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Abstract

This paper studies the returns from investing in index options. Previous research

documents significant average option returns, large CAPM alphas, and high Sharpe

ratios, and concludes that put options are mispriced. We propose an alternative ap-

proach to evaluate the significance of option returns and obtain different conclusions.

Instead of using these statistical metrics, we compare historical option returns to

those generated by commonly used option pricing models. We find that the most

puzzling finding in the existing literature, the large returns to writing out-of-the-

money puts, is not even inconsistent with the Black-Scholes model. Moreover, simple

stochastic volatility models with no risk premia generate put returns across all strikes

that are not inconsistent with the observed data. At-the-money straddle returns are

more challenging to understand, and we find that these returns are not inconsistent

with explanations such as jump risk premia, Peso problems, and estimation risk.
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1 Introduction

It appears to be a common perception that index options are mispriced, in the sense that

certain option returns are excessive relative to their risks. In fact, some researchers go as

far to refer to these returns as puzzling or anomalous.1 In this paper, we provide a new

perspective on the evidence and methods used to support these claims, and come to largely

different conclusions.

The primary evidence supporting mispricing is the large magnitude of historical returns

to writing S&P 500 put options. For example, Bondarenko (2003) reports that average

at-the-money (ATM) put returns are −40%, not per annum, but per month, and deep out-

of-the-money (OTM) put returns are −95% per month. Average option returns and CAPM

alphas are statistically significant with p-values close to zero, and Sharpe ratios are larger

than those of the underlying index. The returns are economically significant, as investors

endowed with a wide array of utility functions find large certainty equivalent gains from

selling put options (e.g., Driessen and Maenhout, 2004; Santa-Clara and Saretto, 2005).

Still unaddressed is the question of whether or not option returns remain puzzling in

the context of commonly used option pricing models. In this paper, we evaluate signifi-

cance by comparing observed option returns with those generated by affine jump-diffusion

models that are widely accepted as plausible descriptions of S&P 500 returns.2 These

1A few quotations highlight the general sentiment of the literature: “The most likely explanation

is mispricing of options... A simulated trading strategy exploiting such mispricing yields risk-adjusted

expected excess returns during the post-crash period. These excess returns persist even when we account

for transaction costs and hedge the downside risk” (Jackwerth (2000), p. 450); “No equilibrium model from

a class of models can possibly explain the put anomaly, even when allowing for the possibility of incorrect

beliefs and a biased sample. The class of rejected models is fairly broad.” (Bondarenko (2003), p. 3);

“For index options, we find significantly positive abnormal returns when selling options across the range of

exercise prices, with the lowest exercise prices (e.g., out-of-the-money puts) being most profitable” (Bollen

and Whaley (2004), p. 714); “The analysis further shows that volatility risk and possibly jump risk are

priced in the cross-section of index options, but that these systematic risks are insufficient for explaining

average option returns. ...deep OTM money put options appear overpriced relative to longer-term OTM

puts and calls, often generating negative abnormal returns in excess of half a percent per day” (Jones

(2006), pp. 3-4), and the “empirical evidence on option returns suggest that stock index options markets

are operating inefficiently” (Bates (2006), p. 2).
2In this regard, our approach follows the standard practice in asset pricing by evaluating various returns

statistics using benchmark models. For example, it is common to simulate various consumption based

models to assess the significance of the equity premium or the volatility of stock returns. As in this
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models incorporate diffusive price shocks, price jumps and square-root diffusive stochastic

volatility, which are the main drivers of index return volatility.3 Option pricing models

formally account for the non-linear nature of option payoffs. Therefore, they provide a

more appropriate benchmark than the standard empirical asset pricing tests that rely on

average returns, CAPM alphas, or Sharpe ratios.

Methodologically, we rely on two basic tools: analytical expected option returns (EORs)

formulae and simulations to assess statistical significance. Our first contribution is to

compute analytical EORs. EORs are the ratio of P-measure expected payoffs to Q-measure

discounted expected payoffs, both easily computed for affine models. EORs are useful

for understanding the quantitative implications of different factors and parameterizations

on option returns. They also provide a natural benchmark for anchoring null values in

hypothesis tests. Although simple to derive and compute, analytical EORs have not been

used in the extant option pricing literature, to our knowledge.

Statistical significance is assessed using the parametric bootstrap. Central limit ap-

proximations are problematic for option return statistics because of small samples sizes (on

the order of 200 months) and the irregular nature of option return distributions. Option

returns are extremely skewed, as out-of-the-money expirations generate returns of −100%.

Specifically, we use historical index data to estimate parameters. Next, we simulate in-

dex sample paths and compute statistics associated with option returns along each path,

thereby constructing finite sample distributions of these statistics. In addition to average

returns, we also analyze standard risk-adjustments such as CAPM alphas and Sharpe ratios

and also straddles. It is important to note at this stage that we do not use option prices

to calibrate our models, as this would imply we are explaining option returns with option

prices, making the exercise circular.

Our approach provides a number of advantages relative to existing approaches: (1) It

evaluates option returns relative to reasonable option pricing benchmarks, appropriately

literature, we also calibrate our models to the underlying. In the case of asset pricing models, the underlying

fundamentals are quantities like consumption and dividend growth. In the case of S&P 500 options, the

underlying is the S&P 500 index. Dai and Singleton (2004) perform a similar analysis, analyzing the

implications of dynamic term structure models for expectation hypothesis regressions.
3Andersen, Benzoni, and Lund (2002), Bates (2000), Broadie, Chernov, and Johannes (2007), Chernov,

Gallant, Ghysels, and Tauchen (2003), Eraker (2004), Eraker, Johannes, and Polson (2003), and Pan

(2002), among many others, find that these models provide an accurate fit to both index returns and

options prices.
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anchoring hypothesis tests; (2) It automatically accounts for the peculiar statistical features

of option returns, as model based option returns embed leverage and have kinked payoffs;

(3) It allows researchers to easily compute finite sample distributions; (4) It provides a

formal framework for evaluating various explanations for the observed option returns that

include risk premia, Peso problems, and estimation risk. Our goal is not to test the affine

class of option models as this has already been done, but rather to use these accepted

models as data generating processes to analyze the impact of various factors (e.g., stochastic

volatility, jumps) and parametric assumptions on option returns.

We do not explicitly consider equilibrium models as our goal is not to provide an equi-

librium explanation of both option price and equity market puzzles in terms of underlying

dividend processes, as in Bates (1988), Naik and Lee (1990), and Liu, Pan, and Wang

(2005). These models capture many aspects of option prices and equity returns, but these

models have difficulties explaining important option-relevant features such as the high fre-

quency stochastic volatility behavior of equity returns, price jumps, and the leverage effect,

in addition to the usual problems that standard equilibrium models encounter (e.g., eq-

uity premium, excess volatility, etc.). Our goal is different and more modest. We seek to

understand the links between index option returns and commonly assumed properties of

underlying index returns such as jumps in prices and stochastic volatility. Simultaneously

explaining the properties of underlying economic fundamentals, equity returns, and option

prices is beyond the scope of this paper.4

We construct monthly S&P 500 futures option returns using a long sample from 1987 to

2005. The data and our new methodology generate a number of interesting new findings.

First, we find that put returns, and especially OTM put returns, are not puzzling, at least in

the context of the standard the Black and Scholes (1973) and the Heston (1993) stochastic

volatility (SV) models. Monthly Black-Scholes EORs are large, on the order of −10% to

−20% for ATM options and −20% to −40% for OTM options, for reasonable equity premia

and volatility levels. Expected put returns are concave functions of volatility, indicating

that fluctuating volatility generally makes EORs more negative. The Black-Scholes model

4One promising approach is the recent model of Benzoni, Collin-Dufresne, and Goldstein (2006) who

introduce a continuous-time extension of Bansal and Yaron (2003). They generate realistic volatility smiles

under the assumption that the highly persistent process driving aggregate consumption growth has large

rare jumps in combination with Epstein and Zin (1991) recursive utility. They do not consider stochastic

volatility, leverage effects, or the implications for pricing ATM money option in terms of realized versus

implied volatility.
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generates a p-value for 6% OTM put returns of 8%, indicating marginal significance at

best, and is much larger than those previously reported.

The SV model without factor risk premia (the drift of the SV process under both

measures is the same) generates even more striking findings. EORs are more negative

in the SV model than in the Black-Scholes model due to the concavity mentioned above.

Moreover, the impact of fluctuating volatility is quantitatively important as the p-value

for 6% OTM average put returns is now 24%. This indicates roughly one in four sample

paths from the SV model generates average returns that are more negative than those

observed historically. Across all strikes and put return statistics, the lowest p-value for

the SV model is just above 3%, certainly not overwhelming evidence of option mispricing,

especially under the assumption that there are no priced risk factors.

Second, CAPM alphas are strongly biased, both in population and in finite samples.

The Black-Scholes CAPM alpha for 6% OTM puts is −18% with a p-value of 13%. Although

Black-Scholes is a “single-factor” model, linear risk-corrections have little impact as CAPM

alphas are quite close to raw average put returns, both in population and simulations. In

Heston’s SV model (again, without priced diffusive volatility risk) alphas range from −16%

for ATM puts to −24% for OTM puts. This bias, along with the sampling uncertainty,

generates the p-value for the alpha on 6% OTM put returns of 40%. While we are not

the first to point out that alphas are biased for non-normal returns, we are the first to

quantify the biases in the context of standard option pricing models. This is important

because CAPM alphas are still widely used in both practice and the academic literature to

risk-correct option returns.

The dramatic increase in p-values relative to the existing literature occurs because

EORs should be negative (i.e., the appropriate null hypothesis is not zero) and there is

substantial sampling variation due to the small samples. These results are particularly

striking, as OTM put returns are most often used as evidence that options are mispriced.

These results certainly do not imply that the Black-Scholes or Heston models are accurate

or good option pricing models. Rather, the results indicate that put returns are too noisy

to assert options are mispriced or anomalous even relative to simplest models.

Third, we find that Merton’s jump-diffusion model, somewhat surprisingly, generates

less negative EORs than the Black-Scholes model if jump risk is not priced. This occurs

because the presence of unpriced jump risk increases the left tail mass for both the objective

and risk-neutral measures in a similar manner, increasing expected put returns toward zero.
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This has a key implication: because Merton’s model without jump risk premia can generate

very steep implied volatility smiles, this result dispels the common perception that steep

implied volatility smiles, per se, are associated with option mispricing and large option

returns.

Based on the evidence from these simple models without priced jump or stochastic

volatility risk, we conclude that standard factors go a long way in explaining the magnitude

and statistical significance of put returns. Put returns, especially for deep OTM strikes, are

not particularly puzzling, or at least are much less puzzling than indicated by the previous

literature.

The only statistic that remains challenging to understand after the introduction of un-

priced stochastic volatility and jumps in prices is ATM straddle returns. ATM staddle

returns are generated by the well-known wedge between ATM implied volatility and sub-

sequently realized volatility. Over our sample, ATM implied volatility averaged 17% and

realized volatility was 15%. This wedge between Q (implied volatility) and P (realized

volatility) is not likely to be explained solely by a diffusive stochastic volatility risk pre-

mium, but that a wedge between Q and P jump parameters is a more plausible explanation.

