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Abstract

What does utility maximization subject to a budget constraint imply for

intertemporal choice under uncertainty? Assuming consumers face a two

period consumption-portfolio problem where asset markets are incomplete,

we address this question following both the standard local in�nitesimal and

�nite data approaches. To focus on the separate roles of time and risk

preferences, individuals maximize KPS (Kreps-Porteus-Selden) preferences.

The consumption-portfolio problem is decomposed into a one period port-

folio problem and a two period certainty consumption-saving problem. We

derive demand restrictions which are necessary and su¢ cient, for portfolio

choices and certainty intertemporal consumption to have been generated by

maximization, respectively, of a one period expected utility representation

and a certainty representation of time preferences. Conditions are provided

for recovering the building block time and risk preference utilities. For the

�nite data case, we derive a set of linear inequalities that are necessary and

su¢ cient for observations to be consistent with the maximization of KPS

utility.
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1 Introduction

The neoclassical certainty model of consumer behavior postulates that a con-

sumer�s demand can be described as having been derived from utility maximiza-

tion subject to a budget constraint. One is then naturally led to ask what this

model implies about demand behavior. This question has been addressed us-

ing two quite distinct approaches. The �rst, typically referred to as integrability,

originating in the in�nitesimal analysis of Slutsky (1915) and Antonelli (1886), de-

rives necessary and su¢ cient conditions such that a given demand function arises

from the maximization of utility. The second approach known as "revealed pref-

erence", following the classic work of Samuelson (1938), provides necessary and

su¢ cient restrictions on a �nite set of demand-price pairs such that the demand

behavior of a consumer is consistent with utility maximization. Among many

others, Hurwicz and Uzawa (1971), Mas-Colell (1978) and Afriat (1967) have pro-

vided complete answers to these questions for the case of demand for commodities

under certainty. While the analysis carries over directly to a static uncertainty

setting with complete asset markets, the case of incomplete markets is not fully

understood. Moreover for the case of the intertemporal demand for assets and �rst

period consumption in incomplete markets, the answer is far less clear, in particu-

lar for the integrability approach. The question of what the hypothesis of utility

maximization implies for intertemporal choice under uncertainty has received very

little attention in the literature. This is surprising given the well-recognized im-

portance of understanding the separate roles of risk and time preferences in saving

and portfolio decisions.

In this paper we address the question of intertemporal choice where asset

markets are incomplete utilizing both the integrability and revealed preference

approaches. We assume the classic two period consumption-portfolio problem,

where period 1 consumption is certain and period 2 consumption is risky. In the

�rst period the consumer chooses a level of period 1 consumption and a portfolio

of �nancial assets, where the market for assets is incomplete. In order to distin-

guish the separate roles of time and risk, we assume that consumers have pref-

erences of the form axiomatized by Kreps and Porteus (1978) and Selden (1978)

which include two period expected utility preferences as a special case. These

KPS (Kreps-Porteus-Selden) preferences are fully characterized by a representa-

tion of time preferences de�ned over certain periods 1 and 2 consumption and
conditional risk preferences, where the latter are parameterized by period 1
consumption and are de�ned over risky period 2 consumption. This separation of

time and risk preferences is well known and has been widely used in the analysis of
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saving behavior and asset pricing.1 In addition to giving necessary and su¢ cient

conditions such that consumption and asset demands are consistent with the max-

imization of KPS preferences, we also provide conditions under which the building

block time and risk preference utilities can be recovered from the demands.

Our �rst observation is that, under mild conditions, an agent�s utility maxi-

mization problem can be decomposed into a two stage problem. First conditional

on a given value of period one consumption, one solves the single period portfolio

problem resulting in optimal second period consumption. The solution is referred

to as the conditional asset demand function. Then a second stage consumption-

saving optimization for optimal �rst period consumption is solved. It will prove

convenient to base our demand test for and identi�cation of conditional risk pref-

erences, on the solution to the conditional asset optimization problem. Then for

the existence and identi�cation of time preferences we utilize the solution to the

second problem.

The solution to the conditional asset demand problem is formally identical to

the solution of a one period asset choice problem. We argue that when �nancial

markets are incomplete, it is generally impossible to extend the Hurwicz and

Uzawa (1971) integrability result to the most direct case, a utility for assets. But

what if preferences are de�ned over contingent claims and are representable by an

EU (expected utility) function? Assuming one can vary probabilities as well as

prices and income, we derive an asset demand test which veri�es the existence of

a unique EU representation that rationalizes the given demand. Moreover, we

provide a means for recovering the EU function.

The assumption of varying probabilities is di¤erent from the traditional Arrow-

Debreu setting, where probabilities are assumed to be given and �xed. This key

di¤erence enables us to de�ne an implicit relationship between probabilities and

asset prices from the given asset demand functions. It follows from McLennan

(1979) that without this assumption the EU preferences cannot be uniquely recov-

ered - in this sense it is a necessary condition for our analysis. In reality, investor

beliefs over asset returns obviously vary over time but it is not clear how they can

be observed. In laboratory experiments where subjects are given the probabilities

they can naturally be varied across observations.

Within the KPS framework, establishing the existence of a well behaved time

preference utility turns out to be more di¢ cult. One of the challenges is that

1For dynamic extensions (i.e., more than two periods) of these preferences such as the widely

used Epstein and Zin (1989) model, it is not possible in general to achieve a complete separation

of time and risk preferences (over consumption). See Epstein, Farhi and Strzalecki (2014, p.

2687).
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the second stage consumption-saving problem can in general have a nonlinear

budget constraint. Building on an insight in Polemarchakis and Selden (1984),

we derive a local demand test for the existence of a unique (up to an increasing

transformation) representation of time preferences that can rationalize the solution

to the second stage consumption-saving problem. A key input into this test is

the EU function recovered from the conditional asset demands. In addition to

integrability results for the �rst and second stage optimizations, we also provide

local conditions on demand which are necessary and su¢ cient for it to be derived

from a KPS utility function.

Thus, together our theorems extend the integrability results of Hurwicz and

Uzawa (1971) and Mas-Colell (1978) to the consumption-portfolio problem where

asset markets are incomplete for the case of KPS preferences. To illustrate the

application of our key results, we include a sequence of examples in which given

demands are shown to satisfy the necessary and su¢ cient conditions for the exis-

tence of both a representation of conditional risk preferences and a representation

of time preferences. Moreover, we recover the speci�c representations of risk and

time preferences generating the demands.

We also translate our ideas to a revealed preference setting, with �nitely many

observations on prices, probabilities and asset demands. Kubler (2004) considered

a special case of this setting but was unable to give a tractable characterization

of necessary and su¢ cient conditions. In this setting we provide a set of linear

inequalities that are necessary and su¢ cient for a �nite set of observations to be

consistent with the maximization of KPS utility. To obtain this result, we assume

that in addition to observing the utility maximizing choices, one also observes the

certainty equivalents of risky consumption corresponding to these choices. In the

recent literature on contingent claim demand tests of di¤erent preference models

(e.g., Choi, et al. 2007), it is standard to assume that prices, income and proba-

bilities are known. Also, the required certainty equivalents could in principle be

solicited from the experimental subjects. Our revealed preference extension would

seem to facilitate addressing the interesting questions of whether (i) consumer de-

mands are consistent with KPS preferences, (ii) time and risk preferences are

independent and (iii) they perform better in complete versus incomplete markets.

The desire to separately identify risk and time preferences from given con-

sumption and asset demands is a clear motivation for why we have chosen to

focus on the consumption-portfolio optimization rather than just the portfolio

problem. With regard to potential applications of the theoretical results in this

paper, recent laboratory experimental work investigating the separate roles of risk

and time preferences would seem quite complementary. Numerous studies have
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been conducted in this area (see, for example, Andreoni and Sprenger 2012, 2015,

Wölbert and Riedl 2013, Cheung 2015, Epper and Fehr-Duda 2015 and Miao and

Zhong 2015).

For the case of revealed preferences, Varian (1983) shows how to extend A�rat�s

(1967) analysis to a portfolio problem with possibly incomplete asset markets.

Our contribution is to extend his analysis to an intertemporal setting. There is

a substantial literature on the question whether EU preferences can be uniquely

identi�ed from asset demand and how to recover utility (see e.g., Dybvig and

Polemarchakis 1981, Polemarchakis and Selden 1984). Clearly, if one can recover

a candidate EU function, one can plug it into the �rst order conditions for optimal

demand and test whether demand is generated by this utility. There are several

limitations to this approach. First, although it allows one to uniquely identify a

candidate EU representation, it may be di¢ cult to analytically derive the utility

function. Second, McLennan (1979) shows that locally the same incomplete

market asset demand can be generated by two di¤erent EU representations. To

overcome this problem, one must assume the existence of a risk free asset and apply

the approach globally or assume that the utility function is analytic. Our approach

proves existence of a unique EU function without having to recover the utility and

avoids the requirement to have a risk free asset and apply the approach globally

as well as the assumption that utility is analytic. Kubler and Polemarchaks

(2017) examine a complementary problem. They also work in a two period

setting with incomplete markets but assume the existence of stationary expected

utility, and directly recover the NM (von Neuman-Morgenstern) index. The main

contribution of that paper is to give conditions that allow for an identi�cation of

(�xed) beliefs from the observed asset demand as a function of asset prices. We

consider the opposite problem: beliefs are observable (objective) and vary but no

assumption is made on preferences. We give necessary and su¢ cient conditions

for the existence of a KPS representation and show that the utility function can

be recovered from observations on prices, probabilities and demands.

The rest of the paper is organized as follows. In the next section, we introduce

the setup and de�ne notation. In Section 3, we provide several examples illus-

trating a number of speci�c obstacles in an incomplete market setting to directly

solving the integrability problem for a utility over assets rather than contingent

claims. In Section 4, we �rst consider integrability for the case where conditional

risk preferences are representable by expected utility and then provide necessary

and su¢ cient conditions for the existence of a utility representing time preferences

over certain periods 1 and 2 consumption and a means for identifying the utility.

Section 5 gives a revealed preference test to verify that discrete data is consis-
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tent with a KPS representation which can be conducted in a lab setting. Proofs

are given in Appendix A and supporting materials are provided in Supplemental

Appendix B.

2 Preliminaries

In the �rst subsection, we describe the consumption-portfolio setting and then

review the structure and properties of KPS preferences. One of the motivations

for assuming these preferences is to be able to identify, based on consumption

and asset demands, the speci�c underlying risk and time preferences. To achieve

this, it will prove useful to utilize a two stage process for solving the consumption-

portfolio optimization, which is discussed in the second subsection.

