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Abstract

Logos serve a fundamental role as the visual figureheads of brands. Yet, due to the difficulty of
using unstructured image data, prior research on logo design has largely been limited to non-
quantitative studies. In this work, we explore logo design from a data-driven perspective. We
develop both a novel logo feature extraction algorithm that uses modern image processing tools
to decompose pixel-level image data into meaningful features, and a multiview representation
learning framework that links these visual features to textual descriptions of firms, industry
tags, and consumer ratings of brand personality. We apply this framework to a unique dataset
of hundreds of brands. Our model is able to predict which brands use which logo features, and
how consumers evaluate these brands’ personalities. Moreover, we show that manipulating the
model’s learned representations through what we term “brand arithmetic” yields new brand
identities, and can help with ideation. Finally, through an application to fast food branding, we
show how our model can be used as a decision support tool for suggesting typical logo features
for a brand, and for predicting consumers’ reactions to new brands or rebranding efforts.
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1. Introduction

Logos, which adorn everything from product packaging to advertising, are the most distinct marks

used by brands. Designers create logos to represent the essence of brands, and firms motivate logo

redesigns to convey new ideas or communicate a new positioning. Yet, despite the clear significance

of logos, and the substantial costs of logo redesigns, marketing scholars have paid relatively little

attention to the logo design process. In this work, we show that the science underlying logo

design can be captured mathematically, through a multiview representation learning framework

that models the linkages between a brand’s function, its logo features, and consumer perceptions of

its brand personality. We then use this framework to study real logos of firms in different industries,

to derive a semantic understanding of logos, and to show how a model can be used for aiding firms

in logo design.

Our data-driven, multiview learning treatment of logos allows us to quantify the branding and

design process from three related perspectives, which vary in terms of which aspects of brand

identity are considered given, and which are the focal outcomes or outputs:

1. The designer’s perspective. Given a description of a brand and a desired consumer-

level perception, which logo features are most commonly used to achieve that identity? This

question mirrors the design process, where a designer uses a company-supplied brief to design

a logo. From our model-based perspective, answering this question relies on being able to use

textual data and a target brand perception as inputs to predict logo features.

2. The brand manager’s perspective. Given a newly designed logo, how will consumers

perceive it? Or, given a set of candidate logos, that may vary on key design elements, which

logo best matches a company’s targeted brand perception? Answering such questions is of

relevance to brand managers, and requires being able to use a logo and a brand profile as

inputs to predict consumers’ evaluations of the brand.

3. The researcher’s perspective. What associations exist among logo features, brand func-

tion, and brand perception? Branding researchers are interested in understanding such broad

linkages across different facets of brand identity. In addition, researchers with a focus on vi-

sual identity and marketing aesthetics are even more specifically interested in understanding
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how particular logo features impact consumer perceptions about a firm’s function and per-

sonality. By considering logo features as inputs, and text and brand personality as outcomes,

we can understand how different logo features contribute to perceptions of firm function and

brand identity.

As the above perspectives are intertwined, addressing them requires a flexible modeling approach

that jointly represents all facets of brand identity. In this paper, we develop such a framework,

using a novel logo feature extraction algorithm based on image processing techniques, in tandem

with a flexible, deep generative model that distills multimodal data into manipulable, numeric

vector representations.

Our results from applying this framework to a unique dataset of hundreds of successful brands,

containing logo data, textual descriptions, industry tags, and consumer brand personality percep-

tions, indicate that the logo design process practiced by the firms in our study is quite systematic:

from the designer’s perspective, we find that a model-based approach can predict many logo features

from text, industry, and brand personality descriptors. Similarly, from the manager’s perspective,

we find that by knowing brand function and the brand logo, we can predict how consumers will

evaluate the brand. From the researcher’s perspective, we find support for many findings from the

literature on how aesthetics influence consumer judgments. Moreover, we find that our learned

representations can, indeed, capture many intricate aspects of visual branding, and can be used for

ideation and decision support. However, we also find that it is generally difficult to predict how

consumers will evaluate brands based solely on logos.

Beyond these specific findings, our work makes several contributions. Foremost, it is the first

paper to study real logos from a holistic and quantitative perspective. This is important, first,

because it adds a level of objectivity to the design process: while our model cannot replace the

creative touch of designers, it can offer both designers and firms guidance in crafting their brand

identities, in an objective fashion. When weighing competing designs and opinions, an objective

prediction of the reactions of consumers to a logo design can allow managers to make a data-driven

decision, in what has historically been viewed as a subjective domain. Moreover, the design recom-

mendations from the model can be used even by budget-strapped firms to thoughtfully design their

logos. Finally, by representing all facets of a brand identity using a multidimensional latent space,
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our framework allows designers to interpolate between different brands to yield novel combinations

of existing identities, thus facilitating the creative process.

From a methodological perspective, ours is among the first papers in marketing to directly

use image data, without relying on human coders. Distinct from recent work in marketing that

has used deep learning frameworks to extract brand-relevant attributes from natural images (Liu

et al., 2018), our work presents a novel image processing approach to automatically extract features

from pixel-level image data, uniquely tailored to studying logos. Our feature extraction algorithm

decomposes logos into meaningful features, which are driven by prior theory about logo semantics.

These features form a “visual dictionary” that describes logos in a way that is meaningful to

designers, and amenable to probabilistic modeling. The automatic nature of our feature extraction

methods make them widely applicable and scalable, without the need for human coders.

Our work is also among the first in marketing to synthesize both unstructured text and image

data. To do so, we develop a multimodal variational autoencoder (MVAE), which is an exten-

sion of the popular variational autoencoder (VAE), a deep learning framework used for learning

representations of data (Kingma and Welling, 2013; Rezende et al., 2014). Our framework learns

joint multiview representations of the different facets of brand identity present in our data: text,

logo, brand personality, and industry. Distinct from supervised deep learning models that have

been successfully employed in a number of recent marketing studies (e.g., Liu et al., 2018; Liu

et al., 2019), our MVAE is a semi-supervised generative model (Kingma et al., 2014) that learns

a posterior distribution over latent parameters that capture the joint statistical properties of all

of these data modalities. This multiview representation learning approach (Li et al., 2016) allows

us address design from each of the distinct perspectives outlined above, rather than limiting us to

making unidirectional predictions.

To infer the latent representations of brands, we introduce task-specific inference networks that

approximate the posterior distribution of a brand’s latent representation using only a subset of the

available data modalities. In doing so, our inference procedure mirrors the decision support contexts

in which our model can be used. For example, to mirror the designer’s task of designing a logo

given a textual brief and a target personality, we learn a task-specific designer inference network,

that takes as inputs text describing a brand, industry tags, and a target brand personality profile,

and outputs a posterior distribution over that brand’s representation, which can then be used to
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generate a set of suitable logo features. This novel approach to inference aids in the relevance of

our work to design and branding practice, as it provides a natural set of decision support tools that

can be used to guide each of these distinct tasks.

The rest of the paper is organized as follows: in Section 2, we review the literature on logo

design and aesthetics in marketing. In Section 3, we describe the unique dataset we compiled to

calibrate our model. In Section 4, we briefly describe our logo feature extraction algorithm, leaving

a more detailed description to our web appendix. In Section 5, we present descriptive “model-free”

evidence of the links between design, brand personality, and firm function. In Section 6, we develop

a multiview learning model of brands and their logos, and in Section 7, we show the results of

applying that model to our data, including examples of how the learned representations can be

used for ideation, and how the task-specific inference networks can be used as decision support

tools in a data-driven design process. Finally, we conclude with a summary and directions for

further study.

2. Literature

There is a sizable literature, especially in consumer behavior, on how consumers react to logos and

marketing aesthetics. Much of this literature describes how specific logo features lead to different

consumer reactions and impressions. Other papers discuss how these reactions vary cross-culturally,

or study the mechanisms governing consumers’ reactions to various visual stimuli. In this section

we briefly review these findings, with the specific focus of informing our logo feature extraction

algorithm, described in Section 4.

2.1. Logos

A limited amount of research in marketing has studied logos, starting with Henderson and Cote

(1998), who investigated how logo characteristics impact recognition and affective reactions of con-

sumers. In particular they studied the NHE dimensions (naturalness, the extent to which it contains

natural shapes; harmony, the extent of its symmetry and balance; elaborateness, i.e., complexity

as measured by the number and heterogeneity of logo elements). Subsequently, Henderson et al.

(2003), and van der Lans et al. (2009), tested these NHE dimensions across cultures and found
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them to be universally good descriptors of design.

Other behavioral researchers have used experimental manipulation of fictional logos to study

consumer reactions and the psychological mechanisms that underlie such reactions. Klink (2003)

related the color, size and shape of logos to brand names, Walsh et al. (2010) studied the impact of

moving from an angular logo to a round one, and Jiang et al. (2015) showed that the circularity or

angularity of the logo affects customer perceptions of hardness or softness, which in turn influence

attribute judgments about products. Other studies have looked at the orientation of logos. Cian

et al. (2014) found that the horizontal orientation of a logo or the positioning of its elements can

evoke the idea of movement to influence consumers’ engagement and attitudes. More recently,

Schlosser et al. (2016) found that upward diagonals convey greater activity than downward diago-

nals, leading to more positive reactions. Researchers have also analyzed the impact of the font and

typeface used in logos on consumer likelihood to choose a product, and the appropriateness of these

characteristics for particular industries (Doyle and Bottomley, 2006). Hagtvedt (2011) showed that

incomplete typeface can lead to perceptions of untrustworthiness and increased innovativeness.

Together, these studies imply that NHE dimensions and other objective measures such as the

color, angularity, orientation, font and typeface within a logo are important to consider in developing

a quantitative modeling approach to support logo design.

2.2. Aesthetics

There is a large body of work on aesthetics and perceptions within marketing and psychology. Here

we selectively review results that are relevant to our focus on identifying features for logo design.

Research in this domain has also emphasized the roles of color, font, orientation, and other factors

on how humans perceive and respond to visual stimuli.

Deng et al. (2010) studied consumers’ preferences for color combinations in product design.

Their study shows that of the three common dimensions of color—hue, saturation, and lightness—

people tend to de-emphasize lightness, relative to the other two. In addition, people prefer a small

number of generally similar colors, but with a single contrasting color that highlights a single

distinctive element. Kareklas et al. (2014) showed that people exhibit an automatic preference for

white over black in product choice and advertising, similar to the implicit bias observed in other

studies in psychology. Relatedly, Semin and Palma (2014) found that white is perceived as more
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feminine, whereas black is perceived as more masculine. Psychological work has looked at the

effect of color on emotional response. For example, Valdez and Mehrabian (1994) found that of the

three key color dimensions, saturation and lightness drive emotional responses along the pleasure,

arousal, and dominance dimensions. They also found that shades of blue, green, and purple are

experienced as being most pleasant, and shades of yellow as least pleasant.

Font and typeface have also been explored in advertising and impression management con-

texts. Childers and Jass (2002) explored the influence of semantic connotations of typeface on

consumers’ ratings of products. Henderson et al. (2004) analyzed many extant fonts based on

the typology literature and ratings of experts to uncover factors—pleasing, engaging, reassuring,

and prominent—that describe typeface impressions, and six factors—elaborate, harmony, natural,

flourish, weight, and compressed—that describe typeface design. They concluded that there may

be universal design elements that can help managers in impression management.

Other research has shown that the orientation of stimuli can influence peoples’ perception of

products. For example, Meyers-Levy and Peracchio (1992) showed that the camera angle of an

ad featuring a product can influence judgments of the product. Chae and Hoegg (2013) found

that in cultures where reading is done from left to right, products are viewed more favorably when

positioned congruently with this spatial orientation. Deng and Kahn (2016) found that a product

image’s location on its packaging influences the item’s perceived weight.

