-
ity. Posterior medians of these parameters are shown
in Table 1. While the hyperparameters summarize the

Figure 3. (Color online) Posterior Dashboard for the Life Simulator Customer Base
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Notes. The curves are the median posterior estimates for the latent components of α(t , r, l , q) with 95% credible intervals. The blue plots (top
row) are the calendar time components, while the red plots (bottom row) are the individual-level effects. The marked time periods (green bars)
are areas of interest to the company, as discussed in Section 3.2.1.

traits of the estimated dashboard curves, as explained
in Section 2.1, we can gain a greater understanding of
the dynamics from an analysis of the estimated dash-
board curves themselves, as we do in subsequent sec-
tions. The other parameters in Table 1 are the base
spending rate, µ, and the population variance of the
random effects distribution, σ2, which reflects the level
of heterogeneity in base spending rates estimated in
each customer base.
3.1.1. Model Fit. First, to validate our model, we look
at its fit to the observed daily spending data in the
calibration sample of 8,000 customers and in the hold-
out sample of 2,000 customers. Because a closed-form
expression is not available for the expected number
of aggregate counts in the GPPM, we simulate spend-
ing from the posterior predictive distribution using
the post-convergence HMC draws for each parameter,
including the latent curves and random effects. The
top row of Figure 5 shows the actual spending and
the median simulated purchase counts (dashed line)
for the two games, along with 95% posterior predictive
intervals.

We see that the fit is exceptional, and almost per-
fectly tracks the actual purchases in both cases. This
is not surprising, as we model short-run deviations
in the probability of spending on a daily basis and
therefore essentially capture the residuals from the
smoother model components. That is, the short-run
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Figure 4. (Color online) Posterior Dashboard for the City Builder Customer Base
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Notes. The curves are the median posterior estimates for the latent components of α(t , r, l , q) with 95% credible intervals. The blue plots (top
row) are the calendar time components, while the red plots (bottom row) are the individual-level effects. The marked time periods (green bars)
are areas of interest to the company, as discussed in Section 3.2.1.

calendar time component captures any probability that
is “left over” from the other components of the model,
enabling us to fit in-sample data exceptionally well.
To test that the model does not overfit the in-sample
day-to-day variability, we explore the simulated fit in
the validation sample of 2,000 held-out customers. The
bottom row of Figure 5 shows that the fit to this sample
is still excellent, although not as perfect as in the top
row. While the probabilistic residuals from the calibra-
tion data are not relevant for the new sample, much of
the signal present in the calendar time trends and the
individual-level effects continue to matter, thus con-
tributing to the good fit.

Table 1. Posterior Median Parameter Estimates for Both
Games

Component LS CB Component LS CB

Cal, long ηTL 0.17 0.22 Lifetime ηL 0.06 0.23
ρTL 11.75 10.32 ρL 9.77 12.25

Cal, short ηTS 0.15 0.16 λL1 −0.34 −0.75
ρTS 1.11 1.29 λL2 0.25 0.36

Cal, DoW ηTW 1.08 1.19 Purchase ηQ 0.10 0.20
ρQ 9.17 9.59 number ρQ 4.93 5.36

Recency ηR 0.04 0.10 λQ1 0.28 0.52
ρR 10.23 11.05 λQ2 0.15 0.30
λR1 −0.59 −0.13 Base rate µ −1.49 −1.92
λR2 0.49 0.72 Heterogeneity σ2 0.68 0.93

3.1.2. Fit Decomposition. To better understand how
the latent curves in the dashboard contribute to the fits
seen in Figure 5, we now break down that fit along our
latent dimensions, focusing on the LS game. Our main
focus is assessing how much of the day-to-day spend-
ing is explained by the calendar time components of
the model versus the typically smoother, individual-
level recency, lifetime, and purchase number compo-
nents. To do that, we examine how the fit changes
when different components of the model are muted.
Wemute a component by replacing it with a scalar that
is equal to the average of its function values over all its
inputs. Note that we do not reestimate a model when
we mute a component; instead, muting allows us to
see how much of the overall fit is driven by a given
component.

