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Abstract
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1 Introduction

The currency carry trade, which goes long (short) currencies with high (low) yields continues to attract
much research attention, as it has been shown to earn high Sharpe ratios, while its returns are largely un-
correlated with standard systematic risks (e.g., Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011),
Lustig, Roussanov, and Verdelhan (2011)). Prototypical carry currencies among the liquid G-10 curren-
cies are the Swiss franc (CHF) and Japanese yen (JPY), which almost always exhibit the lowest yields
and hence a typical G-10 carry trade would short them, and the New Zealand dollar (NZD) and Australian
dollar (AUD), which typically have the highest yields and would be held long. These four currencies
feature prominently in extant explanations of the returns of the carry trade. One such explanation invokes
crash risk (e.g. Brunnermeier, Nagel, and Pedersen (2009)) and thus relies implicitly on the fact that JPY
and AUD provide the most “skewed” return perspectives from the view point of a US investor. Another is
based on the differential exposure to global productivity shocks of producers of final goods, such as Japan
and Switzerland, versus commodity producers, such as Australia and New Zealand (Ready, Roussanov,
and Ward (2017)). In a similar spirit, Verdelhan (2017) states that ... the Japanese yen appreciates in
bad times, while the Australian dollar depreciates, and this difference is at the heart of any risk-based
explanation of carry trades”.

While the prior literature takes for granted that the prototypical carry currencies indeed drive carry
trade profitability, in this article we document the existence of “good” and ”bad” currency carry trades.
First, we consider an investor who sequentially tests whether reducing the set of G-10 currencies improves
the historical Sharpe ratio, and then implements equally weighted carry trades with fewer currencies. We
find that such trades from fewer currencies improve the return profile (in terms of both Sharpe ratio and
skewness) relative to the carry trade which employs all G-10 currencies, and denote them as “good” carry

trades. Most surprisingly, these good trades almost never include the AUD and JPY, or the NOK - another



commodity currency. Following this insight, we then construct carry trades using fixed subsets of the
G-10 currencies over the full sample. We find that trades that focus only on prototypical currencies tend
to have much lower Sharpe ratios and more negatively skewed returns, and denote them as bad” carry
trades. The trades using the remaining currencies preserve the desirable features of ”good” carry trades.
Our results indicate that much of the recent literature attempting to explain carry trade returns focusing on
prototypical carry currencies may be misguided.

Providing a first glimpse on the issue, Figure (1| contrasts the return properties of carry trades that
involve various subsets of the G-10 currencies. In particular, the figure plots (with black dots) skewness
versus Sharpe ratio for all carry trades constructed from five currencies that use three of the prototypical
currencies (AUD, CHF and JPY), together with any possible pair from the remaining seven currencies.
The currencies enter each trade with equal weights, as is common in the literature and finance industry.
Strikingly, these 21 trades show worse Sharpe ratios (from at best two thirds to slightly negative), and
also substantially lower skewness (three to five times more negative) than the strategy that uses all G-10
currencies. Therefore, trades constructed predominantly from the prototypical carry currencies appear to
be ”bad” carry trades. We subsequently refer to the trade from all G-10 currencies as “’standard carry” and

denote it as SC.
[Figure 1 about here.]

Probing further, Figure |1 also displays (with unfilled circles) the skewness versus Sharpe ratio of the
complements of the previous 21 carry trades, which are constructed with the remaining five currencies
in each case, again with equal weights. It is noteworthy that 14 out of the 21 complement trades feature
higher Sharpe ratios than that of the standard carry (SC) trade (in one case almost double that ratio), and
16 show higher (less negative or positive) skewness. Furthermore, half of the complement trades improve
both on the skewness and Sharpe ratio of the SC trade, qualifying them as ”good” carry trades. These find-
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ings cast doubt on efforts to explain carry trade returns by focusing on properties of the prototypical carry
currencies, and undermine the practice of associating the carry trade predominantly with such currencies.