Many other aesthetic aspects that may be relevant for logo design have also been studied. For

example, Navon (1977) found that global features are processed more readily and fully than local

ones. More recently, Pieters et al. (2010) used eye-tracking to study two distinct aspects of visual

complexity of advertisements: feature complexity and design complexity. Feature complexity refers

to variation in basic features like color and edges, and is measured by variance at the pixel level,

while design complexity pertains to variation in the elaborateness of the design, and is measured

by six general principles: the quantity, irregularity, dissimilarity, and detail of objects, and the

asymmetry and irregularity of object arrangement.

Relevant to how brand constructs relate to visual elements, Orth and Malkewitz (2008) decom-

posed package design into five distinct types and prescriptively related these to brand personalities.

Spence (2012) discussed cross-modal effects such as visual perceptions associated with tastes and

textures (e.g., the angularity of carbonation or bitterness), which could be relevant determinants of
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logo design. Spence argued that firms can use these principles to set up an appropriate cross-modal

expectation for a consumption experience, thereby enhancing it. This, in turn, is based off earlier

work by Patrick and Hagtvedt (2011) that discussed consumers preferences for congruity in the

consumption experience (e.g., a fancy logo matching a fancy experience).

In summary, the literature described above has primarily used experimental approaches to

identify a number of visual features that influence consumer perceptions and reactions. We use

these features to guide the design of our logo feature extraction algorithm, which we describe

subsequently. Unlike many of these studies, our work does not study the effects of single logo

features in isolation on consumer perceptions, but rather examines logos holistically, exploring how

visual features combine to convey meaning in logos in practice. To that end, our work also differs

from the above literature in our use of a large number of real logos to understand and model the

multimodal associations between logos, firm descriptors, and brand personality measures.

3. Data

Our goal is to understand both what brand-relevant concepts a given logo conveys, and how a firm

can design a logo that is consistent with those concepts. To that end, we compiled a dataset con-

sisting of four components: logos, textual descriptions of firms from their websites, industry labels,

and brand personality ratings from consumers reacting to both the logo and textual description.

Our modeling approach focuses on learning the links between existing logos and these other

components; hence, for our approach to be meaningful for good design practices, we must ensure

that the firms for which we gather data have given some thought to the design of their logos. We

thus chose firms that were either rated as having a strong brand identity by brand specialists, or

were highly profitable and recognizable, based on the rationale that these firms have likely invested

in their brand identity as part of their success. Specifically, we looked at all firms that were either

listed in the Interbrand brand consultancy’s list of Top 100 Global Brands of 2016, listed as among

the top 500 most valuable American brands of 2016 by the brand valuation consultancy firm Brand

Finance, or listed in the Forbes 500 in 2016. There was a large degree of overlap between the lists,

leaving us with a sample of 715 brands. In data processing, we further eliminated firms with little

textual data, resulting in a final set of 706 brands.
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Logos: Firms employ a variety of logos for different purposes. Broadly speaking, a logo may be

comprised of three key features: marks, logotype, and subtext. Marks are the non-textual parts of

the logo (e.g., the Apple apple, or the Nike swoosh); the logotype is the primary textual identifier,

usually displaying the brand name; and the subtext is other text, often a brief descriptor of the

brand. A logo always has either a mark or a logotype, while some logos have both, and some

include a subtext. Some firms use variants of their logo for different purposes, which may consist of

either just the mark, or just the logotype, or the mark and logotype omitting the subtext, or a logo

where the colors are inverted (e.g., blue lettering on a white background becomes white lettering

on a blue background). Determining which logo to use thus requires some amount of judgment on

the part of the researcher. As a rule, we used the version that appeared most commonly on the

firm’s online marketing materials. When multiple logo versions were prevalent, we selected the logo

with a white background, and with both logotype and mark, if such a logo is in use.

Text: To understand the link between logo features and how the firms think about themselves, we

collected textual descriptions consisting of both functional and brand-relevant text taken directly

from firms’ websites. We collected this data in two batches: First, we asked Amazon Mechanical

Turk users to find text on the firm’s website that describes how the firm views its brand, and that

does not merely describe what the firm does. We guided workers toward the About Us, Mission

Statement, Corporate Values, or Investor Relations pages of firms’ sites. In a second batch, we

asked workers to find text that describes what the firm does, and is not identical to the text already

supplied. In both cases, we gave incentives for workers to provide long descriptions.

After gathering all this textual data, we applied standard text processing algorithms, to create

a dictionary of brand and firm descriptors. We first tokenized and stemmed the words, removing

stop words. We then removed all words that appeared in fewer than 20 of our 715 original brands.

This left a dictionary of 852 words. Finally, we removed brands that contained fewer than 20 of

these 852 words, leaving us with our final sample of 706 brands.

Industry Labels: In addition to the textual descriptions, as a simpler measure for capturing what

firms do, we also collected industry labels from Crunchbase, a database commonly used by investors.

Crunchbase offers a set of standard tags describing what firms do. For example, Uber has the labels
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Customer Service, Mobile Apps, Public Transportation, Ride Sharing, and Transportation. We

have 615 labels across our companies. These are further organized into category groups reflecting

similar activities. For example, Public Transportation, Ride Sharing, and Transportation are all

categorized under the group Transportation. We use these groups as our industry labels. We retain

labels that apply to at least 10 firms, leaving us 34 industry labels.

Brand Personality: Finally, we also collected brand personality ratings from consumers, follow-

ing the framework of Aaker (1997), as a simple way of understanding brand impressions in the

minds of consumers. Specifically, we used Amazon Mechanical Turk to elicit brand personality

perceptions from U.S.-based consumers, by showing participants both the logo and the text de-

scribing the firm. We then asked them to rate the extent to which they thought each of a set of

traits describes the focal firm, based on the logo and text provided. We used the original set of

42 personality traits from Aaker (1997), as well as three reverse-coded attention check traits.1 We

gathered 20 responses per brand, and use the average response on each of the 42 traits as our data.

In some of the subsequent visualizations, we also group the brand personality traits according to

the factor structure outlined in Aaker (1997) by taking the average of all traits assigned to a given

factor.

4. Logo Feature Extraction

Modeling visual objects such as logos is difficult because of the need to work with unstructured

image data. The computer vision and machine learning literatures have developed two broad

approaches for incorporating images in models. The first approach uses raw pixel-level data as the

input to a model. This is common, for example, in models of image recognition or image captioning,

which typically use a neural network for supervised prediction. The second approach begins by

processing the image to yield a “dictionary” of representative image features that are then used as

inputs to a model. We follow the second approach: we first use our novel logo feature extraction

algorithm, which is based on modern image processing methods, to process the logo images into

logo features, and then incorporate these features in a model of design. Our feature extraction

1The reverse-coded traits were honest/dishonest, exciting/boring, and good-looking/ugly. Any participant who an-
swered that both traits are descriptive of the firm was automatically removed.
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Figure 1: Examples of global features, using Amazon’s logo as an example. Percent whitespace captures the
percentage of pixels that are white (background), within the convex hull of the logo. The number of corners
is a measure of angularity computed via the Harris corner detector. Edge gradients capture directionality of
edges in the logo, and are computed by computing numerical gradients sliding over a black and white version
of the logo. The convex hull is the smallest convex polygon containing all of the non-background pixels.

algorithm is rooted in the literature on logo design and consumers’ responses to aesthetics, and

distills logos into components that are meaningful for consumers and designers. When combined

with the framework described in Section 6, this approach yields an interpretable machine learning

framework, which is an important advantage over less structured approaches. Each of our logo

features is human-interpretable, which is crucial for the model based on them to be useful in

decision support.

4.1. Algorithm Overview

Our algorithm has four stages: in the first stage, which we term summarization, we compute a

variety of features from the logo as a whole, which we refer to as global summary features. Examples

of these features are given in Figure 1, using Amazon’s logo. One such computation involves density-

based color quantization that gives the number of distinct colors in each logo. In the second stage

of the algorithm, which we term segmentation, we assign each logo pixel to one of these colors and

then segment the logo into regions that are separated either by color or by background (i.e., the

color white). For each of these segments, we then separate them into characters and marks. This

third character-identification stage uses a template matching procedure to separate out characters

from marks, and identify an approximate font used in the logo, if applicable. This process is

illustrated in Figure 2, again using Amazon’s logo as an example. In the final stage, which we term

tokenization, we cluster several of the features across logos, including the color, hull shape, and

mark shape, to form a dictionary of logo features. A detailed description of these stages is available
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Figure 2: Examples of the segmentation process, using Amazon’s logo as an example. The original logo is
at top. Beneath that is the segmented logo, where black identifies the background, and distinct regions are
marked by different color regions. We then apply a template matching and filtering algorithm to identify
which of these regions are characters (bottom-right), and assume the remainder are the marks (bottom-left).

in the web appendix. We now describe the different logo features that we extracted.

4.2. Visual Features

A listing of all of our visual features, including their descriptions and connections to the previous

literature, is available in the web appendix. Here, we briefly describe the logo features, grouping

them into color, format, shape, font, and other features for expositional convenience.

Color: The full color dictionary, computed by clustering the colors across all our logos, is given

in Figure 3. Apart from just computing which colors are present in a logo, our algorithm also

identifies the dominant color (one per logo) and accent colors (all colors except the dominant

color). It also computes the extent of white space within the convex hull (which is the smallest

convex polygon that contains all of the non-background pixels) of all logo pixels. We also compute

other summary statistics about color in the hue-saturation-value (HSV) color space, including the

mean and standard deviation of the saturation and lightness channels.

Format and Shape: These include features that capture the presence of a mark in the logo,

the number of marks, and the aspect ratio of the logo. We also cluster the the set of convex hulls

across our logos to form a dictionary of logo shapes, shown in Figure 4. Similarly, we standardize

the shape of each mark, convert it to greyscale, and then cluster all marks into 14 representative

mark types. We give examples of these classes in Figure 5.
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Name R G B Color Name R G B Color
White 253 253 253 Dark Blue 30 42 124
Black 20 18 18 Light Gray 165 164 167
Red 226 33 41 Light Blue 54 153 204
Blue 25 89 152 Light Green 99 178 67
Dark Green 34 120 77 Yellow 245 202 36
Orange 239 131 40 Tan 186 164 103
Dark Gray 116 111 111 Dark Red 174 39 63

Figure 3: Color dictionary: the RGB color channel values of the cluster centers for the representative set of
colors, along with the actual color encoded by those values. These were obtained by clustering in the LAB
color space across logos, which is meant to capture differences in human color perception.

Figure 4: Hull classes: the six typical shapes of logos, as characterized by their convex hulls. Each logo in
our dataset is assigned to one of these classes.

Cluster Sample of marks

6

7

9

Figure 5: Mark classes: three examples of our mark classes, with 10 randomly sampled examples of each.
Each mark is assigned to a single class.

Calligraphic font classes:

Casual (Nadianne)
Glyphic (Copperplate)

Font weight:

Original
Light
Bold

Serif font classes:

Clarendon (Clarendon)
Didone (Bodoni)
Oldstyle (Bembo)
Slab (Rockwell)

Transitional (Times)

Sans-serif font classes:

Geometric (Futura)
Square (Eurostile)

Grotesque (Helvetica)
Humanist (Gill Sans)

Font style:

Upright
Italics

Font width:

Normal
Condensed
Wide

Figure 6: Font classification system employed by the algorithm: fonts were matched to a font class, weight,
style, and width.
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Font: Font is a crucial feature of logos. We therefore developed a procedure to identify and

describe characters and their fonts. Specifically, we apply a template matching procedure to match

each logo segment to an extensive collection of fonts, which we curated to capture the intricacies

of font design as exhaustively as possible. This font dictionary captures a range of font families,

forms, and styles, including fonts from all Vox-ATypI font classes, a standard font classification

scheme used by font experts.2 We illustrate our complete font typology in Figure 6.