We analyze three commonly cited mechanisms that generate this wedge: jump risk premia,

estimation risk, and Peso problems. Again, in analyzing these explanations, it is important

to note we do not use option prices to estimate Q-parameters, but rather calibrate the

parameter values using plausible assumptions.

Each of these explanations generates significantly more negative put and straddle re-

turns. For example, the realized historical average straddle returns observed are −15.7%

per month, and these explanations generate expected straddle returns just slightly less

negative, about −10% to −14% per month and p-values indicate they are not statistically

significant. The same conclusion holds for CAPM alphas and Sharpe ratios for straddle

returns. Thus, we conclude that option returns do not appear to be particularly puzzling,

at least relative to standard models and plausible parametric assumptions.

The rest of the paper is outlined as follows. Section 2 discusses our data set and sum-

marizes the extant evidence for option mispricing. Section 3 outlines our methodological

approach, and Sections 4 and 5 report results for benchmark models (without factor risk

premia) and for the three explanations of the wedge between P and Q measures, respec-

tively. Section 6 concludes.
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2 The evidence for mispricing

In this section, we compute index option returns for a long historical sample, review the

evidence for mispricing of put options, and provide a review of the existing literature. Since

we use a different methodology than existing papers, we provide a detailed description of

existing approaches prior to introducing our new approach.

2.1 Data

We consider one month returns for options held to expiration for various strikes. Put

returns are defined as

rp
t,T =

(K − St+T )+

Pt,T (K, St)
− 1, (1)

where x+ ≡ max(x, 0), Pt,T (K, St) is the observed price of a put option written on an asset

St, at time t, struck at K, and expiring at time t + T.

Hold-to-expiration returns are typically analyzed in both academic studies (with a few

exceptions) and in practice. Option trading involves significant costs and strategies that

hold until expiration incur these costs only once. For example, ATM index option bid-

ask spreads are currently on the order to 3% to 5% of the option price, and the bid-ask

spreads are larger, often more than 10%, for deep OTM strikes. Following the literature

and for other reasons discussed in more detail below, we also consider returns generated

by model-independent trading strategies such as covered returns and straddles.

Our data consists of S&P 500 futures options from August 1987 to June 2005, a total of

215 months. This sample is considerably longer than those previously analyzed and starts

in August of 1987 when one-month “serial” options were introduced. Options mature on

the third Friday of each month, which implies there are 28 or 35 calendar days to maturity

depending on whether it was a four- or five-week month. We are careful to account for

holidays. We construct representative daily option prices using the approach in Broadie,

Chernov, and Johannes (2007); details of this procedure are in Appendix A.

Using these prices, we compute option returns for fixed moneyness, measured by strike

divided by the underlying, ranging from 0.94 to 1.02 (in 2% increments). This range

represents the most actively traded options: 85% of one-month option transactions occur

in this range. We did not include deeper OTM or ITM strikes because of missing values.

We computed payoffs using the settlement values for the S&P 500 futures contract.

7



1988 1990 1992 1994 1996 1998 2000 2002 2004
0

500

1000

1500

%
  

p
e

r 
m

o
n

th

 

 

1988 1990 1992 1994 1996 1998 2000 2002 2004
−100

0

100

200

300

%
 p

e
r 

m
o

n
th

 

 

6% OTM
ATM

Straddle

Figure 1: Time series of options returns. The top panel shows the time series of put returns

with moneyness of 0.94 and 1. The bottom panel shows the time series of at-the-money

straddle returns.

Figure 1 shows the time series for 6% OTM and ATM puts and ATM straddles. This

figure highlights some of the potential issues that are present when evaluating the statistical

significance of statistics generated by option returns. The put return time series have very

large outliers and many repeated values, since OTM expirations generate returns of −100%.

2.2 Option returns summary statistics

Table 1 summarizes the distributional features of put returns. We report average returns,

standard errors, t-statistics, p-values, and measures of non-normality (skewness and kurto-
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Moneyness 0.94 0.96 0.98 1.00 1.02 Strdl

8/1987 to 6/2005 −56.8 −52.3 −44.7 −29.9 −19.0 −15.7

Standard error 14.2 12.3 10.6 8.8 7.1 4.5

t-stat −3.9 −4.2 −4.2 −3.3 −2.6 −3.4

p-value, % 0.0 0.0 0.0 0.0 0.4 0.0

Skew 5.5 4.5 3.6 2.5 1.8 1.2

Kurt 34.2 25.1 16.7 10.5 7.1 5.2

Subsamples

01/1988 to 06/2005 −65.2 −60.6 −51.5 −34.1 −21.6 −16.8

01/1995 to 09/2000 −85.5 −71.6 −63.5 −50.5 −37.5 −10.8

10/2000 to 02/2003 +67.2 +54.3 +44.5 +48.2 +40.4 +4.0

08/1987 to 01/2000 −83.9 −63.2 −55.7 −39.5 −25.5 −19.1

Table 1: Average put option returns. The first panel contains the full sample, with stan-

dard errors, t-statistics, and skewness and kurtosis statistics. The second panel analyzes

subsamples. All relevant statistics are in percentages per month. The column “Strdl” refers

to the statistics associated with at-the-money straddles.

sis). We also report average returns over various subsamples.

The first evidence commonly cited supporting mispricing is the large magnitude of the

returns. Average monthly returns are about −60% for 6% OTM strikes and −30% for ATM

strikes. These returns are highly statistically different from zero based on standard t-tests,

as p-values are close to zero. The bottom panel reports average returns over subsamples.

In particular, to check that our results are consistent with previous findings, we compare

our statistics to the ones in the Bondarenko (2003) sample from 1987 to 2000. The returns

are very close, but ours are slightly more negative for every moneyness category except

the deepest OTM category. Bondarenko (2003) uses closing prices and has some missing

values, which generate much of the differences. Our returns are more negative than those

reported for similar time periods by Santa-Clara and Saretto (2005) using different option

contracts.

Average put returns are unstable over time. For example, put returns were extremely

negative during the late 1990s during the dot-com “bubble,” but were positive and large

from late 2000 to early 2003. The subsample starting in January 1988 provides the same

9



insight: if the extremely large positive returns realized around the crash of 1987 are ex-

cluded, returns are much lower. Doing so, however, generates a case of sample selection

bias, and clearly demonstrates a problem with tests using short sample periods.5 Note that

our full sample results are significantly less negative than those in Bondarenko (2003).

It should not be surprising that average put returns are quite negative, since puts are

levered short positions in the underlying. Thus it is crucial to de-lever or risk-correct

option returns to account for the underlying exposure. The most common approaches for

doing this are to (1) compute Sharpe ratios, (2) compute factor model alphas, (3) compute

covered option positions (buying an option and the underlying index), and (4) compute

straddle returns.6 Appendix B discusses delta-hedged returns and issues surrounding them.

The final column of Table 1 summarizes straddle returns, and Table 2 summarizes the

Sharpe ratios, CAPM alphas, and covered positions.7 CAPM alphas and ATM straddle

returns are highly statistically significant, with p-values near zero. Interestingly, the covered

put positions are insignificantly different from zero for all strikes and economically small.

From now on, we do not consider covered positions. The Sharpe ratios of put positions are

larger than those on the underlying market. For example, the monthly Sharpe ratio for

the market over our time period was about 0.1, and the put return Sharpe ratios are two

to three times larger. Straddles deliver Sharpe ratios of this general magnitude also.

Based largely on this evidence and additional robustness checks (which we discuss in

the following subsection), the literature concludes that put returns are puzzling and options

are likely mispriced.

5In simulations of the Black-Scholes model, excluding the largest positive return reduces average option

returns by about 15% for the 6% OTM strike. This outcome illustrates the potential sample selection

issues and how sensitive option returns are to the rare but extremely large positive returns generated by

events such as the crash of 1987.
6We have also computed returns to crash-neutral put positions, such as buying an ATM put option and

selling an OTM put option. These portfolios do not provide any additional insights beyond standard put

returns.
7We compute Sharpe ratios and CAPM alphas using monthly options returns.
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Moneyness 0.94 0.96 0.98 1.00 1.02

CAPM α, % −48.3 −44.1 −36.8 −22.5 −12.5

Std.err., % 11.6 9.3 7.1 4.8 2.9

t-stat −4.1 −4.7 −5.1 −4.6 −4.2

p-value, % 0.0 0.0 0.0 0.0 0.00

Sharpe ratio −27.3 −29.0 −29.0 −23.4 −18.5

Covered puts, % 0.20 0.11 -0.01 -0.06 -0.08

Std.err., % 0.25 0.23 0.20 0.16 0.12

Skew 0.06 0.35 0.69 1.21 2.02

Kurt 2.88 2.76 3.05 4.38 8.47

Table 2: Risk-corrected measures of average put option returns. The first panel provides

put option Sharpe ratios, the second panel provides CAPM α’s with standard errors, and

the third panel contains covered put returns. All relevant statistics are in percentages per

month. The p-values are computed under assumption that t-statistics are t-distributed.

2.3 Previous research on option returns

Before discussing our approach and results, we provide a brief review of the existing liter-

ature analyzing index option returns.8 The market for index options developed in the mid

to late 1980s. The Black-Scholes implied volatility smile indicates that OTM put options

are expensive relative to the ATM puts, and the issue is to then determine if these put

options are in fact mispriced.

Jackwerth (2000) documents that the risk-neutral distribution computed from S&P 500

index puts exhibit a pronounced negative skew after the crash of 1987. Based on a single

factor model, he shows that utility over wealth has convex portions, interpreted as evidence

of option mispricing. Investigating this further, Jackwerth (2000) analyzes monthly put

trading strategies from 1988 to 1995 and finds that put writing strategies deliver high

8Prior to the development of markets on index options, a number of articles analyzed option returns

on individual securities. These articles, including Merton, Scholes, and Gladstein (1978) and (1982),

Gastineau and Madansky (1979), and Bookstaber and Clarke (1985). The focus is largely on returns to

various historical trading strategies assuming the Black-Scholes model is correct. Sheikh and Ronn (1994)

document market microstructure patterns of option returns on individual securities.
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returns, both in absolute and risk-adjusted levels, with the most likely explanation being

option mispricing.

In a related study, Äıt-Sahalia, Wang, and Yared (2001) report a discrepancy between a

risk-neutral density of S&P 500 index returns implied by the cross-section of options versus

the time series of the underlying returns. The authors exploit the discrepancy to set up

“skewness” and “kurtosis” trade portfolios. Depending on the current relative values of the

two implicit densities, the portfolios were long or short a mix of ATM and OTM options.

The portfolios were rebalanced every three months. Äıt-Sahalia, Wang, and Yared (2001)

find that during the 1986 to 1996 period such strategies would have yielded Sharpe ratios

that are two to three times larger than those of the market.

