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1 Introduction

Stock and bond returns in the US display an average correlation of about 19 percent during the
post—1968 period. A number of models have had some success in generating realistic average
correlations using economic state variables. Yet, Shiller and Beltratti (1992) under-estimate
the empirical correlation using a present value with constant discount rates, whereas Bekaert,
Engstrom, and Grenadier (2005) over-estimate it in a consumption-based asset pricing model

with stochastic risk aversion.

Figure 1 documents a more puzzling empirical phenomenon: the stock-bond return correlation
displays very substantial time variation. The figure graphs realized quarterly correlations mea-
sured using daily returns, and the data-implied conditional correlation based on the bivariate
DCC-MIDAS model of Colacito, Engle, and Ghysels (2009). We defer technical details about
this statistical model to the Appendix, but come back to it below as it will serve as an em-
pirical benchmark for our study. Note that during the mid-1990s, the stock-bond correlation
was as high as 60 percent, to drop to levels as low as minus 60 percent by the early 2000s.
There is a growing literature documenting this time variation using sophisticated statistical
models (see also Guidolin and Timmermann (2006)), but much less work trying to disentangle
its economic sources. In particular, the negative stock—bond return correlations observed since
1998 are mostly ascribed to a “flight-to-safety” phenomenon (see e.g. Connolly, Stivers, and Sun
(2005)), where increased stock market uncertainty induces investors to flee stocks in favor of
bonds. Campbell, Sunderam, and Viceira (2009) recently propose a pricing model for stock and
bond returns, and assign a latent variable to capture the covariance between nominal variables
and the real economy, which, in turn, helps to produce negative comovements between bond

and stock returns.

This article asks whether a dynamic factor model in which stock and bond returns depend on a
number of economic state variables can explain the average stock-bond return correlation and its
variation over time. Our approach has a number of distinct features. First, we cast a wide net in
terms of state variables. Our economic state variables do not only include interest rates, inflation,
the output gap and cash flow growth, but also a “fundamental” risk aversion measure derived
from consumption growth data based on Campbell and Cochrane (1999) and macro-economic
uncertainty measures derived from survey data on inflation and GDP growth expectations.
The latter variables may reflect true economic uncertainty as in David and Veronesi (2008),
or heteroskedasticity as in Bansal and Yaron (2004) and Bekaert, Engstrom, and Xing (2009).
In addition, we consider liquidity proxies, and the variance premium, a risk premium proxy
representing the difference between the (square of the) VIX (the option-based “risk-neutral”
expected conditional variance) and the conditional variance of future stock prices (see e.g. Carr
and Wu (2009)).

Second, while we have estimated simple linear state variable models with various forms of

heteroskedasticity, we focus our discussion on a state variable model that imposes structural
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restrictions inspired by recent standard New—Keynesian models, and that incorporates regime—
switching behavior. Both features improve the fit considerably. We use a regime-switching model
to accommodate changes in monetary policy and to model heteroskedasticity in the shocks. As
we will demonstrate, heteroskedasticity is a key driver of the time-variation in stock-bond return
correlations. Moreover, macro-variables have witnessed important volatility changes over the
sample period. For example, the lower variability of inflation and output growth observed since
the mid-1980s, the so-called Great Moderation, could conceivably lead to lower correlations
between stock and bond returns. Whether its timing actually helps matching the time variation
in the stock-bond return correlations, including negative correlations at the end of the nineties,

remains to be seen.

Third, given our model structure, we decompose the performance of the factor model in contri-
butions of the various factors. This should provide useful input to future theoretical modelling
of stock-bond return comovements. Moreover, we examine how well the model does with respect
to each of the correlation components: covariances, and stock and bond return volatilities. In
so doing, we add to the literature that examines the economic sources of stock and bond return
volatility (see e.g. Schwert (1989), Campbell and Ammer (1993), and Engle, Ghysels, and Sohn
(2008)).

One final point is of note. Our analysis is mostly at the quarterly frequency. This is the frequency
at which data on the economic state variables used in the dynamic factor models are available.
It may also be the highest frequency at which a fundamentals based model is expected to have
explanatory power. While we do characterize the variation in stock-bond return correlations

! our main benchmark is the

using daily return data to calculate ex-post quarterly correlations
long-run component of the Colacito, Engle, and Ghysels (2009) model. This flexible empirical
model exploits the richness of daily data to estimate quarterly conditional correlations, directly

comparable to the implied correlations from our factor model.

The remainder of this paper is organized as follows. Section 2 describes the factor model and
develops the state variable model used to identify the economic factors. Section 3 details the
estimation procedure and the model selection. Section 4 analyzes the fit of the factor model
for correlation dynamics, whereas Section 5 decomposes the correlations into covariances, and
stock and bond return volatilities. We find that macro-economic fundamentals contribute little
to explaining stock and bond return correlations, but that other factors, especially liquidity
proxies, play a more important role. The macro factors are still important in fitting bond
return volatility; whereas the “variance premium” is critical in explaining stock return volatility.

However, the factor model primarily fails in fitting covariances. A final section concludes.

2 Dynamic Stock and Bond Return Factor Model

In this section we present the general factor model linking stock and bond returns to structural

factors. Section 2.1 considers the general dynamic factor model. Section 2.2 discusses the selec-
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tion of the state variables and the modelling of their dynamics, which leads to the identification

of the factors. Finally, section 2.3 discusses the modelling of the factor exposures.

2.1 The Dynamic Factor Model

Let r., denote the excess equity return and r;; the excess bond return. We assume the following
dynamics for r; = (e, 7o)
re =By 1(re) + BiFy + &4 (1)

where E;_1(ry) represents the expected excess return vector, 3, = (8., 8;,) is a n x 2 matrix
of respectively stock and bond return factor loadings, and F} is a n X 1 vector containing the
structural factors. The vector e; = (e.t,€p;)" represents return shocks not explained by the
economic factors. For now, we model expected returns as constants but we investigate the

robustness of our results to this assumption in Section 4.3.

The time variation in the betas 3., and (3, is generally modelled as:

ﬁt = (]t—la St) (2)

where I, is the information set generated by a set of information variables at time ¢, and .S; is
a discrete variable following a Markov chain, which we use to model sudden regime changes,
as discussed below. The factors F; represent innovations to a set of state variables X;, and are
distributed as:

Fy~N (O,Zt) (3)

where ¥, is a n xn diagonal matrix containing the conditional variances of the structural factors,
which are potentially time-varying. In particular, 3, generally may also depend on S;. The off-
diagonal elements are zero as we enforce structural factors to be orthogonal. Under the null
of the model, the covariance matrix of the stock and bond return residuals ¢; is homoskedastic

and diagonal. We denote the residual variances by h. and h;, respectively.

The factor model implies that the comovement between stock and bond returns follows directly
from their joint exposure to the same economic factors. Let R be the set of values S; can take

on. Then, the conditional covariance can be written as:

COV¢—1 (Te,t; Tb,t) = Z 5’6 (]t—h St) by (3t| It—1) ﬁb (It—h St) P [St| It—l] . (4)

stER

When the betas do not depend on the regime, it simplifies to:

covi—1 (Tep: Tot) = Boy1X0-18p0 1 (5)

where ¥; 1 is conditioned on [;_;. By dividing the covariance by the product of the stock and

bond return volatilities, i.e. \/ﬁ;,t_12t—lﬁe,t—1 + h. and \/ﬁgi_lzt_lﬁbi_l + hy, we can decom-

pose the model-implied conditional correlation between stock and bond returns, p,_; (res, 7b4) ,
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as follows:

Bé,t—ﬁ;,t—ﬂm’t—l(ﬂl)
\/6/6,t—1ztflﬁe,t71 + he\/ﬂg),t—lztflﬁb,tfl + e
. B Frarvare 1 (F7) |
\/5;,57121&—15@715_1 + he \/ﬁﬁ,,t,lﬂt_lﬁb,t_l + Iy

Prq (Tets o) + ... (6)

This decomposition clearly shows the standard effects of a linear factor model. First, factors with
higher variances have the largest effect on comovement. Second, when the variance of a factor
increases, its contribution to the comovement can become arbitrarily large. Third, if bond and
stock betas have the same sign, increased factor variances lead to increased comovement, and
vice versa. Consequently, to generate the substantial variation in comovements documented in
Figure 1 in the context of this model, the volatility of the fundamentals must display substantial
time variation. Moreover, to generate negative covariances, it must be true that there is at least
one factor to which bonds and stocks have opposite exposures, and this factor must at times
have substantial relative variance. When (’s vary through time, they can also generate sign
changes over time. When they are constant, however, the sole driver of time variation in the
covariance between stock and bond returns is the heteroskedasticity in the structural factors.
The betas determine the sign of the covariance. We now motivate which factors should be

included in the factor model from the perspective of rational pricing models.

2.2 State Variable Model
2.2.1 Selection of State Variables

In standard rational pricing models, the fundamental factors driving stock and bond returns
either affect cash flows or discount rates. We start out with describing a standard set of macro-
factors, then describe how we measure potential risk premium variation. Finally, the literatures
on bond (see Amihud and Mendelson (1991) and Kamara (1994)) and equity pricing (see Ami-
hud (2002)) have increasingly stressed the importance of liquidity effects; so we consider two

liquidity related state variables as well.

Standard Macro Factors Our macro factors include the standard variables featured in
macroeconomic models: the output gap?, inflation and the short rate. All these variables may
have both cash flow and discount rate effects, so their effect on bond and stock returns is not
always easy to predict. Because bonds have fixed nominal cash flows, inflation is an obvious state
variable that may generate different exposures between bond and stock returns. Analogously, if
the output gap is highly correlated with the evolution of real dividends, it should affect stock

but not bond returns.

However, both inflation and the output gap can also affect the real term structure of interest

rates and therefore affect both bonds and equities. Because equities represent a claim on real
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assets, the discount rate on stocks should not depend on nominal factors such as expected
inflation. Yet, a recurring finding is that stocks seem to be very poor hedges against inflation
and their returns correlate negatively with inflation shocks and expected inflation (see e.g. Fama
and Schwert (1977)). One interpretation of this finding is that it represents money illusion (see
Campbell and Vuolteenaho (2004)), another that it represents the correlation of inflation with
rational risk premiums (see Bekaert and Engstrom (2009)). In this article, we leave the sign of
the exposures unconstrained, giving the model maximal power to explain the data. In standard
models, the (expected) output gap may reflect information about real rates as well and hence

may induce positive correlation between stock and bond returns.

As is well known, the level of interest rates drives most of the variation in bond returns, and we
include a short-term interest rate as a factor in our model. For long-term bonds, the relevant
state variable is the long-term interest rate, which can in turn be decomposed into a short-
term real rate, a term premium, expected inflation and an inflation risk premium. Increases in
all these 4 components unambiguously decrease bond returns. To span the term and inflation
premium components, we likely need more information than is present in our macro factors,

and we therefore also use a number of direct “economic” risk premium proxies.