The fit decomposition is shown in Figure 6. Over-
laid on the true spending time series, we have three
muted fits: In the first, we mute the short-run calen-
dar time component; in the second, we mute the short-
and long-run calendar time components; in the third,
we mute all calendar time components. From the con-
tinued good fit of the muted models, we can see that
the majority of the full model fit is actually driven by
the individual-level spending predictors, i.e., recency,
lifetime, and purchase number. This finding is largely
in keeping with the established literature on customer
base analysis, which has robustly shown that models
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Figure 5. (Color online) True and Simulated Spending by Day Under the GPPM with 95% Posterior Predictive Intervals
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Notes. The data is in black (solid) while the red (dashed) is the median simulated fit. In the top row, we show the fit in the estimation data
of 8,000 customers, where the two curves are nearly indistinguishable. In the bottom row, we show the fit in the validation sample of 2,000
held-out customers.

based on these components can do well at fitting and
forecasting spending activity. However, we also find
that calendar time plays a non-negligible role: While
the short-run component generally captures the resid-
uals, as explained previously, the long-run component
plays an important role in capturing changes in base
spending rates over time. Furthermore, the cyclic com-
ponent, which is a highly predictable yet novel element
of our model, plays an important role in explaining the
day-to-day variability in spending.

3.2. Dashboard Insights
While fit validates the utility of the GPPM, one of
the primary motivations of the model is to provide

Figure 6. (Color online) Fit Decomposition on the LS Spending Data
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Notes. Each panel (from left to right) represents muting an additional component of the model; the worsening fit shows how much of the full
model fit is driven by the muted component.

managers with a model-based decision support sys-
tem that captures effects of interest, and facilitates a
visual understanding of the drivers of spending behav-
ior. Thus, the key output of our model is the GPPM
dashboard (Figures 3 and 4), which portrays the poste-
rior estimates of the latent propensity functions. These
latent spending propensity curves are readily inter-
pretable, even by managers with minimal statistical
training. Here we illustrate the insights that managers
can obtain from these model-based visualizations.

3.2.1. Calendar Time Effects. Events that happen in
calendar time are often of great importance for man-
agers, but their impact is often omitted from customer
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base analysis models. The GPPM includes these effects
nonparametrically through the calendar time compo-
nents of the model, such that the impact of calen-
dar time events is captured flexibly and automatically.
Calendar time effects are jointly estimated with the
individual-level drivers of spending, recency, lifetime,
and purchase number. This means the impact of cal-
endar time on spending propensity is assessed only
after controlling for these drivers of re-spend behav-
ior, which account for the natural ebb and flow of
spending, including dynamics in the numbers of active
customers.
Significantly, capturing the impact of calendar time

events requires no inputs from the marketing analyst,
as would be required in a model where time-varying
covariates are explicitly specified. This implies that
their presence and significance must be evaluated ex
post facto. This hasmany benefits: First, even in the face
of information asymmetries or unpredictable shocks,
the events will be captured by the GPPM. Second,
the shape of the impact of these events is automat-
ically inferred, rather than assumed. Finally, because
the impact is captured by changes in the calendar time
components of the propensity model, their impact can
be visually assessed. We demonstrate the analysis of
calendar time events using our two focal games. The
top row of plots in each dashboard (Figures 3 and 4,
colored blue) represents the calendar time effects. From
left to right, we have the long-run trends, short-run
shocks, and periodic day of the week effects. Beneath
these curves, we have placed bars indicating time peri-
ods of interest to the company.
Life Simulator Events. Two events of note occurred in
the span of the data. The first marked time period,
t ∈ [17, 30], corresponds to a period in which the com-
pany made a game update, introduced a new game
theme involving a color change, and donated all pro-
ceeds from the purchases to a charitable organiza-
tion. The second marked period, around t ∈ [37, 49],
corresponds to another game update that added a
Christmas-themed quest to the game, with Christmas
itself falling at t � 48, right before the end of the holiday
quest.
From the dashboard in Figure 3, we learn several

things: First, there is a prominent spike in short-run
spending the day before Christmas. This Christmas Eve
effect illustrates that events do not have to be antic-
ipated to be detected in the model; below we illus-
trate how the GPPM parses out the impact of short-run
events, using this effect as the example. In the long-
run curve, we see a decrease in spending coinciding
with the charity update, an increase in spending coin-
ciding with the holiday event, and then a significant
drop-off subsequent to the holiday season. Without a
longer range of data, it is hard to assess the meaning
of these trends. It does appear that the charity event

lowered spending rates. The impact of the holidays is
more unclear: It could be that the holiday game update
elevated spending, and then as time went on, spend-
ing levels returned to normal. Alternatively, spending
levels could be elevated simply due to the holiday sea-
son, with a post-holiday slump that is unrelated to the
game updates. Although we cannot conclusively parse
out these stories, we can tell that calendar time dynam-
ics are at play, and appear linked to real world shocks
and company actions.