2.1 Notation and De�nitions

At the beginning of period 1, the consumer chooses a level of certain �rst period

consumption c1 and a set of asset holdings, where the returns on the latter fund

consumption in period 2. The asset market can be incomplete with J � 2

independent assets and S states, where J � S. Denote the payo¤ for asset

j (j 2 f1; :::; Jg) in state s (s 2 f1; :::; Sg) by �js � 0, where for each j, there

exists at least one s 2 f1; :::; Sg such that �js > 0. The quantities of assets and

contingent claims are denoted, respectively, by zj and c2s, with z and c2 being the

corresponding vectors. Random period 2 consumption can thus be expressed as

c2s =
JX
j=1

zj�js (s = 1; :::; S) : (1)

The prices of period 1 consumption, c1 and asset zj are given by, respectively,

p1 and qj. The vector of state probabilities is denoted � 2 �S�1
++ = f� 2 RS++jPS

s=1 �s = 1g. Both asset prices and state probabilities are allowed to vary. We
assume throughout that the payo¤s of the J assets across states, (�j1; : : : ; �jS),

are linearly independent for all j = 1; : : : ; J . Asset prices preclude arbitrage in

that there are p2s > 0, s = 1; : : : ; S such that

qj =
SX
s=1

�jsp2s (j = 1; 2; ; :::; J) : (2)

The consumer�s preferences over the consumption vectors (c1; c21; :::; c2S) are
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assumed to be representable by the KPS form2

U (c1; c21; :::; c2S) = U
 
c1; V

�1
c1

 
SX
s=1

�sVc1(c2s)

!!
= U(c;bc2); (3)

where
PS

s=1 �sVc1(c2s) is the standard single period state independent EU repre-

sentation over risky period 2 consumption, Vc1 is the NM index conditional on

period 1 consumption.3 The NM index Vc1 is strictly increasing in c2s and twice

continuously di¤erentiable in c1 and c2s. The assumption that Vc1 is strictly in-

creasing in c2s ensures the existence of a unique certainty equivalent bc2. The time
preference representation U is twice continuously di¤erentiable and strictly quasi-

concave and Vc1 is concave in c2 for each c1-value. The second argument of U in

(3) is the period 2 certainty equivalent associated with (c21; :::; c2S)

bc2 = V �1c1

 
SX
s=1

�sVc1(c2s)

!
:

If Vc1 takes the form

Vc1 (�) = a (c1)V (�) + b (c1) ;

where a (c1) > 0 and b (c1) are functions of c1 and V is independent of c1, it will

be said to exhibit RPI (risk preference independence). Otherwise, it will be said

to exhibit RPD (risk preference dependence).4 Clearly for the case of an RPD

conditional NM index, bc2 will depend not only on (c21; :::; c2S) but also on c1.
Thus, the KPS utility (3) is de�ned by the indices (U; fVc1g).
Given the dual contingent claim structure assumed, the consumer�s consumption-

portfolio optimization problem is given by

max
c1;z

U (c1;bc2) (4)

S:T: bc2 (c2;�) = V �1c1

 
SX
s=1

�sVc1 (c2s)

!
;

c2s =

JX
j=1

�jszj and p1c1 +

JX
j=1

qjzj = I: (5)

2The particular form (3) is axiomatized in Selden (1978). As is well-known, this utility is

equivalent to the two period Kreps and Porteus (1978) form if one embeds V �1c1 in the outside

aggregator.
3In general, the representation (3) is not linear in probabilities and diverges from the two

period EU
PS

s=1 �sW (c1; c2s):
4One familiar example of such a dependence is the internal habit formation formulation in

Constantinides (1990).
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Since these assumptions do not imply that the �rst order conditions for the prob-

lem (4) - (5) are su¢ cient for a unique maximum, we require the KPS utility (3)

to be strictly quasiconcave in (c1; c21; :::; c2S).

The solution to (4) - (5) can be expressed as the period 1 consumption c1(p1;q;�; I)

and asset demand function z(p1;q;�; I). It will be understood that when we write

�1; :::; �S, one can always replace �S by 1�
PS�1

s=1 �s. Consistent with the above

simplex normalization of probabilities, corresponding to any change in �s (s 6= S)
it will be understood that �S will have a compensating change. Given this con-

vention, @c1=@�s and @z=@�s are de�ned for s = 1; :::; S � 1.
Throughout most of this paper, we assume that one is given the functions

c1(p1;q;�; I) and z(p1;q;�; I) on an open set of period one consumption price,

no-arbitrage asset prices, probabilities and incomes. These sets are denoted re-

spectively by P � R++, Q � RJ++, � � �S�1
++ and I � R++. We assume that the

function is given on the product on these sets, P �Q� �� I which we assume
to be topologically connected. This assumption is not needed for our tests, but

clearly one cannot uniquely (up to monotone or positive a¢ ne transformation)

recover utility functions which are de�ned on di¤erent regions of the consumption

space.

The key question we focus on is whether a given vector of demands (c1; z) is

generated as the result of the optimization (4) - (5) and hence can be said to be

rationalized by KPS preferences. As mentioned in the introduction, it is crucial

to assume that variations of probabilities are observable on an open set.

2.2 Two Stage Optimization

The optimization (4) - (5) can be decomposed into a two stage problem.5 First

conditional on a given value of c1, one solves the single period problem

max
z

SX
s=1

�sVc1 (c2s) =

SX
s=1

�sVc1 (�s � z) S:T:

JX
j=1

qjzj = I � p1c1 = I2; (6)

where I2 denotes period 2 residual income. The solution to (6) is referred to as

the conditional asset demand function and denoted by z(q;�; I2j c1). Then the

second stage optimization is

max
c1

U(c1;bc2 (z( q;�;I2j c1) )) (7)

5A necessary and su¢ cient condition for being able to perform this decomposition is given in

Remark 8, Appendix A.2.
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is solved. It should be noted that in this formulation bc2 is a function of z and c1.
The resulting optimal period 1 consumption demand c1(p1;q;�; I) can be substi-

tuted into z(q;�; I2j c1) yielding the unconditional asset demand z(p1;q;�; I). It
will prove convenient to base our demand test for and identi�cation of conditional

risk preferences, corresponding to
PS

s=1 �sVc1(c2s), on the solution to the condi-

tional asset optimization problem (6). Then for the existence and identi�cation

of time preferences represented by U(c1; c2), we utilize the solution to (7).

For the overall optimization, suppose that U in (3) is quasiconcave in (c1; c21; :::; c2S),
then a solution to (6) - (7) exists, but the U implicitly de�ned by U (c1; c2) =

U (c1; c21; :::; c2S) with c21 = ::: = c2S, need not be strictly increasing and qua-

siconcave, as is required for a suitable representation of time preferences. (See

Example B.1 in Supplemental Appendix B.1.) For the two stage optimization, it

is standard to assume that U is quasiconcave. However, this is not su¢ cient to

ensure that the solution to the �rst order condition also satis�es the second order

condition. (See Example B.2 in Supplemental Appendix B.1.)

Since for our primary integrability results, we assume the two stage formula-

tion, we need an assumption on the certainty equivalent to guarantee overall strict

quasiconcavity.

Assumption 1 The period two certainty equivalent

bc2 = V �1c1

SX
s=1

�sVc1 (�s � z (q;�; I2j c1))

is weakly concave in c1.

Proposition 1 Suppose J � 2 and S � J and one is given twice continuously

di¤erentiable demand functions c1(p1;q;�; I) and z(p1;q;�; I). Further assume

that the conditional asset demand function z (q;�; I2j c1) is rationalizable by an
EU function with a twice continuously di¤erentiable NM index Vc1 and inverse

conditional demand exists. Moreover, there exists a unique twice continuously

di¤erentiable, strictly increasing, strictly quasiconcave representation of time pref-

erences U (c1; c2) rationalizing the certainty demand. Then (c1; z) can be ratio-

nalized by a KPS utility (3) if Assumption 1 holds.

Remark 1 As proved in Selden (1980, Corollary), if Vc1 is a member of the
HARA (hyperbolic absolute risk aversion) class, then bc2 is a linear function of
c1 and Proposition 1 is automatically satis�ed.
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3 Motivating Examples

The most natural and direct way to solve the integrability problem would be to

prove the existence of a rationalizing utility de�ned over period 1 consumption

and assets rather than period 1 consumption and contingent claims, for instance,

using Hurwicz and Uzawa (1971). However, even if one could prove the existence

of an increasing and quasiconcave utility over assets, there is no guarantee that

this would imply the existence of an increasing and quasiconcave utility over con-

sumption. This di¢ culty is illustrated by the following simple example based on

the consumption-portfolio problem (4) - (5). The Slutsky symmetry and negative

semi-de�niteness conditions necessary and su¢ cient for the existence of a utility

over assets are satis�ed, but the induced preferences over contingent claims are

not increasing and quasiconcave.

Example 1 Assume three states with a risk free asset, a risky asset, asset payo¤s

�11 = 1; �12 = 1; �13 = 1; �21 = 2; �22 = 0; �23 =
1

2

and probabilities (�1; �2; �3). Suppose demand takes the following form

c1 (p1;q; I) =
I

3p1
, z1 (p1;q; I) =

2 (�1�11 + �2�12 + �3�13) I

3 (�1 (�11 + �21) + �2 (�12 + �22) + �3 (�13 + �23)) q1

and

z2 (p1;q; I) =
2 (�1�21 + �2�22 + �3�23) I

3 (�1 (�11 + �21) + �2 (�12 + �22) + �3 (�13 + �23)) q2
:

It can be veri�ed that the conditional asset demands are given by

z1 (q; I2j c1) =
(�1�11 + �2�12 + �3�13) I2

(�1 (�11 + �21) + �2 (�12 + �22) + �3 (�13 + �23)) q1

and

z2 (q; I2j c1) =
(�1�21 + �2�22 + �3�23) I2

(�1 (�11 + �21) + �2 (�12 + �22) + �3 (�13 + �23)) q1
:

These demands satisfy Slutsky symmetry and negative semide�niteness conditions

where the former holds automatically since there are only two assets. Applying

the Hurwicz and Uzawa (1971) recovery process yields the familiar Cobb-Douglas

form de�ned over assets,

Vc1(z1; z2) = (�1�11 + �2�12 + �3�13) ln z1 + (�1�21 + �2�22 + �3�23) ln z2:
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This in turn, corresponds to a utility function over the contingent claim domain�
(c21; c22; c23) 2 R3++

�� c23 = c21
4
+ 3c22

4

	
which is given by

Vc1(c21; c22; c23) = ln
c21 � c22

2
+ ln c22:

By the Tietze extension theorem (see e.g., Hazewinkel 2001), this can be extended

to a continuous utility function over the entire contingent claim space. However,

it is easy to see that the utility is not everywhere increasing in c22.

This example clearly demonstrates that any asset demand test has to work

in the contingent claim setting since even if one can recover a well de�ned util-

ity over assets, it may have no economic meaning when de�ned over contingent

claims, which are associated with the consumers�real consumption. However, it

is well known that when markets are incomplete one cannot uniquely identify the

preferences over contingent claims from demand of assets. The following example

which focuses on the conditional asset demand optimization (6) illustrates this

point.6

Example 2 Consider the following non-EU function representing conditional risk
preferences

Vc1 (c21; c22; c23; �1; �2; �3) =
3X
s=1

�s ln c2s +
p
c21 + c22 � 2c23; (8)

where

�11 = 1; �12 = 0; �13 =
1

2
; �21 = 0; �22 = 1; �23 =

1

2
:

Since

c21 + c22 � 2c23 = z1 + z2 � (z1 + z2) = 0;

it is clear that the non-EU function (8) expressed as a function of assets

Vc1 (z1; z2; �1; �2; �3) =
3X
s=1

�s ln (�1sz1 + �2sz2)

takes the same form as the conditional EU representation de�ned over contingent

claims

Vc1 (c21; c22; c23; �1; �2; �3) =
3X
s=1

�s ln c2s:

Therefore in this case, maximizing the non-EU and EU representations results in

same conditional asset demand functions.

6A similar example is given in Polemarchakis and Selden (1981).
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The examples suggest that when markets are incomplete it is very di¢ cult to

derive necessary and su¢ cient conditions for intertemporal demand to be ratio-

nalized by a well-behaved utility function. Clearly, the Slutsky condition on asset

demand is a necessary but not a su¢ cient condition. The di¢ culty in deriving

su¢ cient conditions lies in the fact that there are many utility functions that

rationalize asset demand in incomplete markets and it is generally impossible to

ensure that one of them is increasing and quasiconcave.7

To address this problem, we note that assuming that a consumer�s preferences

are EU goes a long way to solve this problem. Although for this example, it

is impossible to tell whether the true underlying representation of conditional

risk preferences is the EU function, one can still ask whether the EU function

rationalizing the observed asset demand is (i) unique in the class of EU functions

and (ii) can be recovered from the demands.