In Section ] we investigate the ability of good carry trades to function as risk factors for certain cross
sections of currency returns (see, e.g. Lustig, Roussanov, and Verdelhan (2011) and Menkhoff, Sarno,
Schmeling, and Schrimpf (2012)). We find that good carry trades perform at least as well as previously
suggested currency market risk factors, and sometimes drive out such factors in a horse race. We also
re-examine the predictability findings in Bakshi and Panayotov (2013) and Ready, Roussanov, and Ward
(2017), and find that previously identified carry return predictors strongly predict the returns of bad, but
not of good carry trades. In Section [5] we revisit several interpretations of carry returns that have been
advanced in the recent literature, including the explanatory ability of factor models with equity market
risk factors, a crash risk explanation of their returns as in Brunnermeier, Nagel, and Pedersen (2009),
and the peso problem hypothesis of Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011). Almost
invariably, the results differ greatly across good versus bad carry trades.

In Section [6] we further explore the properties of good and bad carry trades to kindle research on
economic models that may explain the apparently strong differences between the two types of trades. We
show, for example, that the returns of good trades are still mostly driven by carry, but also derive part
of their returns from exchange rate changes, whereas the returns of bad trades are eroded by exchange
rate changes. We also examine the relationship between good carry trades and the dollar carry” factor
introduced in Lustig, Roussanov, and Verdelhan (2014), which goes long (short) all currencies relative to
the US dollar when the average foreign interest rate differential relative to the dollar is positive (negative).
Because our good carry trades always involve the dollar, some of their returns can be traced to dollar
exposure. However, while they do have substantial return correlation with dollar carry, they clearly present

a distinct currency and economic risk, as we demonstrate.



Before introducing “good” and “’bad” carry trades in Section 3, we describe the data in Section 2
and discuss some important concepts regarding the design of carry trades. The remainder of the article

demonstrates how the good-bad trade distinction fundamentally alters our thinking about carry trades.

2 Data and carry trade design

Following previous work, we employ currency spot and forward contract quotes to construct carry
trade returns. Using one-month forward quotes on the last trading day of each month in the sample, and
spot quotes on the last day of the following month, we calculate one-month carry trade returns over the
sample period from 12/1984 till 06/2014 (354 monthly observations). The return calculations take into
account transaction costs, exploiting the availability of bid and ask quotes. The data comes from Barclays
Bank, as available on Datastream, and have been used in Burnside, Eichenbaum, Kleshchelski, and Rebelo
(2011) and Lustig, Roussanov, and Verdelhan (2011, 2014), among many others.

Our results are reported for percentage returns and equal (absolute) weights of the currencies entering
a trade. On two occasions we report instead results with logarithmic returns or weights proportional to
forward differentials, to facilitate comparability with previous studies.

Let S! denote the spot exchange rate of currency i at time ¢, quoted as foreign currency units per one
U.S. dollar. That is, the U.S. dollar is the benchmark currency and all trades are implemented relative to
the dollar. Similarly, let F denote the time ¢ one-month forward exchange rate, quoted in the same way.
Then, if ¢ is the end of a given month, and # 4 1 is the end of the following month, the percentage excess

one-month return at ¢ + 1 of one dollar invested at 7 in a long (short) forward foreign currency contract is:

ilong  pibid ;qiask i,short i,ask ;i,bid
th—H =F /Sz+1 —1 and Rx, 7 =1-F /St+1 , (D)

whereby bid and ask quotes are denoted in the superscriptE]

These can also be seen as the payoffs to forward contracts in the foreign currency per “forward” dollar.
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We employ the G-10 currencies, which are the New Zealand dollar (NZD), Australian dollar (AUD),
British pound (GBP), Norwegian krone (NOK), Swedish krona (SEK), Canadian dollar (CAD), US dollar
(USD), Euro (EUR), Swiss franc (CHF) and Japanese yen (JPY), whereby prior to 1999 the German mark
(DEM) is used instead of the Euro. These currencies represent the most liquid traded currencies, and are
most often used both in the academic literature and professional practice to construct carry trades.