City Builder Events. The marked areas of the CB dash-
board in Figure 4 correspond to events of interest. The
start of the data window, t ∈ [1, 6], coincides with the
tail end of the holiday season, from December 30 to
January 4. Another event begins at t � 63, when the
company launched a permanent update to the game
to encourage repeat spending. We mark five addi-
tional days after that update to signify a time period
over which significant postupdate activity may occur.
Finally, at t � 72, there was a crash in the app store.
We see, as in the previous game, that the spend-

ing level during the holidays, t ∈ [1, 6], was quite high
and subsequently fell dramatically. This lends some
credence to a general story of elevated holiday season
spending, as there was no game update in CB during
this time. Spending over the rest of the time period was
relatively stable. The update that was intended to pro-
mote repeat spending had an interesting effect: There
was an initial drop in spending, most likely caused by
reduced playtime on that day because of the need for
players to update their game or because of an error in
the initial launch of the update. After the update, an
uptick in long-run spending is observable, but this was
relatively short lived. Finally, we find no effect for the
supposed app store crash, which in theory should have
prevented players from purchasing for the duration of
the crash. It is plausible that the crash was for a short
duration or occurred at a time when players were not
playing.

Day of the Week Effects. Across both games, we note
the significance of the periodic day of the week effect.
In both cases, spending propensity varies by day of the
week by a magnitude of 0.3. For comparison, the long-
run calendar time effect of LS has a range of 0.5, while
that of CB has a range of 0.6. Themagnitude of the peri-
odic effect serves to re-emphasize a point alreadymade
in the fit decomposition: A large amount of the calen-
dar time variability in spending can be attributed to
simple predictable cyclic effects, something customer
base models have previously ignored, but that can be
powerful in forecasting future purchase behavior.

3.2.2. Event Detection. Often, calendar time events
are unknown a priori, but can significantly affect con-
sumers’ spending rates in the short run. The short-run
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Figure 7. (Color online) Event Detection in the GPPM
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Note. From left to right, we add daily data, and see how the impact of Christmas Eve is separated between the long-run (top, red) and short-run
(bottom, blue) calendar time curves.

function can automatically detect and isolate these dis-
turbances. That is, if something disrupts spending for a
day, such as a crash in the payment processing system,
or an in-game event, it will be reflected as a trough or
a spike in the short-run function, as evident, for exam-
ple, in the Christmas Eve effect in LS. In this section,
we illustrate how this works in practice.

The GPPM estimation process decomposes the cal-
endar time effect along subfunctions with differing
length-scales. As such, when there is a disturbance,
the GPPM must learn the relevant time scale for the
deviation (here, short or long term) and then adjust
accordingly. We illustrate this dynamically unfolding
adjustment process for the LS Christmas Eve effect in
Figure 7 by estimating the model using progressively
more data from December 23, 2014 to December 25,
2014. The different columns show how the long-run
(top row) and the short-run (bottom row) components
vary when data from each successive day is integrated
into the analysis. The second column shows the impact
of adding the data from Christmas Eve. An uptick in
spending is apparent, but the GPPM cannot yet detect
whether this uptick will last longer or just fade away.
The day after (third column), it becomes clear from
looking at the long-run and short-run plots that the
effect was only transient, which is clearly reflected in
the short-run curve.

This example illustrates that the GPPM can capture
effects of interest with no input from the analyst, and
that the nature of this effect is visually apparent in the
model-based dashboard within days of its occurrence.
Note that, significantly, each column of Figure 7 rep-
resents a re-estimation of the GPPM, using the past
day’s data; event detection can only occur at the level
of aggregation of the data (in this case, daily), upon re-
estimation of the model. Nonetheless, this capability
can be immensely valuable to managers in multiprod-
uct firms where information asymmetries abound.
For example, in digital contexts, product changes can
sometimes be rolled out without the knowledge of