Others: The literature review identified several other features that are important for logo design,

such as complexity, symmetry, and orientation. For each of these, we include direct or indirect

measures aimed at capturing that feature, without the need for a human coder. For complexity,

we use a number of measures, including the number of distinct colors, the number of segments,

the perimetric complexity (the ratio of edge pixels to interior area), and the greyscale entropy (the

average variance of pixel intensities across sliding windows). We also include measures of both

horizontal and vertical symmetry, computed by looking at the correlation between halves of the

image. For orientation, we compute both measures of position of the mark relative to the text, and

also edge-based metrics. Several of these features are illustrated in Figure 1, and more details are

provided in the web appendix.

Discretizing Variables: Some of our logo features are real or integer-valued. We discretize each

of these features into two binary variables, corresponding to whether the logo is in the bottom or

top quartile of the data for that feature. This measures whether the logo is particularly low or

particularly high on a feature. For example, in discretizing the number of corners variable, we use

two binary variables: low number of corners, which captures whether the logo is in the bottom

quartile for number of corners, and high number of corners, which indicates whether the logo is in

the top quartile. The only exception to this procedure is the number of colors in a logo: as the

vast majority of logos have either one, two, or three colors, we convert this variable to a categorical

variable with four levels: one color, two colors, three colors, or more than three colors. We have

found that discretizing real and integer-valued variables improves the empirical performance of our

model significantly, and also aids interpretability: it is difficult for a designer to attempt designing

2https://en.wikipedia.org/wiki/Vox-ATypI_classification

14



a logo with 22 corners, but relatively easier to design one with “many” corners or “few” corners.

5. Exploring the Data

Before describing our modeling framework, we provide some model-free evidence to illustrate the in-

terplay among logo features, firm function, as captured by the industry labels, and brand personality

perceptions. This motivates the full model, by illustrating the complex relationship between logo

design and firm identity. We use forest plots to visualize the linkages among these variables in an in-

tuitive and interactive fashion. These plots show how one focal outcome variable varies as a function

of another explanatory variable in binary form. In the remainder of this section, we highlight a few of

these plots. However, we also provide a web app that allows the reader to explore the full set of pos-

sible forest plots, which can be accessed at https://dr19.shinyapps.io/explore_logo_data/.

In our data, brand personality (BP) provides an especially insightful portrait as to how con-

sumers perceive the firm. In Figure 7, we present two forest plots that show how brand personality

perceptions (the outcome variable) vary as a function of logo features. Both plots confirm with our

intuition and relate to some of the findings from the literature on logos and aesthetics. The first

plot compares BP perceptions (on the vertical axis) across three common dominant logo colors:

black, blue, and red. The plot shows the difference in the outcome (e.g., perceived honesty of the

brand) for firms that have a particular dominant color (e.g., blue) and firms that do not have that

dominant color. We can see, for instance, that black logos tend to score low on down-to-earth,

but high on dimensions like daring, spirited, and imaginative. Interestingly, they also score high

not only on upper class and charming, but also on outdoorsy and tough. This result, in isolation,

seems surprising, as upper class and charming appear quite different than outdoorsy and tough.

This unintuitive result highlights the need for understanding the whole combination of logo fea-

tures, jointly: black, alone, may be used to convey a multitude of brand identities. Logo design

must thus simultaneously rely on many facets to build a personality-consistent logo.

The second plot of Figure 7 shows how some global features of the logo and its convex hull

relate to brand personality. These features are less intuitive than color, but have been emphasized

more in the literature. Moving from left to right in the plot, we find the following:

1. Horizontally symmetric logos tend to be perceived better along almost all dimensions, except
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Figure 7: Each color in the plot represents a different brand personality factor, denoted in the legend. On the
x-axis are features of the logo. On the y-axis is the difference in brand personality perception for firms that
have a certain feature, versus firms that do not have that feature. Error bars around the points represent
two standard errors.
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intelligent, perhaps reflecting the role of harmony in positive affect discussed in Henderson

and Cote (1998).

2. High entropy, a measure of complexity, that is similar to the concept of feature complexity

in Pieters et al. (2010), is generally associated with low perceptions across the board.

3. A high proportion of upward diagonal edge gradients appears positively related with cheerful,

spirited firms, which lends some support for the findings of Schlosser et al. (2016), who found

that upward diagonals convey activity.

4. Placing the mark towards the right is associated with lower perceptions of down-to-earthness,

honesty, and wholesomeness, but marginally higher intelligence. While not directly related to

their findings, the idea that placement of the mark relative to the text matters for perceptions

echoes the findings of Deng and Kahn (2016).

5. Angularity, as captured by the number of corners, is positively associated with down-to-earth

and tough logos, and negatively related to the others. This appears consistent with Jiang

et al. (2015), who found angularity to be associated with durability.

6. A circular hull is positively associated with cheerful, daring, spirited, but negatively associated

with intelligence, supporting the findings of Jiang et al. (2015) that circularity is associated

with comfortableness and customer sensitivity.

Taken together, these findings lend strong support to the idea that our features capture many of

the aspects discussed in the literature.

Apart from conveying brand image, firms may rely on logos to signal the kind of product or

service that customers will receive. As a simple measure of what a firm does, we use the industry

labels from Crunchbase. Figure 8 shows another forest plot that visualizes the variation in the

dominant color of the logo in terms of the industry labels. Again, we find that some of these

relationships are quite strong and intuitive. For instance, blue is associated with financial services,

but not with food and beverage, and the reverse is true for red. Black is associated with clothing

and apparel, which is also consistent with the brand personality link of black with upper class and

charming, as many clothing and apparel companies are also luxury brands. However, we again see
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Figure 8: Forest plot for industry label and logo color: given a firm has a certain industry tag, the plots
show whether that its logo is more or less likely to have one of three dominant colors: black, blue, and red.
Error bars around the points represent two standard errors.

that the relationships are complex. For example, while we saw in the brand personality analysis

that black logos are perceived as rugged, it is not necessarily the case that companies in “rugged”

industries, like manufacturing, are using black logos.

These visual analyses study relationships in isolation: for example, how is industry related to

color, or how is color related to brand personality? They thus raise the question: what is the

right combination of logo features a firm should employ to be perceived a certain way? We see, for

instance, that red is positively associated with food and beverage companies, but negatively with

an upper class brand personality perception. What combination of logo features might convey the

idea of an upper class fast food company? In addition, the industry label is a simplified way of

operationalizing what a firm does. To answer questions regarding combinations of features, and

to facilitate the use of unstructured, textual data that may more accurately reflect nuances of a

company, we need a model that leverages these type of data to simultaneously capture all aspects

of brand identity.
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6. Modeling Framework

We now describe our model for logo design. We draw on recent advances in deep generative

modeling (Kingma and Welling, 2013; Ranganath et al., 2014; Rezende et al., 2014; Kingma et al.,

2014) and multiview learning (Li et al., 2016; Suzuki et al., 2016; Wu and Goodman, 2018) to learn

multimodal representations of brands in a joint latent space that is shared across our different

data modalities.3 Specifically, we flexibly capture the linkages among our four main data sources—

the textual website descriptions, logo features, industry labels, and brand personality metrics—in

a semi-supervised fashion, using a multimodal generalization of a variational autoencoder. Our

representation learning approach enables us to answer questions from all three perspectives listed

in the introduction (i.e., the designer’s, brand manager’s, and researcher’s), without the need to

specify one domain as the dependent variable and the others as independent variables.

6.1. Variational Autoencoders

We begin by briefly describing a simple variational autoencoder (VAE), before focusing on mul-

timodal extensions that are relevant for our work. Variational autoencoders were proposed by

Kingma and Welling (2013) and Rezende et al. (2014) as scalable mechanisms for estimating gen-

erative models of data. A variational autoencoder consists of two tightly integrated components:

a generative model for the observed data that is specified in terms of latent variables, and an

amortized variational distribution that approximates the posterior distribution of the observation-

specific latent variables. The two components are jointly estimated from the data.

The generative model represents the probability distribution of the observed data, xi for each

observation i, in terms of a multidimensional latent variable zi. The mapping between the latent

variable zi and the parameters of the probability distribution is specified using a multilayered

neural network, called the decoder network, whose parameters (weights and biases) are contained

in the vector θ. The joint distribution of the data and the latent variables is given as pθ(xi, zi) =

pθ(xi|zi)p(zi), where the prior for zi is assumed to be isotropic Gaussian, p(zi) = N (0, I).

To approximate the posterior of the latent variables, pθ(zi|xi), VAEs rely on amortized vari-

ational inference, where the approximating variational distribution qφ(zi|xi) is specified using an-

3We use the terms modality, data source, and domain interchangeably.
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Figure 9: Graphical model for a standard VAE: the decoder network with parameters θ transforms the
latent representation zi into the parameters of the likelihood for xi. Given xi, the inference network, with
parameters φ, specifies the approximate posterior for zi.

other neural network, called the encoder or inference network. Note that the inference network uses

the available data xi as its input to specify the variational distribution for the observation-specific

zi. The weights and biases of this network, φ, are amortized (i.e., shared) across all observations,

allowing for scalable inference. Inference networks thus transform the inferential problem to that

of learning a function, parameterized by a neural network, such that given any data, we can obtain

an approximate posterior distribution for the latent variables of interest, simply by evaluating the

function. The structure of such a standard VAE is illustrated in Figure 9.

6.2. Multimodal VAE

As we have data from multiple domains, we use a multimodal variational autoencoder (MVAE)

to learn a latent representation that is shared across domains (Suzuki et al., 2016; Jaques et al.,

2017; Wu and Goodman, 2018). We have data on i = 1, . . . , N, brands across the four domains,

indexed by d ∈ {Text,Logo, Ind,BP}, where Ind refers to the industry labels and BP indicates the

brand personality. The observed data for brand i in domain d is written as xdi and the complete

observation is given by xi = {xText
i ,xLogo

i ,xInd
i ,xBP

i }. The domains differ in the number and type

of features (e.g., words for text, logo features for logos, personality traits for brand personality).

We index these features within domain d as j = 1, . . . , Vd, such that xdi = {xdi1, . . . , xdiVd}. The

generative model specifies the probability distribution of the observed data in each domain in terms

of a shared latent variable vector zi. Given our interest in analysis from multiple perspectives (e.g.,

the designer’s perspective, which involves inferring the logo features from the other modalities,

or the manager’s perspective, which involves predicting consumer reactions from firm-generated

content), we use multiple inference networks that condition on different subsets of the observed
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Figure 10: An illustration of the MVAE framework.

data xi to infer the common latent variable zi. Figure 10 visually illustrates the modeling and

inferential framework. While we observe data for all domains for each brand in our data, the

framework allows for missing domains. We now focus on the generative model for the domains,

before turning our attention to inference.

Multimodal Generative Model The generative model represents the probability distribution

of the multimodal observed data xi in terms of a shared multidimensional latent variable zi, which

has an isotropic Gaussian prior p(zi) = N (0, I). As in the standard VAE, the joint distribution of

the data and the latent variables is given as pθ(xi, zi) = pθ(xi|zi)p(zi). However, the probability

models for the different domains are independent, conditional on zi i.e., pθ(xi|zi) =
∏
d pθd(x

d
i |zi).