As indicated above, the carry trades that we consider go long and short an equal number of currencies
relative to the USD, with equal weights. Various alternative weighting schemes are possible, mostly based
on the magnitude of the interest rate differentials (see Table[I|for concrete examples from practice and the
academic literature), but we prefer to keep the trade as simple as possible. Moreover, the total investment
each period is one dollar, that is, the sum of all long and short positions (in absolute value) equals one.
Specifically, when the trade uses all G-10 currencies, the five currencies with the lowest interest rates are
shorted, and the remaining five are held long. In practice, we rank the currencies based on their forward
differentials relative to the U.S. dollar, defined as FD, = F; /S, — 1 at time ¢ and calculated using mid-
quotes. The weight of currency i held long (short) is ® = % (0 = —%). The percentage excess return

of this trade from ¢ to t 4 1 is:
10
R = Y { Loj00] RYLT 1y g0f R | @)
i=1
where 1 is an indicator function.
When a subset of N currencies is used to construct a carry trade and N is even, we set @} = % or —]%/
in (2) and substitute N for 10. If N is odd, the currency with the median forward differential is dropped
from the trade, and we use N — 1 instead of N in the definition of (Df and the summation in . Finally,

whether using all G-10 currencies or subsets of them, we re-balance the carry trades at the end of each

month, and liquidate them at the end of the following month.



We follow the previous literature and consider carry trades that are symmetric, in that they have an
equal number of short and long positions, with equal total weights on the long and short side. Currencies
are ranked according to their interest rates, and only the rank determines whether the position taken is
short or long, while the signs of the interest rate differentials are irrelevant for the trade design, as these
change with the currency perspective (see also Clarida, Davis, and Pedersen (2009)). Importantly, our
carry trade design also ensures (approximate) numeraire independence, as we do not give a special role
to the benchmark currency, and hence the positions taken in the various participating currencies are the
same, regardless of the benchmark. Numeraire independence is an attractive property, and implies that
only one currency trade must be defined for the world at large. Moreover, the returns on such a trade are
very similar from any currency perspective, because the translation from one currency to another simply
introduces cross-currency risk on currency returns, which is a second-order effect. In fact, the logarithmic
returns of our strategies are exactly the same from any perspective, by triangular arbitrage (see Maurer,
To, and Tran (2016) for further discussion). Numeraire independence may also be a desirable trait for
a global risk factor. The major commercial investable carry products delivered by the major players in
the foreign exchange market, such as Deutsche Bank or Citibank, described in Table |1} are symmetric
and numeraire-independent as per our definition. They do not all assign equal weights to all positions
however, e.g. the well-known tradeable Deutsche Bank carry strategy takes only the three highest- and
lowest-yielding currencies among the G-10 currencies.

Non-symmetric trade designs are also possible, and have been considered, for example in a recent well-
recognized article by Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011), where all currencies with
interest rates that are higher (lower) than the US dollar interest rate are bought (sold) in equal proportions.
Such a strategy is obviously not symmetric, and also may deliver very different results depending on the

benchmark currency. Another example of a non-symmetric trade is the “dollar carry” trade, studied in



Lustig, Roussanov, and Verdelhan (2014) and Hassan and Mano (2015).

In Appendix[OA-T|we discuss these issues more formally, as the particular design of carry trades affects
the resulting return profiles. For example, when considering popular asymmetric strategies such as the one
used in Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011), the currency perspective matters greatly.
Daniel, Hodrick, and Lu (2017) show that the USD perspective produces the most attractive Sharpe ratio
by far. In addition, by creating a trade with equal weights and equal number of short/long positions, but
without USD exposure, they further demonstrate that much of the return of an asymmetric carry trade
can be attributed to its USD exposure. Such a trade is symmetric, but not numeraire-independent. We
do not consider such “dollar-neutral” trades, and our symmetric trades are not dollar-neutral: positions
in the benchmark currency are explicitly included, even though the excess return for such positions is

automatically equal to zero.

3 Good and bad carry trades: using sub-sets of the G-10 currencies

The symmetric carry trades that we consider go long high-yield currencies and short an equal number
of low-yield currencies, with equal weights. Our interest is to explore the implications of excluding certain
currencies altogether from the carry trade, or, equivalently, of constructing carry trades only from certain
subsets of currencies.