the marketing team. Similarly, disruptions in the dis-
tribution chain can occur with little information fil-
tering back to marketing managers. The GPPM can
quickly and automatically capture the impact of such
events, isolate them from the more regular, predictable
drivers of spending, and bring them to the attention of
managers.
3.2.3. Individual-Level Effects. While the inclusion of
calendar time effects is a key innovation in our model,
the primary drivers of respend behavior are the
individual-level recency, lifetime, and purchase num-
ber effects. We can see this through the fit decomposi-
tion, where much of the variability in spending is cap-
tured even when the calendar time effects are muted,
and also by assessing the range of the effects in the
dashboard. As mentioned in Section 2.2, the range of
relevant inputs in an inverse logit framework is from
−6 to 6. For propensity values α < −6, the respend
probability given by logit−1(α) is approximately 0. Sim-
ilarly, for propensity values α > 6, the respend proba-
bility is approximately 1. This gives an interpretability
to the curves in the dashboard, as their sum deter-
mines this propensity, and hence their range deter-
mines how much a given component of the model can
alter expected respend probability. Relative to the cal-
endar time effects, we can see in the dashboard that the
ranges of the individual-level effects are significantly
larger, implying that they explain much more of the
dynamics in spending propensity than the calendar
time components.
Recency and Lifetime. In both of our applications, the
recency and lifetime effects are smooth and decreas-
ing as expected. For managers, this simply means that
the longer someone goes without spending, and the
longer someone has been a customer in these games,
the less likely that person is to spend. The recency effect
is consistent with earlier findings and intuitively indi-
cates that if a customer has not spent in a while, she
is probably no longer a customer. The lifetime effect is
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also expected, especially in the present context, as cus-
tomers are more likely to branch out to other games,
with the passage of time. More interesting are the rates
at which these decays occur, and how they vary across
the games. These processes appear to be fundamen-
tally different in the two games. In LS, the recency effect
has a large impact, whereas the lifetime effect assumes
a minimal role. By contrast, in CB, both appear equally
important. These results may be a result of, for exam-
ple, the design of the product (game), which encour-
ages a certain pattern of purchasing.
Purchase Number. The purchase number effect also
appears different across the games. In LS, the effect
seems relatively insignificant: Although there is a
slight rise initially, it quickly evens out, with a large
confidence interval. In CB, the effect appears quite sig-
nificant: It is generally increasing, but appears to flatten
out toward the end. The effect in CB is more consis-
tent with our expectations: Significant past purchas-
ing should indicate a loyal customer, and a likely pur-
chaser. A mild or neutral effect, as seen in LS, may
indicate decreasing returns to spending in the game,
or a limited number of new items that are available for
purchase, such that the customer quickly runs out of
worthwhile purchase opportunities.
Behavioral Implications. The shapes of these curves
have implications for player behavior and for designing
general CRM strategies. In LS, the recency effect is the
primary predictor of churn: If a customer has not spent
for a while, she is likely to no longer be a customer.
On the other hand, the lifetime effect seems to oper-
ate only in the first few days of being a customer, and
then levels out. This implies that customers are most
likely to spend when they are new to the game, within
roughly two weeks of their first purchase. By contrast,

Figure 8. (Color online) Respend Probability Heat Maps for a Customer with q � 3 and δi � 1
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Notes. Colors represent the probability of respending in the next 100 days, given the current recency and lifetime values. Note that some pairs
of recency and lifetime values displayed in the plot are not realistic: A customer cannot have recency higher than lifetime.

in CB, the effects are more equal in magnitude, and
more gradual. The customers who are least likely to
spend again are those that have been customers the
longest, and have gone the longest without spending.

We illustrate these differences via an individual-level
analysis of respend probability. Specifically, we ask:
Given an individual’s recency and lifetime, what is the
probability that she spends again in the next 100 days?
To carry out this simulation, we fix the calendar time
effect to its average value, and assume that the indi-
vidual has already spent three times. The results of the
simulation are shown in Figure 8, and re-emphasize the
point that recency explains much of the respend prob-
ability in LS, while lifetime and recency are both rele-
vant in CB. This analysis also emphasizes the idea that,
while the dynamic effects in the GPPM are the same
for all customers, different positions in the individual-
level subspace (ri j , li j , pi j) are associated with very dif-
ferent expected future purchasing behavior.

In summary, we have seen that the GPPM weaves
together the different model components in a discrete
hazard framework, and offers a principled approach
for explaining aggregate purchase patterns based on
individual-level data. The model-based dashboard ge-
nerated by the GPPM is not the result of ad hoc
data smoothing, but arises from the structural decom-
position of spending propensity via the different
model components. The GPPM jointly accounts for the
predictable individual-level determinants of respend
probability, such as recency, lifetime, and purchase
number, and calendar time events along multiple
length-scales of variation. Therefore, it can flexibly rep-
resent the nature of customer respend probability, and
accurately portray the existence and importance of cal-
endar time events and trends.
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3.3. Predictive Ability and Model Comparison
Apart from interest in understanding past spending
dynamics, managers also need to forecast future pur-
chasing activity. Although the primary strength of the
GPPM is in uncovering latent dynamics, and intu-
itively conveying them through the model-based dash-
board, the GPPM also does very well in predicting
future spending. Just as in-sample fit was driven by
the recency, lifetime, and purchase number compo-
nents, predictive performance depends primarily on
the ability to forecast these components for observa-
tions in the holdout data. While forms of recency, life-
time, and purchase number effects are incorporated
in most customer base models, the isolation of these
effects apart from transient calendar time variability,
along with nonparametric characterization of these
predictable components, and the inclusion of the cyclic
component, allow the GPPM to significantly outper-
form benchmark customer base analysis models in pre-
dictive ability.
In this section, we focus on comparing model fit