Risk Premium Factors We use measures of economic uncertainty and risk aversion to cap-
ture stock and bond risk premia. For instance, Bekaert, Engstrom, and Grenadier (2005) show
that stochastic risk aversion plays an important role in explaining positive stock-bond return
correlations. The effects of risk aversion are, however, quite complex. In the models of Bekaert,
Engstrom, and Grenadier (2005) and Wachter (2006), increases in risk aversion unambiguously
increase equity and bond premiums, but their effect on interest rates is actually ambiguous. A
rise in risk aversion may increase the real interest rate through a consumption smoothing effect
or decrease it through a precautionary savings effect. Bansal and Yaron (2004) and Bekaert,
Engstrom, and Xing (2009) stress economic uncertainty as a channel that may affect risk pre-
miums and equity valuation. The effect of increases in uncertainty on equity valuation, while
often thought to be negative, is actually ambiguous as increased uncertainty may lower real in-
terest rates through precautionary savings effects. Hence, an increase in uncertainty may cause
bonds and stocks to move in opposite directions depending on the relative strenghts of the term

structure and risk premium effects.

An alternative motivation for the use of uncertainty measures follows from the learning models of
Veronesi (1999) and David and Veronesi (2008). They show that higher uncertainty about future
economic state variables makes investors’ expectations react more swiftly to news, affecting both

variances and covariances of asset returns.

To capture economic uncertainty, we use the Survey of Professional Forecasters (SPF) to create
measures of inflation and output gap uncertainty. We use two measures of risk aversion. Our first
measure is from Bekaert and Engstrom (2009): They create an empirical proxy for risk aversion,

based on the external habit specification of Campbell and Cochrane (1999). This “fundamental”
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risk aversion measure is generated solely by past consumption growth data, and behaves counter-
cyclically. It is, however, unlikely that this measure fully captures equity risk premium variation.
Recent work by Bollerslev, Tauchen, and Zhou (2009) shows that the variance premium, defined
earlier, predicts equity returns. Drechsler and Yaron (2009) extend the model by Bansal and
Yaron (2004) to allow for additional non-linearities in the consumption growth technology, and
show that this premium depends on risk aversion and the non-Gaussian components of the
model. We use an estimate of this risk premium as a factor, which helps us to interpret an often
cited non-fundamental explanation for the occasionally observed negative stock-bond return
correlations. Connolly, Stivers, and Sun (2005) use the VIX implied volatility measure as a
proxy for stock market uncertainty and show that stock and bond return comovements are
negatively and significantly related to stock market uncertainty. They interpret this finding as
reflecting “flight-to-safety”, where investors switch from the risky asset, stocks, to a safe haven,
bonds, in times of increased stock market uncertainty, inducing corresponding price changes,
and thus implying a negative correlation between stock and bond returns. Because the variance
premium depends positively on VIX movements but depends negatively on the actual expected
stock market volatility, we can determine whether this “flight-to-safety” effect is due to the

“risk premium component” of the VIX, or rather reflects general stock market uncertainty.

Liquidity factors We focus on transaction cost based measures of illiquidity. Liquidity can
then affect the pricing of bonds and stocks in two main ways. First, liquidity may affect the
betas, as economic shocks may not be transmitted quickly to observed returns in illiquid mar-
kets. This is a factor exposure effect. Second, liquidity may be a priced factor, and shocks
that improve liquidity should increase returns. The impact of liquidity on stock and bond re-
turn comovements then obviously depends on how liquidity shocks comove across markets.
For example, the monetary policy stance can affect liquidity in both markets by altering the
terms of margin borrowing and by alleviating the borrowing constraints of dealers, or by sim-
ply encouraging trading activity. Liquidity effects may also correlate with the “flight-to-safety”
phenomenon. Crisis periods may drive investors and traders from less liquid stocks into highly
liquid Treasury bonds, and the resulting price-pressure effects may induce negative stock-bond
return correlations. Some of these effects may persist at the quarterly frequency. Existing studies
of the commonality in stock and bond liquidity (Chordia, Sarkar, and Subrahmanyam (2005)
and Goyenko (2006)) are somewhat inconclusive as to which effect dominates. It is therefore

important to let illiquidity shocks enter the model relatively unconstrained.

Our measure of bond market illiquidity is a monthly average of quoted bid-ask spreads of
off-the-run bonds across all maturities, taken from Goyenko (2006). Our measure of equity
market illiquidity uses the “zero return” concept developed in Lesmond, Ogden, and Trzcinka
(1999), and is taken from Bekaert, Harvey, and Lundblad (2007). It is the capitalization-based
proportion of zero daily returns across all firms, aggregated over the month. This measure has a
positive and high correlation with more standard measures, such as Hasbrouck (2006)’s effective

costs and Amihud (2002)’s price impact measures. Because liquidity has improved over time,
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both illiquidity measures show near non-stationary behavior. For stocks, we first correct for the
structural breaks induced by changes in tick size® in 1997 and 2001 by using the residuals from
a regression on dummies for these break dates. Then, for both stock and bond illiquidity, we

subtract a moving average of the levels of the previous 4 months from the current measures.

Eventually, we retain the following economic state variables: the output gap (y;), inflation (),
risk aversion (¢;), nominal interest rate (i;), cash flow growth (cg;), output uncertainty (yd;),
inflation uncertainty (7d;), stock market illiquidity (slig;), bond market illiquidity (blig;), and
the variance premium (vp;) for a total of 10 state variables, which we collect in a vector X;. The

data appendix provides full details about the measurement and construction of those variables.

2.2.2 General State Variable Dynamics

To identify the structural factors F;, we must specify the dynamics of the state variables X;.

The general model has the following form:
Xi =1 (Se) + Q1 (S) By (Xpg1) + Q2 (S) Xeo1 + T (Sy) By (7)

where p is a 10 x 1 vector of drifts, and {2, represents the usual feedback matrix. We also
allow the dynamics of the factors to depend on expectations of future values as is true in many
standard macro—models through €2;. I' is a 10 x 10 matrix of structural parameters, capturing
the contemporaneous correlation between the fundamental state variables. Finally, all coefficient
matrices generally depend on S;, which represents a set of latent regime variables, modelled in
the Hamilton (1989) tradition. The regime variables can capture structural changes in the
macro-economic relations, as induced, for example, by changes in monetary policy. Monetary
economists debate the effects of heteroskedasticity in the fundamental shocks versus shifts in
monetary policy on the identification of economic and monetary policy shocks. By letting the
conditional variance of F; also depend on regime variables, we accommodate both interpretations

of the data (see also below).

Without further restrictions, the model in Equation (7) is surely overparametrized, but it nests
a large number of reasonable dynamic models. For example, assume {25 = 0, and eliminate the
regime dependence in pu, €21 and I', and we obtain a simple first-order VAR with heteroskedastic
shocks. We estimated several variants of such models, using a non-structural identification of
the shocks in (7) by imposing a Choleski decomposition. Such models were easily out-performed
by a semi-structural model, nested in Equation (7). For this model, we split the state variables
into two sets: “pure macro variables”, X; . = [yt, 7, 1, it]/ (recall that ¢; is computed from only
consumption data), and the other variables X; e = [cg:, ydy, wds, sligy, bligs, vp;] . To model
Xi.ma, we make use of a New Keynesian model, which we describe in the next sub-section. To
identity the shocks to X ;maq, we use a simple empirical model that recognizes that these factors
may depend on the macro variables themselves. For example, Goyenko, Subrahmanyam, and

Ukhov (2008) show that inflation and monetary policy affect bond liquidity, and that illiquidity
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increases in recessions. Specifically, the model is:

Xt,nma = Unma (St) + qbnmaXt—l,nma + F;nnc;aXt,ma + Ft,nma (8)

ma
nma

with ¢

with the macro-economic state variables and Fj,,,, the vector of (uncorrelated) ‘structural’

a diagonal matrix; I' a 6 X 4 matrix capturing the contemporaneous covariance

shocks. With this model structure, the non-macro factors may partially inherit autoregressive
dynamics from the pure macro-economic variables, and the F} ,,,, shocks must be interpreted
as being purged from the pure macro-shocks. Finally, note that we allow the drifts to depend
on the regime variable S;. Because inflation and output uncertainty are likely highly correlated
with macro-economic heteroskedasticity (see Giordani and Soderlind (2003); Evans and Wach-
tel (1993)), the assumption of heteroskedastic macro shocks makes this dependence logically
necessary. Regime-dependent drifts may also help model the structural changes (see Hasbrouck
(2006); Goyenko (2006)) affecting the liquidity in both stock and bond markets.

2.2.3 A Structural Model for X, ,,,

The structural model for X;,,, extends a standard New-Keynesian three-equation model (see
e.g. Bekaert, Cho, and Moreno (2008)) comprising an IS or demand equation, an aggregate
supply (AS) equation, and a forward looking monetary policy rule, to accommodate time-

varying risk aversion:

Yt = ars + pE(Yer1) + (1= ) yer + g — & (ie — By (T141)) + FY (9)
Ty = aag + 0By (mi1) + (1 = 8) my + Ay + FT (10)
@ = g+ pygi—1 + F} (11)
iv = anp + pir-1 + (1= p) [BOS]™) By (me41) + (577 )ye] + Ff. (12)

The p and § parameters represent the degree of forward-looking behavior in the IS and AS
equations. If they are not equal to one, the model features endogenous persistence. The ¢ pa-
rameter measures the impact of changes in real interest rates on output and X the effect of
output on inflation. They are critical parameters in the monetary transmission mechanism, and
high and positive values imply that monetary policy has significant effects on the real econ-
omy and inflation. Because all these parameters arise from micro-founded models, for example

representing preference parameters, we assume them to be time invariant.

The variable ¢; reflects time-varying risk aversion. We build on the model in Bekaert, Engstrom,
and Grenadier (2005) to append stochastic risk aversion to the New-Keynesian IS-curve (see
Appendix C for details). The model nests a variant of the Campbell and Cochrane (1999) exter-
nal habit model, and ¢; represents the negative of their surplus ratio and thus the local curvature
of the utility function. While output shocks and risk aversion are negatively correlated in the
model, 7 in Equation (9) can nevertheless not be definitively signed. It reflects counteracting

consumption-smoothing and precautionary savings effects of risk aversion on interest rates.
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The monetary policy rule is the typical forward-looking Taylor rule with smoothing parameter
p. However, as in Bikbov and Chernov (2008), we allow systematic monetary policy to vary with
a regime variable. There is substantive evidence that monetary policy has gone through activist
and more accommodating spells (see e.g. Cho and Moreno (2006), Boivin (2005)). We let .S;"”
take on two values and it follows a standard Markov-chain process with constant transition

probabilities.