In this section we first propose a disciplined approach to create symmetric carry trades from sub-
sets of the G-10 currencies that have yielded attractive historical performance. The procedure is simple
and exploits all available foreign exchange history at each point in time. It is implemented dynamically
and hence yields out-of-sample results. Essentially, it evaluates on each trading date whether excluding
currencies can improve on the standard carry trade (SC) that uses all G-10 currencies, and if so, which

currencies should be excluded. Next, we exploit the information garnered in his exercise to create fixed



subsets of ”good” and bad” currencies that do not change over time, and use them to construct carry

trades over the full sample period.

3.1 Enhancing the currency carry trade

Imagine an investor starting to trade at the end of December 1994 (¢ = 77). On this date, and at the end
of each month going forward till May 2014 (¢ = T,), he uses all available return information for the period
since December 1984 (¢t = Tp) and first calculates the Sharpe ratio (denoted “benchmark Sharpe ratio”) of
the standard carry trade (SC) that employs all G-10 currencies. The trade ranks these currencies according
to their forward differentials at the end of each month between Ty and ¢t — 1, for t = Ty, ..., 7>, and goes
long (short) over the following month the five currencies with the highest (lowest) forward differentials,
all with equal weights.

To create an enhanced carry trade with nine currencies, on date ¢ the investor excludes one by one
each of the G-10 currencies, and computes the Sharpe ratios over 7y to ¢ of the ten possible trades that
involve only nine currencies. These trades exclude the currency with the median forward differential at the
end of each month between Ty and ¢ — 1 and go long (short) the four currencies with the highest (lowest)
differentials. If the highest of the ten Sharpe ratios obtained in this way exceeds the benchmark Sharpe
ratio, an enhanced trade is implemented over the following month (¢ to ¢ + 1) using the nine currencies
corresponding to this highest Sharpe ratio, while the one currency left out of the trade is the first to be
excluded on date 7. If, on the other hand, all ten Sharpe ratios are lower than the benchmark ratio, then no
currency is excluded and the enhanced trade for this date has the return of the standard trade.

Note that the dynamic and real-time nature of this enhanced trade could, in principle, result in a
substantially different currency mix used at different points of time. Further, our enhancement rule is
intentionally simple and uses an easily understood and popular performance measure, whereas a wide

range of other, more sophisticated optimization rules could be applied as well (see, e.g., Bilson (1984) and



Barroso and Santa-Clara (2014) on the use of optimization techniques for currency selection). Mimicking
the construction of the enhanced trade that uses nine currencies, we proceed to design other enhanced
trades that exclude more than one of the G-10 currencies in a similar manner. In particular, on a date ¢
when one currency has been excluded, we use the remaining nine currencies to find the highest Sharpe
ratio across the nine possible trades that involve only eight currencies. Again, if this highest ratio exceeds
the benchmark Sharpe ratio, the currency that was omitted to achieve it is the second currency to be
excluded for this date, whereas if all Sharpe ratios are lower than the benchmark one, no further currency
is excluded and the enhanced trade that uses eight currencies has the return of the standard trade for the
date. In the same way we attempt to exclude up to seven of the G-10 currencies on this date 7, and thus
obtain seven enhanced trades, which use a decreasing number of currencies. Importantly, we record the
exact order in which currencies have been excluded. The above procedure is repeated on each date in the
sample to obtain time series of returns of the seven enhanced carry trades.

For completeness of the search algorithm, we have postulated that if no improvement on the bench-
mark Sharpe ratio can be achieved for a certain date and number of excluded currencies, then no further
currencies are excluded on this date, and all enhanced trades with fewer currencies have the return of the
standard trade. In practice, however, this choice is inconsequential, since it turns out that improvement
is possible on each trading date in our sample and for each number between one and seven of excluded

currencies.

3.2 Return patterns for enhanced trades

Table 2] presents results for the enhanced carry trades that allow excluding from one to as much as
seven currencies on each trading date. Returns are computed as described in Section 2] with equal currency
weights and in percent. For comparability, we also show results for the standard carry trade (SC).