4 Integrability

In this section we solve the integrability problem for KPS preferences by provid-

ing conditions such that there exists a KPS utility (3) de�ned by (U; fVc1g) which
rationalizes given demands (c1; z), is unique and can be recovered from the de-

mands. Our approach follows the two stage consumption-portfolio optimization

(6) - (7). Based on the �rst stage conditional portfolio problem, we give condi-

tions for the existence and uniqueness of the fVc1g and a means for recovering the
NM indices. Then, utilizing the second stage consumption-saving problem, we

derive conditions for the existence and uniqueness of U and a means for recovering

time preference utility. Finally, we provide conditions such that the KPS utility

de�ned by the (U; fVc1g) obtained does indeed rationalize the given demands. A
comprehensive example is provided which illustrates the application of the tests

derived in this section.

4.1 Verifying That Conditional Asset Demands Are Gen-
erated by EU Risk Preferences

The question of the existence of a rationalizing conditional EU representation can

only be answered in terms of restrictions on conditional asset demands.8 Since

7For the revealed preference analysis, matters are quite di¤erent. It is straightforward to

derive the Afriat inequalities for this case. We illustrate this in Supplemental Appendix B.2.
8If the unconditional demands can be rationalized by a twice continuously di¤erentiable,

strictly increasing and strictly quasiconcave utility function, then as argued in Remark 8 in
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it is more reasonable to suppose that one is given unconditional demands for

period 1 consumption and assets, it is necessary to ensure that a unique twice

continuously di¤erentiable conditional asset demand function can be derived from

the unconditional demand function. Su¢ cient conditions for this derivation are

given by Lemma 2 in Appendix A.2. This is a mild technical condition and for

simplicity it will be assumed to be satis�ed throughout this paper.

In order to derive our integrability result for conditional asset demand, it will

prove useful to consider the inverse demand function which maps asset demand,

probabilities and income into a supporting price vector. To simplify notation,

normalize I2 = 1 and denote the conditional inverse demand function by qj(z;�)

(j = 1; 2; :::; J). It should be noted that although qj(:) refers to both the uncon-

ditional and conditional inverse demand, they can easily be distinguished, respec-

tively, by the inclusion of I for the case of unconditional demand. For the analysis

below, we require taking the partial derivatives of q(z;�) with respect to prob-

abilities. In Appendix A.2, su¢ cient conditions are given in Lemma 3 for the

existences of twice continuously di¤erentiable inverse demand. Again this is a

mild technical condition that will be assumed to hold throughout the paper.

As explained in Section 2 above, conditional demand is assumed to be given in

an open and topologically connected set of asset prices and probabilities. It follows

from Lemma 3 that for each � 2 �, the range of the inverse demand function is an
open and connected subset of RJ and we can de�ne the domain of inverse demand
as D � RJ ��S�1

+ , an open and connected set.

In order to derive necessary and su¢ cient conditions for EU-rationalizability

based on inverse demand, consider the conditional portfolio optimization problem

in (6) - (7). The �rst order conditions for the optimization problem are

SX
s=1

�s�jsV
0
c1
(c2s) = �qj (j = 1; ::; J); (9)

where � is the Lagrange multiplier. It is easy to see that when markets are com-

plete the system (9) has a unique solution in �sV 0c1(c2s)=�, s = 1; : : : ; S. These

are the contingent claim prices, p2s. Kubler, Selden and Wei (2014, Theorem 2)

derive simple necessary and su¢ cient conditions for the existence of a rational-

izing EU function in complete markets based on the following relation between

contingent claim demands

c2s = f(c21; ks); (10)

where

Appendix A.2, one can always consider the two stage optimization and hence unique twice

continuously di¤erentiable conditional asset demand exists.

13



ks =
�sp21
�1p2s

; (11)

and f is strictly increasing in ks and f (c2s; 1) = c2s for all c2s. The demand

restriction (10) is referred to as the k-test. Unfortunately when markets are

incomplete, (9) has many solutions and it is not feasible to determine whether

there exists a particular solution that satis�es (10).

However as we next show in Theorem 1 below, it is possible to extend the

complete market EU asset demand test to incomplete markets if we assume that

probabilities can be varied. Indeed the three conditions stated in the theorem

below comprise a formal analogue to the complete market k-test. The method

gives us a way to uniquely pin down �sV 0c1(c2s)=� which we denote by �2s: Assuming

that for some j, �jS � c2Sqj 6= 0, this allows us to de�ne for all (z;�) 2 D,

�2S(z;�) =

PS�1
s=1 �s

@qj
@�s

� 1
�S
(�jS �

c2Sqj
I2
)
= �

�S
PS�1

l=1 �l
@qj
@�l

�jS � c2Sqj
(12)

and (assuming �js � c2sqj 6= 0) for s = 1; : : : ; S � 1,

�2s(z;�) =
�s

�
@qj
@�s
�
PS�1

l=1 �l
@qj
@�l

�
�js � c2sqj

: (13)

In the proof of Theorem 1, we show that these are the analogues of contingent

claim prices for the incomplete market setting.

For two states s and s0, de�ne

Ms;s0(z;�) =
�s0�2s(z;�)

�s�2s0(z;�)
: (14)

We have the following theorem.

Theorem 1 Assume J � 2 and S � J and that for some j 2 f1; :::; Jg, �js �
c2sqj 6= 0 (8s = 1; :::; S). Then conditional asset demand z (q;�; I2j c1) can
be rationalized by a unique EU representation if and only if the following three

conditions hold.

(i) For all (z;�) 2 D, and all j = 1; : : : ; J ,

qj(z;�) =

SX
s=1

�js�2s(z;�):
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(ii) For all (z;�) 2 D, and all arbitrary vectors � 2 RJ with �s � � = �s0 � � = 0,
the derivative in the direction of these vectors satis�es

d

d�
Ms;s0(z+ ��;�)j�=0 = 0;

where � is a scalar.

Moreover, for all (z;�) 2 D,

D�Ms;s0(z;�) = 0:

(iii) For all (z;�); (ez; e�) 2 D and all s; es; s0; es0 2 f1; : : : ; Sg, if c2s = z � �s �ec2es = ez � �es and c2s0 = z � �s0 = ec2es0 = ez � �es0 then
Ms;s0(z;�) �M~s;~s0(ez; e�);

where the inequality holds strictly if c2s = z � �s > ec2es = ez � �es:
Furthermore fVc1g can be uniquely recovered up to a positive a¢ ne transfor-

mation on the intervals of consumption values demanded in states s = 1; : : : ; S

by integratingMs;s0(z + ��;�) with respect to � for � 2 RJ where � � �s0 = 0 and
� � �s > 0. In this case,

Vc1(c2s) = Vc1 (�s � (z+ ��)) =
Z
�

Ms;s0(z+ ��;�)d�:

.

One cannot directly integrate with respect to c2s, sinceMs;s0(z;�) is a function

of probabilities and asset demands instead of (c2s; c2s0), De�ne the marginal rate

of substitution between c2s and c2s0 as MRSss0. If conditional asset demands are

EU representable, we have

Ms;s0(z;�) =
�s0

�s
MRSss0 =

V 0c1(c2s)

V 0c1(c2s0)
;

which is independent of probabilities. Here we choose a vector satisfying � ��s0 = 0
and � � �s > 0. Since c2s = z � �s, when integratingMs;s0(z+ ��;�) with respect

to �, we e¤ectively integrate for c2s.

As argued in the proof of the theorem, Condition (i) follows from the �rst

order condition for optimality. Condition (ii) follows because utility is assumed

to be separable across states and the NM index does not depend on probabilities.

Condition (iii) guarantees state independence and concavity of utility.
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Remark 2 To see more clearly the connection between Theorem 1 Conditions (i)
- (iii) and the k-test (10), set s = 1 in (14) yielding

M1s0(z;�) =
�s0�21(z;�)

�1�2s0(z;�)
= ks0 : (15)

Condition (ii) in Theorem 1 guarantees that M1s0(z;�) is a function of only c21
and c2s0 and Condition (iii) ensures that this function is strictly decreasing in c21
and strictly increasing in c2s0. By the Implicit Function Theorem, there exists a

function f such that

c2s0 = f (c21; ks0) :

Based on Condition (iii), it is easy to verify that f (c21; ks0) is strictly increasing

in ks0 and f(c21; 1) = c21 for all c21. Therefore, the result in Theorem 1 converges

to the complete market EU test in Theorem 2 of Kubler, Selden and Wei (2014).

Remark 3 If there is a risk free asset and demand can be observed globally, then
the process to recover the candidate Vc1 can be signi�cantly simpli�ed. Following

Dybvig and Polemarchakis (1981), without loss of generality assume asset 1 is risk

free. Then one can recover the candidate fVc1g if the following inverse demand
is known

q(z = (z; 0; : : : ; 0);�; I2) 2 Q for some z:

This recovery process rests crucially on the assumptions that (i) an EU represen-

tation exists and (ii) one can observe demand and prices where it is optimal to

only demand the risk free asset.9

Remark 4 McLennan (1979) provides an example in which asset demands can
be rationalized by two EU representations with NM indices that di¤er by more

than an a¢ ne transformation (also see Dybvig and Polemarchakis 1981, p. 165).

It should be emphasized that one of the NM indices depend on probabilities. If,

as McLennan (1979) assumes, probabilities are �xed, both representations can be

viewed as standard EU functions. However because we allow probabilities to vary,

a representation which takes the EU form but with a probability dependent NM

index cannot rationalize the given demand.10 Thus if there is a probability depen-

dent NM index and a probability independent NM index to rationalize the demand

for �xed probabilities, we will only recover the probability independent one based

on Theorem 1.
9It should be noted that Green, Lau and Polemarchakis (1979) propose another approach for

recovering Vc1 when there is no risk free asset and the analysis is local. This is based on the

strong assumption that Vc1 is analytic in the nonnegative domain.
10This is discussed at length in Kubler, Selden and Wei (2017).
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Next we apply the incomplete demand test associated with Conditions (i) -

(iii) in Theorem 1 for demand to have been generated by the maximization of an

EU function. Given that the asset demand function passes the incomplete market

EU test, a unique EU representation exists and integration is shown to produce

the corresponding NM index Vc1 (up to a positive a¢ ne transformation).

Example 3 Assume three states and two assets where the payo¤s are given by11

�11 = 1; �12 = 0; �13 =
1

2
; �21 = 0; �22 = 1; �23 =

1

2
: (16)

The period 1 consumption and unconditional asset demands are respectively given

by12 ;13

c1 =
I

p1
� 1

p1

0@ 1
p1

�
�1(1�1=B)
q1�q2

��1 ��2(B�1)
q1�q2

��2
�
�
�3(1�1=B)
2(q2�q1=B)

��3
1A� 1

2

; (17)

z1 =
�1 (1� 1=B)
q1 � q2

0@ 1
p1

�
�1(1�1=B)
q1�q2

��1 ��2(B�1)
q1�q2

��2
�
�
�3(1�1=B)
2(q2�q1=B)

��3
1A� 1

2

(18)

and

z2 =
�2 (B � 1)
q1 � q2

0@ 1
p1

�
�1(1�1=B)
q1�q2

��1 ��2(B�1)
q1�q2

��2
�
�
�3(1�1=B)
2(q2�q1=B)

��3
1A� 1

2

; (19)

where

A =

q
((1� �1) q1 � (1� �2) q2)2 + 4�1�2q1q2

and

B =
�1q1 ((1� �1) q1 � (1 + �2) q2 + A)
�2q2 ((1 + �1) q1 � (1� �2) q2 � A)

:

Given that the unconditional demands satisfy the conditions in Lemma 2, and the

conditions in Lemma 3 are also satis�ed, one can �rst derive unique conditional

11For the assumed payo¤s, there exists an e¤ective risk free asset, which corresponds to a

portfolio of assets z satisfying the following condition of having the same payo¤ in each state

JX
j=1

zj�js = 1 for all s:

However the e¤ective risk free asset is not used in this example.
12It may strike the reader as surprising that asset demand is independent of income I. This

will be clari�ed in Example 4 below. Nevertheless, in Supplemental Appendix B.3 the associated

conditional asset demand is shown to depend on period 2 income I2 before normalization.
13It should be noted that the complete market unconditional demands generated by the same

rationalizing utility derived at the end of this example, are considerably simpler than (17) - (19).