In turn, the probability model for each domain is specified using independent feature-level probabil-

ity distributions such that pθd(x
d
i |zi) =

∏
j p

j
θd

(xdij |zi). Let µdi contain the parameters for the dif-

ferent feature-level distributions associated with observation i within domain d. A domain-specific

decoder network, which we denote DNetd(zi;θd), captures the non-linear relationship between µdi

and zi, such that µdi = DNetd(zi;θd). We first describe the different feature-level probability

distributions and follow with a description of the domain-specific decoder networks.

Feature-Level Distributions Conditional on the joint representation zi, each brand’s features

are modeled using independent domain- and feature-specific exponential-family distributions. The

specific exponential-family distributions that we use for the different domain features are:
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• Text: We use a Bernoulli distribution that captures whether or not a given word is present

in a brand’s textual description. That is, for each word j, we use the logistic-sigmoid trans-

formation to model the probability that the word is present in brand i’s description:

P (xText
ij = 1) =

1

1 + exp(−µText
ij )

. (1)

This simple coding captures whether or not a firm chooses to label itself a certain way (e.g.,

as “innovative”). Although the number of times a given word is repeated may be informative,

it may also merely reflect the volume of text on the firm’s website. Hence, we only model the

presence or absence of a given word in the textual description.

• Logo features: Each of our logo features is either binary or categorical. For binary features,

like whether the logo has a mark, we use a Bernoulli distribution. For categorical features

consisting of m = 1, . . . ,Mj possible options, like the dominant color, we use a categorical

distribution, such that:

xLogo
ij ∼ Categorical(softmax(µLogo

ij )), (2)

µLogo
ij = (µLogo

ij1 , . . . , µLogo
ijMj

), (3)

where,

softmax(µLogo
ij ) =

(
exp(µLogo

ij1 )∑Mj

n=1 exp(µLogo
ijn )

, · · · ,
exp(µLogo

ijMj
)∑Mj

n=1 exp(µLogo
ijn )

)

gives the probability vector of the categorical distribution.

• Industry labels: Industry labels are binary variables and are modeled with a Bernoulli distri-

bution.

• Brand personality: Brand personality is also real-valued, as it is the average of all respondents

ratings, measured between 0-4. We therefore model it using a normal distribution, such that:4

xBP
ij ∼ N (µBP

ij1 , σ
BP
ij ), σBP

ij = log(eµ
BP
ij2 − 1)). (4)

4The log(ey − 1) structure in Equation 4 is the inverse of the so-called softplus function, y = log(1 + ex), which is
commonly used to enforce positivity, as a more numerically stable alternative to a simple exponentiation.
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In the above feature-level distributions, the observation-specific distributional parameters (e.g., the

mean µBP
ij1 and the variance σBP

ij of the normal in Equation 4) are specified non-linearly in terms of

the latent variable zi for that observation using modality-specific decoder networks.

Decoder Network We use a domain-specific decoder network, µdi = DNetd(zi;θd), to model

the potentially non-linear relationship between µdi and zi. In our application, we use dense, feed-

forward layers with rectified linear activation units (ReLU) and skip connections to specify DNetd()

for each domain. This is equivalent to the following sequence of computations:

hDec,d
i1 = ReLU(ad0 +W d,z

0 zi),

hDec,d
i2 = ReLU(ad1 +W d,h

1 hDec,d
i1 +W d,z

1 zi),

... (5)

hDec,d
iLd

= ReLU(ad(Ld−1) +W d,h
(Ld−1)h

Dec,d
i(Ld−1) +W d,z

(Ld−1)zi),

µdi = adLd +W d,h
Ld

hDec,d
iLd

+W d,z
Ld
zi,

where ReLU(x) = max(0, x), applied componentwise. The above is equivalent to applying the ReLU

operation sequentially, layer by layer, through the network. Each layer ` computes a transformed

representation of the brand through the hidden units, whose activations are contained in the vector

hDec,d
i` , of size equal to the number of hidden units in that layer. The weights associated with each

layer are contained in the matrices, W d,h
` and W d,z

` , where the latter is associated with the latent

variables zi. The ad` vectors contain the biases (intercepts) associated with the hidden units in layer

`. Note that we combine the hidden unit activations with the original representation zi, in what

is known as skip connections (Dieng et al., 2018), to inform the hidden units of the next layer.5

This whole operation is repeated Ld times for the number of layers in the network for domain d.

The output layer (i.e., the last layer) outputs the parameters µdi of the data likelihood. The use of

multilayered feed-forward networks allows us to capture complex joint distributions involving the

different domains, and the expressiveness of the model depends upon the number of hidden units

and layers.

5We include skip connections to avoid a phenomenon called latent variable collapse, in which models like ours get
stuck in uninformative local optima (Dieng et al., 2018).
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We use θd to refer to all of the decoder network parameters within domain d across all the

features j. While the exact nature of the decoder network differs across domains, the above conveys

the general structure. We describe the specifics of each domain’s network architecture in a later

section.

Multiview Inference Networks The key task in using the MVAE framework is to learn the

joint latent representations zi. In our work, we follow the standard practice of assuming a mean-

field variational approximation for the posterior of zi. The approximate posterior is given by the

normal distribution:

pθ(zi|xi) ≈ qφ(zi|ξi) = N (ξmi ,diag(ξvi )), (6)

where, just as in the standard VAE, an inference network computes the mean and variance terms

of this normal distribution, ξi = {ξmi , ξvi } from data xi. That is, ξi = INet(xi;φ), which is a neural

network given by:6

hInf
i1 = ReLU(c0 + V0xi),

hInf
i2 = ReLU(c1 + V1h

Inf
i1 ),

... (7)

hInf
iL = ReLU(cL−1 + VL−1h

Inf
i(L−1)),

ξi = cL + VLh
Inf
iL .

The inference procedure thus consists of optimizing the decoder and inference network parameters

θ and φ such that qφ(zi|ξi = INet(xi;φ)) is as close to the true posterior pθ(zi|xi) as possible.

In our application, it is important to be able to infer zi given information on only a subset of

the domains. This involves using brand-specific data on some subset of the domains to compute zi,

which can then be used to make predictions on the missing domains. For example, when approach-

ing the task of data-driven design (i.e., the designer’s perspective), we have data on everything

except the logo. Alternatively, a brand manager cares about how consumers will evaluate a brand

6Note that, while the inference networks and decoder networks are all functions modeled with deep neural networks,
these neural networks are modeled as a priori independent; that is, there is no imposed dependency between the
two.
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or brand-candidate, given a logo, text, and industry information. To tackle this challenge, we in-

troduce the idea of task-specific inference networks: inference networks corresponding to different

conditional posteriors, depending on the patterns of missingness that govern a particular context.

Specifically, we implement four distinct inference networks: (1) the full data inference network,

akin to that of the classical VAE; (2) the designer’s inference network, corresponding to the case

where we observe everything except the logo; (3) the manager’s inference network, corresponding to

the case where we observe everything except consumer’s perceptions of brand personality; and (4)

the researcher’s inference network, corresponding to the case where we just observe the logo. That

is, we learn four distinct inference networks, which we index by t ∈ {Full,Des,Mgr,Res}, where t

stands for task, corresponding to four separate functions,

ξi,t = INett(x̃
t
i;φt),

where x̃ti is shorthand for the data available for inference task t (for example, for t = R, x̃i = xLogo
i ).

Intuitively, this function corresponds to the model’s “best guess” at the posterior distribution, given

data from the available domains for the particular task. Note that, regardless of which inference

network is used, the decoder network and probability models remain fixed. Hence, each inference

network is forced to learn a coherent, unified representation, regardless of the missing modalities.

Finally, we also note that, while we have assumed a set of tasks corresponding to our data setting,

this structure can be easily adapted to include other tasks of interest.

6.3. Inference

Inference with this multimodal setup involves variational expectation maximization (variational

EM), adapted to allow for our multiple decoder and inference networks. Intuitively, the goal of

inference is to optimize the parameters θ and φ, of the decoder and inference networks, such that

encoding and then decoding data xi leads to a prediction that is as close as possible to the original

data.

In the classical VAE, with one decoder network and one inference network, the following loss
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function is minimized:

`(θ,φ) =
N∑
i=1

−Ez∼qφ(zi|ξi=INet(xi;φ))[log pθ(xi | zi)] + KL(qφ(zi |xi) || p(zi)), (8)

where KL() is the Kulback-Leibler divergence between distributions. This loss is the negative of the

standard evidence lower bound (ELBO) for doing variational inference on the latent parameters, zi,

but where the parameters of the variational approximation are determined by the inference network

(Blei et al., 2017). Another interpretation is that the first term encourages a good reconstruction

of the data, while the second term regularizes estimates toward the prior.

In our multiview inference framework, the pθ(xi | zi) from Equation 8 decomposes into a product

of the domain-specific decoder networks and feature-specific probability distributions. Moreover,

we add to the above a stochastic binning procedure: for each iteration of our optimization, we

split the data into four equally-sized bins, such that for each bin, we use a different one of our

four inference networks, holding out the relevant data modalities. Returning to Equation 8, this

means that, in our optimization, at each iteration, the qφ(zi|ξi = INet(xi;φ)) used for observation

i depends on the bin that brand i is assigned to in that iteration. Together, these two modifications

imply the following per iteration loss function:

`m(θ, {φt}) =
N∑
i=1

∑
∀t
δitm

{
− Ezi∼qφt (zi |ξi,t=INett(x̃ti;φt))

[log pθ(xi | zi)] +

KL
[
qφt(zi | x̃ti) || p(zi)

] }
(9)

where m indexes the iteration of the optimization, and δitm = 1 if brand i is assigned to bind

t on iteration m, and zero otherwise. Intuitively, this stochastic binning allows us to learn our

task-specific inference networks simultaneously, by augmenting our complete data with incomplete

instances of each of the original observations. Optimizing this loss is similar, but not exactly

equivalent to the procedure suggested by Wu and Goodman (2018).

6.4. Implementation

Here, we briefly describe the specifics of how we implemented our model, including regulariza-

tion, hyperparameter optimization, and model architecture details. We include more details on
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implementation, including pseudocode, in the web appendix.

We implement our model using Tensorflow and the Edward probabilistic programming language

(Tran et al., 2016). We optimize the loss in Equation 9 using stochastic gradient descent. To prevent

overfitting, complex models such as ours typically rely on regularization methods. We utilize two

regularization strategies: L2 regularization of the weights of the neural network, and dropout, both

of which are standard approaches in the deep learning literature (Goodfellow et al., 2016). To

determine all model hyperparameters, including the number of latent dimensions (K), number of

hidden layers, layer sizes, and degree of regularization, we performed grid search over a wide array of

values, assessing model performance using both cross-validation fit and posterior predictive checks.

From this procedure, we determined an optimal dimensionality of the latent space of K = 40. We

also found that using more than a single hidden layer in the neural networks did not improve model

fit. This is likely because we are already working with highly processed inputs, thus limiting the

usefulness of the increasing levels of abstraction enabled by adding more layers. Our final model

architecture consists of 1024 hidden units in all of the inference networks, 1024 hidden units in the

text decoder network, and 512 hidden units for all other decoders.