While it is theoretically possible to obtain the rational expectations solution of the model in
Equations (9)-(12), the model implies highly non-linear restrictions on the parameters, further
complicated by the presence of regime-switching in the structural shocks. Bikbov and Chernov
(2008) estimate a slightly simpler version of this model incorporating term structure data and
note that without these additional data the identification of the regimes is rather poor. Our
strategy is different. We replace the forward-looking rational expectations with survey forecast
measures for expectations of the output gap and inflation. Let X, 5, be a vector containing the
median of the individual survey forecasts for the output gap and expected inflation plus two

zeros. Using these forecasts, we write the model in compact matrix notation as:
BH(San)Xt,ma =aa+ All(S;np)Xt,sur + BlQthl,ma + Ft,ma; Ft,ma ~ N(Oa Et) (13)

where Ajy, By, and Bjs follow straightforwardly from Equations (7) to (12), leading to the

following reduced form:
Xt,ma = C(S;np) + Ql(S;TLp)Xtysur + Qg(S;mp)Xt,Lma + F(Slnp)F;zma (14)

with T'(S7™) = inv(Bu(S™")); ¢(S™") = T(S/™) a5 Qu(5;) = T(5;")Aun(5;); Qa(S™) =
['(S;"")Bys. The variable S} switches certain structural parameters in the A;; and By; matrices.
This structural model provides an economic interpretation to the contemporaneous relations

between the state variables and a natural identification of the shocks FY, F[, F}!, and F}.

The model can be estimated using limited maximum likelihood (we do not specify the dynamics
of the survey forecasts). The use of the survey forecasts therefore both adds additional informa-
tion and permits to identify the structural parameters with a relatively easy and straightforward
estimation procedure. The quality of the model identification depends to a large extent on the
quality of the survey forecasts. A recent paper by Ang, Bekaert, and Wei (2007) suggests that
the median survey forecast of inflation is the best inflation forecast out of sample, beating time
series, Philips curve and term structure models. Elliott, Komunjer, and Timmermann (2008)
document biases in output and inflation forecasts, but argue that this may be due to the com-
mon assumption that forecasters use a symmetric loss function. In an empirical exercise, they
find that only a modest degree of asymmetry is required to overturn rejections of rationality
and symmetric loss. The value of surveys is also increasingly recognized in state-of-the-art term
structure models (see e.g. D’Amico, Kim, and Wei (2009) and Chernov and Mueller (2009))

and monetary policy research.



2.2.4 Identification of F,

In a simple VAR model, the F; shocks can be computed from observations on the X; variables.
However, in our model, the F; shocks also depend on S;. We follow the typical Hamilton (1989)
model, where agents in the economy observe the regime, but the econometrician does not. In
estimating the state variable model, we hence make inferences about the realizations of the
regime variable S; as well. Once these are identified, we can simply retrieve F; from the data
using Equations (8) and (14). The identification scheme works well, because our estimation

typically yields well-behaved smoothed regime probabilities close to one or zero.

2.2.5 Variance Dynamics of Factors

The factors F; are assumed to be heteroskedastic with variance-covariance matrix ;. Our
modelling of ¥; is inspired by direct empirical evidence of changing fundamental variances.
Macroeconomists have noted a downward trend in the volatility of output growth and inflation
from 1985 onwards (see e.g. Stock, Watson, Gali, and Hall (2003) and Blanchard and Simon
(2001)), a phenomenon known as the Great Moderation. While some macroeconomists have at-
tributed the Great Moderation to improved monetary policy (see Cogley and Sargent (2005)),
a possibility already accommodated in our structural model, Sims and Zha (2005) and Ang,
Bekaert, and Wei (2008) have identified important cyclical changes in the variance of funda-
mental shocks. We therefore model 3, as a function of a latent regime variable S;. We allow
each shock to have its own regime variable: S, = {SY, SF, % Si S gsta gPia Py Shocks to
output and inflation uncertainty share the same regime variable as output and inflation. To
retain tractability, we assume the regime variables to be independent Markov chain processes.
Each regime variable can take on two values with the transition probabilities between states

assumed constant. In particular, for each variable j, we have
var(F} |S;) = exp (ozj(S,f)) .

A regime-switching model does not accommodate permanent structural breaks: at each point in
time there is a probability that the variance may revert to a higher variability regime. We view
such potential re-occurrence of similar regimes, which may not have been observed for a long
time, as plausible. For example, the 2008-2009 crises will likely prove the Great Moderation
to be a temporary, rather than permanent phenomenon. The computational and estimation
complexities of state-of-the-art models accommodating both structural changes and regime-
switching behavior (see Pesaran, Pettenuzzo, and Timmermann (2006)) make them hard to
apply in our setting. We did entertain alternative models in which the factor variances depend on
the own lagged state variables th_l. However, these models under-perform the regime switching

models.

2.3 Time Variation in Betas
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The benchmark model forces the betas to be constant, i.e. 8., = 8., 5,;, = (3,. Simple affine
pricing models imply that stock and bond return innovations are constant beta functions of
the innovations in the state variables. Linearized versions of many present value models for
equity pricing (see e.g. Campbell and Ammer (1993) and Bekaert, Engstrom, and Grenadier
(2005)) imply a similar constraint on the betas. While there are economic reasons for time
variation in betas, we deliberately limit the complexity of the models we consider, for two
reasons. First, time variation in the betas could spuriously pick up non-fundamental sources of
comovement. Second, with 10 state variables, allowing time variation in all betas very quickly
leads to parameter proliferation that the amount of data we have cannot bear. We therefore
consider a limited number of parsimonious models investigating the most likely economic sources
of time variation in the betas. In a first set of models, the betas depend on instruments measured
at time ¢ — 1 (state dependent betas); in a second set of models, the betas depend on a subset

of the regime variables S; identified in the state variable model (regime-switching betas).

2.3.1 State Dependent Betas

We consider two different state dependent models. In a first model, we select a different economic

source for beta variation for each factor. That is for state variable i, the beta is modelled as:
;‘,t—l = 5;',0 + 52',12?—1 (15)

where 7 = e, b and ZZ{ | is a particular instrument, which we now describe for each factor. First,
in the model of David and Veronesi (2008), widening the dispersion in beliefs increases the
effect of economic shocks on returns. Our measures of output and inflation uncertainty can be
viewed as proxies to belief dispersion (“uncertainty”) regarding economic growth and inflation
expectations. Hence, we let the sensitivity to output gap, inflation, and cash flow growth shocks
be a function of respectively output, inflation, and cash flow uncertainty. The latter is proxied
by the dispersion in cash flow predictions obtained from the Survey of Professional Forecasters.
Second, because we use a constant maturity bond portfolio, interest rate changes affect the
duration of the portfolio and consequently its interest rate sensitivity. As interest rates increase,
the bond portfolio’s lower duration should decrease its sensitivity to interest rate shocks. This
line of thought applies to stocks as well, as stocks are long-duration assets with stochastic cash
flows. The duration of stock returns actually depends on its dividend yield. We therefore allow
the betas of stocks with respect to interest rate shocks to be a function of the level of the (log)
dividend yield (corrected for repurchases), denoted by dy;. Unfortunately, it is conceivable that
behavioral factors may indirectly account for the resulting time variation in betas, if they are
correlated with valuation effects reflected in dividend yields. Third, we let the exposure to risk
aversion and variance premium shocks be a function of (lagged) risk aversion and the lagged
variance premium themselves. This permits non-linear effects in the relationship between risk
aversion changes and stock and bond returns. The effects of shocks to risk aversion may be
mitigated at very high risk aversion levels, or they may be amplified if the economy is in or

near a crisis. Finally, we also allow for level effects in the liquidity betas: a liquidity shock may
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affect returns less rapidly in illiquid markets. Hence, we allow the stock (bond) liquidity beta
be a function of the lagged stock (bond) liquidity level.

In two alternative state dependent models, all betas depend on either the fundamental risk
aversion measure or the variance risk premium. Here, the variance risk premium is viewed as
a market-based indicator of risk aversion. In any pricing model, the price effects of economic
shocks may depend on the discount rate. For example, high discount rates may decrease the
magnitude of cash flow effects. Alternatively, Veronesi (1999) demonstrates how the degree of
risk aversion exacerbates the nonlinear effects of uncertainty on asset prices in the context of a

learning model. If risk aversion varies substantially through time, such effects may be important.

2.3.2 Regime-Switching Betas

An alternative dynamic model for betas is a regime-switching beta specification. While there
are many reasons to expect betas to show regime-switching behavior, we preserve the structural
interpretation of the implied stock-bond return correlation dynamics by using regime variables
exogenously extracted from the state variables, without using stock and bond returns. First,
with the Lucas critique in mind, one model considers betas to be a function of S;"”, the monetary
policy regime. Second, both theoretical work (David and Veronesi (2008)) and empirical work
(Boyd, Hu, and Jagannathan (2005); Andersen, Bollerslev, Diebold, and Vega (2007)) suggest
betas may depend on the business cycle. Because many of our state variables have strong
correlations with the business cycle, we let each factor’s beta depend on its own regime variable
to allow this possibility?. Finally, as discussed before, when a market is very illiquid, shocks
may take time to filter through into prices. Consequently, we consider a model where all betas
depend on the two liquidity regime variables. While such liquidity effects may indeed reflect
trading costs, it is equally plausible that they reflect risk premium variation, given our quarterly

data frequency.

3 Estimation and Model Selection

3.1 Model Estimation

We follow a two-stage procedure to estimate the bivariate model presented in Equation (1). In a
first stage, we estimate the state variable model, then we estimate the factor model conditional
on the economic factor shocks identified in the first step. From an econometric point of view,
it would be more efficient to jointly estimate the factor and state variable models. However, an
important risk of a one-step estimation procedure is that the parameters of the state variable
model are estimated to help accommodate the conditional stock-bond return correlation, which

would make the economic interpretation of the factors problematic.

We estimate the structural model using limited-information maximum likelihood because we

replace unobservable conditional expected values by observable measures based on survey fore-
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casts. We use quarterly data from 1968 till 2007, which we describe in detail in Appendix A.
The state variable model features 10 state variables and 9 regime variables (which must be
integrated out of the likelihood function), leading to a model with 82 parameters. Therefore,
we consider “pared-down” systems in addition to the full model. We retain all parameters with
t-statistics over 1, computed with White (1980) heteroskedasticity-consistent standard errors,
and re-estimate the constrained system®. Fortunately, the retained parameters from the con-
strained estimation are remarkably similar to their unconstrained estimation counterparts. For
the regime-dependent intercepts in X ,mq, we use a Wald test for equality across regimes in-
stead. If we fail to reject at the 24 percent level (corresponding roughly to a t-stat = 1 criterion),
we continue to use a regime invariant drift. With the state variable model estimated, we identify
the regimes and thus the factors at each point in time; finally, we estimate the factor model in

Equation (1) using simple regression analysis.