Coval and Shumway (2001) analyze weekly option and straddle returns from 1986 to

1995. They find that put returns are too negative to be consistent with a single-factor

model, and that beta-neutral straddles still have significantly negative returns. Impor-

tantly, they do not conclude that options are mispriced, but rather that the evidence

points toward additional priced risk factors.

Bondarenko (2003) computes monthly returns for S&P 500 index futures options from

August 1987 to December 2000. Using a novel test based on equilibrium models, Bon-

darenko finds significantly negative put returns that are inconsistent with single-factor

equilibrium models. His test results are robust to risk adjustments, Peso problems, and the

underlying equity premium. He concludes that puts are mispriced and that there is a “put

pricing anomaly.” Bollen and Whaley (2003) analyze monthly S&P 500 option returns from

June 1988 to December 2000 and reach a similar conclusion. Using a unique dataset, they

find that OTM put returns were abnormally large over this period, even if delta-hedged.

Moreover, the pricing of index options is different than individual stock options, which were

not overpriced. The results are robust to transaction costs.

Santa-Clara and Saretto (2005) analyze returns on a wide variety of S&P 500 index

option portfolios, including covered positions and straddles, in addition to naked option

positions. They argue that the returns are implausibly large and statistically significant

by any metric. Further, these returns may be difficult for small investors to achieve due to

margin requirements and potential margin calls.

Most recently, Jones (2006) analyzes put returns, departing from the literature by

considering daily option (as opposed to monthly) returns and a nonlinear multi-factor

model. Using data from 1987 to September 2000, Jones finds that deep OTM put options
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have statistically significant alphas, relative to his factor model. Both in and out-of-sample,

simple put-selling strategies deliver attractive Sharpe ratios. He finds that the linear models

perform as well or better than nonlinear models. Bates (2006) reviews the evidence on stock

index option pricing, and concludes that options do not price risks in a manner consistent

with current option-pricing models.

Given the large returns to writing put options, Driessen and Maenhout (2004a) assess

the economic implications for optimal portfolio allocation. Using closing prices on the S&P

500 futures index from 1987 to 2001, they estimate expected utility using realized returns.

For a wide range of expected and non-expected utility functions, investors optimally short

put options, in conjunction with long equity positions. Since this result holds for various

utility functions and risk aversion parameters, their finding introduces a serious challenge

to explanations of the put-pricing puzzle based on heterogeneous expectations, as a wide

range of investors find it optimal to sell puts.

Driessen and Maenhout (2004b) analyze the pricing of jump and volatility risk across

multiple countries. Using a linear factor model, they regress ATM straddle and OTM put

returns on a number of index and index option based factors. They find that individ-

ual national markets have priced jump and volatility risk, but find little evidence of an

international jump or volatility factor that is priced across countries.

3 Our methodology

Existing approaches for evaluating the significance of option returns rely on utility-based

tests or purely statistical methods, as reviewed in the previous section. Our approach pro-

vides an alternative testing approach. We compare market observed returns (and associated

statistics) with those generated by standard option pricing models such as Black-Scholes

and extensions incorporating jumps or stochastic volatility. This section describes our

method in detail.

3.1 Models

We consider models that are nested versions of a general model with square-root stochastic

volatility and log-normally distributed Poisson driven jumps in prices. This model, pro-

posed by Bates (1996) and Scott (1997), which we refer to as the SVJ model, is a common
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benchmark model for index option prices (see, e.g., Andersen, Benzoni, and Lund (2002),

Bates (1996), Broadie, Chernov, and Johannes (2007), Chernov, Gallant, Ghysels, and

Tauchen (2003), Eraker (2004), Eraker, Johannes, and Polson (2003), and Pan (2002)). As

special cases of the model, we consider the Black and Scholes (1973) model, Merton’s (1976)

jump-diffusion model with constant volatility, and Heston’s (1993) square-root stochastic

volatility model.

The model assumes that the ex-dividend index level, St, and its spot variance, Vt, evolve

according to

dSt = (r + µ − δ)Stdt + St

√

VtdW s
t (P) + d

(

∑Nt(P)

j=1
Sτj−

[

eZs
j
(P) − 1

]

)

− λPµPStdt (2)

dVt = κP
v

(

θP
v − Vt

)

dt + σv

√

VtdW v
t (P) , (3)

where r is the risk-free rate, µ is the cum-dividend equity premium, δ is the dividend yield,

W s
t and W v

t are two correlated Brownian motions (E [W s
t W v

t ] = ρt), Nt (P) ∼ Poisson
(

λPt
)

,

Zs
j (P) ∼ N

(

µP
z ,

(

σP
z

)2
)

, and µP = exp
(

µP
z +

(

σP
z

)2
/2

)

− 1. Black-Scholes is a special case

with no jumps (λP = 0) and constant volatility (V0 = θP
v , σv = 0), Heston’s model is the

special case with no jumps, and Merton’s model is the special case with constant volatility.

When volatility is constant, we use the notation
√

Vt = σ.

Under the risk-neutral measure Q, the dynamics are given by

dSt = (r − δ) Stdt + St

√

VtdW s
t (Q) + d

(

∑Nt(Q)

j=1
Sτj−

[

eZs
j (Q) − 1

]

)

− λQµQStdt (4)

dVt = κQ
v (θQ

v − Vt)dt + σv

√

VtdW v
t (Q), (5)

where Nt (Q) ∼ Poisson
(

λQt
)

, Zj (Q) ∼ N
(

µQ
z ,

(

σQ
z

)2
)

, and Wt (Q) are Brownian motions,

and µQ is defined analgously to µP. The diffusive equity premium is µc, and the total equity

premium is µ = µc + λPµP − λQµQ.

The parameters θP
v and κP

v can both potentially change under the risk-neutral mea-

sure (Cheredito, Filipovic, and Kimmel (2003)). We explore changes in θP
v and constrain

κQ
v = κP

v , because, as discussed below, average returns are not sensitive to empirically plau-

sible changes in κP
v . Changes of measure for jump processes are more flexible than those

for diffusion processes. We take the simplifying assumptions that the jump size distribu-

tion is log-normal with potentially different means and variances. Below we explore three

explanations for differences between Q and P which all involve various parameterizations

of the Q-measure.
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3.2 Expected instantaneous option returns

Before analyzing EORs using analytical and simulation methods, we first develop some

intuition about signs, magnitudes, and determinants of instantaneous EORs. Appendix C

applies arguments similar to those used by Black and Scholes to derive their option pricing

model for the more general SVJ model. We discuss the single-factor Black-Scholes model

first, and then extensions incorporating stochastic volatility and jumps.

3.2.1 The Black-Scholes model

In Black-Scholes, the link between instantaneous returns on a derivative, f (St), and excess

index returns is
df (St)

f (St)
= rdt +

St

f (St)

∂f (St)

∂St

[

dSt

St

− (r − δ) dt

]

.

This expression displays two crucial features of the Black-Scholes model. First, instanta-

neous changes in the derivative’s price are linear in the index returns, dSt/St. Second,

instantaneous option returns are conditionally normally distributed. This linearity and

normality motivated Black and Scholes to assert a “local” CAPM-style model:

1

dt
EP

t

[

df (St)

f (St)
− rdt

]

=
∂ log [f (St)]

∂ log (St)
µ.

In the Black-Scholes model, this expression shows that EORs are determined by the equity

premium and the option’s elasticity, which, in turn, are functions primarily of moneyness

and volatility.

This instantaneous CAPM is often used to motivate an approximate CAPM model for

finite holding period returns,

EP
t

[

f (St+T ) − f (St)

f (St)
− rT

]

≈ βtµT,

and the model is often tested via an approximate linear factor model for option returns

f (St+T ) − f (St)

f (St)
= αT + βt

(

St+T − St

St

− rT

)

+ εt,T .

As reviewed above, a number of authors use this as a statistical model of returns, and point

to findings that αT 6= 0 as evidence of either mispricing or risk premia.

This argument, however, has a serious potential problem as the CAPM does not hold

over finite time horizons. Option prices are convex functions of the underlying price,
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and therefore linear regressions of option returns and underlying returns are generically

misspecified. This implies, for example, that α could depend on (St, K, t, T, σ, µ) and is not

zero in population. Since the results hold in continuous-time, the degree of bias depends on

the length of the holding period. Since option returns are highly skewed, the errors εt,T are

also highly skewed, bringing into question the applicability of ordinary least squares. We

show below that even the simple Black-Scholes model generates economically large alphas

for put options. These results also bring into question the practice of computing alphas for

multi-factor specifications such as the Fama-French model.

3.2.2 Stochastic volatility and jumps

Consider next the case of Heston’s square-root stochastic volatility model. As derived in

Appendix C, instantaneous realized option returns are driven by both factors,

df (St, Vt)

f (St, Vt)
= rdt + βs

t

[

dSt

St

− (r − δ) dt

]

+ βv
t

[

dVt − κP
v(θ

Q
v − Vt)

]

, (6)

and expected excess returns are given by

1

dt
EP

t

[

df (St, Vt)

f (St, Vt)
− rdt

]

= βs
t µ + βv

t κP
v(θ

P
v − θQ

v ), (7)

where

βs
t =

∂ log [f (St, Vt)]

∂ log St

and βv
t =

∂ log [f (St, Vt)]

∂Vt

.

Since βv
t is positive for all options and priced volatility risk implies that θP

v < θQ
v , expected

put returns are more negative with priced volatility risk.

Equations (6) and (7) highlight the shortcomings of standard CAPM regressions, even

in continuous-time. Regressions of excess option returns on excess index returns will po-

tentially generate negative alphas for two reasons. First, if the volatility innovations are

omitted then α will be negative to capture the effect of the volatility risk premium. Second,

because dSt/St is highly correlated with dVt, CAPM regressions generate biased estimates

of β and α due to omitted variable bias. As in the Black-Scholes case, discretizations will

generate biased coefficient estimates.

Next, consider the impact of jumps in prices via Merton’s model. Here, the link between
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option and index returns is far more complicated:

df (St)

f (St)
= rdt +

∂ log (f (St))

∂ log (St)

[

dSc
t

St

−
(

r − δ − λQµQ
)

dt

]

+

[

f
(

St−eZ
)

− f (St−)

f (St−)

]

− λQ
EQ

t

[

f
(

Ste
Z
)

− f (St)
]

f (St)
dt,

where dSc
t denote the continous portion of the sample path increment and St = St−eZ .

The first line is similar to the expressions given earlier, with the caveat that excess index

returns contain only the continuous portion of the increment. The second line captures the

effect of discrete jumps. Expected returns are given by

1

dt
EP

t

[

df (St)

f (St)
− rdt

]

= βtµ
c +

λPEP
t

[

f
(

Ste
Z
)

− f (St)
]

− λQEQ
t

[

f
(

Ste
Z
)

− f (St)
]

f (St)
.