The considerable increase in complexity of the demand functions is a common consequence of

incomplete markets.
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asset demand functions and then obtain the following inverse conditional demands

(with the normalization I2 = 1)

q1 =
(1� �2) z1 + �1z2
(z1 + z2) z1

and q2 =
(1� �1) z2 + �2z1
(z1 + z2) z2

: (20)

Applying the approach outlined in Theorem 1 and its proof, it �rst can be veri�ed

that
@q1
@�1

=
z2

(z1 + z2) z1
and

@q1
@�2

= � 1

z1 + z2

Noticing that

c21 = z1; c22 = z2 and c23 =
1

2
(z1 + z2) ;

we have

�21(z;�) =
�1

�
@q1
@�1

�
P2

l=1 �l
@q1
@�l

�
�11 � c21q1

=
�1 ((1� �1) z2 + �2z1)
(1� q1z1) (z1 + z2) z1

:

and

�22(z;�) =
�2

�
@q1
@�2

�
P2

l=1 �l
@q1
@�l

�
�12 � c22q1

=
�2 (�1z2 + (1� �2) z1)
q1z2 (z1 + z2) z1

:

It can be veri�ed that

qj(z;�) =
SX
s=1

�js�s�2s(z;�)

and hence Condition (i) in Theorem 1 is satis�ed. Next we verify Condition (ii).

Inserting the inverse demands (20) into the following yields

M12(z;�) =
�2
�1

�21(z;�)

�22(z;�)
=

((1� �1) z2 + �2z1) q1z2
(�1z2 + (1� �2) z1) (1� q1z1)

=
z2
z1
:

Next assume � 2 R2 satisfying

�1�11 + �2�21 = 0 and �1�12 + �2�22 = 0:

It follows that � = (0; 0) implies that

d

d�
M12(z+ ��;�)j�=0 = 0:

Clearly

D�M12(z;�) = 0:

Verifying that the same conclusion holds forMs;s0(z;�) with other s and s0, Con-

dition (ii) is satis�ed. Finally, it can be veri�ed that

M12(z;�) =
c22
c21

and M23(z;�) =
c23
c22
:

18



Therefore, if c21 � ec22 and c22 = ec23, then for any e� 2 �,
M12(ez;�) �M23(ez; e�);

with the strict inequality if and only if c21 > ec22. Verifying that the same conclusion
holds forMs;s0(z;�) with other s and s0, Condition (iii) is satis�ed.

To see the connection to the complete market k-test (10), notice that

ks =
�2s�21
�21�2s

=M1s(z;�) =
c2s
c21
;

implying that c2s = f (c21; ks) = c21ks.

Given that a Vc1 exists, one can in fact recover the form that rationalizes the

given conditional asset demands. Following the logic in the discussion after Theo-

rem 1, de�ne the dummy variable c2s = �s � (z+ ��). Then to identify Vc1, taking
� = (�1; 0), we have

Vc1(c2s) =

Z
�

Ms;s0(z+ ��;�)d� =

Z
�

z2
z1 + �1�

d� =
z2
�1
ln (�11 (z1 + �1�)) ;

which is de�ned up to a positive a¢ ne transformation. (See Supplemental Ap-

pendix B.3 for supporting calculations.)

4.2 Verifying Certainty Consumption Demands Generated
by Ordinal Representation of Time Preferences

In the prior subsection, Theorem 1 provides necessary and su¢ cient conditions

such that for each c1-value asset demands z are generated by the maximization of

an EU representation where each Vc1 is increasing and strictly concave. In order

to go further and show that the given (c1; z) were generated by the maximization

of KPS utility (3), we have to show that (i) there exists a well behaved represen-

tation U of time preferences and (ii) the collection (U; fVc1g) de�ne a KPS utility
that rationalizes the given unconditional demands. Several obstacles need to be

overcome in order to demonstrate that (i) and (ii) are satis�ed.

The main obstacle lies in the fact that the function U(:; :) is de�ned over �rst

period consumption and the certainty equivalent of risky second period consump-

tion. Unfortunately, this cannot be observed locally �given the demand function

at a price and a small open neighborhood around that price does not pin down

the certainty equivalent. Theorem 1 allows us to uniquely recover the risk prefer-

ence fVc1g locally for the consumption values demanded - this generally does not
su¢ ce to determine the certainty equivalent since the certainty equivalent may lie

outside the domain of the locally de�ned fVc1g.
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It remains an open question to derive local conditions on demand. However it

is clear that if we want to recover time preference utility U , we need to assume

that risky asset demand is given on a large enough set of prices so that the cer-

tainty equivalent, bc2 can be uniquely recovered from conditional demand. In the

following we make this assumption.

As in Subsection 4.1 above it turns out to be useful to work with inverse

demand. We assume in the following that the conditions in Lemma 3 hold and we

are given inverse demand functions for prices as a function of choices

p1(c1; z; I;�); q(c1; z; I;�)

on some open an connected set bD � R+�RJ �R+��. We also assume that we
are given

bc2(c1; z1; : : : ; zJ ;�) = V �1c1

 
SX
s=1

�sVc1 (�s � z)
!
; (21)

for all c1; z;� with (c1; z; I;�) 2 bD for some I.

The main technical problem for a demand test is then that we cannot de�ne

a natural "price" for the certainty equivalent bc2 � if we could, the natural test
would require demand for period one consumption and the certainty equivalent to

satisfy the Slutsky equation.

Instead, similar to above we derive the marginal rate of substitution MRS =
@U=@c1
@U=@bc2 from inverse demand and the certainty equivalent.

For asset j = 1 we can de�ne14

f (c1; z;�) =

�
p1 (c1; z; I;�)

qj (c1; z; I;�)
� @bc2(c1; z;�)=@c1
@bc2(c1; z;�)=@zj

�
@bc2(c1; z;�)

@zj
: (22)

We show below that if demand is generated by the KPS utility (3), U(c1;bc2),
then the function f only depends on z through bc2, does not depend on � and

one can express it as a continuously di¤erentiable function of (c1;bc2) denoted byef (c1;bc2). We then have that
ef (c1;bc2) =MRS = @U=@c1

@U=@bc2 : (23)

and utility can be recovered through integration.

The following theorem states this formally and provides necessary and su¢ cient

conditions.
14Since p1 and q are homogenous of degree 1 in I, the function f does not depend on I.

Furthermore, f could have been de�ned using any other asset j > 1, as this turns out to be

irrelevant.
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Theorem 2 Suppose J � 2 and S � J and one is given twice continuously

di¤erentiable inverse demand and the certainty equivalent de�ned on some open

and connected set bD. Further assume that Assumption 1 is satis�ed.15 Then

there exists a unique twice continuously di¤erentiable, strictly increasing, strictly

quasiconcave, probability independent representation of time preferences U (c1; c2) :

C1�C2 ! R rationalizing the certainty demand (c1;bc2) if and only if the function
f de�ned in (22) satis�es

(i) For all i; j = 1; : : : ; J and all (c1; z; I;�) 2 bD
@f(c1; z;�)=@zi
@f(c1; z;�)=@zj

=
@bc2(c1; z;�)=@zi
@bc2(c1; z;�)=@zj ;

(ii) For all (c1; z; I;�) 2 bD, f(c1; z;�) > 0 and for all j = 1; : : : ; J ,
D�

0@ @f(c1;z;�)
@c1

@f(c1;z;�)=@zj
@bc2(c1;z;�)=@zj

� @bc2(c1; z;�)
@c1

1A = 0;

(iii) For all (c1; z; I;�) 2 bD and for all j = 1; : : : ; J ,

@f(c1; z;�)=@zj
@bc2(c1; z;�)=@zj >

@f(c1;z;�)
@c1

� @f(c1;z;�)=@zj
@bc2(c1;z;�)=@zj @bc2(c1;z;�)@c1

f(c1; z;�)
: (24)

Furthermore U can be uniquely recovered up to an increasing transformation.

To implement Theorem 2, �rst note that on the right hand side of eqn. (22),

p1 (c1; z) =q1 (c1; z) can be always calculated when inverse demands exist. Given

fVc1g, @bc2=@c1 and @bc2=@z1 can be also computed. Therefore, one can always

calculate the right hand side of eqn. (22) as a function of (c1; z). In the above

theorem, Condition (i) guarantees that f (c1; z1; :::; zJ) can be expressed as a func-

tion of (c1;bc2). Condition (ii) ensures that the corresponding utility function is

strictly increasing and independent of probabilities and Condition (iii) ensures the

strict quasiconcavity of the utility. Moreover, if the function ef (c1;bc2) exists, then
as proved in Theorem 2, the following partial di¤erential equation

@U

@c1
� ef (c1;bc2) @U

@bc2 = 0 (25)

always has a unique solution U (c1;bc2), which is de�ned up to a increasing trans-
formation. Note that eqn. (23) de�nes an indi¤erence curve. As already noted by

15It should be noted that the constraint bc2 (c1) referred to in Assumption 1 is based on optimal
conditional asset demand z (q;�; I2j c1). However, the certainty equivalent function bc2 (c1; z;�)
used in Conditions (i) - (iii) below is based on the de�nition (21) without optimization.
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Samuelson (1950) in the two dimensional case, existence and uniqueness of a solu-

tion to (25) follows from the fact that ef is Lipschitz and that therefore the ordinary
di¤erential equation dbc2=dc1 = ef together with the boundary condition (c�1;bc�2) has
a unique solution describing the indi¤erence curve U (c1;bc2) = U (c�1;bc�2).
Remark 5 Theorem 2 di¤ers from the classic Hurwicz and Uzawa (1971) inte-

grability result in several key ways. A di¤erent approach is required due in part

to an inability to identify a price for bc2 since the constraint bc2 (c1) referred to in
Assumption 1 may not be linear in c1. However since we only have two goods

(c1;bc2), the existence of U can be always be derived from the MRS analogous to the
conclusion that in the standard linear budget constraint setting Slutsky symmetry

is always satis�ed for two goods. Condition (iii) in Theorem 2 plays the role of

negative semide�niteness of the Slutsky matrix in Hurwicz and Uzawa (1971) in

guaranteeing quasiconcavity of U .

Remark 6 If there is a risk free asset (without loss of generality, asset 1) and
demand is de�ned globally, then following Polemarchakis and Selden (1984) we

can simplify the test in Theorem 2 to the following condition. In this case, the

certainty equivalent bc2 will have an implicit price p2. A well behaved U exists if

and only if the Slutsky matrix associated with the demand function (c1; c2) with

respect to (p1; p2) derived by solving

p2
p1
=
q1 (c1; z1; :::; zJ ; I)

p1 (c1; z1; :::; zJ ; I)

����
z1=c2;z2=:::=zJ=0

(26)

is negative semide�nite and symmetric, and if p2=p1 is probability independent.16

If Assumption 1 does not hold, then in order to guarantee that the KPS rep-

resentation is well de�ned, we have to recover both fVc1g and U and then directly
verify that the KPS utility is strictly quasiconcave. Thus we have the following

theorem.