3.2 State Variable Model Selection and Fit

An adequate state variable model must satisfy a number of requirements. First, the model should
accurately describe the dynamics of the state variables themselves. To this end, we perform a
battery of specification tests on the residuals of the state variable model. Appendix D describes
these tests in detail. For each equation, we test the hypotheses of a zero mean and zero serial
correlation (two lags) of the residuals; unit mean and zero serial correlation (two lags) for the
squared residuals; appropriate skewness and kurtosis. In performing these tests, we recognize
that the test statistics may be biased in small samples, especially if the data generating process
is as non-linear as we believe it to be. Therefore, we use critical values from a small Monte Carlo
analysis also described in Appendix D. For both the mean and the variance, we do the tests
on the expected value and the serial correlation both separately and jointly. Hence, there are a
total of 80 ([3 4+ 3 + 2] x 10) such tests. The model described above features only 5 rejections,
two at the five percent and three at the one percent level. Table 1, Panel A reports the Monte
Carlo p-values of the joint test across means, variances, and higher moments for each variable.
We reject the model only for inflation uncertainty, probably because of some remaining serial
correlation, at the 5% level. The second line reports Monte Carlo p-values for a covariance test.
We use the state variable model to uncover uncorrelated factor shocks, and here we test for
each shock whether its joint covariances with all other factor shocks are indeed zero. We reject
the hypothesis of zero covariances at the 5 percent level only for the output gap, and quite
marginally so. All in all, given the complexity of the model at hand, we view its performance

as a Success.

Second, the model should also identify factor shocks that help explain the stock and bond return
covariance and volatility dynamics. We report two sets of results for the constant beta model.
In Panel B, we report a series of specification tests; in Panel C, we report a number of model
diagnostics. The specification tests are applied to the estimated cross-product of the stock and

bond residuals from Equation (1), 2; = . &, and to the standardized stock and bond residuals
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individually, 2, = &.),+/ 1/ he®), Where he) is the constant variance of the residuals of the factor
model for respectively stocks and bonds. Under the null hypothesis that the model is correctly
specified and captures stock-bond return dynamics, we have

E[4] = 0 (16)
E [é},%t,k] = 0, for k > 1. (17)

We conduct the zero mean test and the serial correlation (4 lags) test both individually and
jointly within a GMM framework. The test statistics follow x? distributions with respectively
1, 4, and 5 degrees of freedom. For the cross-product of the residuals, the zero mean test only
rejects at the 10% level, and the serial correlation test does not reject at any level. A joint
test of (16) and (17) fails to reject as well. Hence, the model appears to fit both the average
covariance level between bond and stock returns and some first order covariance dynamics
reasonably well. The analogous tests for standardized bond and stock residuals do not reject
at any significance level. For the stock and bond residuals we perform two additional tests, a
test for serial correlation on squared standardized residuals (the variance test), using 4 lags
again, and Engle and Ng (1993) “sign bias” tests. The latter test whether the model captures
volatility asymmetry: negative shocks raise volatility more than positive shocks (see Campbell
and Hentschel (1992) and Bekaert and Wu (2000)). The actual tests check the validity of the
orthogonality conditions (a), (b), and (c¢) :

(@)  E[(Z-1)1{5,<0}=0
(b) E[(22—1)1{s1 <0} 5] =0
(€) B[(22—1)1{5_1 >0} 5] =0

where 1 represents an indicator function. These conditions correspond to respectively the Sign
Bias, the Negative Sign Bias, and the Positive Sign Bias tests of Engle and Ng (1993). The
sign bias test examines whether or not the model captures the differential effect of negative
and positive return shocks on volatility. The negative (positive) sign bias test focuses on the
differential effect that large and small negative (positive) returns shocks have on volatility. The
joint test, denoted by “Asym”, is distributed as y? with 3 degrees of freedom. Columns 4 and 5
in Panel B of Table 1 report the test results. The model easily passes both the “Variance” and
“Asym” tests with the p-values being at least 20%.

The model selection statistics, reported in Panel C of Table 1, compare our model-implied
conditional correlations, calculated as in Equation (6), with two benchmarks, namely realized
correlations measured using daily returns of the following quarter, and the data-implied condi-
tional correlations based on the MIDAS model referred to before. We expect the latter to give
us a good picture of how the actual conditional correlations at the quarterly frequency vary
through time, whereas the former essentially tests the predictive power of the models for future
correlations. We consider several measures of “closeness”. First, we compute the mean abso-
lute deviation between the model-implied correlation and our proxy for the actual conditional

correlation and the next quarter’s realized correlation. For completeness, we also compute the
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distance measure with respect to the unconditional correlation, which can help us interpret
poor fits. Second, we compute the correlation between the two benchmark correlations and the
model-implied correlations. It may be that the model cannot fit the correlation level, but per-
forms well with respect to the time variation in correlations. Third, we also run a regression of
our two benchmark correlations onto our model-implied correlations, expecting a zero constant
and unitary slope. This measure provides information on, inter alia, the relative variability of

the various correlation measures.

To better compare different models, we also create a statistical yardstick for the magnitude of
the different diagnostics. We start with the benchmark factor model (see below), using constant
betas in Equation (1). We then collect the estimated betas for both stock and bond returns
and their corresponding covariance matrix, and draw 1000 different beta vectors from a normal
distribution with expected beta and variance-covariance matrix equal to the estimated beta
and variance-covariance matrix. With these simulated beta vectors, we create distributions for
all the model diagnostics, and we show the 90 percent confidence intervals in the table. The
first line of Panel C reports the diagnostic for our main model with constant betas. The model
produces correlations that are 18.6% different from the correlations produced by the MIDAS
model, 24.3% different from the realized correlations next quarter, and it deviates from the
unconditional correlation by 6.6%, on average being mostly lower. For the latter two, we can
compare the factor model’s performance with that of the MIDAS model (see last line). The
factor model fits the unconditional correlation actually better than the MIDAS model does
(which has a 19.5% average distance), but it does not perform as well with respect to fitting
the realized correlations. The MIDAS model’s fit is also outside the 90% confidence interval.
The correlation of the factor model-implied correlations with both MIDAS correlations and
realized correlations is relatively low at 0.394 and 0.389 respectively. The MIDAS model has
a 0.688 correlation with realized correlations. Finally, the regressions show no mean bias, but
the regression slope coefficients are larger than one, significantly so for the realized correlation
regression. However, the confidence intervals from the simulation experiment reveal that the

regression constants and slopes likely will constitute weak tests of model fit.

Overall, the fit is satisfactory, albeit not great. In an earlier version of the article, we considered
a large number of alternative models, in terms of numbers of factors (considering models with
fewer factors), the identification of the factors (considering non-structural VARs) and the het-
eroskedasticity structure of the factors (state dependent). The current semi-structural model
with regime-switching factors outperforms these models using the measures of fit just described.
Panel C illustrates this outperformance for a number of alternative models: three non-structural
VARS (a homoskedastic model, a model with state dependent heteroskedasticity, and a model
with regime switching volatility), and two structural models (a homoskedastic model, and a
model where the heteroskedasticity is state dependent rather than regime-switching). In the
state dependent models, the conditional variance of the shocks depends on the lagged level of
the variable itself; the output, inflation, and cash flow growth variances depend additionally on

the lagged level of their uncertainty measures. In terms of the distance measures, these models
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all perform worse on all three diagnostics, significantly so for the non-structural homoskedastic
and state dependent models. Imposing structural restrictions and a regime-switching structure
clearly improves the fit. The correlation measures reveal a similar story. The alternative models
all generate lower regression slopes, which are in some cases very close to 1. However, the alphas
are always significantly different from zero. We discuss the fit of the benchmark model in more

detail in Section 4.

3.3 Estimation State Variable Model

To conserve space, we report parameter estimates for the state variable model in Appendix
E. We focus the discussion on the identification of regimes and the volatility dynamics of the
models as they determine the fundamental stock and bond return correlations. In the New-
Keynesian model, the structural parameters are of independent interest but a detailed discussion
is beyond the scope of this article®. Let us only comment on the regime variable for systematic
monetary policy in the interest rate equation. Our (3 estimates reveal an activist monetary policy
regime (with § = 2.09) and an accommodating monetary policy regime (with # smaller and
insignificantly different from 1). The coefficient on the output gap, 7, is significantly positive in

both regimes, but larger in the second regime.

Figure 2 plots the smoothed regime probabilities for all regime variables. All models show
significant regime-switching volatility both in statistical and economic terms Figure 3 then
plots the conditional volatilities of the various factors. We discuss the two figures in tandem.
We first focus on the regime variable affecting the volatility of the output gap and inflation
shocks. For both inflation and output volatility, there is a near permanent switch to the low
volatility regime, which is consistent with the idea of a Great Moderation. For output, this
switch occurs in 1988; for inflation only in 1992. Of course, in our regime-switching model,
there is a positive probability that the high volatility regime will re-occur. In terms of volatility
levels (Figure 3), inflation and output volatilities are often but not always higher in NBER

recessions.

A stronger counter-cyclicality is observed for interest rate shocks, which are also less variable
than inflation but more variable than output shocks. In Figure 2, Panel B, we see that the high
interest rate volatility regime mostly occurs during recessions, including the 1980-1982 Volcker
period. This is consistent with the results in Bikbov and Chernov (2008) who also categorize the
Volcker period as a period of discretionary monetary policy, with interest rate shocks becoming
more variable. Unlike Bikbov and Chernov (2008), our structural model identifies systematic
monetary policy to be activist during this period. The model also shows that the 1990 and 2001
recessions were accompanied by an accommodating monetary policy regime, but that activist

monetary policy spells became more frequent from 1980 onwards.

Panel C of Figure 2 shows the regimes for the fundamental risk aversion and variance premium

factors. Fundamental risk aversion is notably higher in the 1974-75, 1980-82 and early nineties
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recessions, but not in 2001. The high volatility regime typically seems to outlast the recession
itself and is also relatively high around 1997. The variance premium regime is more clearly
counter-cyclical and also shows a peak towards the end of the sample. As Panel B of Figure 3
shows, the variance premium shock is multiple times more volatile than the fundamental risk

aversion factor.

The cash flow volatility regime (Panel D, Figure 2) shows frequent shifts, but also appears to
shift mostly into the lower volatility regime post 1990, with the exception of another switch
into the high volatility regime during the recession of 2001. Note that these are cash flow shocks
cleansed of the influence of the macro-economic state variables. The last Panel in Figure 2
shows the stock and bond market illiquidity regimes. For stock illiquidity, the regime is mostly
in the high variance state, only shifting occasionally to lower variances but most notably doing
so for a lengthy time period post 2001. For bond illiquidity, the picture is similar, but the
regime variable goes to the lower volatility state already around 1992, with only one spike up
afterwards. Figure 3 shows that bond illiquidity shocks were mostly more variable than stock
illiquidity shocks until the shift to the low variability regime in 1992, and mostly less variable

thereafter.