Because option prices are convex functions of the underlying, f
(

St−eZ
)

−f (St−) cannot

be linear in the jump size, eZ , and thus even instantaneous option returns are not linear

in index returns. This shows why linear factor models are fundamentally not applicable

in models with jumps in prices. For contracts such as put options and standard forms of

premia (e.g., µQ
z < µP

z ), EP
t

[

f
(

Ste
Z
)]

< EQ
t

[

f
(

Ste
Z
)]

, which implies that expected put

option returns are negatively impacted by any jump size risk premia. As in the case of

stochastic volatility, a single-factor CAPM regression, even in continuous-time, is inappro-

priate. Moreover, negative alphas are fully consistent with jump risk premia and are not

indicative of mispricing.

3.3 Characterizing option returns

In this section, we show how to compute exact EORs, and how we use simulations to

compute the finite sample distribution of option return statistics.
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3.3.1 Analytical expected option returns

In contrast to the instantaneous expected returns in the previous section, we compute exact

expected option returns. Expected put option returns are given by

EP
t

(

rp
t,T

)

= EP
t

[

(K − St+T )+

Pt,T (St, K)

]

− 1 =
EP

t

[

(K − St+T )+
]

Pt,T (St, K)
− 1

=
EP

t

[

(K − St+T )+]

EQ
t

[

e−rT (K − St+T )+] − 1, (8)

where in the second equality Pt,T is known at time t. Now, the put prices, Pt,T (St, K), will

depend on the specific model under consideration. Our key insight is that for any model that

admits “analytical” option prices, such as affine models, EORs can be explicitly computed

since both the numerator and denominator are known analytically.9 Surprisingly, despite

a large literature analyzing option returns, the fact that EORs are known has neither been

noted nor applied.10 EORs do not depend on St. To see this, define the initial moneyness

of the option as κ = K/St. Option homogeneity implies that

EP
t

(

rp
t,T

)

=
EP

t

[

(κ − Rt,T )+]

EQ
t

[

e−rT (κ − Rt,T )+
] − 1, (9)

where Rt,T = St+T /St is the gross return on the index. It is now clear that expected option’s

return depends only on the moneyness, maturity, interest rate, and the distribution of index

returns.11

This formula provides exact EORs for finite holding periods and regardless of the risk

factors of the underlying index dynamics, without using CAPM-style approximations such

as those discussed in the previous section. These analytical results are primarily useful as

9Similarly, we can compute EP
t

[

(

rp
t,T

)k
]

for k = 2, 3, 4, . . . , that is, we can compute other moments

analytically or semi-analytically.
10This result is closely related to Rubinstein (1984), who derived it specifically for the Black-Scholes case

and analyzed the relationship between hold-to-expiration and shorter holding period expected returns.
11When stochastic volatility is present in a model, the expected option returns are analytical conditional

on the current variance value: EP
(

rp

t,T |Vt

)

. The unconditional expected returns can be computed using

iterated expectations and the fact that

EP
(

rp
t,T

)

=

∫

EP
(

rp
t,T |Vt

)

p (Vt) dVt.

The integral can be estimated via Monte Carlo simulation or by standard deterministic integration routines.
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they allow us to assess the exact quantitative impact of risk premia or parameter configura-

tions. Equation (8) implies that the gap between P and Q probability measures determines

expected option returns, and the magnitude of the returns is determined by the relative

shape and location of the two probability measures.12 In models without jump or stochas-

tic volatility risk premia, the gap is determined by the fact that the P and Q drifts are

different by the factor µ. In models with priced stochastic volatility or jump risk, both the

shape and location of the distribution can change, leading to more interesting patterns of

expected returns across different moneyness categories.

3.3.2 Finite sample distribution via simulation

To assess statistical significance, we use Monte Carlo simulation to compute the distribution

of various returns statistics, including average returns, CAPM alphas, and Sharpe ratios.

We are motivated by concerns that the use of limiting distributions to approximate the

finite sample distribution is inaccurate in this setting. The accuracy of central limit theorem

approximations depends on the nature of the underlying random variables. In this setting,

our concerns arise due to the relatively short sample (215 months), and due to the extreme

non-normality of option returns.

To compute finite sample distribution of various option return statistics, we simulate

N = 215 months (the sample length in the data) of index levels G = 25, 000 times using

standard simulation techniques. For each month and path pair, we compute returns for

put options with a fixed moneyness via

r
p,(g)
t,T =

(

κ − R
(g)
t,T

)+

PT (κ)
− 1, (10)

where

PT (κ) ,
Pt,T (St, K)

St

= e−rT EQ
t

[

(κ − Rt,T )+]

,

t = 1, . . . , N and g = 1, . . . , G. Average option returns are given by

r
p,(g)
T =

1

N

∑N

t=1
r

p,(g)
t,T .

12For monthly holding periods, 1 ≤ exp (rT ) ≤ 1.008 for 0% ≤ r ≤ 10% and T = 1/12 years, so this

term has a negligible impact on EORs.
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A set of G average returns forms the finite sample distribution. Similarly, we can con-

struct finite sample distributions for the Sharpe ratios, CAPM alphas, straddles, and other

statistics of interest.

This approach, commonly called the parametric bootstrap, provides exact finite sample

inference under the null hypothesis that a given model holds. It can be contrasted with the

nonparametric bootstrap, which creates artificial datasets by sampling with replacement

from the observed data. The nonparametric bootstrap, which just reshuffles existing ob-

servations, has difficulties dealing with rare events. In fact, if an event has not occurred in

the observed sample, it will never appear in the simulated finite sample distribution. This

is an important concern when dealing with put returns which are very sensitive to rare

events.

3.4 Parameter estimation

Objective, or P-measure, parameter estimates are required to simulate option returns. We

calibrate our models to fit the realized historical behavior of the underlying index returns

over our observed sample. For parameters in the Black-Scholes model, this calibration

is straightforward, but in models with unobserved volatility or jumps, the estimation is

more complicated as it is not possible to estimate all of the parameter via simple sample

statistics.

We calibrate the interest rate and equity premium to match those observed over our

sample, r = 4.5% and µ = 5.4%. We simulate futures returns and futures options, thus

δ = r. We also constrain total volatility in each model to match the observed volatility of

15%. In the most general model we consider, we do this by imposing that
√

θP
v + λP ((µP

z )
2 + (σP

z )2) = 15%

by modifying θP
v . In the Black-Scholes model, we set the constant volatility to be 15%.

To obtain the values of the remaining parameters, we estimate the SVJ model using

daily S&P 500 index returns spanning the same time period as our options data, August

1987 to June 2005. We use MCMC methods to simulate the posterior distribution of the

parameters and state variables following Eraker, Johannes, and Polson (2003) and others.

The parameter estimates (posterior means) and posterior standard deviations are reported

in Table 3. The parameter estimates are in line with the values reported in previous studies

(see Broadie, Chernov, and Johannes, 2007 for a review).
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r µ λP µP
z σP

z

√

θP
v

√

θP
v κv σv ρ

(SV) (SVJ)

4.50% 5.41% 0.91 −3.25% 6.00% 15.00% 13.51% 5.33 0.14 -0.52

(0.34) (1.71) (0.99) (1.28) (0.84) (0.01) (0.04)

Table 3: P-parameters. We report parameter values that we use in our computational ex-

amples. Standard errors from the SVJ estimation are reported in parentheses. Parameters

are given in annual terms.

Our P-measure parameter estimates provide a model-based summary of what actually

occurred, and this is potentially different from risk-neutral investor’s expectations (the Q-

measure). These P-measure parameters provide a summary of the historical behavior of

stock returns in terms of the estimated jump intensities, jump distribution parameters,

and volatility parameters. It is important that we estimate these parameters over the same

sample period over which we have option returns. This allows us to generate samples for

constructing finite sample distributions that mimic the properties of the observed sample.

Of particular importance are the jump parameter estimates. The estimates imply that

jumps are relatively infrequent, arriving at a rate of about 0.91 per year. The jumps are

modestly sized with the mean of −3.25% and a standard deviation of 6%. These parameters

values imply a jump the size of the crash of 1987 event would occur every 1650 years. This

assumes, counterfactually, that the entire move is attributed to the jump component with

diffusive shocks not contributing. If we assume that a jump occurs simultaneously with

a three-standard deviation diffusive move, 3
√

θP
v , a crash of 1987 event occurs every 407

years.13

As we discuss in greater detail below, estimating jump intensities and jump size distri-

butions is extremely difficult. The estimates are highly dependent on the observed data

and on the specific model. For example, different estimates would likely be obtained if

we assumed that the jump intensity was dependent on volatility (as in Bates (2000) or

Pan (2002)) or if there were jumps in volatility. Again, our goal is not to exhaustively

analyze every potential specification, but rather to understand option returns in common

specifications and for plausible parameter values.

13According to our estimates, the volatility on the day of the crash of 1987 was 25%. If we assume that

volatility will always be so high during the crashes, then we would expect them to occur every 141 years.
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We discuss the calibration of Q-measure parameters later. At this stage, we only em-

phasize that we do not use options data to estimate any of the parameters. Estimating

Q-parameters from option prices for use in understanding observed option returns would

introduce a circularity, as we would be explaining option returns with option prices.

4 Option returns in the absence of risk premia

We first consider each of the models in the presence of the equity premium only. Thus,

we rule out risk premia for volatility and jump shocks, and also the explanations based on

estimation risk or Peso problems. We consider the simplified setting to understand the role

of the underlying index dynamics in generating index returns.

4.1 Black-Scholes

4.1.1 Analytical expected returns

In the Black-Scholes model, the equity premium, volatility and moneyness levels determine

EORs. Table 4 computes analytical EORs for various initial moneyness levels using equa-

tion (9). The cum-dividend equity premium ranges from 4% to 8% and volatility ranges

from 10% to 20%. Black-Scholes EORs are large in magnitude, negative, and quite sensitive

to the equity premium and volatility, especially for OTM strikes. For example, expected

put returns are on the order of −10% to −25% per month for ATM strikes, and −10% to

−50% per month for OTM strikes.

Put EORs are negatively related to the equity premium. As expected returns increase,

the underlying index drifts upward more strongly resulting in fewer in-the-money (ITM)

put expirations, and, conditional on an ITM expiration, lower payoffs. The impact is

quantitatively large, as the expected put option return differences between high and low

equity premiums is around 10% for ATM strikes and even more for deep OTM strikes. This

sensitivity points to a number of important issues in interpreting historical option returns.

First, any period of time that is “puzzling” in terms of large realized equity returns,

will generate option returns that are even more striking. For example, the behavior of

aggregate equity index returns in the 1990s were particularly puzzling for both academics

and practitioners. The realized equity premium from 1990 to 1999 was 9.4%. Assuming this

realized premium was expected and combining it with the below average volatility of 13%
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Moneyness

σ µ 0.94 0.96 0.98 1.00 1.02 1.04 1.06

4% −27.6 −22.5 −17.6 −13.3 −9.7 −6.9 −5.0

10% 6% −38.7 −32.2 −25.7 −19.7 −14.5 −10.5 −7.7

8% −48.3 −40.8 −33.1 −25.7 −19.2 −14.1 −10.4

4% −15.4 −13.0 −10.8 −8.8 −7.1 −5.6 −4.5

15% 6% −22.5 −19.2 −16.1 −13.2 −10.7 −8.6 −6.9

8% −29.1 −25.0 −21.1 −17.5 −14.3 −11.5 −9.3

4% −10.3 −8.9 −7.7 −6.5 −5.5 −4.6 −3.9

20% 6% −15.2 −13.3 −11.5 −9.9 −8.4 −7.1 −6.0

8% −20.0 −17.6 −15.3 −13.2 −11.2 −9.5 −8.1

Table 4: Population expected returns in the Black-Scholes model. The parameter µ is the

cum-dividend equity premium, σ is the volatility. These parameters are reported on an

annual basis, and expected options returns are monthly percentages.

over the same period, the 6% OTM and ATM EORs would, according to the Black-Scholes

model, be about −40% and −23%, respectively. This shows how potentially sensitive EORs

are to the underlying index returns.