Theorem 3 Suppose J � 2 and S � J and one is given twice continuously

di¤erentiable inverse demand and the certainty equivalent de�ned on some open

and connected set bD. Further assume that Conditions (i), (ii) and (iii) in Theorem
2 are satis�ed. Then there exists a unique twice continuously di¤erentiable, strictly

increasing, strictly quasiconcave, probability independent representation of time

preferences U (c1; c2) : C1�C2 ! R rationalizing the certainty demand if and only
16Since continuous di¤erentiability implies local Lipschitz continuity, we obtain uniqueness of

the representation U without having to assume Lipschitz continuity as in Mas-Colell (1977).
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if the KPS utility (3) constructed from fVc1g and the solution U to the following

partial di¤erential equation

@U

@c1
� ef (c1;bc2) @U

@bc2 = 0
is strictly quasiconcave.

Based on Theorems 1 and 2, we are guaranteed that a well behaved (U; fVc1g)
set exists. Moreover, Assumption 1 ensures that the resulting KPS utility (3)

satis�es strict quasiconcavity and the given demands maximize KPS utility.

Remark 7 Polemarchakis and Selden (1984) assume the existence of a strictly
quasiconcave U (c1;bc2) and discuss how to identify it. Although the identi�cation
process of U (c1;bc2) provided by Theorem 2 is similar to that in Polemarchakis

and Selden (1984), Theorem 2 also gives an analytical test for the existence of

a certainty U (c1;bc2). The recovery process for U can be quite complicated or

sometimes not solvable analytically. (See Example B.3 in Supplemental Appendix

B.4). However Theorem 2 provides tests for the existence of U , which can be

readily veri�ed without going through the recovery process.

Although based on Theorems 1 and 2 a unique U exists, in general it is not

possible to determine its analytic form. However in some cases utilizing Theorem

3, it is possible to recover U. To illustrate this, we consider the following exten-

sion of Example 3, where we demonstrated the existence of a rationalizing EU

representation of risk preferences and recovered the speci�c NM index fVc1g. In
the following extension, we �rst calculate the right hand side of eqn. (22). Then

f (c1; z1; z2) is shown to satisfy Conditions (i), (ii) and (iii) in Theorem 2 implying

the existence of a U . Finally ef (c1;bc2) is derived and used following Theorem 3

to solve for the representation of certainty time preferences. Thus, we establish

the existence of a KPS utility and also identify the de�ning representations fVc1g
and U .

Example 4 Deriving the inverse demand functions from the given demands (17)

- (19) in Example 3, it can be veri�ed that

p1 (c1; z1; z2; I)

q1 (c1; z1; z2; I)
=
exp

�
�1 ln z1 + �2 ln z2 + �3 ln

�
1
2
z1 +

1
2
z2
��

�1
z1
+ �3

z1+z1

:

Since Vc1 (c2) = ln c2 is independent of c1,
17

bc2 = exp��1 ln z1 + �2 ln z2 + �3 ln�1
2
z1 +

1

2
z2

��
; (27)

17It should be noted that the period two certainty equivalent in eqn. (27) corresponds to the

function (21) and is not based on the �rst stage portfolio optimization.
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implying that
@bc2
@c1

= 0 and

@bc2
@z1

= exp

�
�1 ln z1 + �2 ln z2 + �3 ln

�
1

2
z1 +

1

2
z2

���
�1
z1
+

�3
z1 + z1

�
:

Then it follows from eqn. (22) that

f (c1; z1; z2) = exp

�
2

�
�1 ln z1 + �2 ln z2 + �3 ln

�
1

2
z1 +

1

2
z2

���
:

Next we verify Conditions (i), (ii) and (iii) in Theorem 2. First,

@f=@z1
@f=@z2

=

exp

 
2

 
�1 ln z1 + �2 ln z2+

�3 ln
�
1
2
z1 +

1
2
z2
� !!�

2�1
z1
+ �3

1
2
z1+

1
2
z2

�
exp

 
2

 
�1 ln z1 + �2 ln z2+

�3 ln
�
1
2
z1 +

1
2
z2
� !!�

2�2
z2
+ �3

1
2
z1+

1
2
z2

�
=

2�1=z1 + �3=
�
1
2
z1 +

1
2
z2
�

2�2=z2 + �3=
�
1
2
z1 +

1
2
z2
� = @bc2=@z1

@bc2=@z2
and hence Condition (i) is satis�ed. Second, if j = 1 or 2,

D�

�
@f

@c1
=
@f=@zj
@bc2=@zj � @bc2@c1

�
= 0

and hence Condition (ii) holds. Third, if j = 1 or 2;

@f=@zj
@bc2=@zj = 2 exp

�
�1 ln z1 + �2 ln z2 + �3 ln

�
1

2
z1 +

1

2
z2

��
>

1

f

�
@f

@c1
� @f=@zj
@bc2=@zj @bc2@c1

�
= 0

and hence Condition (iii) is satis�ed. Thus one can conclude that there exists a

unique twice continuously di¤erentiable, strictly increasing, strictly quasiconcave

representation of time preferences U (c1;bc2) rationalizing the certainty demand.
Next we solve for U directly to verify our conclusion. Actually, it is easy to see

that ef (c1;bc2) = bc22 and hence the partial di¤erential equation (25) becomes
@U

@c1
� bc22 @U@bc2 = 0:

Solving this partial di¤erential equation yields

U (c1;bc2) = c1 � 1bc2 ; (28)

which is twice continuously di¤erentiable, strictly increasing, strictly quasiconcave

and probability independent. Thus the reason why the unconditional asset demands

(18) - (19) that we started with in Example 3 are independent of income is the

quasilinearity of the certainty utility, (28). Finally, since Vc1 (c2) = ln c2, which

is a member of HARA class, (U; Vc1) represents a KPS representation.
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5 Revealed Preference Tests

Theorems 1 - 3 are fully consistent with the integrability analysis of Hurwicz and

Uzawa (1971) and Mas-Colell (1978) and give a theoretical answer to the question

of observable restrictions imposed by the maximization of KPS utility. But what if

in an applied setting one only has �nite data rather than full demand functions, can

revealed preference analysis be applied to address the weaker question of whether

a �nite number of observations on prices, demands, and possibly probabilities,

are consistent with the maximization of KPS preferences? Along the lines of

Mas-Colell (1978), one can extend the analysis by considering the case where

the observations become dense (in an appropriate sense as de�ned in Mas-Colell

(1978)) and can recover the KPS utility function. However, the purpose of section

is to consider the case where the data is �nite.

For our non-parametric analysis we need to derive Afriat inequalities (Afriat

1967). These non-linear inequalities completely characterize choices which are

consistent with utility maximization. Varian (1983) showed that in revealed prefer-

ence analyses, the Afriat inequalities for asset demand can be used to test whether

demand and price observations are consistent with the maximization of an EU

representation in an incomplete market setting. Kubler (2004) derives the Afriat

inequalities for asset demand under Kreps and Porteus (1978) utility for the case

of risk preference independence. Unfortunately from a practical point of view his

results are useless since the inequalities are nonlinear and he does not provide an

e¢ cient algorithm to solve them.

The Afriat inequalities can be e¢ ciently solved if one can �nd equivalent,

quanti�er free conditions as in Kubler, Selden and Wei (2014), or if they can

be reduced to a system of linear inequalities. In the latter case, interior-point

methods or the simplex methods can be used to solve systems even with a very

large number of observations.

In Lemma 1 below, we propose a traditional revealed preference test based on a

system of nonlinear inequalities. To make the computational process e¢ cient, one

solution would be to design a lab experiment such that one can directly observe

period two certainty equivalent consumption based on the subjects� responses.

Then the utility maximizing choices would be characterized by the computation-

ally simpler linear system of inequalities if one assumes that the overall utility

function is quasiconcave.

We start our analysis with a general characterization of rationalizable obser-

vations. It is helpful to use the budget constraint to transform asset demands

directly into contingent claim demands as the latter are the objects that impose
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restrictions on our data set. We consider the general RPD case and assume that

the NM index Vc1(c2s) is jointly concave in c1 and c2s.
18 We assume throughout

that consumption choices are interior. Moreover, the certainty equivalent is not

observable in the lab experiment and needs to ful�ll certain conditions. Consider

the case where there are N observations of prices and demands with i 2 f1; :::; Ng.
For the following lemma and theorem below, we simplify notation by de�ning V i0 ,

V is and c
i
20, respectively to be the period two EU-value based on the i

th observation

of contingent claim demands, the utility-value Vci1(c
i
2s), the certainty equivalent as-

sociated with the vector (ci21; : : : ; c
i
2S) and probabilities, �

i. U i denotes the two

period certainty utility-value associated with the ith observation of period one con-

sumption ci1 and period two certainty equivalent c
i
20. Also, we use the following

de�nitions

ui1 = U1(c
i
1;bci2); ui2 = U2(ci1;bci2); vi1s = @Vci1(c

i
2s)

@ci1
; vi2s =

@Vci1(c
i
2s)

@ci2s
; V is = Vci1(c

i
2s):

We have the following lemma.

Lemma 1 The data set (ci1; c
i
2; p

i
1;q

i;�i)
N
i=1 is consistent with maximization of the

two period KPS utility (3) de�ned by a concave time preference utility U and the

NM index fVc1g, that is jointly concave in �rst and second period consumption,
if and only if for each i = 1; : : : ; N there exist V is ; v

i
1s; v

i
2s > 0; s = 0; : : : ; S,

U i; ui1 > 0; u
i
2 > 0; c

i
20 > 0, i = 1; : : : ; N , such that

(i) For all i = 1; : : : ; N ,

qi

pi1

 
ui1 + u

i
2

 
1

vi20

SX
s=1

�isv
i
1s +

vi10
vi20

!!
= ui2

1

vi20

SX
s=1

�is�sv
i
2s;

(ii) For all i; j = 1; : : : ; N; and all s; t = 0; : : : ; S,

V is � V
j
t �

 
vj1t
vj2t

!
�
  

ci1
ci2s

!
�
 
cj1
cj2t

!!
;

18In principle, when making the two stage identi�cation, one does not require Vc1 (c2s) to

be concave in c1. But for the revealed preference tests, it is standard for the Afriat concavity

inequality to impose concavity restrictions for both arguments. One interesting example of KPS

preferences that satis�es the joint concavity assumption is where the NM index Vc1 (c2s) takes

the following internal habit formation form analogous to the EU representation of Constantinides

(1990)

Vc1 (c2s) = V (c2s � �c1) ;

where V 00 < 0 and � > 0. In this case, if the Arrow-Pratt measure of absolute risk aversion

�V 00 (c2s � �c1) =V 0 (c2s � �c1) is decreasing in c2s then it will be increasing in c1. In other

words, the more consumed in period one, the more risk averse the consumer becomes.
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For all i = 1; : : : ; N

V i0 =
SX
s=1

�isV
i
s ;

(iii) For all i; j = 1; : : : ; N

U i � U j �
 
uj1
uj2

!
�
  

ci1
ci20

!
�
 
cj1
cj20

!!
;

(iv) For all i; j = 1; : : : ; N

U i � U j �

0BBBBB@
uj1 + u

j
2

�
1

vj20

PS
s=1 �

j
sv
j
1s +

vj10
vj20

�
uj2

1

vj20
vj21
...

uj2
1

vj20
vj2S

1CCCCCA �
0BBBB@
0BBBB@

ci1
ci21
...

ci2S

1CCCCA�
0BBBB@

cj1
cj21
...

cj2S

1CCCCA
1CCCCA :

The revealed preference Conditions (i)�(iv) in the lemma roughly parallel the

conditions in the in�nitesimal Theorems 1, 2 and 3. Since we do not assume

that conditional asset demand is observable (this would correspond to the special

case where the ci1 are identical across observations i), the conditions ensure both

the existence of a risk averse conditional second period conditional NM index (in

Condition (ii)) and the existence of a concave time preference utility (Condition

(iii)). In addition since there is no simple analogue to Assumption 1 in this

setting, we need to impose separately that overall utility is concave in �rst and

second period consumption �Condition (iv) is therefore similar to the requirement

in Theorem 3.