7. Model Results

We present the model results in five parts: first, we briefly describe the reconstruction error and

predictive ability of our MVAE model. We then describe the learned latent space by showing

how the model encodes features of brands (e.g., industry) and by illustrating the similarities that

are learned for a set of representative brands. To further validate the learned generative model,

we then showcase an example of a randomly generated brand. Next, we show how the learned

representations can be used for ideation via a brand arithmetic approach in which a brand can be

combined with another brand, or with specific features, to generate novel brand identities. Finally,

we show how the different task-specific inference networks can be used to study new brands, and

provide decision support for designers and managers.
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Full Data Cross-Validation
NIR Full Full Des Mgr Res

Brand Personality 0.406 0.011 0.268 0.279 0.367 0.446
Industry Labels 0.106 0.026 0.059 0.058 0.059 0.081

Logo: Binary 0.262 0.030 0.134 0.229 0.132 0.093
Logo: Dom. Color 0.128 0.011 0.062 0.120 0.061 0.038
Logo: Hull Shape 0.235 0.028 0.163 0.224 0.161 0.112
Logo: Mark Shape 0.115 0.020 0.096 0.114 0.094 0.070
Logo: Sans/Serif 0.215 0.020 0.117 0.180 0.111 0.067
Logo: # Colors 0.363 0.032 0.189 0.347 0.187 0.128

Text 0.158 0.016 0.111 0.109 0.111 0.132

Table 1: MAD statistics for the model using different inference networks, compared to the No Information
Rate (NIR). Full stands for the full data inference network, Des for designer (i.e., given no logo data), Mgr
for manager (i.e., given no brand personality data), and Res for researcher (i.e., given only logo data). The
first two columns are using the full data; the remaining four columns are results from cross-validation, i.e.,
for firms not in the training data. The values in normal font weight are for reconstruction tasks, while the
values in bold are for predictive tasks (i.e., predicting a heldout domain).

7.1. Fit

We summarize the fit of the model in Table 1 using Mean Absolute Deviation (MAD), computed

separately for each of the domains. We define the MAD for domain d as:

MADd =
1

N

1

J

N∑
i=1

J∑
j=1

|xdij − E(xdij)|, (10)

where E(xij) is the expected value of xdij under the model. We compare the predictions of our

model to the no information rate (NIR), which is a natural simple benchmark, equivalent to using

the empirical mean as the expected value in Equation 10, E(xdij) = x̄dj . Table 1 shows these

statistics for both in-sample firms using the full inference network, and heldout firms via a 10-fold

cross-validation involving all four inference networks.7

Table 1 showcases an important distinction between three types of fit measures: (1) in-sample

reconstruction error, which is computed using the full inference network on the full data and

captures how well the model does at recreating the inputs it is given during training; (2) out-of-

sample reconstruction error, which represents how well the model is able to reproduce inputs it

is given for new brands; and (3) out-of-sample predictive error, which shows the model’s ability

7For visual features, we treat the full set of binary features as one group, and we compute separate MAD statistics
for each of the categorical features.
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to predict missing domains for new brands. Our model does exceptionally well on in-sample

reconstruction error, shown in column two of the table for the full inference network, which is not

surprising: with a high dimensional latent space, and expressive inference and decoder networks, the

model is able to recreate the data it is trained on.8 More importantly, the model is also able to learn

meaningful representations for new brands, as shown by the out-of-sample reconstruction errors

reported in column three for the full inference network, and by the out-of-sample reconstruction

errors reported in non-bold font in the other columns for the task-specific inference networks. That

is, given data for a brand that was not present during training, the inference network is able to

output a latent representation for that brand, which can then be used by the decoder network to

recreate the original data. That the model achieves relatively low error rates in this out-of-sample

reconstruction task indicates that the learned latent space does, in fact, capture meaningful brand

information.

The bold cells in the remaining three columns of Table 1 measure task-specific predictive accu-

racy. We can see that, relative to the reconstruction tasks, these predictive errors are much larger.

Again, this is expected: the predictive task is harder than the reconstruction task, as it involves

predicting held-out information for new brands. However, in nearly all cases, the model achieves

better predictive error rates than the naive NIR benchmark. The only exception to this is the

researcher network: given data on just the logo features, it is difficult for the model to predict the

heldout domains.9 Nonetheless, for the designer’s task, the model is able to predict better than

chance what features will be present in a firm’s logo, given a text, brand personality, and industry

tags, and for the manager’s task, the model is able to predict how consumers will evaluate a brand’s

personality, given a brand’s profile.

7.2. Understanding the Latent Space

Having established the validity of the latent space, we now turn to understanding what it represents.

In general, it is difficult to interpret specific dimensions of our learned latent space. Consider, for

8We do not show the results for in-sample error for the other inference networks, as they are essentially identical to
the full inference network: for firms in the training data, the model is able to learn highly correlated representations
across all inference networks, leading to essentially equivalent predictions regardless of the inference network used.

9One explanation for the difficulty in predicting firm traits from logos alone is that the norms for logos vary by
industry. Indeed, if the model is re-trained with the “researcher” network using both logo features and industry tags
as inputs, predictive accuracy modestly improves.
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Figure 11: Average zi values for brands with four example industry tags, illustrating how specific traits are
encoded by several dimensions.

instance, how the model encodes industry tags. In Figure 11, we plot the average zi values for

brands that have one of four industry tags: Clothing and Apparel, Financial Services, Food and

Beverage, and Health Care. We see that, in general, the average zi value for a given tag is close to

zero. For each tag, however, a few dimensions have extreme values, implying that industry is not

encoded via a single dimension, but by a combination of latent dimensions.

Although the z-space cannot be directly interpreted, distances within it are meaningful: if two

brands are closer together, they are predicted to share features. By looking where brands lie in

this space, we can better understand what the learned representations are capturing. In Table 2,

we show the three nearest neighbor brands in z-space for a set of representative focal firms, along

with the distance each neighbor is from the focal firm. We see that, in general, a firm’s neighbors

are those brands that share many features: for example, they operate in a similar industry, have

similar brand perceptions, and share similar logo features. Moreover, the more features two brands

share, the closer they tend to be in terms of distance in z-space. For example, Facebook’s closest

neighbor is Twitter: not only are they both innovative social network platforms, but they both

have simple, blue, bulky logos. Similarly, Old Navy’s closest neighbor is Gap: both are owned by

the same parent company, both sell clothing at affordable price points, and both have dark blue,

again relatively simple logos. In other cases, the nearest neighbors are not such close matches: for

example, in the case of 3M, we see that the closest neighbor in z-space, Becton Dickinson, is very

similar in terms of firm function and perception, but not as similar aesthetically. The distance

between firms reflects the degree to which they are similar in all dimensions, as can be seen by
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Focal Brand Neighbors in z-space

Facebook Twitter Uber Amgen
Social network Social network

(8.36)
Ride-sharing

(8.98)
Biopharmaceuticals

(9.92)

Old Navy Gap Ross Dress for Less VF Corporation
Discount apparel Mid-market apparel

(8.53)
Discount apparel

(9.45)
Apparel umbrella brand

(9.5)

3M Becton Dickinson Illinois Tool Works Facebook
Materials and consumer

goods
Medical technology

(10.07)
Components and
equipment (10.4)

Social network
(10.73)

Gucci MAC Dior Prada
Luxury goods Cosmetics

(8.82)
Luxury goods

(8.96)
Luxury goods

(9.7)

KFC Pizza Hut Supervalu Burger King
Fast food Fast food

(9.38)
Discount grocer

(9.76)
Fast food
(10.11)

Table 2: The 4 closest brands to each focal brand in z-space, including their logo, name, a brief description
of what the firm does, and, in parentheses, the distance between the focal brand and the neighbor.

comparing the small distance between Facebook and Twitter (8.36) to the larger distance between

3M and Becton Dickinson (10.07). These comparisons also emphasize how distance in z-space is

distinct from just simply clustering the logos themselves: zi captures a holistic view of firm i,

including aesthetics and other aspects of brand identity.

7.3. Generating Random Brands

As a final validation of the learned latent space and generative model, as well as to build familiarity

with the outputs and predictions of the framework, we consider the task of generating random

brands. Under the MVAE framework, this can be accomplished simply by drawing a new zi vector
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from the prior, zi ∼ N (0, I), and propagating that vector down the decoder network. If the model

has learned a meaningful latent space, then brand identities generated in this fashion should be

coherent. To see this, we generate a single random zi vector, then feed this vector through the

decoder network to understand what features correspond to it.

Starting first with the industry tags, the most likely tags corresponding to this random zi are:

Software (probability 0.578), followed by Professional Services (0.220), Commerce and Shopping

(0.176), and Consumer Goods (0.143). Hence, we infer that this is a software company, likely

providing software to other companies, possibly in the retail or e-commerce space.

To understand the brand personality corresponding to this randomly-generated brand, we first

note that each of the brand personality traits has a different overall mean in our data. For instance,

the average score for “confident” across all brands is 2.56, while the average score for “feminine” is

0.827. Hence, a brand that scores 2.4 on confident but 1.6 on feminine is actually perceived as quite

feminine, but slightly less confident, relative to the mean, despite its confident score being higher

than its feminine score. For this reason, we consider personality scores relative to the sample mean.

For our randomly generated brand, the highest relative personality traits are: young, trendy, and

cool. The lowest relative personality traits are: masculine, tough, hard-working.

To more concretely understand this brand identity, we can use the decoder network to also

generate what words would likely appear on this firm’s website. Once again, we consider what

words are more or less likely to appear relative to the sample mean, for the same reason as with

brand personality: while many firms use words like “product” or “consumer,” we want to find

which words are most specific to the focal brand, and hence consider probabilities relative to mean

rate of occurrence in our sample. For our randomly generated brand, the ten most likely words,

relative to the mean, are: expert, keep, come, engineer, today, even, love, group, property, excite.

These words are in keeping with the prior descriptions of the brand as a software company (expert,

engineer), with a relatively young and hip brand identity (today, love, excite).

Finally, in Table 3, we show the visual features corresponding to this randomly generated zi.

We break these visual features down into the five categorical variables, as well as a selection of the

most likely binary variables, broken down into several categories. To better understand how these

features could be translated into a logo, we also provide a simple, nonprofessional rendering of a

logo based on this profile in Figure 12. Again, the visual design makes intuitive sense: the suggested
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Categorical Features

Feature Likely Values Prob

Dominant color: Medium Blue � 0.279
Black � 0.239
Tan � 0.119

Hull shape: Medium Oval 0.976
Thin Oval 0.023

Sans/Serif Font: Sans 1.000
Mark Class: Long, Horizontal 0.380

Detailed Horizontal 0.204
Narrow, Vertical 0.087

Number of Colors: Many colors (> 3) 0.885
Three colors 0.112
Two colors 0.003

Binary Features

Feature Class Likely Values Prob

Colors: Light Gray � 0.800
Light Blue � 0.582

Accent color: Light Green � 0.707
Light Gray � 0.708

Font: Width: Original 0.999
Style: No Italics 0.999
Class: Geometric 0.827

Other: Has a Mark 0.996
Low # Corners 0.851
Low % Whitespace 0.835
High Vertical Symmetry 0.996
Low Perimetric Complexity 0.746

Table 3: Visual profile for a randomly generated brand, illustrating the likely values of the categorical
features at left, and a selection of high probability binary features at right. We only report binary features
that are relatively more likely than the population mean.

Brand
Figure 12: Simple, nonprofessional rendering of a logo with the features described in Table 3.

color scheme of blues, greens, and greys is coherent, in the sense that these three particular colors

align with well known and commonly used “analogous” or “split” color schemes.10 The lack of

whitespace is consistent with many technology firms, including Samsung, Apple, and Twitter.