Second, the impact of the equity premium on EORs is approximately linear. To see

this, holding σ = 15% constant, the expected ATM put returns are −9% for µ = 4%, and

are −18% for µ = 8%. If each outcome is equally likely, the average is −13.20% and is quite

close to the expected put return of −13.27% when µ = 6%. This means that if the equity

premium is time-varying and the likelihoods of high and low outcomes are roughly equal,

uncertainty over the equity premium, per se, has little impact on average option returns.

As the example in the previous section indicates, however, there are long time periods with

relatively high or low premia, so it is important to account for the equity premium when

analyzing option returns.

Third, abstracting from time-variation, estimates of a presumed constant equity pre-

mium are notoriously unreliable, heavily dependent on the data period used, and may be

subject to structural breaks (see, e.g., Pastor and Stambaugh (2001)). It is not obvious how

an unobserved equity premium impacts option prices. In continuous-time, the uncertainty
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only affects the mean estimates, as the total volatility is unchanged.14 In discrete-time,

uncertainty over the equity premium increases total volatility of returns. The key issue is

the degree to which P and Q distributions are affected by the equity premium uncertainty.

EORs are highly sensitive to volatility. As volatility increases, expected put option

returns become less negative, and the effect is substantial. For both ATM and OTM puts,

increasing volatility from 10% to 20% approximately halves EORs. For 6% OTM puts,

EORs change from −15% when σ = 20% to −40% when σ = 10%. Thus volatility has a

quantitatively large impact and its impact varies across strikes.

Further, unlike the approximately linear relationship between EORs and the equity

premium, the relationship between put EORs and volatility is concave. Based on the

example in the previous paragraph, if we assume that high (σ = 20%) and low (σ =

10%) volatility levels are equally likely, the average 6% OTM put EOR is −27% compared

to −23% when σ = 15%. This concavity implies that fully anticipated time-variation in

volatility results in lower average option returns than that if volatility were constant at the

average value.

In practice, this concavity is exacerbated by the fact the volatility levels are highly

skewed to the right. This implies that large values of volatility are more likely than small

ones and there are more volatility observations to the left of the mean than the right.

These properties have important implications for put option returns because of Jensen’s

inequality as the following example illustrates. Suppose that volatility can take one of

three values σ = (10%, 15%, 40%) with probability (0.5, 0.4, 0.1), which averages to 15%.

Then the average expected put return is −30% for 6% OTM puts and −16% for ATM

puts, compared to −23% and −13%, respectively, when σ = 15%. Thus, the concavity

has two important implications: it decreases EORs, and its effect is stronger for deeper

OTM strikes. This will be quantitatively important for interpreting observed option returns

below.

4.1.2 The distribution of average option returns

Next, we evaluate the significance of the observed returns statistics using the finite sample

distribution constructed from the Black-Scholes model. As an illustration, the first panel in

14If the equity premium is time-varying and unobserved, then an equilibrium model is needed to derive

option prices. For work along this dimension, see David and Veronesi (2006). Buraschi and Jiltsov (2006)

price options in a model with heterogeneous beliefs.
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Figure 2 shows the finite sample distribution for 6% OTM average put returns. The solid

vertical line is the observed sample value. We compute p-values of the observed return with

respect to this finite sample distribution by recording the percentage of simulated statistics

that are below the observed ones. The upper panel displays the dramatic skewness of the

finite sample distribution, which is expected given the strong positive skewness of purchased

put options, and points to the inaccuracies of normal approximations in samples of our size.

Of note is large variability in average put return estimates: the (5%, 95%) band is −65%

to +28%.

The first line of the first panel of Table 5 summarizes EORs and p-values corresponding

to observed average returns returns for various moneyness categories. The first thing to no-

tice is that the p-values for average returns have increased dramatically relative to Table 1.

For example, the p-values using standard t-statistics for the ATM options increases by

roughly a factor of 10 and by a factor of more than 10000 for deep OTM put options. This

dramatic increase occurs because our bootstrapping procedure accounts for the fact that

expected Black-Scholes returns are quite negative for this strike, providing a proper anchor

for hypothesis tests, and the distribution of average OTM returns is extremely dispersed

(large sampling uncertainty).

Next, note that average 6% OTM option returns are not strongly statistically different

from those generated by the Black-Scholes model. In sample, the average 6% OTM put

return is about −60%, which corresponds to a p-value of just over 8%, indicating borderline

insignificance or at least a lack of strong significance. Turning to the other moneyness

categories, the Black-Scholes model has more difficulty generating option returns for the

ATM strikes (0.98 and 1.00), although the p-values still increase dramatically.

Based only on the Black-Scholes model, we have our first striking conclusion: of all

the statistics we analyze, the deep OTM put returns are always the least significant in a

statistical sense. This is particularly interesting since the results in the previous literature

typically conclude that the deep OTM put options are the most anomalous or mispriced.

We find the exact opposite conclusion: OTM puts are not strongly inconsistent with the

Black-Scholes model. This result shows the importance of properly anchoring hypothesis

tests and performing finite sample inference.
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Figure 2: This figure provides the finite sample distribution of various statistics. The top

panel provides the distribution of average 6% OTM put returns, the middle panel 6% OTM

put CAPM alphas, and the bottom panel 6% OTM put Sharpe ratios. The solid vertical

line is the observed value from the data.

26



Moneyness 0.94 0.96 0.98 1.00 Strdl

Data, % −56.8 −52.3 −44.7 −29.9 −15.7

BS EP,% −20.6 −17.6 −14.6 −12.0 1.1

p-value,% 8.1 1.7 0.4 2.2 0.0

Merton EP,% −15.0 −15.4 −14.2 −12.2 1.4

Average returns p-value,% 9.2 2.9 0.9 3.2 0.0

SV EP,% −25.8 −21.5 −17.5 −13.7 1.4

p-value,% 24.1 9.3 3.0 7.3 0.0

SVJ EP,% −10.4 −11.6 −14.2 −13.9 2.2

p-value,% 14.1 6.4 3.3 8.3 0.1

Data, % −48.3 −44.1 −36.8 −22.5 −15.4

BS EP,% −17.9 −15.3 −12.7 −10.4 0.1

p-value,% 12.6 2.7 0.3 1.2 0.0

Merton EP,% −11.1 −12.2 −11.7 −10.3 0.9

CAPM αs p-value,% 12.6 3.8 0.6 1.7 0.2

SV EP,% −23.6 −19.5 −15.8 −12.4 0.6

p-value,% 39.1 14.1 3.4 8.7 0.0

SVJ EP,% −7.3 −9.0 −12.3 −12.5 -0.4

p-value,% 19.7 9.9 3.4 9.3 0.2

Data, % −27.3 −29.0 −29.0 −23.4 −24.3

BS EP,% −5.2 −6.8 −8.1 −9.1 2.0

p-value,% 4.9 1.9 1.2 4.0 0.0

Merton EP,% −3.1 −4.9 −6.9 −8.5 1.3

Sharpe ratios p-value,% 5.4 2.4 1.4 4.1 0.1

SV EP,% −4.1 −6.9 −9.2 −10.5 0.9

p-value,% 21.5 12.0 7.7 14.3 0.0

SVJ EP,% −1.7 −2.6 −5.2 −8.8 -0.3

p-value,% 11.1 6.2 4.5 10.9 0.1

Table 5: This table reports population expected options returns, CAPM α’s, and Sharpe

ratios and finite sample distribution p-values for four models: Black-Scholes (BS), Merton,

stochastic volatility (SV) and stochastic volatility with jumps (SVJ). We assume that all

risk premia (except for the equity premium) are equal to zero. The column “Strdl” refers

to the statistics associated with at-the-money straddles.
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4.1.3 Risk adjustment/delevering

In this section we evaluate three common approaches for risk-correcting or de-levering

option returns: computing CAPM alphas, computing Sharpe ratios, and analyzing straddle

returns. As mentioned earlier, covered put positions, which take leverage into account by

adding a long position in the underlying index to a put position, are economically and

statistically insignificant, so we do not consider them.

The first risk correction we consider is the linear factor model alphas. This is one of the

most common methods of risk correcting, as it has been used in the option pricing setting

by Jackwerth (2000), Coval and Shumway (2001), Bondarenko (2003), Santa-Clara and

Saretto (2005), and Driessen and Maenhout (2006). As mentioned earlier, these regressions

only hold for the Black-Scholes model and for instantaneous returns.

We compute population CAPM alphas, which are reported in the second panel in Ta-

ble 5. For the Black-Scholes model for every strike, the alphas are quite negative and

their magnitudes are economically large, ranging from −18% for 6% OTM puts to −10%

for ATM puts. Although Black-Scholes is a single-factor model, the alphas are strongly

negatively biased in population. This outcome is due to the fact that the regression tries

to fit a straight line to kinked payoff, and shows the fundamental problem that arises when

applying linear factor models to option returns.

To see the issue more clearly, Figure 3 displays the results of two simulated time series.

Both cases correspond to 215 monthly index returns and 6% OTM put option returns sim-

ulated from the Black-Scholes model with the OLS fitted regression line. The regression

estimates in the top (bottom) panel correspond to α = 64% (α = −51%) per month and

β = −58 (β = −19). The main difference between the two simulations is a single large

observation in the upper panel, which generates drastically different results. A single large

outlier can substantially shift the constant and intercept as the estimates are obtained by

minmizing squared errors. The idea that factor model alphas are inappropriate when ana-

lyzing option returns is, of course, not new. It is, however, surprising how often researchers

use these regressions to risk-correct option returns.

To analyze the issues more formally, the middle panel of Figure 2 illustrates the finite

sample distribution of CAPM alphas for the case of 6% OTM puts, and the middle panel of

Table 5 provides finite sample p-values for the observed alphas. For the deepest OTM puts,

observed CAPM alphas are insignificantly different from those generated by the Black-

Scholes model. For the other strikes, the observed alphas are generally too low to be
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Figure 3: CAPM regressions for 6% OTM put option returns.
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consistent with the Black-Scholes model, although again the p-values are much larger than

those based on asymptotic theory.