In the lemma we assume observations on demand, prices and probabilities.

However unlike in our analysis in the in�nitesimal case, it is irrelevant whether

probabilities vary or not. If we consider the case where observations become dense,

we clearly need to assume that probabilities vary in order to be able to recover

preferences uniquely.

Clearly the inequalities in Lemma 1 are nonlinear and it seems unlikely that

there is a tractable algorithm to solve them. One obstacle to the solution of

the full system in Lemma 1 lies in the fact that the certainty equivalents (ci20)
N
i=1

are unknown. It would seem possible, however, that in a lab experiment one

might be able to solicit the certainty equivalents directly from the subjects. One

way of doing this would be to assume that only a risk free asset is available for

trade. Then each subject could be asked to specify the risk free asset price

such that the subject is indi¤erent between purchasing the risky asset portfolio
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and the risk free asset.19 Then, observations would consist of consumption, asset

demands, prices, certainty equivalents ci20 and supporting risk free asset prices bqi1
for all i = 1; : : : ; N . Building on the two stage identi�cation process employed in

Theorems 1-3, we derive Theorem 4 (and Lemma 1 above). Condition (ii) of the

theorem is associated with the �rst stage optimization with respect to Vc1 (c2s).

Condition (iii) is associated with the second stage optimization with respect to

U (c1; c2), where bq1=p1 can be viewed as a pseudo price ratio corresponding to the
�rst order condition in eqn. (A.9) in Appendix A.4. Conditions (i) and (iv) are

associated with overall utility properties.

Theorem 4 The data set (ci1; c
i
2; c

i
20; p

i
1;q

i; bqi1;�i)Ni=1 is consistent with maximiza-
tion of the two period KPS utility (3) de�ned by a concave time preference utility U

and the NM index fVc1g, that is jointly concave in �rst and second period consump-
tion, if and only if for each i = 1; : : : ; N there exist V is ; v

i
1s; v

i
2s > 0; s = 0; : : : ; S,

U i; ui1 > 0, i = 1; : : : ; N , such that

(i) For all i = 1; : : : ; N ,

qi

pi1

 
pi1bqi1 vi20 +

SX
s=1

�isv
i
1s + v

i
10

!
=

SX
s=1

�is�sv
i
2s;

(ii) For all i; j = 1; : : : ; N; and all s; t = 0; : : : ; S,

V is � V
j
t �

 
vj1t
vj2t

!
�
  

ci1
ci2s

!
�
 
cj1
cj2t

!!
;

For all i = 1; : : : ; N

V i0 =
SX
s=1

�isV
i
s ;

(iii) For all i; j = 1; : : : ; N ,

U i � U j �
 

uj1

uj1
bqj1
pj1

!
�
  

ci1
ci20

!
�
 
cj1
cj20

!!
;

19Suppose one is given the observation
�
ci1; c

i
2; p

i
1;q

i;�i
�
for a subject, then the individual

could be asked to give the risk free asset price bqi1 such that she is indi¤erent between purchasing
the period 1 consumption and risky asset pair

�
ci1; c

i
2; p

i
1;q

i;�i
�
and the period 1 consumption

and risk free asset pair
�
ci1; c

i
20; p

i
1; bqi1�, where

ci20 =
ci2 � qibqi1 :
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(iv) For all i; j = 1; : : : ; N ,

U i�U j �

0BBBBBB@
uj1 + u

j
1
bqj1
pj1

�
1

vj20

PS
s=1 �

j
sv
j
1s +

vj10
vj20

�
uj1

bqj1
pj1

1

vj20
vj21

...

uj1
bqj1
pj1

1

vj20
vj2S

1CCCCCCA�
0BBBB@
0BBBB@

ci1
ci21
...

ci2S

1CCCCA�
0BBBB@

cj1
cj21
...

cj2S

1CCCCA
1CCCCA :

The proof of Theorem 4 follows from the observation that for the certainty

equivalents to be supported, we must have for all i = 1; : : : ; N , bqi1U i1=pi1 = U i2.
Theorem 4 Conditions (i), (ii) and (iii) can be written as a linear system of

inequalities that can be solved e¢ ciently using methods from numerical linear

algebra. The additional system in Condition (iv) that ensures overall concavity

unfortunately is nonlinear and it remains an open question as to how to verify

it e¢ ciently. Clearly Conditions (i)-(iii) are necessary conditions and they are

su¢ cient if one assumes that overall utility is quasiconcave.

6 Conclusion

In this paper, we give the necessary and su¢ cient integrability conditions such

that asset demand functions can be rationalized by a KPS utility function in

an incomplete market setting without requiring the existence of a risk free asset

but assuming probabilities can be varied. Moreover, a means for recovering the

corresponding KPS utility function is proposed if the above conditions hold. In

order to implement tests of whether in a lab setting the demands of individual

subjects are consistent with KPS preferences when markets are incomplete, the

results cannot be applied directly. One can either resort to a revealed preference

analysis (as is suggested in Section 5), or one can use our theoretical results to

obtain asset demand systems. Unlike in the case of demand for commodities under

certainty, no convenient functional forms are known for asset demand. Theorems

1-3 can be used in principle to develop such demand systems which then can be

estimated from experimental data. This is a subject for further research.

A good deal of the existing lab results questioning EU maximization, at least of

which we are aware, is based on lotteries. However in the evolving experimental

research based on contingent claim (asset demand) non-parametric tests (e.g.,

Polisson, Quah, and Renou 2019), the case against EU seems less clear than the

tests based on lotteries. Implementing our non-parametric tests based on asset

demands rather than lotteries in an experimental setting such as Choi, et al. (2007)

would seem to provide a useful addition to the existing literature. Finally, it would
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also seem quite interesting and potentially feasible to test whether consumers are

less likely to exhibit conditional asset demand behavior which is consistent with

EU maximizing behavior in incomplete versus complete markets perhaps due to

the extra complexity of more states than assets.

Appendix

A Proofs

A.1 Proof of Proposition 1

The optimal demand satis�es dU (c1;bc2 (c1)) =dc1 = 0, which implies that
@U(c1;bc2)
@c1

@U(c1;bc2)
@bc2

= �dbc2
dc1
:

Moreover, we have

d2U (c1;bc2 (c1))
dc21

=
d

dc1

�
@U (c1;bc2 (c1))

@c1
+
@U (c1;bc2 (c1))

@bc2 dbc2
dc1

�
=

@2U (c1;bc2)
@c21

+ 2
@2U (c1;bc2)
@c1@bc2 dbc2

dc1
+

@2U (c1;bc2)
@bc22

�
dbc2
dc1

�2
+
@U (c1;bc2)
@bc2 d2bc2

dc21

=
@2U (c1;bc2)

@c21
� 2@

2U (c1;bc2)
@c1@bc2

@U(c1;bc2)
@c1

@U(c1;bc2)
@bc2

+

@2U (c1;bc2)
@bc22

 
@U(c1;bc2)
@c1

@U(c1;bc2)
@bc2

!2
+
@U (c1;bc2)
@bc2 d2bc2

dc21
:

Since U is strictly increasing and strictly quasiconcave, we have

2
@2U

@c1@bc2 @U@c1 @U@bc2 �
�
@U

@c1

�2
@2U

@bc22 �
�
@U

@bc2
�2
@2U

@c21
> 0;

implying that

@2U

@c21
� 2 @

2U

@c1@bc2
@U
@c1
@U
@bc2 +

@2U

@bc22
 

@U
@c1
@U
@bc2
!2
< 0:

Since d2bc2=dc21 < 0, we have
d2U (c1;bc2 (c1))

dc21
< 0:
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Thus the second order condition is satis�ed and the optimal demand maximizes the

utility function U . Next we want to argue that if this solution always exists, then

the KPS representation must be strictly quasiconcave. For the KPS representation

U (c1;bc2), the local maximum/minimum can be always derived from the two stage
optimization (6) - (7), where the �rst order conditions are satis�ed. If U (c1;bc2)
is not strictly quasiconcave, then there exists at least one local extremum which

is not a local maximum and hence will violate the second order condition. This

contradicts our argument above that the second order condition is always satis�ed

and hence U (c1;bc2) must be strictly quasiconcave.
A.2 Existence of Conditional Demands and Inverse De-

mands

The following lemma provides a su¢ cient condition for the existence of unique

twice continuously di¤erentiable conditional asset demand functions. It will prove

useful to denote the Jacobian matrix of derivatives of the function (c1; I2) with

respect to (p1; I) as

Jc =
@ (c1; I2)

@ (p1; I)
: (A.1)

Since (c1; I2) can be viewed as a function of (p1; I;q;�), the nonsingularity of the

Jacobian matrix (A.1) ensures that the inverse function exists, i.e., (p1; I) can

be uniquely expressed as functions of (c1; I2;q;�).20 Substituting these functions

into the unconditional demand (z1; :::; zJ), one obtains the conditional demand.

Lemma 2 For given twice continuously di¤erentiable demands c1 (p1;q;�; I) and
z (p1;q;�; I), if (i) 8(q;�) 2 Q� �, c1 (p1;q;�; I) and I2 (p1;q;�; I) are proper
maps with respect to (p1; I)21 and (ii) 8(p1;q;�; I) 2 P �Q � � � I, det Jc 6=
0, then 8(p1;q;�; I) 2 P �Q � � � I, there exists unique twice continuously
di¤erentiable conditional asset demand

zi (q;�; I2j c1) = zi (p1;q;�; I) (i = 1; :::; J) : (A.2)

Proof. Consider the following equations

c1 = c1 (p1;q;�; I) and I2 = I � p1c1 (p1;q;�; I) : (A.3)

20The reason for including q and � as arguments in the inverse demand functions is to ensure

that q and � will enter into the unconditional demand for assets (z1; :::; zJ) as parameters.
21A map between topological spaces is called proper if inverse images of compact subsets are

compact. A special case which is more economically intuitive is desirability, i.e., when some

price goes to zero, the corresponding demand goes to in�nity.
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If 8(p1;q;�; I) 2 P �Q� �� I,

det
@ (c1; I2)

@ (p1; I)
6= 0;

and the map (c1 (p1; I) ; I2 (p1; I)) is proper, then following Gordon (1972, Theo-

rem B) and Wagsta¤ (1975, p. 524), (p1; I) can be solved for as a unique twice

continuously di¤erentiable function of (c1;q;�; I2) from the set of equations (A.3).