4 Correlation Dynamics

4.1 Model Fit

Table 2 repeats the fit of the constant beta benchmark model, including the 90% confidence
intervals. All the other lines reflect the performance of the candidate models for time variation
in betas we discussed before. Because these models have at least 20 parameters (10 factors with
at least one interaction term), we consider two versions of these models, an unrestricted version
and a version where sources of time variation leading to coefficients with ¢-stats less than one

in absolute value are removed, and the model re-estimated.

The most striking feature of the table is that the constant beta model proves a very difficult
to beat benchmark. Let’s first focus on the distance measures. No other model matches the
unconditional correlation as well as the constant beta model. With respect to the distance
relative to future realized correlations, seven of the 16 estimated models with time-varying betas
perform significantly better than the constant beta model, but barely so. In terms of distance
to the MIDAS model, the majority of the models perform worse than the constant beta model
and no model performs significantly better. The best models in terms of distance measures
are the models with either risk aversion or the variance premium as an instrument and the
regime-switching models with either the own regime variable or the illiquidity regime variables
as sources of beta variation. In terms of correlation with either the MIDAS benchmark or
future realized correlations, these same models also perform reasonably well, with the exception
of the illiquidity regime switching beta model. Instead, the model with the monetary policy

regime betas performs better on this score. However, the best model here clearly is the model
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where the variance premium is an instrument. Both its restricted and unrestricted versions
lead to correlations that are significantly higher than the constant beta model. Another nice
feature of this model is that the regression slopes are very close to one (although the alphas are
significantly different from zero using MIDAS correlations). We therefore select this model as

an alternative benchmark, and note that the model with restrictions performs slightly better.

Figure 4, Panel A graphs the MIDAS conditional correlations together with the correlations
implied by the two benchmark models (constant betas and betas that vary with the variance
premium). Clearly, the benchmark models produce less variable correlation dynamics than the
MIDAS model does. The constant beta model never produces negative correlations, and while
correlations decrease around 2000, the model cannot match the steep decrease in correlations
the MIDAS model generates. The time-varying beta model does better in this regard, which
explains why it correlates more with the MIDAS model than the constant beta model does. We
now explore the economics behind the correlations in more detail, starting with examining the

beta exposures.

4.2 Factor Exposures

Table 3 presents the beta estimates for the three retained models. Let’s first focus on the
constant beta specification. For equity returns, many factors are either highly (fundamental
risk aversion, bond illiquidity and the variance risk premium) or borderline (the output gap,
inflation, output and inflation uncertainty and stock market illiquidity) statistically significant.
Only the interest rate and bond illiquidity shocks significantly affect bond returns however.
Nevertheless, more often than not the signs of the betas are consistent with expectations. The
risk aversion variables (fundamental and the variance risk premium) and the liquidity factors
produce negative coefficients with only one exception (the totally insignificant variance premium
shock for bond returns), consistent with them being discount rate factors. The interest shock
is negative for both bond and stock returns, but is much more important for bond returns
both in economic magnitude and statistical significance. However, inflation and the output gap
matter more for equity returns (with a positive sign for the output gap and a negative one
for inflation), whereas they are insignificant for bond returns. Output and inflation uncertainty
only show some explanatory power for stock returns, with a negative sign for output and a
positive sign for inflation uncertainty. The former could simply reflect a discount rate effect,
whereas the latter is potentially consistent with the learning models of Veronesi (1999), in which

uncertainty decreases the equity risk premium.

To better gauge the economic importance of the factors in driving variation in bond and stock
returns, Table 3 also reports the standard deviation of the factors. For the statistically important
factors in the stock return equation, the effect of a one standard deviation change is mostly
between 1 and 2 percent. The economically most important factor, by far, is the variance

premium, for which a one standard deviation move changes stock returns by over 3.5 percent.
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For bond returns, a one standard deviation positive shock to interest rates (bond illiquidity)

decreases bond returns by 1.8 (1.4) percent.

The next 4 columns in the table report the betas for two time-varying beta specifications, one
unrestricted, one zero-ing out the coefficients with ¢-stats less than 1. For equity returns, about
half of the betas are significantly related to the variance risk premium. With one exception, the
coefficient on the variance risk premium is positive. Recall that the variance premium’s variance
and level have a strong cyclical pattern, being higher in recessions. Hence, the exposure of stocks
to a cash flow shock such as the output gap is increased in absolute magnitude in recessions,
but the exposure to discount rate shocks (including the variance premium itself) is mitigated.
The exception is the bond illiquidity beta, which is even more negative when the variance risk
premium is high. For bond return betas, we fail to find significant exposures to the variance

premium.

Note that the bond and stock exposures are mostly of the same sign, explaining why the constant
beta model cannot generate negative correlations. However, with time-varying betas, the equity
return exposures to inflation, the interest rate, and output uncertainty switch signs at the end
of the 1990s, contributing to negative model-implied correlations. Hence, the model likely uses
the variance premium dependence to partially capture a “flight-to-safety” effect. When risk
aversion is high in a recession or crisis, interest rates may be low, bond prices increase but

stocks are now positively correlated with interest rate shocks and stock prices fall.

4.3 Time-Varying Expected Returns

Our model produces unconditional correlations that are too low. In the data, this correlation
amounts to 19 percent, but the benchmark model produces an average correlation of 14 percent.
One potential channel to increase unconditional correlations not present in our current model
is time variation in expected returns. For instance, in the model of Bekaert, Engstrom, and
Xing (2009) risk premiums on stocks and bonds are highly correlated, thus increasing the
unconditional correlation between stock and bond returns. In addition, mis-measurement of
expected returns may affect the estimation of conditional covariance dynamics. An assumption
of constant risk premiums seems particularly strong in light of the important structural shifts
that we uncovered in the variances of fundamental variables such as inflation and the output gap.
Such important changes may lead to abrupt changes in risk premiums, which are unaccounted
for in our present model. In fact, Lettau, Ludvigson, and Wachter (2008) claim that the decline

in macroeconomic volatility may have led to a decline in the equity risk premium.

We consider two extensions to our models to accommodate time variation in expected stock and
bond excess returns. First, we model expected excess returns as a linear function of the lagged
level of the default spread, short rate, term spread, dividend yield, the consumption-wealth ratio
(CAY from Lettau and Ludvigson (2001)), and the VIX premium. Second, we use the regime

probabilities identified in the structural factor model estimation as instruments for expected
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returns in univariate regressions. The results are disappointing. In the instrumental variables
regression, the short rate, CAY, and the default spread are significant predictors with the same
sign in the bond and stocks return regressions. Thus, they can possibly help generate positive
covariation between stock and bond premiums. However, the increase in the unconditional
correlation is small, and amounts to only 1.74 percent. Structural changes, as identified by the

regime variables, do not seem to affect expected stock and bond returns in a meaningful way:.

4.4 FEconomic Factor Contributions

Our model counts 10 state variables, prompting the question to what extent different factors
contribute to the model’s fit. To determine this, we re-estimate the factor model, leaving out
various factors, and then report the deterioration in fit. The confidence intervals reported in
Table 2 can again tell us something about the statistical significance of the worsening in fit, at
least for the constant beta model. Table 4 reports the results. We first split our variables into
pure macro variables (the output gap, inflation, the interest rate and the risk aversion measure
computed from consumption data), and the rest of the variables (uncertainty, cash flow growth,

illiquidity, and the variance premium).

The main message is clear and consistent across the constant and time-varying beta models: the
fit worsens considerably more when dropping the non-macro variables as opposed to the macro
variables. The deterioration in fit by dropping the macro variables is only economically (albeit
not statistically) important for the unconditional correlation in the constant beta model. Within
the set of macro variables, fundamental risk aversion is relatively important for the distance
measures, but does not help in fitting the correlation with actual bond-stock return correlations.
Among the non-macro variables, the cash flow variable overall contributes the least, followed
closely by the variance premium. Of course, the variance premium also contributes indirectly
through its effect on betas.

The main result undoubtedly is that the illiquidity variables are the most important contributors
to the correlation dynamics. Recall that we actually find that bonds and stocks both load
negatively on stock and bond illiquidity, so that liquidity variation induces positive correlation
between stock and bond returns. This common exposure was particularly helpful in the early
part of the sample (where liquidity was still poor), although no super-clear subsample patterns
emerge. While more work in this area is surely needed, some recent research helps give credence
to our results. Li, Wang, Wu, and He (2009) show that systematic liquidity risk is priced in the
bond market, but they do not consider stock returns. Bansal, Connolly, and Stivers (2009) show
that the usual stock liquidity measures help predict stock and bond return correlations, and
have effects independent of the usual VIX - “flight-to-safety” effect. They focus on a relatively
short 1997-2005 period however. Finally, Goyenko and Sarkissian (2008) also document a strong

link between bond illiquidity and stock returns in 46 different markets.
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5 Covariance and Volatility Dynamics

5.1 Correlation decomposition

The correlation is a scaled statistic involving covariances, and both stock and bond return
volatility. Using the MIDAS model as a “well-fitting” empirical benchmark allows us to decom-
pose the performance of our main model. Table 5 repeats our standard diagnostic fit measures’,
but we now replace the three components of the correlation, one-by-one, with their MIDAS
counterparts. For example, the line “MIDAS covariance” replaces the covariance produced by
the model by that of the MIDAS model. Clearly, the model’s fit improves dramatically, nearly
matching the fit of the MIDAS model, which is repeated on the last line of the Table. The
exception is the constant in the regression which is now significantly positive, owing to the MI-
DAS model producing too high covariances on average. Not surprisingly, this must mean that
the use of MIDAS volatilities is correspondingly less important. While using MIDAS’s stock
volatility model leads to improvements in most cases, using MIDAS’s bond volatility worsens
the fit relative to using the model’s. What is particularly striking is that the slope coefficients in
the regressions become quite small once the MIDAS bond volatility replaces that of the factor
model. As we will see below, this owes to the MIDAS model producing quite volatile bond re-
turn volatility while the factor model really only captures a small part of the variation in bond
return volatility. Consequently, the results here need not necessarily mean that the factor model
fits bond return volatility better than the MIDAS model. In fact, the poor distance measures
here result from the MIDAS model producing relatively low bond return volatility in the 70s

at the time that the benchmark model already overshoots actual correlations.

The main conclusion to be drawn is that our factor model primarily suffers from a poor fit of
bond-stock return covariances. It appears that it does not fit stock return volatility significantly
worse than the MIDAS model does. Of course, it remains possible that the MIDAS model also
represents a poorly fitting benchmark model for stock return volatility. We now investigate the

performance of the model with respect to the three components of correlation in more detail.

5.2 Covariances

Table 6 reports our diagnostic measures but applied to covariances, rather than correlations.
We leave out the regression evidence because it proved not powerful in distinguishing models.
The overall fit of the covariances matches the patterns we observed for correlations. Relative to
the unconditional covariance, the model performs reasonably well, outperforming the MIDAS
model. The time-varying beta model is worse than the constant beta model in terms of distance

measures, but produces higher correlations with realized and MIDAS covariances.