and future predictive performance, and therefore rees-
timate the GPPM by truncating our original calibra-
tion data of 8,000 customers along the calendar time
dimension. In particular, we set aside the last 30 days of
calendar time activity to test predictive validity. Fore-
casting with the GPPM involves forecasting the latent
functions that comprise it. In forecasting these latent
functions, we use the predictive mechanisms outlined
in Section 2.1 (Equation (4)). As the holdout data is
constructed by splitting the original data set along
the calendar time dimension, a substantial number of
observations in the holdout data contain recency, life-
time, and purchase number values that are within the
observable range of these variables in the calibration
data set. This is especially true for observations belong-
ing to newly acquired customers. However, for the old-
est customers, the individual-level curves need to be
forecast.

3.3.1. Benchmark Models. We compare the predictive
performance of the GPPM with that of a number
of benchmark models. Many individual-level models
have been developed to perform customer base anal-
ysis. At its core, the GPPM is a very general discrete
hazard model and, as such, can be compared to other
hazard models for interpurchase times (Gupta 1991,
Seetharaman and Chintagunta 2003). Similarly, given
its reliance on recency, lifetime, and purchase number
dimensions of spending, the GPPM is closely related
to traditional customer base analysis models for non-
contractual settings in the BTYD vein (Schmittlein et al.
1987; Fader et al. 2005, 2010). Finally, the discrete haz-
ard approach could be modified with a different spec-
ification of the spend propensity.

Hazard Models. We consider two standard discretized
hazard models, i.e., the Log-Logistic model and the Log-
Logistic Covmodel, which are standard log-logistic haz-
ard models without and with time-varying covariates,
respectively. We choose the log-logistic hazard as it can
flexibly represent monotonic and nonmonotonic haz-
ard functions. In the model with covariates, we use
indicator variables over the time periods of interest as
indicated at the start of Section 3. In estimating both
of these models, we use the same Bayesian estimation
strategy, using Stan, with the same random effect het-
erogeneity specification as in the GPPM.
BTYD. We use the Pareto-NBD (Schmittlein et al. 1987)
and the BG/NBD (Fader et al. 2010) as benchmarks in
this class. While many variants of BTYD have been
developed over the years, the Pareto-NBD has stood
the test of time as the gold standard in forecasting
power in noncontractual settings, often beating even
more recent models (see, e.g., the PDOmodel in Jerath
et al. 2011). The BG/NBD is a more discrete analogue
of the Pareto-NBD, where customer death can occur
after each purchase, rather than continuously.10

Propensity Models. In this case, we retain the dis-
crete time hazard inverse logit framework, while alter-
ing the specification of the dynamics. In particular,
we explore two specifications, i.e., the Linear Propen-
sity Model (LPM) and the State Space Propensity Model
(SSPM). To our knowledge, these models have not
been explored elsewhere in the literature; we include
them here to help understand the benefits of the GP
approach to modeling dynamics.

In the LPM, we remove the nonparametric spec-
ification, and instead model all effects linearly, as
Pr(yi j � 1) � logit−1(µ + β1ti j + β2ri j + β3li j + β4qi j + δi).
This is the simplest discrete hazardmodel specification
that includes all of our time scales and effects.