Substituting

p1 (c1;q;�; I2) and I (c1;q;�; I2)

into the unconditional asset demand zi (p1;q;�; I) (i = 1; :::; J), 8(p1;q;�; I) 2
P �Q � � � I, one obtains the unique continuously di¤erentiable conditional
demand zi (q;�; I2j c1) (i = 1; :::; J).
Condition (ii) ensures the local existence of conditional demand and Condition

(i) guarantees that conditional demand exists globally.22

Remark 8 Under the assumptions made in Section 2, namely that the U and

fVc1g de�ning KPS utility being, respectively, strictly increasing and strictly qua-
siconcave and strictly increasing and strictly concave, and overall KPS utility

being quasi-concave in c1; c21; : : : ; c2S then it is always possible to express the

consumption-portfolio optimization in two stages and there will always be a unique

conditional asset demand. Also, see the last paragraph in Appendix A.1.

Next we consider the existence of the inverse demand function which maps

asset demand, probabilities and income into a supporting price vector. Denote

the Jacobian matrix of derivatives of the vector function (c1; z) with respect to

(p1;q) as

Ju =
@ (c1; z1; :::; zJ)

@ (p1; q1; :::; qJ)
:

Then the following ensures the global existence of unique inverse demand.

Lemma 3 Assume c1 (p1;q;�; I) and z (p1;q;�; I) are twice continuously di¤er-
entiable over prices, probabilities and income. If (i) 8(�; I) 2 ��I, c1 (p1;q;�; I)
and z (p1;q;�; I) are proper maps with respect to (p1;q) and (ii) 8(p1;q;�; I) 2
P �Q���I, det Ju 6= 0, then 8(p1;q;�; I) 2 P �Q���I, there exists unique
twice continuously di¤erentiable inverse demands p1 (c1; z;�; I) and qi (c1; z;�; I)

(i = 1; :::; J).

22Without condition (i), we cannot ensure that the conditional demands exist in the full

domain of all (no arbitrage) prices and probabilities. Then our result becomes local and we

cannot guarantee the uniqueness of conditional demand functions. A similar argument applies

to the discussion for Lemma 3.
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Proof. Consider the following set of equations

c1 = c1 (p1;q;�; I) and z = z (p1;q;�; I) : (A.4)

If 8(p1;q;�; I) 2 P �Q� �� I,

det
@ (c1; z1; :::; zJ)

@ (p1; q1; :::; qJ)
6= 0;

and 8(�; I) 2 ��I, c1 (p1;q;�; I) and z (p1;q;�; I) are proper maps with respect
to (p1;q), then following Gordon (1972, Theorem B) and Wagsta¤ (1975, p. 524),

(p1;q) can be solved for as a unique twice continuously di¤erentiable function of

(c1; z;�; I) from the set of equations (A.4).

Although Lemma 3 is stated in terms of the unconditional demands, one can

prove that conditional asset demand, if it exists, inherits the properties (i) and (ii)

as well as being twice continuous di¤erentiability.23 Therefore, if the conditions

in Lemma 3 are satis�ed, the conditional demand is also globally invertible. If

the preferences are represented by a twice continuously di¤erentiable KPS utility

function, then Lemmas 2 and 3 are automatically satis�ed. First, the maps

are clearly proper. Second, the conditional asset demand exists and is twice

continuously di¤erentiable. This implies that det Jc 6= 0 as in Lemma 2. Finally,
it follows from the �rst order condition that inverse conditional asset demand also

exists. Therefore, det Ju 6= 0 as in Lemma 3.

A.3 Proof of Theorem 1

To prove necessity observe that, using �S = 1 �
PS�1

s=1 �s and given the inverse

demand function q(z;�;I2), di¤erentiating

SX
s=1

�s�jsV
0
c1
(c2s) = �qj;

with respect to �s (s 2 f1; :::; S � 1g), one obtains

�jsV
0
c1
(c2s)� �jSV 0c1 (c2S) =

@�

@�s
qj +

@qj
@�s

�: (A.5)

Di¤erentiating the budget constraint with respect to �s (s 2 f1; :::; S � 1g), it
follows that

JX
j=1

@qj
@�s

zj = 0: (A.6)

23The inheritance of twice continuous di¤erentiability is obvious. For a formal proof for the

inheritance of properties (i) and (ii), refer to Kannai, Selden and Wei (2017, Claims 2 and 3 in

the proof of Theorem 3).
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Combining eqn. (A.5) with (A.6) yields

V 0c1 (c2s) c2s � V
0
c1
(c2S) c2S =

@�

@�s

JX
j=1

qjzj =
@�

@�s
:

Substituting the above equation into (A.5) one obtains

�jsV
0
c1
(c2s)� �jSV 0c1 (c2S) = (V

0
c1
(c2s) c2s � V 0c1 (c2S) c2S)

1

qj
+
@qj
@�s

�:

De�ning

�2s =
�sV

0
c1
(c2s)

�
;

we obtain

@qj
@�s

=
�
�js � c2sqj

� �2s
�s
�
�
�jS � c2Sqj

� �2S
�S

(s = 1; :::; S � 1) : (A.7)

Using
P

s �2sc2s = 1 and
P

s �js�2s = qj and summing over all s = 1; : : : ; S � 1, it
follows that

S�1X
s=1

�s
@qj
@�s

= qj � �jS�2S � qj(1� �2Sc2S)� (1� �S)
�
�jS � c2Sqj

� �2S
�S

or �2S as de�ned in equation (12). Substituting the above equation into (A.7)

yields
@qj
@�s

=
�
�js � c2sqj

� �2s
�s
+

S�1X
l=1

�l
@qj
@�l

;

implying that

�2s =
�s

�
@qj
@�s
�
PS�1

l=1 �l
@qj
@�l

�
�js � c2sqj

(s = 1; :::; S � 1) ;

as de�ned in equation (13).

HenceMs;s0 denotes the marginal rate of substitution between consumption in

s and consumption in s0 and necessity of the three conditions in the theorem now

follows directly. Condition (i) follows from the �rst order condition for optimality.

Condition (ii) follows because utility is assumed to be separable across states and

the NM index does not depend on probabilities. Condition (iii) follows from state

independence and concavity of utility.

To prove su¢ ciency we prove that each �2s as de�ned in equation (12) and

in equation (13) can be written as the fraction of a continuous, positive valued

and decreasing function that only depends on c2s (call that function �sVc1) and a

continuous function that is the same for all s = 1; : : : S. This proves the result

34



since Condition (i) in the theorem ensures that the �rst order conditions hold and

Condition (iii) ensures that the utility is state independent. This also proves that

the second part of the theorem, namely that utility can be uniquely recovered.

Since we assume that D is topologically connected, it follows that for each

s = 2; : : : ; S the set of consumptions

Cs = f(c21; c2s) 2 R2+ : 9(z;�) 2 D with c21 = �1 � z; c2s = �s � zg

is an open and connected set in R2+. Therefore it su¢ ces to normalize V 0c1(bc21) = 1
for some value of bc21 = �1 � bz that is in the projection of the set onto c21. From

this, with the assumption of openness we can recover Vc1(c2s) locally by integrating

Ms1(bz+��) with respect to � 2 R for any � 2 RJ that satis�es � ��1 = 0; � ��s > 0.
Since Cs is connected one can �nd a path of these integrals to obtain Vc1(c2s) for
all c2s that are observed.

Condition (ii) in the theorem ensures that this function only depends on c2s
and Condition (iii) ensures that it is concave and continuous.

A.4 Proof of Theorem 2

First prove necessity. If U exists, then it follows from the �rst order condition

that
p1 (c1; z1; :::; zJ)

q1 (c1; z1; :::; zJ)
=

@U
@c1
+ @U

@bc2 @bc2@c1
@U
@bc2 @bc2@z1

=
1
@bc2
@z1

@U
@c1
@U
@bc2 +

@bc2
@c1
@bc2
@z1

; (A.8)

implying that
@U
@c1
@U
@bc2 =

@bc2
@z1

 
p1 (c1; z1; :::; zJ)

q1 (c1; z1; :::; zJ)
�

@bc2
@c1
@bc2
@z1

!
; (A.9)

which is a continuously di¤erentiable positive function of (c1;bc2). De�ne this

function as ef (c1;bc2). First,
@f=@zi
@f=@zj

=
@ ef=@bc2 � @bc2=@zi
@ ef=@bc2 � @bc2=@zj = @bc2=@zi

@bc2=@zj ;
which is Condition (i). Second, ef (c1;bc2) is independent of probabilities, which is
equivalent to

D�

 
@ ef=@c1
@ ef=@bc2

!
= 0: (A.10)

To convert the above condition to a condition based on f , notice that

@f

@zj
=
@ ef
@bc2 @bc2@zj and

@f

@c1
=
@ ef
@c1

+
@ ef
@bc2 @bc2@c1 : (A.11)
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Therefore, eqn. (A.10) can be rewritten as

D�

�
@f

@c1
=
@f=@zj
@bc2=@zj � @bc2@c1

�
= 0;

which is Condition (ii). Finally, it follows from Arrow and Enthoven (1961, p.

797 Theorem 5) that the strict quasiconcavity of U is equivalent to detBH > 0,

where BH is the bordered Hessian matrix

BH =

0B@ 0 U1 U2

U1 U11 U12

U2 U12 U22

1CA :
It can be veri�ed that

detBH = 2U1U2U12 � U22U11 � U21U22:

Moreover,
@ ef (c1; c2)
@c2

=
U12U2 � U1U22

U22

and
@ ln ef (c1; c2)

@c1
=
@ (lnU1 � lnU2)

@c1
=
U11
U1

� U12
U2
:

Since U1; U2 > 0,
@ ef (c1; c2)
@c2

>
@ ln ef (c1; c2)

@c1
(A.12)

is equivalent to

detBH = 2U1U2U12 � U22U11 � U21U22 > 0:

Using eqn. (A.11), condition (A.12) can be transformed into

@f=@zj
@bc2=@zj > 1

f

�
@f

@c1
� @f=@zj
@bc2=@zj @bc2@c1

�
;

which is Condition (iii). Next prove su¢ ciency. Since bc2 is a twice continuously
di¤erentiable function of (z1; :::; zJ) and

@bc2=@zj 6= 0 (j = 1; :::; J) ;

it follows from Mas-Colell (1977) that bc2 is a Lipschitzian and regular function.
Consider the following set of partial di¤erential equations

@bc2=@z1
@bc2=@zj = gj (z1; :::; zJ) (j = 2; :::; J) ; (A.13)
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which de�ne the shape of bc2 = const curves on the full (z1; :::; zJ) space. Com-

bining Theorems 1 and 2 in Mas-Colell (1977), one can conclude that the solution

to the set of partial di¤erential equations (A.13) is T � bc2, where T is a monotone
transformation.24 Since f (c1; z1; :::; zJ) also satis�es (A.13), we have

f (c1; z1; :::; zJ) = efc1 (bc2) = ef (c1;bc2) :
Since ef (c1;bc2) exists and is continuously di¤erentiable, implying that the Lipschitz
condition is satis�ed, it follows from Schae¤er and Cain (2016, Theorems 3.2.2 and

3.3.4) that the ordinary di¤erential equation

dbc2
dc1

= � ef (c1;bc2) (A.14)

has a unique solution, which can be denoted by U (c1;bc2) = 0. Since eqn. (A.14)
can be viewed as the characteristic equation of the following �rst order homoge-

neous linear partial di¤erential equation

@U

@c1
� ef (c1;bc2) @U

@bc2 = 0; (A.15)

and the ordinary di¤erential equation (A.14) has a unique solution, it follows

from Polyanin and Nazaikinskii (2016, pp. 1123-1124) that the partial di¤erential

equation (A.15) has a unique solution T � U (c1;bc2), where T is an increasing

transformation. Since ef (c1;bc2) is a continuously di¤erentiable positive function
satisfying condition (A.12), U (c1;bc2) is twice continuously di¤erentiable, strictly
increasing and strictly quasiconcave. Since condition (A.10) holds, ef (c1;bc2) is
independent of probabilities and hence U is also independent of probabilities.