In terms of the contributions of the various factors, the non-macro variables, particularly the
liquidity variables, are most important. However, no single factor contributes in a meaningful
way to lower the distance measure with respect to the realized covariances. Yet, the model as

a whole does perform better than the unconditional mean.
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5.3 Stock Volatility

Table 7 reports the same diagnostics for the conditional stock market volatility. The model
produces a stock market volatility that is on average 6.3% different from the unconditional
volatility. The MIDAS benchmark does better with an average distance measure of 2.8%. How-
ever, the model does about as well as the MIDAS model predicting future realized stock return
volatilities. Not surprisingly the distance between the MIDAS and factor models is rather small
at less than 3%. While time-varying betas lower the distance with respect to the uncondi-
tional standard deviation of stock returns, they increase it with respect to predicting realized
volatilities. The correlation between MIDAS conditional volatilities and the ones produced by
the economic factor model are relatively high; yet the MIDAS model produces stock return

volatilities that are much more highly correlated with realized volatilities.

As a final diagnostic, we compute the R? of the factor model for stock returns. This is not
only important to understand the fit with stock market volatility: If the factors fit only a
small fraction of the return variance then it is unrealistic to hope for a satisfactory fit for the
covariance of stock and bond returns. The literature on stock returns in particular has a long

but controversial exponent arguing that stock returns are excessively volatile (see for instance
the old debate between Shiller (1981) and Kleidon (1986)).

We report the adjusted regression R?, adjusted for 10 regressors in the constant beta model and
20 in the time-varying beta model. The adjusted R?’s are respectively 27% for the constant and
35% for the time-varying beta model. This may appear low, especially when compared to the
MIDAS model, which explains 65% of total stock market variance. However, the comparison is
somewhat unfair. First, for the MIDAS model, our R? counterpart takes the ratio of the average
conditional variance produced by the MIDAS model divided by the unconditional stock market
variance. We could compute a similar “model-based” R? for the factor model, which would be
close to the regression R? if the conditional variances of the factors are relatively close to their
empirical counterparts. Fortunately, they are, with the biggest deviation (the model variance
being 10% larger than the empirical variance) occurring for the variance premium. Moreover,
we cannot easily adjust the MIDAS model for “the number of regressors”, so a fairer comparison
would be with an “unadjusted model R?”. For the constant beta model, this R? is 38.4% and
for the time-varying beta model it is even over 70%, better than the MIDAS model.

The contribution analysis generally shows again that the non-macro variables are relatively more
important than the macro variables. However, the macro variables do contribute something to
the fit, especially with respect to the distance measures. Among the non-macro variables, the
illiquidity factors remain very important but the variance premium is now the dominant factor.
There is a flurry of recent research on the properties of the variance premium, mostly on its
predictive properties with respect to stock returns (Bollerslev, Tauchen, and Zhou (2009)). Our
article shows that it is one of the main drivers of stock market volatility. Its important role

also explains the somewhat strange decomposition analysis for the distance measures relative

22



to realized variances in the time-varying beta model. There, leaving out the non-macro variables
worsens the fit considerably, but seemingly no single economic variable is responsible for the
good fit, as leaving them out univariately or in pairs always leads to improvements in fit. Because
the variance premium enters the betas, and the factor model is re-estimated when factors are
dropped, the model retains the flexibility to match the data reasonably well through the beta

exposures.

5.4 Bond Return Volatility

Table 8 reports diagnostics on the fit of bond return volatility. The MIDAS benchmark performs
slightly better with respect to the distance measures relative to realized volatilities. Because the
average bond volatility is only 8.98% (compared to 17.38% for stocks), the average distances
are relatively worse than for stock returns. In terms of correlations, the factor model’s bond
volatility correlates only 18.3% with realized correlations, and only 20.8% with the MIDAS
model’s bond volatility. The MIDAS model’s bond volatility also correlates much more highly
with realized volatilities. We conclude that the economic model has actually a harder time
fitting bond volatility than it does stock market volatility. This is an interesting finding, as the
academic literature has primarily looked for links between macro-economic fundamentals and
stock market volatility. While some of the seminal articles have been skeptical (see especially
Schwert (1989)), some more recent articles did find a link: Flannery and Protopapadakis (2002)
show links between stock market volatility and inflation and money growth; Hamilton and
Lin (1996) establish a business cycle link for stock market volatility, and Diebold and Yilmaz
(2009) and Engle and Rangel (2008) find a link between volatile fundamentals and volatile stock
markets in a cross-section of countries. On the contrary, the work on bond returns appears

surprisingly limited.

We find that the factor model explains about the same amount of variation in bond returns as
in stock returns (the adjusted R? is 30%). However, the factors contributing to this fit are very
different than the factors explaining stock returns. Here, the fundamental variables contribute
the most to the fit; the non-macro variables contribute relatively little. Of the fundamental
variables, the short rate, not surprisingly, is the dominant factor. All in all, this “discrepancy”
between the factors explaining bond and stock returns is intriguing and deserves further scrutiny.
Baker and Wurgler (2008) recently find interesting links between bonds and “bond-like” stocks,
which they attribute to changes in investor sentiment. Their main focus is on co-predictability
rather than comovement, but it would be interesting to test whether fundamentals have a
different effect on bonds than on “bond-like” stocks. Also, their sentiment index may capture
value-relevant behavioral factors not captured by our risk aversion indicators. In fact, none of
our variables capturing discount rate factors (fundamental risk aversion, the variance premium,

bond and equity market liquidity) correlates more than 20% with the Baker-Wurgler index.
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6 Conclusions

The substantial time variation in stock-bond return correlations has long been viewed as puz-
zling. Without assessing what time variation in correlations a formal model of fundamentals
can generate, this may be a premature judgment. For instance, much has been made of the
negative correlation between bond and stock returns in recent times. However, the real econ-
omy and the inflation process have undergone some remarkable changes recently. In particular,
it is well known that output and inflation volatility have decreased substantially since 1985. If
bonds and stocks have similar exposures to these economic factors, their correlation should have
decreased. It is also conceivable that these fundamental changes have affected risk aversion, a
factor on which bonds and stocks may load with a different sign. While it remains difficult to
think of economic factors that would cause a sudden and steep decrease of stock-bond return
correlations into negative territory, it remains useful to quantify how much of the correlation
dynamics can be attributed to fundamentals. This is what this paper sets out to do using a

dynamic factor model with fundamental factors.

Importantly, we consider a large number of factors, both pure economic factors, and factors mea-
suring risk aversion and illiquidity. We also consider a large number of model specifications, some
with scant structural restrictions. Interestingly, the performance of our fundamental models im-
proves when factor shocks are partially ‘structurally’ identified by means of a New-Keynesian
model, and we focus the article mostly on this model. Overall, we fail to find a fully satisfactory
fit with stock-bond return correlations. Our model fails to forecast realized correlations as well
as a benchmark empirical model, using the MIDAS framework of Colacito, Engle, and Ghysels
(2009). While this model is a backward-looking empirical model, it uses daily return data effi-
ciently and generally fits the data very well. Our model does fit the unconditional correlations
between stocks and bond returns better than the MIDAS model does. Not unlike the pattern
observed in the data, our fundamental-based model generates positive correlation until the end
of the 1980s, and decreasing correlations afterwards. However, a model with constant factor
exposures fails to generate negative correlations. We do obtain negative correlations when we
allow the factor exposures to depend on a risk premium proxy extracted from options data, the
so-called variance premium. This model also produces time-varying correlations that correlate
substantially with correlation movements in the data, although the timing and magnitude is

far from perfect.

We then analyze our results along several dimensions, producing a variety of useful directions
for future research. First, given the long tradition of viewing stocks as excessively volatile,
the poor fit of our factor model may simply be due to its failure to account for actual stock
return volatility. However, we show that the model primarily fails in fitting covariances and
that its fit with respect to stock volatility is actually relatively better than its fit with respect
to bond volatility. Second, the factors most useful in explaining correlations and covariances
are the non-macro variables, especially stock and bond market illiquidity factors. Much more

research must be directed towards analyzing the dynamic effects of liquidity. Third, there is an
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interesting dichotomy between the fit of stock and bond market volatility dynamics. For bonds,
fundamental factors do play a relatively large role, but for stocks, the liquidity factors, and the
variance premium are hugely important factors. These empirical results for sure complicate the
creation of general equilibrium models that can jointly rationalize bond and stock pricing (see
Bekaert, Engstrom, and Grenadier (2005) for a recent effort).

Of course, we have focused our analysis on standard macro factors, and more intricate models
would likely yield variables that we have not considered. In models with incomplete markets
for example, the distribution of income and wealth may matter. Yet, our economic factors
include uncertainty measures (for both inflation and output forecasts) which may be motivated
using models involving heterogeneity and learning. However, we find that these variables are
not nearly as important in driving second moment return dynamics as are liquidity variables.
These liquidity factors may be correlated with the “flight-to-safety” effects that have been
documented in the literature (see especially Connolly, Stivers, and Sun (2005)). In the end
our fundamental model does not seem to produce an entirely satisfactory fit of the “fight-to-
safety” effects that are likely at the heart of the negative correlations observed post 2000. To
test this more formally, we re-estimated the factor model over the 1986-2007 sample period,
including the VIX as an additional factor. We know that VIX increases are associated with
lower correlations between bond and stock returns, but it is conceivable that this effect is a
pure discount rate effect, captured by our two risk premium measures, in particular, by the
variance premium. However, we find that the VIX still comes in significantly with a negative
sign. While it is always possible that our variance premium estimate is an imperfect proxy
to the risk premium variation hidden in VIX movements, we believe research into “flight-to
safety” effects and their interaction with liquidity factors remain of first-order importance to

fully understand stock-bond return comovements.
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Notes

! Autocorrelation in daily stock and bond returns potentially biases our estimates of quarterly stock and
bond return volatilities and correlations. While we do find a moderate degree of autocorrelation in both stock
and bond returns, correcting for this bias (using 4 Newey and West (1987) lags) does not meaningfully alter
stock-bond return volatilities and correlations.

2The output gap uses a quadratic trend to measure potential output (see the data appendix for details).

3In 1997, quoted tick sizes decreased from eights to sixteens, and in 2001 a system of decimalization was
introduced.

4For completeness, we estimated a model with betas a function of NBER dummies, but it performs less well
than the regime-switching beta model described here.

5We then also impose the economic restriction that ¢ must be positive, setting its value at 0.1.

5We find mostly parameters in line with the extant literature, including a rather weak monetary transmission
mechanism (see Bekaert, Cho, and Moreno (2008)).

"We left out the unconditional correlation as the MIDAS model fits the unconditional correlation worse than

our model.
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Appendix

A

Data Appendix

Our dataset consists of stock and bond returns and a number of economic (fundamental) state

variables for the US. Our sample period is from the fourth quarter of 1968 to the fourth quarter

of 2007 for a total of 157 observations. The economic state variables are seasonally adjusted.