Likewise, the geometric, sans-serif font is consistent with a modern, trendy image. In sum, the set

of features corresponding to a randomly drawn zi is coherent, lending additional support to the

idea that our learned generative model has captured fundamental design principles.

7.4. Ideation through Brand Arithmetic

We now show how the learned representations can be leveraged for ideation purposes by brand

managers or designers. The design process for new brands often begins by thinking of existing

brands in the focal industry, or that have similar identities to the new brand.11 Elements of these

brands’ logos may then be mixed with visual features unique to the new brand. For instance, a

10See, e.g., https://www.tigercolor.com/color-lab/color-theory/color-harmonies.htm
11See, e.g., https://99designs.com/blog/tips/logo-design-process-how-professionals-do-it/
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designer for a new medical device company may start by looking at what logo design patterns are

popular in health care, and in technology companies, and may then fuse these elements together to

create a template for the new brand. Colloquially, it is also common to hear new brands, especially

start-ups, described as the “X of Y” (e.g., the “Uber of grocery stores” for a grocery delivery

service), or as a fusion of existing brands (e.g., a mix of Mercedes-Benz and Old Navy, for an

accessible luxury car, or a mass market luxury fashion brand). In z-space, the idea of fusing brand

traits or identities can be captured by adding together zi vectors corresponding to specific traits

or brands, an operation we refer to as brand arithmetic.

Medical Devices We first consider the task of designing for a medical device company. As

described above, medical devices can be considered a fusion of technology and health care. In

our data, we have an industry tag corresponding to Health Care, as well as the technology-related

industry tags Hardware, Consumer Electronics, and Software. To understand what features we

would expect in a brand that sits at the intersection of health care and technology, we first define

two averages: z̄Health, which is the average of all zi vectors such that brand i was tagged as a Health

Care company, and z̄Tech, which is the average of all zi vectors such that brand i was tagged as

either a Hardware, Consumer Electronics, or Software company. We can then interpolate between

these two vectors, to create a new representation for a medical device company:

zMedDevice = 0.5z̄Health + 0.5z̄Tech. (11)

To validate that this procedure indeed produces a reasonable representation, we first check which

firms are close to the interpolated zMedDevice: the five nearest neighbors include three companies

that produce medical devices—Becton-Dickinson, Sony, and Stryker—as well as Raytheon, a defense

technology company, and Allergan, a pharmaceutical company.

We can also see what predictions the model makes about such a firm. Comfortingly, when we

predict the industry tags from zMedDevice, the top five tags are Health Care, Software, Information

Technology, Manufacturing, and Hardware. Moreover, when zMedDevice is propagated through the

text decoder, the ten highest terms, relative to the population mean, are: patient, healthcare, tech-

nology, better, global, solution, health, outcome, innovate, and science. For brand personality, the
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Categorical Features

Feature Likely Values Prob

Dominant color: Medium Blue � 0.547
Dark Blue � 0.124
Light Blue � 0.116

Hull shape: Thin Oval 0.837
Medium Oval 0.145

Sans/Serif Font: Sans 0.900
Mark Class: Wispy horizontal 0.313

Detailed design 0.120
Thin 0.095

Number of Colors: One color 0.859
Two colors 0.133
Three colors 0.007

Binary Features

Feature Class Likely Values Prob

Accent color: Medium Blue � 0.707
Font: Width: Original 0.999

Style: No Italics 0.999
Weight: Bold 0.920
Width: 0.267

Other: Has a Mark 0.980
Low # Regions 0.607
Low Entropy 0.308
Mark Position: Left 0.289
Low % Horizontal Edges 0.262

Table 4: Visual profile corresponding to zMedDevice, illustrating the likely values of the categorical features
at left, and a selection of high probability binary features at right. We only report binary features that are
relatively more likely than the population mean.

evices
Figure 13: A simple, nonprofessional rendering of a logo based on the visual profile in Figure 4.

highest relative traits are technical, intelligent, and contemporary, while the lowest are outdoorsy,

rugged, and masculine. Finally, we summarize the logo features we expect for this company in

Table 4, and provide a simple rendering of a logo that contains many of those features in Figure 13.

Daring Fast Food Brand arithmetic can also be used with personality traits. Consider the

task of designing a daring fast food company. In general, fast food brands are not perceived as

particularly daring: in our data, the average consumer rating of McDonald’s for “daring” was 1.0,

and for Burger King, 1.05, while the average “daring” rating across all firms is 1.6, with a max of

3.3. To mathematically represent combining “daring” and “fast food,” we first create representative

z-vectors for each of these concepts: for daring, we create an average z̄Daring by averaging the zi

vectors for all brands who scored in the top decile of daring. For fast food, we create z̄FastFood by

averaging together the zi vectors of McDonald’s, Burger King, and KFC. To create a new brand

identity, daring fast food (DFF), we can then add the daring vector to the fast food vector. In

this case, the intended outcome is to add an element of daring to the standard fast food firm, not
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interpolate, and hence we consider a more general combination:

zDFF(α, β) = αz̄FastFood + βz̄Daring.

The higher α, the more of the daring personality will be added. The higher β, the more the resulting

brand will resemble the typical fast food firm.12

To illustrate this, we consider two combinations: zDFF(0.5, 0.5), which has the same interpola-

tion weights as in the medical devices example, and zDFF(0.5, 1.0), which increases the degree of

daring being added.13 Unlike the medical device case, where we could verify that the arithmetic

had produced a reasonable result by computing the new z’s nearest neighbors, in our data, there

is no “daring fast food” brand to correspond to either of these new profiles. In both cases, when

we compute the nearest neighbors to zDFF, they are simply Burger King, KFC, and Pizza Hut.14

Nonetheless, we can still make predictions for this previously unobserved brand identity. In both

cases, the two highest industry labels associated with zDFF are Food and Beverage and Travel and

Tourism, which are the two labels most often associated with fast food firms. For brand personality,

when β = 0.5, the highest three traits are cheerful, family-oriented, and trendy, largely reflecting

those traits that we expect in a fast food restaurant. However, when compared to the average fast

food restaurant, the expected score for daring is 0.513 points higher. Related concepts, like excit-

ing, glamorous, and contemporary, are also higher, illustrating the impact of the interpolation: by

adding z̄Daring to z̄FastFood, we have morphed the fast food representation to be a bit more daring.

When we increase β to 1, we see this effect even more dramatically. We illustrate this contrast

between the two values of β and the average fast food firm in Figure 14.

The value of β also determines to what degree the predicted visual features differ from the fast

food norm. Consider, for instance, the predicted colors: for the average fast food firm, there are

expected to be three colors (prob = 0.763), with dominant color red (prob = 0.99), and a yellow

accent color (prob = 0.85). For the interpolation case, with β = 0.5, the probability of three colors

12The risk of relaxing the restriction that α + β = 1 is that the resulting vectors may contain values significantly
more extreme than would be implied by the N (0, 1) prior. We have found that such cases result in predictions that
are more extreme in terms of probabilities or magnitudes assigned to features.

13Considering α = 1 produces a brand that strongly resembles the typical fast food firm, even when β = 1; hence,
we consider only α = 0.5.

14As we illustrate in the next section, more recent entrants to the market do reflect the predicted personality: when
Shake Shack’s zi is estimated using the full inference network, it falls closer to zDFF than it does to z̄FastFood.
However Shake Shack is not in our original data.
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Figure 14: Contrasting brand personality predictions for a daring fast food restaurant, for β = 0.5, 1.0, and
for the average fast food restaurant.

goes down to 0.425, with two and one color becoming much more likely (probs = 0.287 and 0.244

respectively). Red is still expected to be the dominant color (prob = 0.771), but dark blue and

black are now possible (probs = 0.079 and 0.027 respectively). When we increase the degree of

daring still further by setting β = 1.0, the probability of a black dominant color continues to rise

(prob = 0.131). We see other features change as well: for example, the probability of seeing a bold

font goes down, while the probability of having a low number of corners goes up. Together, these

changes imply a set of candidate changes for developing a more daring visual identity for a fast

food firm, illustrating how brand arithmetic allows for creative fusions of existing ideas.

Brand Hybrids As a final illustration of the brand arithmetic concept, we consider the idea

of interpolating between specific brands. To interpolate between brands A and B, we find the

midpoint between the two brands in z-space:15

zMid = 0.5zA + 0.5zB.

We then consider which of our existing brands are closest to this midpoint. In many cases, the

closest brands to zMid are simply the original two brands, or their closest neighbors. However, by

looking at which brands are close to zMid but not close to either zA or zB, we can understand

better how the model interpolates between these two brands. We now describe three examples

15Just as before, the weights here need not be 0.5 for each; a more general formulation of zMid = αzA + βzB can
also be used to adjust the emphasis of each original brand in the hybrid brand.
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interpolating between well-known brands:

• Mercedes-Benz and Old Navy. When interpolating between Mercedes-Benz, a luxury car

brand, and Old Navy, an affordable apparel retailer, we find among the three closest midpoint

brands two very interesting case studies: Landrover and Burberry. While Landrover is another

luxury car brand, it notably is not one of the original ten closest neighbors in z-space of

Mercedes. However, its logo shares many visual similarities to Old Navy, with both featuring

dense, simple, oval-shaped designs. Hence, it is a natural fusion of Mercedes and Old Navy in

terms of aesthetics and function. Burberry, on the other hand, represents a natural fusion of

brand identity and firm function, taking the luxuriousness of Mercedes, and merging it with

the apparel function of Old Navy.

• Louis Vuitton and Nike. When interpolating between luxury fashion brand Louis Vuitton, and

sporting apparel and footwear company Nike, we again find interesting results. The closest

midpoint brand is Calvin Klein, a relatively upmarket fashion brand with a sporty look, and

with a logo that fuses elements of both Louis Vuitton and Nike. We also find the innovative

and sporty luxury car company BMW falls close to the midpoint. While BMW is also a close

neighbor to Louis Vuitton, other luxury brands like Dior fall much closer to Louis Vuitton’s

position in z-space. Yet, when Louis Vuitton is fused with Nike, this ordering reverses: BMW

appears much closer to the midpoint, while brands like Dior fall away entirely.

• Google and McKinsey. Finally, we interpolate between the tech company and search engine

Google, and the management consultancy McKinsey. The two closest brands to the midpoint

between these firms are IBM and Cognizant. Besides being a technology company, IBM also

provides extensive IT consulting services. Likewise, Cognizant is a provider of IT services and

consulting, an exact hybrid of the firm functions and brand identities of Google and McKinsey.

Finally, further emphasizing the model’s ability to pinpoint these brand fusions, the eighth

closest brand to the midpoint is Tech Mahindra, another multinational IT consultancy, and

a brand which is not even among the top 10 closest brands to either Google or McKinsey.

Taken together, these examples further emphasize the ability of brand arithmetic to meld together

brand identities, and aid in the ideation process for new brands.
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7.5. Task-specific Decision Support: The Case of Shake Shack

In all of the previous analyses, we have used the full inference network, and manipulated the learned

zi representations to aid in the brand ideation process. Now, we consider the task of using our

task-specific inference networks to understand design and branding for new firms, and to provide

design decision support. In particular, we focus on a case study of a relatively recent entrant to the

fast food space, Shake Shack. Shake Shack makes a compelling case study for several reasons: first,

its logo is quite different from the typical fast food restaurant. Second, its origin in New York City,

and its focus on up-scale, urban markets is a fundamentally different positioning than competing

fast food chains. Yet, despite these differences in aesthetics and brand, the functional aspect of

the firm is essentially identical to other fast food restaurants: Shake Shack sells burgers, fries, and

milkshakes, quickly, in a counter service format. Hence, Shake Shack is inherently drawing on

existing branding concepts to create a new, hybrid brand.