We next consider Sharpe ratios. Sharpe ratios primarily account for leverage by scaling

average excess returns by volatility. Formally, Sharpe ratios are only useful when returns

are normally distributed, or if investors have mean-variance preferences. Despite this short-

coming, Sharpe ratios are commonly used both in academic studies and in practice and are

a useful, if imperfect, metric. The bottom panel of Figure 2 illustrates the finite sample

distribution of Sharpe ratios for 6% OTM puts. Since some simulated paths have very few

OTM expirations, the distribution of Sharpe ratios is extremely skewed to the left. The

third panel of Table 5 reports population Sharpe ratios for put options of various strikes and

finite sample p-values. As a comparison, the monthly Sharpe ratio of the underlying index

over our sample period is 10.5%. The Sharpe ratios are modestly statistically significant

for every strike, with p-values between 1% and 5%.

Finally, we report average ATM straddle returns in the last column of the first line of

the first panel. These options positions are approximately delta-neutral, as the call and

put exposures roughly offset exposure to the underlying. The results indicate that straddle

returns are highly statistically significant for the Black-Scholes model. The p-values imply

that the straddles are in fact the most significant of the statistics that we consider.

We conclude that although the Black-Scholes model does appear to be inconsistent with

option return data, we see that deep OTM average put returns are not strongly significant,

either in levels or risk-corrected. The more difficult statistics to explain are ATM put and

straddle returns.

4.2 Stochastic Volatility and Jumps

4.2.1 Merton’s model

We next consider option returns generated by Merton’s jump-diffusion model. This model

accounts for rare crashes, which generate occasionally large positive put option returns,

and in doing so, generates implied volatility smiles. This will allow us to assess the impact

of jumps on option returns. We first consider the case without priced jump risk, allowing

us to focus on the direct impact impact of jumps in the data-generating process.

First, consider expected put returns generated by Merton’s model, computed analyti-

cally in Table 5 in the first panel in the row labeled ‘EP.’ The results indicate, surprisingly,
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that expected returns in Merton’s model are less negative than those in the Black-Scholes

model. Moreover, the expected returns are slightly non-monotonic, as they increase for the

6% OTM strike relative to the 4% OTM strike. For ATM (OTM) options, Merton’s model

generates EORs of −12% (−15%) compared to −12% (−21%) for the Black-Scholes model.

Merton EORs are less negative than Black-Scholes EORs because jump risk is not

priced. The presence of price jumps increases the left tail mass in the distribution of

returns in a similar manner under both P and Q measure. To see this, note that equation

(9) implies that a factor increasing tail mass similarly under both measures will actually

make EORs less negative. For example, for Merton’s model the numerator and denominator

are 0.182 and 0.155 (per hundred dollars in ATM strike) compared to 0.144 and 0.111 for

Black-Scholes, which generates less negative returns for Merton’s model.

This result provides a useful insight into the relationship between the implied volatility

smile and the determinants of option returns. Despite the fact that Merton’s model can

generate steep implied volatility curves, the model generates less negative EORs. Moreover,

the more negative the jumps, the less negative the EORs. For example, if we decrease the

jump mean parameter to −10% under both probability measures, the expected returns

become even less negative, only −7% for 6% OTM options. Unpriced jump risks increase

the prices of OTM put options relative to Black-Scholes, but also increase the P-measure

expected payoffs, thus both the numerator and denominator of the expected returns in (8)

increase. As in the Black-Scholes model, the only difference between P and Q measures is

the difference in drifts generated by the equity premium, which, due to the higher P and Q

measure expectations, generates a smaller impact for OTM options. Thus, ATM returns

are similar in the two models, but deep OTM option returns are less negative.

This provides another clue to understanding the sources of put and straddle returns:

an extremely steeply sloped implied volatility smile will not help in generating realistic

put or straddle returns, unless the steepness is generated by a gap between the P and Q

measures. Thus, a steep implied volatlity curve, in and of itself, provides no information

about whether or not options are overpriced or misspriced.

Turning to the finite sample results, we see that jumps in prices also have an important

impact. In every case, Merton’s model generates higher p-values, despite the fact that the

EORs are less negative. Jumps significantly fatten the tails of the finite sample distribution

as simulated samples with slightly fewer jumps than expected have more negative average

returns, and those with slightly more jumps than expected have less negative returns,
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generating more finite sample uncertainty. In terms of risk-corrections, population alphas

are less negative than in Black-Scholes, straddle returns are larger, and Sharpe ratios are

smaller than in the Black-Scholes model. In conclusion, the addition of jumps in prices does

not generate more realistic EORs, and in fact, generates option returns that are smaller in

absolute value than those in the Black-Scholes model.

4.2.2 Stochastic volatility and jumps

Next, we consider how the addition of stochastic volatility affects our previous conclusions,

as we consider the SV and SVJ models, which extend Black-Scholes and Merton by incor-

porating fluctuating volatility. Table 5 provides population average returns, CAPM alphas,

Sharpe ratios, and straddle returns for the SV model, as well as p-values. We do not assume

that this volatility risk is priced, that is, we set θQ
v = θP

v .

As argued in Section 3.2.1, EORs are a concave function of volatility, which implies

that fluctuations in volatility, even if fully anticipated, will increase absolute EORs. The

results indicate that fluctuating volatility has an important quantitative impact on put

returns. Average returns decrease about 2% for ATM puts and more than 5% for 6% OTM

strikes. More importantly, the p-values increase dramatically. For example, for 6% OTM

strikes, the p-values for average returns, CAPM alphas, and Sharpe ratios are 24%, 39%,

and 22%, respectively. This indicates that roughly one in four simulated sample paths

generate average 6% OTM put returns that are more negative than those observed in the

data. Moreover, this is in a model in which volatility risk is not priced in options. This

indicates that there is absolutely nothing puzzling about deep OTM put returns, at least

relative to standard models. This conclusion is in strong contrast to the existing literature,

and is one of our primary results.

Regarding the risk-adjusted put return statistics, we see that most moneyness/statistic

combinations are insignificant, with the exception of the 0.98 moneyness average returns

and CAPM alphas, which have p-values around 3%. Of note, CAPM alphas are even more

biased in population as the α for ATM (6% OTM) strikes is now −12% (−24%). In every

case, the SV model generates much higher p-values that the Black-Scholes model, in some

cases more than five times higher. For completeness, we also consider the case of the SVJ

model. The SVJ model, consistent with the results from Merton’s model, generates less

negative population values than the SV model does, but p-values are of similar magnitudes.

Of particular note is the fact that the p-values for the straddles barely change as we move
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through the models.

These results show the importance of our methodology, and in particular, of properly

anchoring hypothesis tests and basing tests on finite sample distributions. After computing

exact expected returns and properly accounting for finite sample variation of average option

returns, the statistics associated with put returns do not seem particularly surprising.

Moreover, this conclusion is based on standard models and factors without relying on

alternative explanations such as factor risk premia, estimation risk, or Peso problems.

Thus, we conclude that there nothing puzzling about put returns, especially OTM put

returns. This finding is in strong contrast to the papers cited earlier.

Our methodology also uncovers a statistic that is potentially puzzling: ATM straddle

returns. These returns are generated by the well known gap between realized and implied

volatility. In our sample, realized volatility is approximately 15% while ATM implied

volatility averages 17%. This gap, which is largely robust over subsamples, generates the

large negative straddle returns.15 For example, during the last two one-year periods from

July 2003 to July 2004 and July 2004 to July 2005 the gap was 5.3% and 1.9%, respectively.

Options are consistently priced with higher volatility than is subsequently realized. In the

next section, we explore potential explanations for this gap and the steepness of the observed

implied volatility smile that include jump risk premia, estimation risk, and Peso problems.

5 Risk premia, estimation risk, and Peso problems

5.1 Differences between P and Q

In this section we evaluate how gaps between P and Q measures generated by factor risk

premia, estimation risk, and Peso problems impact put option returns, and more impor-

tantly, straddle returns.

We first note that one potential explanation for the negative straddle and put returns

is a diffusive volatility risk premium, generated by a gap between θP
v and θQ

v (see, e.g.,

Coval and Shumway, 2001). This, however, is unlikely to be a main or even a significant

driver of short-dated straddle returns. The argument is relatively simple. A volatility

risk premium affects expected returns through the term βv
t κP

v

(

θP
v − θQ

v

)

in equation (7).

15Bakshi and Madan (2006) link this gap to the skewness and kurtosis of the underlying returns via the

representative investor’s preferences. Chernov (2007) relates this gap to volatility and jump risk premia.
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Because volatility is highly persistent, κP
v is small. Combined with the fact that we are

analyzing short-dated, monthly option returns, θQ
v would need to be much larger than θP

v to

generate negative enough monthly straddle returns.16 For example, our computations show

that
√

θQ
v = 22% would generate straddle returns that are statistically insignificant from

those observed. However, such a high risk-neutral average volatility implies that the term

structure of implied volatilities would be steep and upward sloping, on average, which can

be rejected based on observed implied volatility term structures (see also Broadie, Chernov,

and Johannes, 2007). Therefore, a very high volatility risk premium can be rejected as the

sole explanation for the gap generated short-dated straddle returns.

A more promising explanation is that risk-neutral and objective measure perceptions

of the jump parameters are different. Differences in jump parameters between P and Q

have the advantage that they have a first-order impact on short-dated options. From a

mechanical standpoint, it is always possible to increase the jump risk under Q (via µQ
z , σQ

z

or λQ) to generate the straddle returns. One way to do this is to estimate these parameters

solely from option data, as in Broadie, Chernov, and Johannes (2007). They find that these

estimates are consistent with observed option returns. This, of course, is circular as they

used the option prices to estimate the parameter in the first place.

We take a different approach. As reviewed above, the literature has introduced (at least)

three potential explanations for the observed option returns: factor risk premia, estimation

risk, and Peso problems. All three of these explanation generate differences between P and

Q. In analyzing these explanations, our goal is to re-evaluate them using our methodology

and common option pricing models. At some level, we are going to quantify, in a parametric

sense, how far these explanations need to be pushed to generate option returns consistent

with the data.

In the following three subsections, we discuss how we calibrate these explanations, with

specific results.

5.1.1 Factor risk premia

General equilibrium models provide a natural starting point for generating factor risk pre-

mia. For our purposes, we need (a) models that incorporate important option-relevant

features such as time-varying volatility and price jumps and (b) estimates of the P-measure

16We constrain κP
v = κQ

v . Some authors have found that κQ
v < κP

v, which implies that θQ
v would need to

be even larger to generate a noticeable impact on expected option returns.
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parameters that closely match the historical experience of observed stock index returns. In

particular, we need to choose P-measure parameters to exactly match the observed equity

premium and volatility over our sample. Otherwise, if we assumed that options were priced

with a lower equity premium (consistent with some simple equilibrium models), we would

substantially understate put option returns.

The main problem with directly applying standard general equilibrium models such

as Bates (1988) or Naik and Lee (1990) is one of calibration. These authors introduce

extensions of the standard log-normal diffusion model incorporating jumps in dividends.

The main problem with these models is that, when calibrated to dividends, they lead to

well-known asset pricing puzzles such as equity premium and excess volatility puzzles.17

When these models are applied to option pricing applications the problems are even more

severe, as we know very little about the equilibrium sources of jumps in prices and stochastic

volatility or their connections to dividend and consumption growth. For example, the

connections between fluctuating stock index volatility, jumps in prices, or the leverage

effect and underlying economic uncertainty is not at all clear. At some level, the equilibrium

models and option-relevant features of stock index returns operate on a different time scale.