In the SSPM, we explore an alternate nonparamet-
ric specification for the dynamic effects. There are a
number of competing nonparametric function estima-
tion techniques, including dynamic linear models and
various spline specifications, and there are technical
links between many of these modeling approaches.
Moreover, in each class of models, a range of spec-
ifications are possible, making the choice of a suit-
able benchmark difficult. We implement a state space
specification roughly equivalent to the GP structure
in our main model. Specifically, we decompose the
propensity function α(t , r, l , q) into additive compo-
nents along each dimension. For the calendar time
dimension, just as in the GPPM, we make no assump-
tions about its behavior, and hence model it as a ran-
dom walk

αT(t)� αT(t − 1)+ εTt , εTt ∼N (0, ζ2
T). (11)

For the other dimensions, we assume, as in the GPPM,
that there will likely be monotonicity, and hence
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Figure 9. (Color online) GPPM Daily Spending Forecast
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Notes. The data is in black (solid) with the median simulated GPPM fit in red (dashed) and 95% posterior predictive intervals. The holdout
period is the last 30 days of data, demarcated by the dashed line.

include a trend component. This leads to a local level
and trend specification

αd(τ)� αd(τ− 1)+ γd(τ)+ εdτ , εdτ ∼N (0, ζ2
d), (12)

γd(τ)� γd(τ− 1)+ ξdτ , ξdτ ∼N (0, ψ2
d). (13)

Interestingly, when used with a Gaussian observa-
tion model (meaning the data generating process is
N (α(τ), ν2) instead of our latent propensity formula-
tion), the local level and trend model have links to
cubic spline smoothing (Durbin and Koopman 2012).
In addition to the aforementioned components, we
included a cyclic function of calendar time to mirror
the GP periodic kernel component, as well as the ran-
dom effects.

3.3.2. ForecastingResults. The reestimated in-sample
fit and the out-of-sample forecast of the GPPM for
both games are shown in Figure 9. The dashed lines
represent medians, while the intervals represent 95%
posterior predictive intervals. We see that the GPPM
fits very well in-sample, but significantly also fits well
in the holdout period. Out-of-sample, we see smooth
decreasing trends in both games, together with the
predictable day of the week effect. Referring back to
Figure 6, we see that the forecast fit is very similar
to the fit decomposition with no short- and long-run
components. This is because, far from the range of the
data, components modeled with a stationary kernel
will revert to their mean function, which for the cal-
endar time effects is constant, effectively muting them
far into the holdout period. How long it takes for this
reversion to happen depends on the smoothness of the
estimated function.
Table 2 shows the predictive performance of the

GPPM and all of our benchmark models. The table
reports the mean absolute percentage error (MAPE)

and the root mean squared error (RMSE) for the cal-
ibration and holdout data sets. Several of our bench-
mark fits are shown in Figure 10. Crucially, the fit of
the GPPM is almost always significantly better than the
benchmarks, in- and out-of-sample. Next, we briefly
analyze each of the benchmarks, and give intuition for
why the GPPM outperforms them.

The log-logistic hazard models perform particularly
poorly. In fact, the fit of the log-logistic models using
the full range of the data is worse than the forecast
fit of the GPPM; thus, we did not reestimate the log-
logistic models in a separate forecasting task. Neither
of these models captures the lifetime and purchase
number drivers, which are typically highly predic-
tive of spending. Furthermore, the Log-Logistic Covs
model includes the covariates as indicator variables.
While this is a common approach for specifying events
of interest, as we saw in our analyses of calendar time
events, the impacts of these events are unlikely to be
constant over time, a fact that the GPPM implicitly
incorporates in the calendar time effects.

Of primary interest here is the comparison with the
customer base analysis models. We see that the fit
statistics of the Pareto-NBD and BG/NBD are much
better than that of the hazard models. In fact, the fit
of the Pareto-NBD in Figure 10 is similar to the cal-
endar time muted fit in Figure 6. This supports our
intuition that the GPPM in a sense generalizes these
models, by accounting for interpurchase and lifetime
effects (in a nonparametric way), while simultaneously
allowing for variability in calendar time. Accounting
for variability in calendar time is important as it lets
the GPPM isolate predictable individual-level effects
from the influence of calendar time events. In models
that rely only on recency and frequency data, calendar
time events are conflated with base purchasing rates,
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Table 2. Fit Statistics

Life Simulator City Builder

Overall In-sample Holdout Overall In-sample Holdout

GPPM 0.09 0.03 0.24 0.15 0.05 0.32
13.25 5.74 22.54 15.00 9.79 20.97

Log-logistic 0.42 0.31 0.67 0.41 0.19 0.77
68.27 71.75 59.35 46.78 46.91 46.55

LL Covs 0.28 0.19 0.48 0.27 0.15 0.48
62.81 67.22 51.04 36.28 32.78 41.47

Pareto-NBD 0.24 0.20 0.33 0.27 0.16 0.45
45.10 49.64 32.10 33.54 36.56 27.80

BG/NBD 0.23 0.19 0.31 0.34 0.18 0.61
45.03 50.09 30.04 38.53 39.19 37.41

LPM 0.19 0.16 0.26 0.33 0.18 0.58
42.78 47.21 30.02 43.14 38.80 49.53

SSPM 0.07 0.03 0.17 0.17 0.05 0.38
12.57 6.63 20.59 18.25 9.50 27.16

Notes. For each model, we report the mean absolute percentage error (first row), and the root mean squared error (second row)
for both games in the forecasting task. We compute these measures over the entire range of data (Overall), the in-sample portion
of the data (In-sample), and the 30-day holdout period (Holdout). Note that both of the log-logistic models were estimated over
the full range of the data; given the poor fit using the full data, we did not estimate them separately using held out data.