To establish in a data-driven fashion whether Shake Shack’s identity is indeed typical of their

desired market positioning, we first gather the same data for Shake Shack as we had for the brands

in our calibration sample: we select Shake Shack’s most typical logo, extract the words from

their website, and identify relevant industry tags. For brand personality, rather than returning

to MTurk to elicit personality perceptions, we instead approximate the personality that we think

Shake Shack is trying to capture. This mirrors the design process, where personality would be

something the brand is targeting, rather than something that is observed. We can then use this

aspirational personality in suggesting logo features, and see if the actual Shake Shack logo achieves

this perceptual goal. In Figure 15, we show Shake Shack’s logo, the words from its website,

represented as a word cloud, and our assumed target brand personality for Shake Shack (again,

relative to the mean). We process these data in an identical fashion as our training data, creating

a new set of features which can be used by our model, and in particular, our task-specific inference

networks. We also gather and process data for another brand, In-N-Out, to provide a point of

comparison in our analyses. In-N-Out also operates in the fast food space, but has a longer history

than Shake Shack, and a more typical fast food brand identity. The features of In-N-Out are

summarized in Figure 16.
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(a) (b)

(c)

Figure 15: (a) Shake Shack’s typical logo; (b) the processed words from Shake Shack’s website, where the
word size correlates with how often that word appeared; (c) a potential target brand personality for Shake
Shack, showing the top 10 and bottom 10 personality traits.

(a) (b)

(c)

Figure 16: (a) In-N-Out’s typical logo; (b) the processed words from In-N-Out’s website, where the word
size correlates with how often that word appeared; (c) a potential target brand personality for In-N-Out,
showing the top 10 and bottom 10 personality traits.
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Categorical Features

Feature Likely Values Prob

Dominant color: Black � 0.445
Dark Blue � 0.444
Red � 0.018

Hull shape: Medium Oval 0.383
Thin Oval 0.370
Triangle 0.246

Sans/Serif Font: Sans 0.999
Mark Class: Thin 0.538

Detailed circular design 0.307
Hollow circle 0.083

Number of Colors: Three colors 0.731
Many colors 0.268

Binary Features

Feature Class Likely Values Prob

Accent color: Light Gray � 0.999
Black � 0.572

Contains color: Light Gray � 0.999
Black � 0.998

Font: Width: Original 0.999
Style: No Italics 0.999
Weight: Light 0.968
Class: Geometric 0.551

Other: High % Whitespace 0.999
Has a Mark 0.993
High Perimetric Complexity 0.929
High # Regions 0.718

Table 5: Visual profile corresponding to zShakeShack, as inferred from the designer’s inference network,
illustrating the likely values of the categorical features at left, and a selection of high probability binary
features at right. We only report binary features that are relatively more likely than the population mean.

Designer’s Task To start, we consider the task of designing Shake Shack’s logo, based on their

targeted brand personality, as well as a description of the brand. Under our framework, this task

is equivalent to using Shake Shack’s website text, industry tags, and target brand personality as

inputs to the designer’s inference network, from which we infer an approximate posterior for zi.

We then sample from that posterior to produce a distribution over Shake Shack’s predicted logo

features.16 We summarize the predicted visual features in Table 5.

Comparing these predictions to the actual logo shown in Figure 15, we see they are fairly

accurate. The black colors, medium oval hull, sans-serif font, and detailed circular design of its

mark are all spot on. Moreover, in terms of binary features, the true logo’s font is indeed original

width, no italics, light, and in the geometric font class. Especially relative to other fast food logos,

there is a high amount of whitespace, it does have a mark, and the thin but complex features,

particularly the mark, are of relatively high perimetric complexity. The only conspicuous difference

between the true logo and the prediction have to do with the accent colors: the model predicts light

gray with near certainty, while the true logo features neon green. The light gray is likely an artifact

of the feature extraction process: when thin, black features are imposed on a white background,

the color quantization procedure described in the web appendix nearly always erroneously detects a

light gray color, in addition to the black. This also accounts for the prediction of three colors. Light

16It is important to note that this operation is out-of-sample: Shake Shack’s logo is not used in learning the parameters
of any of the functions in our model, nor is it used in this case to compute the approximate posterior.
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green, on the other hand, is not predicted anywhere. The green burger icon emphasizes the crucial

role of the designer, in going above and beyond the typical features suggested by the algorithm:

the neon green, thin burger is reminiscent of the signage at a typical 1950’s “burger joint,” with the

burger explicitly indicating the industry.17 Taken together, these results imply that, while Shake

Shack’s visual identity is different from competitors in the fast food space, it is also, in some sense,

typical: many of its visual features are predictable from its website text and a targeted young,

trendy, and glamorous brand personality.

Shake Shack’s predicted visual profile contrasts starkly with the model’s predictions for In-

N-Out: for In-N-Out, the model overwhelmingly predicts a red dominant color (prob = 0.917).

Moreover, it predicts just one or two colors, with dark gray and yellow being predicted accent colors.

Sans-serif fonts no longer completely dominate, with serif font being predicted with probability

0.347. Other visual features include high entropy, a low perimetric complexity, low percentage

whitespace, and a low number of corners, all of which are accurate predictions, and reflect the fast

food industry norms, rather than the edgier styling of Shake Shack. These differing predictions

are driven by the differing emphasis in the target brand personality, as well as the different words

emphasized on the two firms’ websites, as captured in Figures 15 and 16.

Manager’s Task Now, we consider the brand manager’s problem: given the brand’s logo, as well

as website text and industry tags, how will consumers likely perceive that brand? Similar to the

designer’s task, to answer this question using our model framework, we use the manager’s inference

network to infer an approximate posterior distribution over the brand’s latent zi, using the logo

features, textual data, and industry tags. Then, we simulate a predictive distribution over brand

personality perceptions, using this approximation.

For both Shake Shack and In-N-Out, the predicted perceptions are largely in line with our ex-

pectations. In Figure 17, we compare the two sets of predictions for the subset of brand personality

traits that were predicted to be at least 0.5 points different from the overall trait mean, for at least

one of the brands. We display the predictions relative to the population mean (e.g., both brands are

predicted to be perceived as more cheerful than an average brand, but less technical). Notably, we

see Shake Shack is predicted to excel on perceptions of cool, glamorous, good-looking, trendy, and

17https://www.fastcompany.com/3041777/the-untold-story-of-shake-shacks-16-billion-branding

42



Figure 17: Predicted brand personality perceptions for both Shake Shack and In-N-Out, displayed as points
different from the population mean (i.e., relative to the population mean). We show only traits that were
predicted to be at least 0.5 points different from the overall trait mean for at least one of the brands.

upper class, while In-N-Out is predicted to be perceived as less corporate, more family-oriented,

more small town, and substantially less upper class. These differences are very much in line with

our expectations: in both cases, the correlations between the predicted BP profiles and the target

BP profiles displayed in Figures 15 and 16 are close to 0.8.

Assessing Visual Changes Finally, we consider the task of assessing changes to a brand’s visual

identity, as are often considered when weighing competing designs for a new brand, or when an

established brand is considering rebranding. The effect of proposed changes to a logo can again

be assessed directly in our model framework, by using the manager’s inference network to see

how the model’s predictions about consumer perceptions change with different logo feature inputs,

conditional on the brand’s textual description and industry tags.

To illustrate this, we consider a simple example: how would consumer perceptions about Shake

Shack change if the firm had used a bold font weight, rather than a light font weight? Our model

predicts that such a logo change would increase Shake Shack’s perceptions along dimensions includ-

ing family-oriented, technical, sincere, outdoorsy, down-to-earth, and wholesome, while decreasing

perceptions along the glamorous, good-looking, daring, young, and smooth dimensions. In some

cases, the effects are quite substantial in magnitude: for instance, the predicted positive change
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in family-oriented is 0.37, compared to a standard deviation in family-oriented across brands of

0.72. Of a similar magnitude, the expected negative change in glamorous is -0.24, compared to a

standard deviation in glamorous across brands of 0.66.

Notably, the model can also make predictions for more complicated changes in aesthetics and

firm function. Consider, for instance, a proposed entry of Shake Shack into the consumer goods

space, paired with a change in its logo featuring a new, bold font, and a new circular design.

Similar to before, we can update Shake Shack’s industry tags to include “Consumer Goods,” we

can change its font to bold, and its logo hull to circular, and then use the manager’s inference

network to understand how brand perceptions would change. In this case, the model predicts that

the same dimensions of family-oriented, sincere, and technical would again rise, although family-

oriented would rise by a much larger magnitude (0.63). On the other hand, the dimensions that

would suffer now include independent, leader, and successful, each of which would be expected to fall

substantially, by approximately one standard deviation. Together, these two examples illustrate

the ability of our model to aid brand managers in assessing the potential impact of changes in

aesthetics and brand positioning on consumers’ perceptions of the brand.

8. Conclusion

In this paper, we explored logo design and brand identity from a data-driven perspective. Leverag-

ing a relatively large dataset of prominent brands, a novel logo feature extraction algorithm, and

both model-free and model-based analyses, we showed that many aspects of the design and brand-

ing processes can be predicted from data, including which features brands use in their logos, and

how consumers perceive these brands’ personalities. Moreover, we showed how our multiview rep-

resentation learning approach yields both a mathematical framework for ideation through brand

arithmetic, and a set of decision support tools that can be used to systematically approach the

design process.

From a methodological perspective, our contributions are twofold: first, we developed an au-

tomatic approach for extracting meaningful and manipulable features from logos. Second, we

developed a multiview learning framework based on multimodal variational autoencoders, with a

novel approach to inference. Our inference procedure combines task-based inference networks with
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stochastic data binning, and is especially suitable for the simultaneous estimation of multiple in-

ference networks that are geared towards providing decision support tools for managers as well as

designers. By combining these two methodological advances, we contribute to a nascent literature

on interpretable machine learning: our feature extraction algorithm produces interpretable features,

which, when combined with our complex, nonlinear generative model, produce interpretable recom-

mendations and insights. Moreover, our model-free and model-based analyses facilitate a scalable

understanding of how logo design patterns vary across different industries and brand personalities.

Finally, there are several important limitations of this study. Foremost, ours is a model of logo

typicality, not optimality. We are able to capture what a typical firm does, not what is the best

logo for a firm, given objectives other than typicality. While exploring optimality of designs may

pose an interesting future research area, the task of moving from a typical logo to an optimal logo

may also be better suited to a human designer, who can add the creative flair that characterizes the

most successful logos (e.g., the FedEx arrow, the Amazon “a to z”), beyond what our model-based

approach can suggest. Additionally, our model does not make strong claims about the causality of

design: that is, it does not answer why existing logos are designed the way they are, but rather

conditions on the existing design landscape. Answering this question is difficult, and likely involves

both temporal factors (e.g., mimicry of a successful brand) and functional factors (e.g., red is easy

to see on a sign from far away, or red stimulates the appetite). We leave these issues as topics for

future study.
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A. Logo Feature Details
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B. Technical Details on the Logo Feature Extraction Algorithm

We now give more of the technical details of our image processing algorithm. For specific features,

see Web Appendix A. The basic data representation of images is the raster array, which defines an

image by an h× w grid of color values. The grid cells are called pixels, and the colors are broken

down according to an underlying color model. The most common color model is the red-green-blue

(RGB) system, which defines the full spectrum of colors by intensities on red, green, and blue color

channels. Most image analysis algorithms use this and most data analysis software imports images

in this form. An alternative representation, that we use in our own image processing algorithms,

is the hue-saturation-value (HSV) color model, which is a cylindrical coordinates transformation

of the RGB color space. It defines colors in terms of their hue, meaning the basic color itself,

saturation, meaning how “intense” the color is, and value, which refers to how bright the color is.