We now describe the exact data sources and how the variables are constructed:

1.

Stock Excess Returns (r.): End-of-quarter NYSE/AMEX/NASDAQ value-weighted
returns including dividends, from the Center for Research in Security Prices (CRSP) Stock

File Indices. The returns are in excess of the US 3-month T-bill rate.

. Bond Excess Returns (7,): End-of-quarter returns on 10-year Treasury bonds, from

the CRSP US Treasury and Inflation Module, in excess of the US 3-month T-bill rate.

. Output Gap (y): The output measure is real Gross Domestic Product (GDP), from the

Bureau of Economic Analysis. The gap is computed as the percentage difference between

output and its quadratic trend.

. Expected Output Gap (ye): The expected output gap is constructed as follows:

Eilyia] = Ei [& (gtﬂ - 1)}
gt \tres1
5 [
- gLt 1
9 i
where g, is the level of real GDP at time ¢, and tr; the (quadratic) trend value of real GDP
at time . We use survey-based expectations of the level of real GDP for the current and

next quarter to measure F [g;—tl]. The source is the Survey of Professional Forecasters
(SPF).

Output Uncertainty (yd): Average SPF respondents’ assessment of real output uncer-
tainty, taken from Bekaert and Engstrom (2009).

. Inflation (r): Log difference in the Consumer Price Index for All Urban Consumers (All

Items), from the Bureau of Labor Statistics.

. Expected Inflation (7e): Median survey reponse of expected growth in the GDP deflator

over the next quarter, from the Survey of Professional Forecasters (SPF).

. Inflation Uncertainty (7d): Average SPF respondents’ assessment of inflation uncer-

tainty, taken from Bekaert and Engstrom (2009).

. Fundamental Risk Aversion (fra): Our measure of fundamental risk aversion is based

on the external habit specification of Campbell and Cochrane (1999), and taken from
Bekaert and Engstrom (2009).

32



10. Nominal Risk-free Rate (i): 3-Month Treasury Bill (secondary market rate) from the

Federal Reserve.

11. Cash Flow Growth (cg): Dividend growth including repurchases, taken from Bekaert
and Engstrom (2009). The source for the dividends is CRSP. The source for the repur-
chases is Securities Data Corporation. Dividend growth is transformed into cash flow

growth using the ratio of repurchases to (seasonally adjusted) dividends.

12. Stock Market Illiquidity (sliq): Capitalization-based proportion of zero daily returns
across all firms, aggegated over the quarter, obtained from Bekaert, Harvey, and Lundblad
(2007).

13. Bond Market Illiquidity (bliq): Monthly average of quoted bid-ask spreads across all
maturities, taken from Goyenko (2006). He uses securities of 1 month, 3 months, 1, 2, 3,
5, 7, 10, 20, and 30 years to maturity, and deletes the first month of trading, when the
security is ‘on-the-run’, as well as the last month of trading. Consequently, he calculates
a monthly equally-weighted average of quoted spreads from daily observations for each
security. Finally, the market-wide illiquidity measure is calculated as an equally-weighted
average across all securities for each month. We take the end of quarter value as a quarterly

measure.

14. Variance premium (vp): We calculate the Variance Premium (on a quarterly basis) by
subtracting the fitted MIDAS variance from the VIX squared. The VIX is the implied
volatility of highly liquid S&P500 index options, and is taken at the end of the quarter
from the Chicago Board of Options Exchange (CBOE). Unfortunately, the VIX is only
available from January 1986 onwards. For the 1968-1985 period, we use a projection on
the following explanatory variables: the Michigan Consumer Confidence Index (CC), the
Realized Variance (RV), the consumption-wealth ratio (CAY), the Term Spread (TS),
and the Default Spread (DS). This specification resulted after insignificant variables were
removed from a richer specification, estimated on 1986-2007 data, also involving liquidity

and sentiment variables.

Const CC RV CAY TS DS R?
Param -0.0826 0.0006 0.2752 0.2961 0.0031 0.0095 50.19
pval 0.003 0.0230 0.0004 0.001 0.082 0.049

The variables stock return, bond return, (expected) output gap, (expected) inflation, interest
rate and cash flow growth are expressed in percentages on a quarterly basis. The stock illiquidity,
bond illiquidity and variance premium are multiplied by 100 to make them similar in order of
magnitude. The uncertainty measures and the risk aversion measure are the original series as
taken from Bekaert and Engstrom (2009).
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B A Component Model for Dynamic Stock-Bond Cor-
relations

In a recent paper, Colacito, Engle, and Ghysels (2008) introduce a component model for dynamic

correlations. Their model combines the DCC model of Engle (2002) and the GARCH-MIDAS
model of Engle, Ghysels, and Sohn (2006). Consider the vector of stock and bond returns

7t = [Fess 7o), and assume it follows the following process:

LA n’dN(,U;Ht) (B-l)
Ht — DthDt (B—2)

where p is the vector of unconditional means, H; the bivariate conditional variance-covariance
matrix, and D; a two-by-two diagonal matrix with the conditional stock and bond return

volatilities on the diagonal, and

R = B[] (B-3)
& = Dyt (re—n) (B-4)

This model is conveniently estimated in two steps. First, the conditional volatilities in D, are

estimated, to be followed by the conditional correlation matrix R;.

A GARCH-MIDAS component model for conditional stock and bond return vari-

ances.

Assume that the univariate return follows the following GARCH-MIDAS process:

Tig = Wi + v/ Miz X Gis&is, i={e, b}, t=(r—1)N +1,.., 7N} (B-5)
where g;; and m; , are the short and long run variance components of the daily returns of asset
¢. The short run component g;, varies at the daily frequency ¢, while the long-term component
m;,, - with a time subscript 7 - only changes every N! days. The short run variance of stock

and bond returns follows a simple GARCH(1,1) process:

(Ti,t - ,U)Q

1, T

gip=(1—a—p8)+a + 3191 (B-6)

The low-frequency component m; , is a weighted sum of L lags of realized variances (RV) over

a long horizon:
L
mig =1 +0; )¢ (w0,) RViro (B-7)
=1

where the realized variances involve N! daily non-overlapping squared returns:

TN};
RVi,= > (ry) (B-8)

t=(T—1)Ni+1
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Because we compare the long-term MIDAS components with our quarterly model counterparts,
we set N! equal to the number of trading days within one quarter. As a weighting function, we

use a beta function with decay parameter w?

The weight attached to past realized variances will depend on the two parameters w! and L¢.
The latter determines the number of lagged realized variances taken into account. The decay
parameter w' determines the weight attached to those past realized variances. In case of w! = 1,
the past L! will receive an equal weight of 1/L!. In the likely case of w! > 1, past realized
variances will gradually get less and less weight. The larger w!, the larger the decay. In our
empirical analysis, we allow both the decay parameter w! and the L! lags of realized variances
to differ between stock and bond returns. We will select optimal values for both parameters

using the likelihood profiling procedure discussed in Engle, Ghysels, and Sohn (2006).
A component model for conditional stock and bond return correlations

In the second step, we calculate correlations based on the standardized residuals &,. More

specifically, we calculate a conditional matrix @);, whose elements are given by:

Gijie = Pijr(L—a—=>b)+a&, &, 140G i (B-10)
LY
Pijr = Z o (We) Cijir—t (B-11)

TN
Z (7. l)N” +1 57, k}£] k

C’L,] T
TN i TNé] 2
\/Z (T—1)NZ +1 giv’f Zt:(T*l)J\fij+1 fj’k

(B-12)

where the weighting scheme is similar to the one used in (B-9). The long-run correlation p, ; . is a
weighted sum of L lags of realized correlations, calculated on N daily non-overlapping returns.
As for the long run variance, we consider one quarter of such daily returns. The conditional
correlations between stock and bond returns at the daily frequency can then be easily calculated

as:
Qeb,t

vV Qe,etr/qb,bt

pe,b,t =

Estimation Results

Panel A of the table below reports the estimation results for the conditional bond and equity
return variances. All parameters are significant at the 1 percent level. The sums of o and ( are
0.946 and 0.965, for bonds and stocks respectively. The likelihood profiling procedure selects an

optimal number of lags of realized variances of respectively 8 quarters for bonds and 3 quarters
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for stocks. The decay parameter w’ is substantially larger than 1 for bonds, indicating that the
weight attached to past realized bond return variances decreases rapidly with the number of lags.
For equity volatility, in contrast, the parameter estimate is close to one, implying a relatively flat
weighting function. The long-term components of stock and bond return volatility are plotted

in Panels C and D of Table 4, respectively.

Panel B shows the estimation results for the MIDAS conditional stock and bond return correla-
tions. The likelihood function peaks at 12 lags of quarterly realized correlations. The estimate
of the decay parameter w. implies a rather rapidly decreasing weighting function. The a and
b parameters are both highly significant, and their sum of 0.949 is significantly below 1. The
long-term component of stock and bond return correlations is plotted in Panel A of Figure 4.
The long-term correlation is around its unconditional value of 20 percent during most of the
1980s, to increase to levels up to 60 percent in the late 1990s. The stock-bond return correlations
drops to slightly negative levels at the end of the 1990s, to become extremely negative (up to

minus 60 percent) around 2003.

Panel A: Estimates for MIDAS Variance Model

o 16 1 m 0 Wy Li
Bond Volatilty
Estim 0.847  0.099  0.0002  2.24E-06 0.016 3.314 8

St. Error  (0.022) (0.015) (0.0001) (9.56E-06) (0.004) (0.830)
Equity Volatility

Estim 0.877  0.088 0.0006 3.55E-05 0.0084 1.044 3
St. Error  (0.013) (0.014) (0.0001) (6.83E-06) (0.004) (0.034)
Panel B: Estimates for MIDAS Correlation Model

a b We Lc
Estim 0.050 0.899 4531 12
St. Error  (0.011)  (0.028) (2.013)
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C An IS Equation with Stochastic Risk Aversion

In a typical model with external habit a la Campbell and Cochrane (1999), the log of the real

pricing kernel my is given by:
M1 = —7Ac1 + YAG4 (C-13)

where Ac;yq is (logarithmic) consumption growth, and + is the curvature parameter in the
utility function (we ignore the discount factor (3, without any consequence for the derivations

to follow):
_ 1=y
v (53)

We define ¢; as log (Q;) , where @Q; = ﬁ is the inverse of the surplus ratio. The dynamics of

(C-14)

q; are specified as follows:
Gt = g+ Dggli—1 + Tgqr/A—16¢ (C-15)

where p,, ¢,,,and o4, are parameters, and el a standard normal innovation process. Notice that

aq’
el is the sole source of conditional uncertainty in the stochastic risk aversion process. Note that
the fact that we model ¢; as a square root process makes the conditional variance of the pricing
kernel depend positively on the level of ().