Given this caveat, we would still like to explore how jump risk premia affect option

returns. To do this, we use the functional forms of the risk correction for the jump pa-

rameters, but we fix the overall equity premium and the level of volatility to be consistent

with our observed historical data on index returns, 5.4% and 15%, respectively. The risk

corrections are given by (see Bates, 1988, or Naik and Lee, 1990)

λQ = λP exp

(

µP
zγ +

1

2
γ2(σP

z )2

)

(11)

µQ
z = µP

z − γ(σP
z )2, (12)

where γ is the risk aversion parameter, and the P-measure parameters are those estimated

from stock index returns (and not dividend or consumption data). Notice that the volatil-

ity of jump sizes, σz, is the same across both probability measures. We re-iterate that our

goal is not to impose a particular equilibrium model in order to understand the connections

between dividends, consumption, and stock index returns, but rather to understand the

17Benzoni, Collin-Dufresne, and Goldstein (2006) extend the Bansal and Yaron (2004) model to incorpo-

rate rare jumps in the latent dividend growth rates. They show that this model can generate a reasonable

volatility smile, but they do not analyze the issues of straddle returns, or equivalently, the difference

between implied and realized volatility. Their model does not incorporate stochastic volatility.
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λQ µQ
z σQ

z

√

θQ
v

Risk Premia 1.51 −6.85% σP
z

√

θP
v

Estimation Risk 1.25 −4.96% 6.99% 14.79%

Peso problem 2.73 µP
z σP

z

√

θP
v

Table 6: Q-parameters. We report the parameter values for the various P-measure ad-

justment scenarios that we explore. In addition, in the estimation risk scenario, we value

options with the spot volatility
√

Vt incremented by 0.5%.

connections between stock index returns and option returns using standard risk adjust-

ments.

We consider the benchmark case of γ = 10. This is certainly in the range of values

considered to be reasonable in applications. From (11) and (12), this value generates

λQ = 1.51 and µQ
z = −6.85%, i.e., investors price options as if there will be 1.51 jumps per

year even though on average only 0.91 will be realized (λQ/λP = 1.65) and that µP
z − µQ

z =

3.6%, i.e., investors price options as if mean jump sizes are 3.6% less than those realized.

The Q-parameter values are given in Table 6. We do not consider a stochastic volatility

risk premium, θP
v < θQ

v , as standard equilibrium models do not incorporate time-varying

volatility.

There are other theories that generate similar gaps between P and Q jump parame-

ters. Given the difficulties in estimating the jump parameters, Liu, Pan, and Wang (2004)

consider a representative agent who is averse to the uncertainty over jump parameters.

Although their base parameters differ, the P and Q measure gaps they generate for their

base parametrization and the “high-uncertainty aversion” case are µP
z − µQ

z = 3.9% and

λQ/λP = 1.96, which are similar in magnitude to those that we consider.18 We do not have

a particular vested interest in the standard risk-aversion explanation vis-a-vis an uncer-

tainty aversion explanation, our only goal is to use a reasonable characterization for the

difference between P and Q jump parameters.19

18Specifically, Liu, Pan, and Wang (2003) assume that γ = 3, the coefficient of uncertainty aversion

φ = 20, and the penalty coefficient β = 0.01. The P-measure parameters they use are λP = 1/3, µP
z = −1%

and σP
z = 4%. We thank Jun Pan for helpful discussions regarding the details of their calibrations.

19An additional explanation for gaps between P and Q jump parameters is the argument in Garleanu,

Pedersen, and Poteshman (2006). Although they do not provide a formal parametric model, they argue
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5.1.2 Estimation risk

Another explanation for observed option returns is estimation risk. Estimation risk cap-

tures the idea that parameters are unobserved and inaccurately estimated. Alternatively,

the market makers cannot perfectly hedge in Garleanu, Pedersen, and Poteshman (2005),

and, therefore, estimation risk could play an important role and be priced. In our context,

estimation risk arises because it is difficult to estimate the parameters and spot volatility in

our models. In particular, jump intensities, parameters of jump size distributions, long-run

mean levels of volatility, and volatility mean reversion parameters are all notoriously diffi-

cult to estimate. Spot volatility is also not observed. While uncertainty in drift parameters

in the stochastic volatility process will have a minor impact on short-dated options, the

uncertainty in jump parameters can have a first order impact.20

To see this, consider a standard Bayesian setting for learning about the parameters of

the jump distribution.21 First, consider uncertainty over the jumps mean parameter: jump

sizes are given by Zj = µz + σzεj and µz ∼ N (µ0, σ
2
0). Then, the predictive distribution of

Zk+1 upon observing k previous jumps is given by

p
(

Zk+1| {Zj}k

j=1

)

∼ N
(

µk, σ
2
k

)

,

where

µk = wkµ0 + (1 − wk)Zk, Zk = k−1∑k

j=1Zk

σ2
k =

(

k

σ2
z

+
1

σ2
0

)

−1

+ σ2
z , wk =

σ2
z/k

σ2
z/k + σ2

0

.

In addition to revising one’s beliefs about the location, we also see that σ2
k > σ2

z , implying

that learning generates excess volatility. Quantitatively, its impact will be determined by

prior beliefs and how many jumps have been observed. In practice, one would expect even

more excess volatilty, as jump sizes are not perfectly observed.

that market incompleteness generated by jumps or the inability to trade continuously, combined with

exogenous demand pressure, qualitatively implies gaps between realized volatility and implied volatility.
20Eraker, Johannes, and Polson (2003) provide examples of the estimation uncertainty impact on the

implied volatility smiles.
21Benzoni, Collin-Dufresne, and Goldstein (2006) consider uncertainty over the mean parameters with

normal priors. Johannes, Polson, and Stroud (2005) consider sequential learning about jump and stochastic

volatility parameters in jump-diffusion setting using historical S&P 500 index returns.
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The impact of uncertainty on σz is even greater. Assuming that µz is known, an

inverse-gamma prior on the jump variance, σ2
z ∼ IG, and that jumps are observed without

errors (which is true in continuous-time), the predictive distribution of the jump sizes is

t-distributed:

p
(

Zk+1 − µz| {Zj}k

j=1

)

∼ tν ,

where the degrees of freedom parameter ν depends on the prior parameters and sample size

(Zellner, 1971, section 3.2.4). To compute prices, expectations of the form E (exp (Zk+1) |Fk)

will have to be computed. However, if the jump sizes have a t-distribution, this expecta-

tion may not exist because the moment generating function of a t-random variable does

not exist. Thus, parameter uncertainty can have a substantial impact on the conditional

distribution of St, as the two examples demonstrate. A potentially even greater source of

uncertainty is the functional form of the jump distribution.

Apart from the impact of parameter uncertainty, it is important to consider difficulties

in estimating spot volatility. Even with high frequency data, there are dozens of different

methods for estimating volatility, depending on the frequency of data assumed and whether

or not jumps are present. Similarly, one could argue that it is possible to estimate Vt from

options, but this requires an accurate model and parameter estimates. In practice, any

estimate of Vt is a noisy measure because of all these factors.

To capture the spirit of estimation risk, without introducing a formal model for how in-

vestors calculate and price estimation risk, we consider the following intuitive approach. We

assume that the parameters that we report in Table 3 represent the true data-generating

process, that is, these parameters generated the observed S&P 500 index returns over

our sample period. However, investors priced options using different parameters due

to the estimation error. For simplicity, we assume that Q-measure parameters were in-

creased/decreased by one standard deviation from the P-parameters reported in Table 3.

Likewise, we assume that the spot volatility was adjusted by the posterior standard de-

viation. In our sample, the average posterior standard deviation of the spot volatility is

0.5%.

For example, denoting standard deviation by std, we set µQ
z = µP

z − std
(

µP
z

)

and λQ =

λP+std(λP). The spot volatility
√

Vt was adjusted upward by 0.5%. The full set of assumed

parameter values is reported in the second line of Table 6.
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5.1.3 Peso problems

Another explanation for the observed option returns is Peso problems. In this scenario, the

observed samples are unrepresentative. Potentially, this could mean that fewer large jumps

were observed or that the realized stochastic volatility path had different characteristics

than the true index return process and that investors were aware of this bias. Our finite

sample simulations do not account for an unrepresentative sample because the parameter

estimates are based on the observed sample. One way to think of the impact of unrepre-

sentative samples is via Table 1. If, for example, one or two more periods like 2000 to 2003

were observed, than put and straddle returns would be far less negative.

Thus, general Peso problems could apply to multiple aspects of our model: the param-

eters of the jump distribution, the jump intensity, parameters of the volatility process, or

volatility paths. For simplicity, we consider Peso problems through the lens of the jump

intensity. This is the common way of analyzing the problem. In the context of model and

parameter estimates, we increase the jump intensity threefold from 0.91 to 2.73. In our

model, jump sizes are modest on average, thus our assumption implies that two additional

modestly sized jumps were anticipated to arrive by investors. Alternatively, we could have

assumed that jump intensity increases were smaller, but that the sizes (in terms of means

or variances) were larger. We chose this case for parsimony.

Our assumption can be viewed as modest for two reasons. First, in reality, jump times

and sizes are not observed, and from a statistical standpoint, it is difficult to disentangle our

relatively modestly-sized jumps from time-varying volatility. Distinguishing between 0.91

or 2.73 small jumps per year is clearly a difficult statistical discrimination problem, which is

even more difficult if the sample is unrepresentative. Second, previous evaluations of Peso

problems in option prices have argued that quite severe assumptions are required to explain

the observed option returns. For example, Bondarenko (2003) estimates that his 13-year

sample would require an additional 18 crashes of the magnitude of the one in 1987, while

Jackwerth (2000) comes up with a more modest, but still large, frequency of one 1987-size

crash in four years. In contrast, even if we take the most conservative assumptions outlined

in section 3.4 (a three-standard deviations diffusive move, spot volatility of 25% as on the

day of crash of 1987) and combine them with our Peso quantification, the probability of a

movement as large as the crash of 1987, is once every 47 years under Q.
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5.2 Results

Table 7 reports population values and p-values corresponding to factor risk premia, estima-

tion risk, and Peso problem explanations corresponding to the parameter values in Table 6.

First, note that all three mechanisms generate expected option returns that are similar in

magnitude to the average option returns observed in the data. Compare these magnitudes

to the ones in the zero-risk-premia case reported in Table 5. As we observed, the SVJ-

based expected returns were lower (in absolute value) than the ones in the SV model. Thus,

jump risk premia play a very important role in generating the return magnitudes. Large

magnitudes of expected returns imply that observed returns should be insignificant based

on finite sample distributions, which the p-values confirm. Similarly, all three explanations

have no difficulty explaining CAPM alphas and Sharpe ratios.