Finally, greyscale images can be also represented through raster arrays as a single decimal value at

each pixel, representing the intensity of light at that pixel.

B.1. Color Quantization through Density-based Clustering

The algorithm begins by learning how many distinct colors are in a given logo through a density-

based clustering algorithm. Specifically, we employ the DBSCAN algorithm, which is a popular

clustering algorithm which does not rely on a pre-specified number of clusters or distributional

assumptions (Ester et al., 1996). Rather, it uses a density criterion to automatically determine

both the number of clusters and cluster membership. DBSCAN is ideal for this application, as

we know exactly the nature of the colorspace on which we are clustering, allowing us to specify a

sensible density cutoff. Moreover, it is robust to noise.

We perform DBSCAN clustering on the HSV colorspace, which is a cylindrical coordinate

transformation of the RGB colorspace that separates out the actual color value (hue) from other

aspects of the color (saturation and lightness, also called value). Because of the cylindrical nature

of the colorspace, hue (i.e., color) is represented along a circle, and hence the clustering must also

operate over a circle, as shown in Figure 18. This is another benefit of DBSCAN: it does not rely

on any assumptions about the distributions of the points or the geometry of the space, besides

for being able to specify a suitable density metric. A downside of DBSCAN is that it can be

computationally inefficient, and the logos in our dataset can be quite large. Thus, we do DBSCAN

on a random selection of pixels. Once we have identified the number of clusters through that, we

use those same cluster centers in the standard k-means algorithm. The end result of the clustering

is an assignment of each pixel in the original logo to a color cluster, or to the background. This is

referred to as color quantization.

B.2. Region-based Segmentation

Computationally, quantizing the logo reduces the three dimensional raster array into a two dimen-

sional matrix of cluster assignments. This is illustrated in Figure 19. Given this format, determining
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Figure 18: The three colors from Burger King’s logo (blue, red, and yellow), plotted as the Hue value from
HSV in polar coordinates. Here, red is the cluster of points at right, yellow is the cluster in the top-right,
and blue is the cluster in the bottom-left. This is the space on which the DBSCAN clustering operates.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 2 2 2 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 2 2 2 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 2 2 2 0 0 0 0 0
0 0 0 1 1 1 0 0 0 2 2 2 2 2 2 2 2 2 0 0
0 0 0 1 1 1 0 0 0 2 2 2 2 2 2 2 2 2 0 0
0 0 0 1 1 1 0 0 0 2 2 2 2 2 2 2 2 2 0 0
0 0 0 1 1 1 0 0 0 0 0 0 2 2 2 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 2 2 2 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 2 2 2 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19: An example of color quantization: the image at left is quantized, yielding the matrix representation
at right, where 0 corresponds to blue, 1 to red, and 2 to green.

distinct regions of the logo is as simple as identifying connected regions of this matrix. This, plus

some steps to filter out noise and very small image segments, is how our algorithm proceeds. How-

ever, there are two complications. The first relates to text: in practice, some fonts are condensed

to the point that two letters are slightly joined, leading the algorithm to think there is only one

connected region, when there are in fact two distinct letters. The second complication relates to

the mark, and is in some sense the inverse of the first: sometimes, a single mark may consist of

several very close-by regions.

To address the first concern, we employ mathematical morphology, specifically the erosion and

dilation operations. Erosion is a standard image processing technique that works on binarized

images (background = 0, foreground = 1), transforming that image by assigning each pixel in

the transformed image the minimum value within a pre-defined neighborhood of that pixel in the

original binary image. Dilation is similar, but employing the maximum. In practice, what this

means is that in erosion, connected regions are shrunk, whereas in dilation, they are expanded.

To use these operations to help separate barely connected letters, we employ the following three

steps: first, for every region isolated in the basic segmentation, we apply erosion, and identify any

subregions generated by that erosion. Second, we separate those subregions, and then dilate them

to approximately their original form. Finally, we run each of these new features through the font
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identification system defined in the next section. If any of them is identified as a font, the old

region is discarded in favor of the subregions.

To address the second concern, we again apply DBSCAN clustering, this time using position

on the logo as the quantity of interest. We set the density in the DBSCAN algorithm according to

the size of the logo. This then finds mark pixels that are close together, regardless of whether or

not they are actually connected.

B.3. Font Identification

For each of the segments identified through the above procedure, we first try to match them to a

font. To do that, we standardize each segment to a grayscale 25 × 25 pixel representation, then

apply template matching against our extensive collection of fonts, which have also been converted

to the same representation. This representation is equivalent to representing each segment, and

each font instance, as a length 625 vector, with values between 0 (black) and 1 (white). By template

matching, we mean a simple distance calculation between the segment of interest, and each member

of our font dictionary. In practice, this takes the form of a correlation between the entries in the

segment vector and the entries in each font instance vector. We use a fairly simple heuristic to

identify whether a segment represents a character: if the correlation between the segment and any

font instance is greater than a certain cutoff, we say it is a match, and say that the segment matches

the font with the highest correlation. We use different cutoffs, depending on the complexity of the

segment, where complexity is measured by the perimetric complexity (the ratio of edge pixels to

interior pixels). This is important because some letters, like i (which is represented without the

dot), l, and o are very similar to commonly occurring mark features.

B.4. LAB Color Clustering

The colors within a given logo are represented in the continuous RGB color space. To convert these

color triples to meaningful dictionary items, we run another clustering algorithm on these triples

across logos.19 However, in order to cluster the colors, we need a sensible distance metric in this

space. While RGB colors are the standard for computer representation, it is well established that

distances in RGB color space do not correspond well to distances in human perceived distance.

To rectify that, we employ another colorspace transformation, from RGB to the CIE-LAB (also

just called LAB) colorspace, which is designed such that distances in colorspace correspond to

differences in human perception of color (McLaren, 1976). Then we perform standard K-means

clustering, resulting in the color dictionary shown in Figure 3.

B.5. Hull and Mark Clustering

To cluster both the hulls and the marks, we apply a similar procedure described above for fonts

and colors: we convert each hull and each mark to a 25× 25 standardized greyscale representation,

19The number of clusters both in this step and others was determined by the researcher, using scree plots.
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and then apply ordinary k-means clustering over the resultant length 625 vectors, determining the

optimal number of clusters via scree plots. The only challenge is for the marks: the standardization

procedure discards information about size. Yet, we also want to capture the different sizes of marks:

a mark that forms the background of, and thus takes up 80% of a logo is different than one that

takes up only 10%. To take this into account, we include an additional term in the clustering of

marks, that adds weight to the fraction of the the logo’s area taken up by the mark.

C. Implementation Details

We implement this framework using Tensorflow and the Edward probabilistic programming lan-

guage (Tran et al., 2016). Recall that our training procedure consists of optimizing a per iteration

loss function:

`m(θ, {φt}) =
N∑
i=1

∑
∀t
δitm

{
− Ezi∼qφt (zi |ξi,t=INett(x̃ti;φt))

[log pθ(xi | zi)] +

KL
[
qφt(zi|x̃ti) || p(zi)

] }
. (12)

At each iteration, brands are randomly split across our four inference networks, which allows us

to simultaneously learn the parameters of each of our task-specific inference networks. To simplify

this batching procedure, for each iteration, we use “mini-batches” of size 600, which are evenly

divided across the four inference networks, resulting in 150 observations per network.20 To perform

stochastic gradient descent on this objective function, we use the Adam optimizer (Kingma and

Ba, 2014), with learning rate 0.0001, and where the gradient is evaluated at each step of the

optimization using a single observation. We run our randomized optimization routine for 1000

iterations. In each iteration, we perform 100 optimization steps. We monitor log loss after each

iteration to assess convergence, stopping when the log loss no longer substantially decreases. We

show pseudocode for this procedure in Algorithm 1.

To prevent overfitting, complex models such as ours typically rely on regularization methods.

We rely on two regularization strategies: first, we implement L2 regularization of the weights of

the neural network, which is equivalent to adding a squared penalty function to the loss for the

weight parameters (i.e, the loss becomes ELBO+λ
∑

nw
2
n, where wn is a single weight parameter).

Second, we employ dropout, which randomly severs the connections between nodes of the neural

network during training at a pre-specified rate, r, usually taken to be r = 0.5 (Goodfellow et al.,

2016). Both of these are standard in the deep learning literature, and were implemented using the

built-in Tensorflow functionalities.

To determine all model hyperparameters, including the number of latent dimensions (K), layer

sizes, number of hidden layers, and degree of regularization, we performed grid search over a wide

array of values, assessing model performance using three key metrics, two of which mirror the fit

20While these are technically “mini-batches,” there are only 706 firms in the full data, which means that 600 obser-
vations is nearly the full data.
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Algorithm 1 Inference pseudocode: stochastic binned optimization of the ELBO

Set Adam target learning rate β∗

Initialize φ, θ and learning rate β
Set m = 0
while not converged do

m = m+ 1
Draw minibatch: Bm = sample(1:N Train, 600, replace = FALSE)

Randomize i ∈ Bm to tasks t = 1, . . . , 4
for s = 1, . . . , 100 do

Draw single observation from Bm to estimate the (stochastic) gradient ∇`m(θ, {φt})
Update φ, θ via single Adam step
Update β (Edward automatically decays the learning rate toward the target)

end for
Evaluate `m(θ, {φt}) and compare to `m−1

end while

statistics described in the paper: (1) cross-validation reconstruction error using the full inference

network, which is equivalent to model fit for new brands when using the full inference network; (2)

cross-validation predictive performance, which is equivalent to how well the model predicts held-out

domains for new brands using the task-specific inference networks; and (3) bias in the generative

model. To assess (1) and (2), we compute the mean absolute deviation (MAD) for each domain,

which, as described in the body of the paper, is given by:

MADd =
1

N

1

J

N∑
i=1

J∑
j=1

|xdij − E(xdij)|, (13)

where E(xij) is the expected value of xij under the model. We compare the predictions of our

model to the no information rate (NIR), which is equivalent to using the empirical mean as the

predicted value, E(xij) = x̄ij . To evaluate (3), bias in the generative model, we randomly simulate

1000 brands by drawing zi randomly from the N (0, 1) prior, then see how the means and standard

deviations of the features of the simulated brands compare to the full data empirical means and

standard deviations observed in the data. This third procedure is effectively a posterior predictive

check, which assesses whether the learned generative model in fact generates data that looks similar

to the real data, up to the first and second moments. There is often a trade-off between these three

metrics: better reconstruction error (1) may lead to worse predictions (2), or a biased generative

model (3). Similarly, better predictions may lead to a worse generative model. Hence, we look for

a specification that does well on all three metrics; the ultimate specification relies on researcher

judgment, weighing all these outcomes.

Through grid search, we found the optimal dimensionality of the latent space was K = 40.

We also found no benefit to increasing the number of hidden layers of any of the networks above

one (i.e., single-layered, feed-forward networks). This is likely because we are already working

with highly processed inputs, thus limiting the usefulness of the increasing levels of abstraction
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enabled by adding more layers. The optimal model structure used 1024 hidden units in all of the

inference networks, 1024 hidden units in the text decoder network, and 512 hidden units for all

other decoders. Finally, for regularization, we found a mild L2 penalty for the decoder networks

(penalty coefficient λ = 10), and a dropout rate of r = 0.5 applied to both the inference and decoder

network performed best.
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