The consumption process is defined as:
Ac; = By [Ac] 4 Ocer/G—1 [(1 - /\2)5 gy + )\52} (C-16)

where 0., and )\ are parameters, and f a standard normal innovation process specific to the
consumption growth process. We do not need to specify the conditional mean dynamics as we
will solve for the interest rate as a function of expected consumption. Furhermore, we assume
that €f and e} are jointly N (0, 1), so that:

CO'Ut,1 [ACt, qt] = )\O-qqo-ccqt- (C-l?)

It is easy to see that A is the conditional correlation between ‘risk aversion’ and consumption
growth. This correlation would be —1 in the Campbell-Cochrane setup, and is generally expected
to be negative to induce counter-cyclical risk aversion.

In any log-normal model, we have:
re=—FE; [myg] — %Vart (M) (C-18)
where r; is the real interest rate. From (C-13), (C-15) and (C-16), it follows:
Var, [m1] =Yg [aﬁc + ng — 2/\0qqacc} ) (C-19)

Substituting in (C-18), and using (C-13), we obtain:

2
re = YE [Acpa] =7 [+ (0gy — 1) @] — v (02, + 00 — 2X040c] (C-20)

2
= =Yy + VE; [era] — ver + g
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with 7 = —y (gf)qq — 1) — 7—22 [ch + U?Iq — 2)\0,1,1066} )

Solving for ¢;, we find:

1
et = —py + By [cia] — ?“t + Nq (C-21)

where 1 = g = (1 — gbqq) -3 [Ugc + ng — 2)\0,1,1005] . If ¢ is persistent, and for sufficiently high

v, and sufficiently negative A, we likely have n < 0, but its sign is generally indeterminate.
To turn (C-21) into an IS equation, two more steps are required. First, we define
re =ty — By [ma] +m (C-22)

where m, is a term arising from a Jensen’s inequality. Consequently, we implicitly assume a
constant inflation risk premium. Second, we must get from ¢; to detrended output. One common
way to do this is to assume:

Yt = Ct + G (C-23)

where ¢g; is a demand shock assumed #id, reflecting all the ‘gaps’ between output and consump-

tion (such as government spending). If we linearly detrend, i.e. 3, = y; — dt, we get:
Uy = Cr + Gy (C-24)
Substituting (C-22) and (C-24) into (C-21), we obtain:
Ut = ars + By [Jra] — % (ie — By [me]) +mage + FY (C-25)

where ajg reflects a collection of all the constant terms and FY = —g;.
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D Specification Tests for the State Variable Model

D.1 Univariate Tests

Consider the following model, which encompasses our reduced-form state variable model:
Yt = U (St) + thlﬁ +o0o (St) Et (D—26)

For our purposes, it suffices to assume that S; can take on two values. 1 or 2. Let m;,_; be the
conditional probability of S; = 1, and m;_; the corresponding probability of S; = 2. We can

define the residuals for the model as:

G =y — Xe1 B — (me—1py + (1 —m—1) o) (D-27)

where 1, and p, are the means in respectively regime 1 and 2. The conditional variance V;_;
of ¢, is:
Vin =m0t + (1=ma) o5 +m (1= ma) (e — i)’ (D-28)

where 0% and o3 are the variances in respectively regime 1 and 2. As calculated in Timmermann

(2000), the conditional skewness Sk;_; is given by:

o1 (1 =) (g — o) (3 (U% - U%) + (1 —2me—q) (g — Ml)z)
(103 + (1 —mq) 03+ moq (1 — 1) (g — M1)2] :

Sl{?t_l - (D—29)

while the conditional Kurtosis K is equal to:

~ ma {303+ (= 1) + 603 (1 — 1)*} + (1= m1) {303 + (1o — 1) + 603 (s — 1)*}
2
(w10t + (L= me1) 03+ mmy (1= 701) (py — 114)°]

(D-30)
To perform tests using GMM, we actually use the unconditional probabilities 7 and compute
unconditional moments V, Sk, and K (We also performed tests using ex-ante probabilities, but
then must use unscaled versions of Sk;_; and K;_;. Results were very similar).
We test for a zero mean and no second order correlation by testing whether or not by, by,and b3

are zero in:
Elg) -0 = 0
El(g—0b1)(g—1—b1)] =by = 0
E [(Qt - bl) (Qt—2 - b1)] —by = 0
Define G; as (g — b1)2 /V — 1. We test for a well specified variance by testing whether or not
by, bs,and bg are equal to zero:
Elg]—bs = 0
Elqg—1]—0bs = 0
EGGi—2] —bs = 0
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We test for excess skewness by testing whether or not b; is equal to zero in:

E [(Qt - bl)s]
E (g — b1)?]

and for excess kurtosis by testing whether or not bg is equal to zero in:

E [(Qt - 51)4}
E [(C]t - bl)ﬂz

—Sk—0b;=0

wlw

—K—b8:0

We estimate b; to bg using GMM with a Newey-West (1987) weighting matrix with number of
lags equal to 5. The tests for zero mean, unit variance, zero skewness, and zero excess kurtosis
follow a x? (1) distribution, the tests for second order autocorrelation a x? (2)distribution. We
also perform a small sample analysis of the test statistics. For each series, we use the estimated
parameters from the state variable model to simulate a time-series of similar length as our
sample. For 500 of such simulated time-series, we calculate the test statistics, and use the

resulting distribution to derive empirical probability values.

D.2 Covariance Test

To investigate whether our state variable model adequately captures the covariance between

the factor shocks, we test whether the following conditions hold:
E[Qi,tQj,t] = 07 for i = 17"7N ) ] = 1,,N,Z %.]

where N represents the number of state variables. A joint test for the covariances between all
factor shocks follows a x? distribution with N (N — 1) /2 degrees of freedom. We also test for
each of the N variables whether its shocks have a zero covariance with all other factor shocks.
This test follows a x? distribution with 9 degrees of freedom. As for the univariate tests, we

also perform a small sample analysis of the test statistics.

E Estimation Results State Variable Model

The table below reports the estimation results of the semi-structural state variable model dis-

cussed in Section 2.2.
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Table 4: Economic Contributions for Model-Implied Conditional Correlations

This table shows the economic contributions of the different factors for the model-implied condi-
tional correlations. Panel A shows the results for the factor model with constant exposures. Panel
B shows the results for the best performing factor model with time-varying exposures, which is the
model with the variance premium as instrument, imposing zero restrictions on parameters with
absolute t-statistics below one. For both panels, we repeat the results of the model selection tests
of the model including all factors (line 'Full Model’). Next, we compute the model selection test
measures leaving out certain factors. We differentiate between leaving out macro factors and leav-
ing out non-macro factors. For each measure we compute the deterioration of the restricted model
relative to the full model. For the distance measures, we compute the deterioration as 100 times
(distance restricted model - distance full model)/distance full model. For the correlation measures,
we report the difference between the correlation measure for the full model and the correlation
measure for the restricted model, multiplied by 100. All numbers are expressed in percentages.
In Panel A, a * means that the restricted model performs significantly worse than the full model
with constant betas, based on the simulation results in Table 2. MD stands for MIDAS; Real for
realized.

Distance Measures | Corr Measures

Factor Model MD Real Unc | MD Real
Panel A: Constant Betas

Full Model 0.186 0.248 0.066 0.394 0.589
minus macro var 7.6 2.8 32.3 1.9 -0.3

minus ¢, T, b 6.4 2.6 25.2 2.6 0.5

minus q; 8.8 3.3 354 -0.6 -2.2

minus non-macro var 33.9*% 18.8* 113.7 30.7* 37.4%*
minus cgy 2.3 1.0 5.6 1.1 0.4

minus sliqy, blig, 30.6% 16.8* 106.7 21.9* 26.7*
minus yd;, wd; 6.8 2.6 23.2 -1.5 -2.3

minus vpy 2.9 1.6 3.7 5.8 5.3

Panel B: Time-Varying Betas

Full Model 0.180 0.231 0.094 0.477 0.495
minus macro var 10.5 7.4 -4.6 6.3 6.8

minus Y, T, it 8.1 5.7 -0.6 10.7 10.5
minus q; 8.7 4.6 12.9 1.8 1.2

minus non-macro var  36.1 22.4 66.9 23.6 24.4
minus cgy 2.1 1.0 2.3 1.0 0.5

minus sliqq, blig; 31.9 19.6 58.6 20.0 21.7
minus ydy, wdy 2.5 14 -11.6  -3.7 -4.5

minus vpy 1.0 0.7 -3.7 2.8 2.0
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Figure 1: Realized and Conditional MIDAS Stock-Bond Return Correlation
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This figure graphs realized quarterly correlations measured using daily returns, and the data-
implied conditional correlation based on the bivariate DCC-MIDAS model of Colacito, Engle, and
Ghysels (2009). See Appendix B for the technical details about this model.
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Figure 2: Smoothed Probabilities of Regimes

Panel A: Output and Inflation Volatility Regime
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Panel D: Cash Flow Volatility Regime
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Panel E: Stock and Bond Illiquidity Regime
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This figure shows the smoothed probabilities of the nine independent regimes in our state variable
model. The different regimes are defined in Section 2.2.3 for the active monetary policy regime
and Section 2.2.5 for the different volatility regimes. Panel A shows the smoothed probability of a
high output gap and inflation volatility regime. Panel B shows the smoothed probability of a high
interest rate volatility regime and the smoothed probability of an active monetary policy regime
in which the FED aggressively stabilizes the price level. Panel C shows the smoothed probability
of a high risk aversion volatility regime and of a high variance premium regime. Panel D shows the
smoothed probability of a high cash flow growth shock volatility regime. Finally Panel E shows
the smooted probability of a high stock and bond illiquidity regime. NBER recessions are shaded
gray.
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Figure 3: Volatility of the Factors

Panel A: Output, Inflation and Interest Rate Volatility
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Panel B: Risk Aversion, Variance Premium and Cash Flow Volatility
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Panel D: Output Uncertainty and Inflation Uncertainty Volatility
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This figure shows the conditional volatilities (annualized) of the various factors identified in our
state variable model. Panel A shows respectively output, inflation and interest rate volatility.
Panel B shows respectively risk aversion, the variance premium and cash flow volatility. Panel C
shows stock and bond illiquidity volatility. Finally Panel D shows output uncertainty and inflation
uncertainty volatility. NBER recessions are shaded gray.



Figure 4: Data-Implied and Model-Implied Moments

Panel A: Correlation
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Panel C: Stock Volatility
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This figure plots the model-implied correlations (Panel A), the model-implied covariances (Panel
B), the model-implied stock volatility (Panel C) and the model-implied bond volatility (Panel D),
for both the factor model with constant exposures and the best performing factor model with
time-varying exposures, which is the model with the variance premium as instrument. In addition,
we plot the data-implied conditional moments based on the MIDAS model described in Apppendix
B.
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