Figure 10. (Color online) Daily Spending Forecasts for Several of Our Benchmark Models
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Notes. The data is in black. The holdout period is the last 30 days of data, demarcated by the dashed line. A web app where all benchmark fits
can be viewed in isolation and in comparison with the GPPM is available at https://rdew.shinyapps.io/gppm_benchmarks/.

leading to erroneous predictions in the presence of cal-
endar time dynamics. See Online Appendix B for a set
of simulations.
Finally, we see that while a linear specification of the

dynamic effects is clearly not sufficiently rich, result-
ing in the poor fit of the LPM in both settings, a
nonGP nonparametric specification as in the SSPM
performs similarly to the GPPM. Specifically, we see
that the SSPM performs as well as the GPPM in LS,
although worse than the GPPM in CB. In some sense,
this is not surprising: The SSPM is a complex and
novel benchmark, constructed to be equivalent to the
GPPM in terms of which effects it represents and how
these are modeled. Both models capture the same set
of predictable individual-level and periodic calendar
time effects. Forecasting spending in the GPPM relies

on forecasting these propensity functions, which the
SSPM also appears to do well.11 Unlike the GPPM,
however, the SSPM is more limited in its ability to sep-
arate out effects along a given time scale, which con-
strains its ability to perform the calendar time decom-
positions that are possible with GPs. This limits the
SSPM’s ability to provide equivalent dashboard-like
representations of spending propensity along a given
scale, which is one of the GPPM’s core strengths.

4. Conclusion
In this paper, we developed a highly flexible model-
based approach for understanding and predicting
spending dynamics. Our model, the GPPM, uses
Bayesian nonparametric GP priors to decompose a
latent spending propensity into components that vary

https://rdew.shinyapps.io/gppm_benchmarks/
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along calendar time, interpurchase time, customer life-
time, and purchase number dimensions. Our additive
structure yields easily interpretable model outputs and
fits customer spending data well.
We showed that the GPPM identifies the latent

dynamic patterns in the data via a principled proba-
bilistic framework that reliably separates signal from
noise. It offers a number of outputs that are of
considerable value to managers. First, the GPPM gen-
erates a dashboard of latent functions that character-
ize the spending process. These model-based visual-
izations are easy to comprehend, even by managers
who may lack sophisticated statistical skills. Second,
we demonstrated that the GPPM is capable of auto-
matically capturing the effect of events that may be
of interest to managers. In situations where certain
events may escape the notice of managers, the GPPM
automatically detects these events. More important,
the nonparametric nature of the GPPM allows it to
flexibly model the nature and duration of the impact
of events (known or unknown, a priori), without the
need to represent these explicitly via covariates. These
advantages of the GPPM make it ideal for decision
contexts involving multiple products and information
asymmetries. The GPPM also flexibly captures the
individual-level spending drivers that reliably explain
and predict spending behavior, including recency, life-
time, and purchase number effects. These effects can be
used to characterize spending patterns within distinct
customer bases, analyze individual customer respend
probabilities, and predict future spending activity. Fur-
thermore, since these effects are jointly estimated with
the calendar time events, as part of a unified propen-
sity model, the predictable, fundamental individual-
level spending drivers are determined net of poten-
tially unpredictable calendar time effects. Moreover,
calendar time events can be analyzed net of the impact
of expected individual-level spending activity, in a way
not possible with mere aggregate data analysis.

We demonstrated these benefits of the GPPM on two
data sets of purchasing activity within mobile games.
We illustrated how themodel-based dashboards gener-
ated from the GPPM yield easily interpretable insights
about fundamental patterns in purchasing behavior.
We also showed that the GPPM outperforms tra-
ditional customer base analysis models in terms of
predictive performance, both in-sample and out-of-
sample, including hazard models with time-varying
covariates and the class of BTYD models. The predic-
tive superiority of the GPPM stems from the fact that
it captures the same predictable effects as traditional
customer base analysis models, such as recency and
lifetime, but does so in a flexible way, net of the influ-
ence of calendar time events.