Straddle returns are again the hardest to explain, but our explanations go a long way

in understanding the magnitudes of these returns. The estimation risk story has the most

difficult time explaining the returns with a small, but respectable, p-value of 5%. A less

modest, but still reasonable parameter adjustment from one-standard deviation to two

standard deviations generates much larger p-values and population straddle returns close

to those observed. The p-values for the factor risk premium and the Peso explanation

cases are about 8% and 15%, respectively, indicating insignificance or at least an absence

of strong significance.

In reality, all three features are plausible explanations, and therefore a combined expla-

nation based on modest risk aversion, modest estimation risk, and modest Peso problems

will also be able to explain the observed returns. We also did not consider explanations

based on learning, price jump variance risk premia, model misspecification, or more com-

plicated models incorporating, for example, jumps in variance.

6 Conclusion

In this paper, we study the index option returns, and generate a number of new results and

insights. We propose a new methodology to evaluate the significance of option returns. We

argue that comparing observed option returns to those generated by standard models is a

reasonable exercise. We do this by showing how to compute analytical EORs and using

simulations to construct finite sample distributions.
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Moneyness 0.94 0.96 0.98 1.00 Strdl

Data, % −56.8 −52.3 −44.7 −29.9 −15.7

RiskPrem EP,% −57.2 −49.9 −39.0 −24.9 −11.0

p-value,% 64.4 40.8 24.6 29.8 8.3

Average Returns EstRisk EP,% −49.0 −42.4 −34.1 −23.8 −9.5

p-value,% 46.9 32.2 20.0 29.8 5.3

Peso EP,% −53.8 −48.5 −39.6 −26.9 −13.4

p-value,% 59.5 42.5 25.3 35.7 14.9

Data, % −48.3 −44.1 −36.8 −22.5 −15.4

RiskPrem EP,% −55.7 −48.3 −37.5 −23.6 −10.5

p-value,% 84.3 69.5 47.2 64.0 13.9

CAPM αs EstRisk EP,% −47.2 −40.7 −32.5 −22.4 −9.2

p-value,% 65.8 51.6 33.3 56.5 9.5

Peso EP,% −52.1 −46.9 −38.1 −25.6 −12.4

p-value,% 78.8 67.8 48.3 75.2 20.2

Data, % −27.3 −29.0 −29.0 −23.4 −24.3

RiskPrem EP,% −24.5 −24.1 −22.2 −18.2 −11.7

p-value,% 60.4 46.8 32.7 37.0 8.5

Sharpe Ratios EstRisk EP,% −16.5 −16.8 −17.5 −17.1 −10.0

p-value,% 42.2 32.8 26.6 36.0 4.8

Peso EP,% −20.7 −22.4 −22.7 −20.2 −14.1

p-value,% 53.4 43.8 34.9 43.6 14.0

Table 7: Finite sample distribution of options returns and risk adjustments. We report

population values of expected options returns, CAPM α, and Sharpe ratios and the re-

spective model-based p-values corresponding to these quantities observed in the data. We

consider three risk premia in the SVJ model: RiskPrem refers to risk premia computed

based on a general equilibrium model; EstRisk refers to estimation risk-based explanation;

Peso refers to the Peso problem.
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We document a number of surprising findings in the context of the Black-Scholes, Mer-

ton, and Heston models without priced jump risk or stochastic volatility risk. One of the

biggest current puzzles, the very low returns to deep OTM options is, in fact, not inconsis-

tent with the Black-Scholes or Heston models. We also document in Merton’s model that a

high slope of the implied volatility curve does not imply high absolute option returns, and

could even generate less negative expected returns that the Black-Scholes model, if jump

risk is not priced. Standard risk corrections such as CAPM alphas are strongly biased,

even in the Black-Scholes model. We investigate explanations such estimation risk, factor

risk premia, and Peso problems, and find that these explanations are capable of matching

the average returns of put options and straddles.

We conclude that there does not appear to be anything puzzling about put option

returns. This is in strong contrast to the existing literature, and our finding is due to

our new approach for evaluating the significance of option returns. The only potentially

puzzling statistic was ATM straddle returns, but even these were not significant when

accounting for jump risk premia, estimation risk and Peso problems.

We conclude by noting that our results are largely silent on the actual sources of the

gaps between the P and Q measures. It would be interesting to test alternative potential

explanations using models incorporating investor heterogeneity, discrete trading, model

misspecification, or learning. For example, Garleanu, Pedersen, and Poteshman (2005)

provide a theoretical model incorporating both investor heterogeneity and discrete trading.

It would be interesting to study formal parameterizations of this model to see if it can

quantitatively explain the observed straddle returns. We leave these for future research.
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A Details of the options dataset

In this appendix, we provide a discussion of major steps taken to construct our options

dataset.

There are two ways to construct a dataset of option prices for multiple strikes: using

close prices or by sampling options over a window of time. Due to microstructure concerns

with close prices, we followed the latter approach. For each trading day, we select put

and call transactions that could be matched within one minute to a futures transaction,

typically producing hundreds of matched options-futures transactions. With these matched

pairs, we compute Black-Scholes implied volatilities using a binomial tree to account for

the early exercise feature of futures options. Broadie, Chernov, and Johannes (2007) show

that this produces accurate early exercise adjustments in models with stochastic volatility

and jumps in prices.

To reduce the dimension of our dataset and to compute implied volatilities for specific

strikes, we fit a piecewise quadratic function to the implied volatilities. This allows us

to combine an entire days worth of information and compute implied volatilities for exact

moneyness levels. Figure 4 shows a representative day, and Broadie, Chernov, and Johannes

(2007) discuss the accuracy of the method. For each month, we select the day that is

exactly one month to maturity (28 or 35 calendar days) and compute implied volatilities

and option prices for fixed moneyness (in increments of 0.02), measured by strike divided

by the underlying.

B Delta-hedging

In this appendix, we discuss delta-hedged returns and, more generally, returns on strategies

with data- or model-based portfolio weights. Delta-hedging raises a number of issues that,

in our view, make interpretation of the delta-hedged returns unclear. The main issue is

that the deltas can be computed in multiple ways.

We see three ways how delta-hedging can be implemented. The first uses a formal op-

tion pricing model to computing the required hedging portfolio weights. Examples of this

would include using the formal stochastic volatility models with jumps discussed earlier.

The second uses a data-based approach that computes the hedge ratios using the shape of

the current implied volatility smile (see Bates (2005)). The third, commonly used by prac-
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Figure 4: This figure shows representative implied volatility smiles that we construct.

Circles represent the actual transactions. The solid line is the interpolated smile.

titioners, computes deltas from the Black-Scholes model and substitutes implied volatility

as a constant volatility parameter. We discuss each of the approaches in turn.

Model-based hedging requires the knowledge of the spot variance, Vt, and parameters.

On the one hand, to compute delta-hedged returns using the real data we have to estimate

Vt in sample. To do this, we require a formal model, which leads to a joint hypothesis

issue and introduces estimation noise. Moreover, estimates of spot volatilities and delta-

hedged returns are highly sensitive to the model specification and, in particular, to the

importance of jumps in prices.22 On the other hand, we have to compute deltas for our

simulations. Here we observe Vt, but this Vt may be different from those estimated using

the real data. Because of this, we will be comparing two portfolios (one in the data and

one in simulations) with different portfolio weights.

As an alternative, Bates (2005) proposes an elegant model-free technique to establish

delta-hedged weights. This approach circumvents the issues mentioned in the previous

22For example, Branger and Schlag (2004) show that delta-hedged errors are not zero if the incorrect

model is used or if rebalancing is discrete.
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paragraph. However, the approach assumes that the markets price options correctly.23

This concern is particularly relevant in the context of our paper, because we attempt to

evaluate whether options are priced correctly.

The most practical approach is to use the Black-Scholes deltas evaluated at implied

volatility. Still, the deltas computed from a model will be different from deltas computed

from the data. As an extreme example, consider the Black-Scholes model where model-

based implied volatility is constant across strikes and over time. In contrast, because of the

well-known smile effect in the data, the 6% OTM delta in the Black-Scholes model will be

evaluated at an implied volatility volatility that is different from the one used for the ATM

delta. They will also vary through time. Therefore, we will again be comparing portfolios

with different weights.

Finally, delta-hedging requires rebalancing, which increases transaction costs and data

requirements.24 Thus, while less attractive from the theoretical perspective, the more

practical static delta-hedging strategy should be evaluated. According to this strategy, a

delta-hedged position is formed a month prior to an option’s maturity and is not changed

through the duration of the option contract.

We have evaluated a static delta-hedged strategy with the Black-Scholes deltas as de-

scribed above. For ATM options, the variations in deltas across models and specifications

are modest, although the variations for OTM options can be quite large (depending on

the implied volatility smile). We find that the same models that can replicate returns on

at-the-money straddles, can also replicate returns on delta-hedged portfolios. This should

not be a surprise because ATM straddles are approximately delta-neutral. We believe that

interpretation of the ATM straddle results are more clear precisely because the portfolio

involves model- and data-independent weights.

23Bates (2005) notes: “...while the proposed methodology may be able to infer the deltas ... perceived

by the market, that does not mean the market is correct. If options are mispriced, it is probable that the

implicit deltas ... are also erroneous.”
24Bollen and Whaley (2004) is the only paper that considers rebalancing. Because of data demands, they

take a shortcut and use the volatility at the time the option position was opened and hold this constant

until expiration.
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C Instantaneous expected excess option returns

The pricing differential equation for a deriviative price f(St, Vt) in the SVJ model is

∂f

∂t
+

∂f

∂St

(

r − δ − λQµQ
)

St +
∂f

∂Vt

κ(θQ
v − Vt)

+
1

2

∂2f

∂S2
t

VtS
2
t +

∂2f

∂St∂Vt

ρσvVtSt +
1

2

∂2f

∂V 2
t

σ2
vVt

+ λQEQ
t

[

f
(

Ste
Z , Vt

)

− f (St, Vt)
]

= rf, (13)

where Z is the jump size and the usual boundary conditions are determined by the type of

derivative (e.g., Bates (1996)). We denote the change in the derivative’s prices at a jump

time, τj , as

∆fτj
= f

(

Sτj−
eZj , Vt

)

− f
(

Sτj−
, Vt

)

and Ft =
∑Nt

j=1 ∆fτj
.

By Itô’s lemma, the dynamics of derivative’s price under the measure P are given by
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[
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]

dt
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∂f
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(

∑Nt

j=1
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, (14)

where Sc
t is the continuous portion of the index process:

dSc
t = (r + µ − δ) Stdt + St

√

VtdW s
t − λPµPStdt

=
(

r + µc − δ − λQµQ
)

Stdt + St

√

VtdW s
t . (15)

Substituting the pricing PDE into the drift, we see that

df =

[
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From this expression, we can compute instantaneous EORs. Taking objective measure

expectations ,

1

dt
EP

t [df ] = rf +
∂f

∂St

µcSt +
∂f

∂Vt

κ(θP
v − θQ

v ) (17)

+
{

λPEP
t

[

f
(

Ste
Z , Vt

)

− f (St, Vt)
]

− λQEQ
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.

Rearranging, instantaneous excess option returns are given by

1
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