Moreover, it can be seen that the �rst order condition (A.8) is satis�ed for this

U (c1;bc2). Thus there exists a unique twice continuously di¤erentiable, strictly

increasing and strictly quasiconcave time preference representation U (c1; c2) : C1�
C2 ! R rationalizing the certainty demand.

A.5 Proof of Lemma 1

For necessity, suppose demand is rationalized by a KPS utility function. The nec-

essary and su¢ cient �rst order conditions can be written as follows (for simplicity

the superscript i is not included)

q

p1

�
U1(c1;bc2) + U2(c1;bc2)@bc2

@c1

�
= U2(c1;bc2) �V �1c1

�0 SX
s=1

�sVc1(c2s)

!
SX
s=1

�s�sV
0
c1
(c2s);

24Mas-Colell does not argue directly that the partial di¤erential equation (A.13) has a unique

solution. Instead, he proves that the preference relation is unique when the preference is

Lipschitzian. We apply his conclusion by viewing (A.13) as the marginal rate of substitution of

the time preference utility. Then combining his Theorems 1 and 2 gives us the desired result.
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where

@bc2
@c1

=
@V �1c1

�PS
s=1 �sVc1(c2s)

�
@c1

+
�
V �1c1

�0 SX
s=1

�sVc1(c2s)

!
SX
s=1

�s
@Vc1(c2s)

@c1
:

Since �
V �1c1

�0 SX
s=1

�sVc1(c2s)

!
=

1

V 0c1(bc2)
and

@V �1c1

�PS
s=1 �sVc1(c2s)

�
@c1

=
@V �1c1

(Vc1(bc2))
@c1

= �
�
V �1c1

�0 SX
s=1

�sVc1(c2s)

!
@Vc1(bc2)
@c1

;

the equations in Lemma 1 Condition (i) follow from the de�nitions of ui1, u
i
2, v

i
1s

and vi2s, where v
i
10 = �@Vci1(bci2)=@ci1. Conditions (ii) and (iii) follow from concavity

of fVc1g and the concavity of U . Condition (iv) follows from the overall concavity
of the KPS utility function.

For su¢ ciency, as in Afriat (1967), Conditions (ii) and (iii) allow us to con-

struct piecewise linear and concave function eU(c1;bc2) and eVc1(c2). This implies a
piecewise linear eV �1c1

, so overall utility is piecewise linear. It is concave if for all

c1 and c2, the gradient inequalities in Condition (iv) are satis�ed. However, since

it is piecewise linear they must be satis�ed everywhere if they are satis�ed at all

ci1; c
i
2, i = 1; : : : ; N .
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B For Online Publication: Supplemental Appen-

dix

B.1 Properties of KPS Utility and (U; fVc1g)
Example B.1 Assume that

U (c1; c2) = c2 � 0:001c1 and Vc1 (c2) =
p
c2 + 0:5c1:

Clearly U (c1; c2) always decreases with c1 and hence it is not well behaved in

the full consumption space. Consider the simple case of two states with equal

probabilities. Then we have

bc2 = �0:5pc21 + 0:5c1 + 0:5pc22 + 0:5c1�2 � 0:5c1:
Therefore, the KPS representation is

U (c1;bc2) = bc2 � 0:001c1 = �0:5pc21 + 0:5c1 + 0:5pc22 + 0:5c1�2 � 0:501c1:
It can be veri�ed that

@U (c1;bc2)
@c1

=
0:125

p
c21 + 0:5c1p

c22 + 0:5c1
+
0:125

p
c22 + 0:5c1p

c21 + 0:5c1
� 0:251:

This value is positive if
c21 + 0:5c1
c22 + 0:5c1

> 1:1:

It can be also veri�ed that

@2U (c1;bc2)
@c21

= � (c21 � c22)2

4 (c1 + c21)
3
2 (c1 + c22)

3
2

< 0;

@2U (c1;bc2)
@c221

= �
p
2c22 + c1

4 (c1 + c21)
3
2

< 0;

@2U (c1;bc2)
@c222

= �
p
2c21 + c1

4 (c1 + c22)
3
2

< 0;

Det

"
@2U(c1;bc2)

@c21

@2U(c1;bc2)
@c1@c21

@2U(c1;bc2)
@c1@c21

@2U(c1;bc2)
@c221

#
= 0;

Det

"
@2U(c1;bc2)

@c21

@2U(c1;bc2)
@c1@c22

@2U(c1;bc2)
@c1@c22

@2U(c1;bc2)
@c222

#
= 0;

Det

"
@2U(c1;bc2)
@c221

@2U(c1;bc2)
@c21@c22

@2U(c1;bc2)
@c21@c22

@2U(c1;bc2)
@c222

#
= 0
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and

Det

2664
@2U(c1;bc2)

@c21

@2U(c1;bc2)
@c1@c21

@2U(c1;bc2)
@c1@c22

@2U(c1;bc2)
@c1@c21

@2U(c1;bc2)
@c221

@2U(c1;bc2)
@c21@c22

@2U(c1;bc2)
@c1@c22

@2U(c1;bc2)
@c21@c22

@2U(c1;bc2)
@c222

3775 = 0:
Therefore, U (c1;bc2) is concave and is strictly increasing if

c21 + 0:5c1
c22 + 0:5c1

> 1:1: (B.1)

In other words, although U (c1; c2) is not well de�ned over the full consumption

space, U (c1;bc2) is well de�ned in the region where the inequality (B.1) holds.
Example B.2 Assume that

V (c2) = � exp (�c2)� exp (�2c2) :

It can be easily veri�ed that V 0 > 0 and V 00 < 0. Assume two states of nature,

period two certainty equivalent is given by

bc2 = lnp1 + 4 (�1 exp (�c21) + �1 exp (�2c21) + �2 exp (�c22) + �2 exp (�2c22)) + 1
2 (�1 exp (�c21) + �1 exp (�2c21) + �2 exp (�c22) + �2 exp (�2c22))

:

(B.2)

Assuming

U (c1; c2) = c
0:99
1 + c2;

then the KPS utility is given by

U (c1;bc2) = c0:991 + bc2;
where bc2 is de�ned by eqn. (B.2), Although U is strictly increasing and strictly

quasiconcave in R2+ and V is strictly increasing and strictly concave in R+, nu-
merically it can be veri�ed that the KPS utility is not strictly quasiconcave in

(c1; c21; c22) 2 f5g � f1g � [0; 0:4].

B.2 A Revealed Preference Test for the General Case

Following the methods from Afriat (1967) and Lemma 1, it is easy to derive Afriat

inequalities for the general utility over c1; c21; : : : ; c2S that is increasing and con-

cave. In particular a data set (ci1; c
i
2; p

i
1;q

i;�i)
N
i=1 is consistent with maximization

of the two period increasing and concave utility if and only if for each i = 1; : : : ; N

there exist U i; ui1 > 0; u
i
2s > 0; s = 1; : : : ; S, i = 1; : : : ; N , such that

(i) For all i = 1; : : : ; N ,
qi

pi1
ui1 =

SX
s=1

�su
i
2s;
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(ii) For all i; j = 1; : : : ; N

U i � U j �

0BBBB@
uj1
uj21
...

uj2S

1CCCCA �
0BBBB@
0BBBB@

ci1
ci21
...

ci2S

1CCCCA�
0BBBB@

cj1
cj21
...

cj2S

1CCCCA
1CCCCA :

B.3 Supporting Calculations for Example 3

Based on the unconditional demand functions, it is possible to next derive the

corresponding unique conditional asset demand functions. First, solve for the

period 2 income

I2 = I � p1c1 =

0@ 1
p1

�
�1(1�1=B)
q1�q2

��1 ��2(B�1)
q1�q2

��2
�
�
�3(1�1=B)
2(q2�q1=B)

��3
1A� 1

2

;

from which we obtain

p1 = I
2
2

�
�1 (1� 1=B)
q1 � q2

��1 ��2 (B � 1)
q1 � q2

��2 �(1� �1 � �2) (1� 1=B)
2 (q2 � q1=B)

��3
:

Substituting the above equation into the unconditional asset demand yields

z1 =
�1 (1� 1=B) I2

q1 � q2
and z2 =

�2 (B � 1) I2
q1 � q2

: (B.3)

Deriving the inverse conditional asset demand functions from eqn. (B.3) yields

q1 =
(1� �2) z1 + �1z2
(z1 + z2) z1

I2 and q2 =
(1� �1) z2 + �2z1
(z1 + z2) z2

I2:

B.4 Example: Di¢ culties to Recover U

Example B.3 Suppose one is given (c1; z) and recovers based on Theorem 1 that

Vc1 (c2) = ln c2, implying that

bc2 = exp��1 ln z1 + �2 ln z2 + �3 ln�1
2
z1 +

1

2
z2

��
:

Then suppose that the following is derived based on (22) prior to Theorem 2

f (c1; z1; z2) = ln

�
3 + c1 + exp

�
�1 ln z1 + �2 ln z2 + �3 ln

�
1

2
z1 +

1

2
z2

���
:
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We verify Conditions (i), (ii) and (iii) in Theorem 2. First,

@f=@z1
@f=@z2

=

 
3 + c1 + exp

 
�1 ln z1 + �2 ln z2+

�3 ln
�
1
2
z1 +

1
2
z2
� !!�

2�1
z1
+ �3

1
2
z1+

1
2
z2

�
 
3 + c1 + exp

 
�1 ln z1 + �2 ln z2+

�3 ln
�
1
2
z1 +

1
2
z2
� !!�

2�2
z2
+ �3

1
2
z1+

1
2
z2

�
=

2�1=z1 + �3=
�
1
2
z1 +

1
2
z2
�

2�2=z2 + �3=
�
1
2
z1 +

1
2
z2
� = @bc2=@z1

@bc2=@z2
and hence Condition (i) is satis�ed. Second, if j = 1 or 2,

D�

�
@f

@c1
=
@f=@zj
@bc2=@zj � @bc2@c1

�
= D�1 = 0

and hence Condition (ii) holds. Third, if j = 1 or 2,

@f=@zj
@bc2=@zj = 1

3 + c1 + exp
�
�1 ln z1 + �2 ln z2 + �3 ln

�
1
2
z1 +

1
2
z2
��

and

1

f

�
@f

@c1
� @f=@zj
@bc2=@zj @bc2@c1

�
=

 
ln

 
3 + c1 + exp

 
�1 ln z1 + �2 ln z2+

�3 ln
�
1
2
z1 +

1
2
z2
� !!!�1

3 + c1 + exp

 
�1 ln z1 + �2 ln z2+

�3 ln
�
1
2
z1 +

1
2
z2
� ! ;

implying that
@f=@zj
@bc2=@zj > 1

f

�
@f

@c1
� @f=@zj
@bc2=@zj @bc2@c1

�
and hence Condition (iii) is satis�ed. Thus there exists a unique twice continu-

ously di¤erentiable, strictly increasing, strictly quasiconcave representation of time

preferences U (c1;bc2) rationalizing the certainty demand. Next we argue that U

cannot be derived analytically. Actually, it is easy to see that

ef (c1;bc2) = ln (3 + c1 + bc2) :
But no analytical solution is known for the following partial di¤erential equation25

@U

@c1
� ef (c1;bc2) @U

@bc2 = 0:
25To see the problem, note �rst that one only needs to solve the following ordinary di¤erential

equation
dbc2
dc1

= � ln (3 + c1 + bc2) :
De�ning x = c1 + bc2, the above equation becomes dx=dc1 = � ln (3 + x). However, � R dx

ln(3+x)

is not integratable analytically.
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