While this paper showcases the many benefits of
our framework, it is also important to acknowledge

some limitations. First, the framework in its current
form is computationally demanding, especially when
compared with simpler probability models that can
be estimated with maximum likelihood. It is also
data intensive. In our application, we used complete
individual-level event log data to estimate the model.
Some of the benchmark models, in particular, the
BG/NBD and the Pareto-NBD, use only two sufficient
statistics per customer. Both of these limitations can
perhaps be addressed in practice by data subsampling,
or by developing faster inference algorithms. Finally,
while we believe our model-based dashboard is useful,
insofar as it provides a snapshot of the key drivers of
spending dynamics, it does not work in real-time, as
is the case for many dashboards of marketing metrics.
A streaming data version of our model would be an
interesting area for future work.

To conclude, we believe the GPPM addresses a fun-
damental need of modern marketing managers for a
flexible system for dynamic customer base analysis. In
providing a solution to this problem, this work intro-
duces a new Bayesian nonparametric approach to the
marketing literature. While we discuss GP priors in the
context of dynamic customer base analysis, their poten-
tial applicability to other areas of marketing is much
broader. GPs provide a general mechanism for flexi-
bly modeling unknown functions, and for a Bayesian
time series analysis. We see many potential applica-
tions for GPs in marketing, including modeling of the
impact of marketing mix variables, such as advertising
and promotions, and approximation of unknown func-
tions in dynamic programming and other simulation
contexts. Our work also makes a contribution to the
largely unaddressed field of visual marketing analyt-
ics systems, or dashboards. Dashboards and market-
ing analytics systems are likely to become even more
important in the future, given the increasing complex-
ity of modern data-rich environments. As dashboards
increase in relevance, we believe that managers will
welcome further academic research in this domain.
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Endnotes
1Hereafter, we use the words purchasing and spending interchange-
ably to refer specifically to purchase incidence.
2This behavior can be seen through Equation (4), in conjunc-
tion with, for example, the SE kernel, which has functional form
kSE(τi , τ j) � η2 exp{−(τi − τ j)2/(2ρ2)}. As the distance between the
observed inputs and the new input grows, the value of the kernel
goes to zero, and we see that the mean in Equation (4) will revert
to the mean function. This mean reverting property depends on the
kernel being stationary, meaning that it depends only on the distance
between inputs. See Rasmussen and Williams (2006) for a compre-
hensive discussion of these issues.
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3We note that the properties of this specification are suitable for our
specific application, but may not be suitable in other domains and
substantive applications.
4 In general, determining the number of additive components suit-
able for a given application requires substantive knowledge and
expectations about the nature of the dynamics at work, and data-
driven evidence from the estimated hyperparameter values. For
instance, depending on the kernel, a small amplitude hyperparam-
eter compared to the output scale could indicate that the compo-
nent is relatively uninfluential in describing the results. Similarly, if
the length-scale is estimated to be very large, this can indicate that
minimal dynamics are being uncovered by that component. Both of
these phenomena can indicate redundancy in the specification. Ker-
nel specification is a rich topic in the GP literature; see Rasmussen
and Williams (2006), Chapter 5 for a detailed discussion.
5While we emphasize the relative benefits of GP priors here, we also
note that there are many links between these methods, including
between GP methods and smoothing splines (Kalyanam and Shively
1998 andShively et al. 2000), andbetweenGPmethods and state space
models.We include a sophisticated state space analog of ourmodel in
our benchmarks. Our state space formulation is also closely related to
cubic spline specifications (seeDurbinandKoopman2012 fordetails).
As we describe in Section 3.3.2, although this method produces fits
that are roughly onparwith theGPapproach,we cannot easily obtain
the decompositions that are natural in the GP setting.
6See Online Appendix B for simulated data examples of these effects,
where we know the effects true forms, and can show that the GPPM
is capable of accurately recovering them.
7We may not expect this in our application area, freemium video
games, where there can be decreasing returns to repeat purchasing.
8See Online Appendix C for our Stan code.
9There is no personally identifiable information in our data; player
information is masked such that none of the data we use or the
results we report can be traced back to the actual individuals. We
also mask the identification of the company as per their request.
10We estimate these models using the BTYD package in the R pro-
gramming language.
11 In fact, recent research has established deep links between GPs
and state space models, such that some GP models can be approxi-
mated by state-space specifications (Gilboa et al. 2015). This may also
explain their similar performance.
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