Panel A of Table 2 reports the annualized average returns, annualized Sharpe ratios, and return skew-



ness for each carry trade (standard and enhanced). Interest in skewness is justified because occasional
highly negative returns are an essential feature of currency carry trades, with possible implications for the
understanding of their nature (e.g., Brunnermeier, Nagel, and Pedersen (2009), Jurek (2014)). Also re-
ported are p-values for the hypothesis that the respective Sharpe ratio or skewness does not exceed that for
the standard trade SC. We note here that by being explicitly concerned about return skewness we presume
a possible departure from normality of the return distributions, and hence cannot rely on standard tests
for the difference between Sharpe ratios, as for example in Jobson and Korkie (1981) or Memmel (2003).
Therefore, we resort to bootstrap tests, and follow Ledoit and Wolf (2008) for Sharpe ratios, and Annaert,
Van Osselaer, and Verstraete (2009) for skewness. Because the enhanced carry trades are designed with
the goal to improve on SC, the reported p-values are based on one-sided bootstrap confidence intervals.
Details on the bootstrap procedures are provided in Appendix

The SC trade has an annualized Sharpe ratio of 0.32, and return skewness of -0.33. The benchmark
Sharpe ratio is thus close, for example, to the value of 0.31 for the HML trade reported in Lustig, Rous-
sanov, and Verdelhan (2014, Table 1) for their set of developed countries, over a similar sample period
and using equal weighting and bid and ask quotes.

When one currency is excluded from the carry trade on each trading day, practically no change is
observed: the Sharpe ratio is still 0.32 and skewness is -0.26. When two currencies are excluded, the
Sharpe ratio increases to 0.41, but skewness drops to -0.57. When three to six currencies are excluded,
the Sharpe ratios remain somewhat higher than the benchmark ratio (between 0.41 and 0.46), but the
differences are not statistically significant. However, skewness improves sharply in three out of these four
cases and turns positive on two occasions (and as high as 0.21 on one), whereby two of the associated
p-values are below 5% and another one equals 10%. These findings indicate a possible two-dimensional

beneficial effect of excluding three or more of the G-10 currencies, given that both the Sharpe ratio and
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skewness improve, albeit not always in a statistically significant way. This effect is further confirmed
by the enhanced trade that excludes seven currencies: the Sharpe ratio is now 0.61, while skewness is
positive, and both are marginally significantly different from the benchmark values.

Our findings echo previous results, where significant improvement in skewness is obtained with no
or only a minor change in the Sharpe ratio (for example, the option-hedged carry trades in Burnside,
Eichenbaum, Kleshchelski, and Rebelo (2011, Table 5). However, what is surprising in our case is that
the improvement of the return profile is (i) in both dimensions at the same time, and (ii) achieved simply
by excluding currencies from the symmetric carry trade. It is also noteworthy that the two-dimensional
improvement is achieved by a procedure that maximizes the Sharpe ratios alone, with no explicit concern

about the skewness of the returns so obtained.

3.3 Identity of the excluded currencies

While on each trading date the enhanced trade re-considers the available return history and thus can
potentially deliver a different set of currencies to be excluded, we observe the same currencies to be
excluded over and over, with amazing consistency. Panel B of Table 2] shows the number of months, over
the 234-month sample period of enhanced trading, each G-10 currency is excluded by the enhancement
rule from Section 3.1} In particular, it shows how many times the respective currency is the first, or among
the first two, or among the first three, etc., to be excluded from the carry trade.

The consistency is observed most clearly with respect to the first three currencies excluded. Specifi-
cally, AUD is the first to be excluded on 135 out of the 234 trading dates in the sample. Furthermore, it is
among the first three currencies to be excluded on a total of 192 dates. Similarly, NOK is among the first
three excluded on 219 occasions, and JPY is among them on 214 occasions. It appears that these three
currencies are found to be by far the most detrimental to carry trade Sharpe ratios by our enhancement

rule - no other currency is ever excluded first, and practically only one other currency has been excluded
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second or third (EUR: 15 and 59 times out of 234, respectively).

The next currencies to be the most often excluded are the EUR, NZD, CAD and CHEF, and while the
order of their exclusion is somewhat ambiguous, these are still the obvious further candidates for exclusion
by the enhancement rule. At the same time, the remaining three currencies are clearly found valuable by
the rule: GBP and SEK are among the first seven to be excluded only on about 60 occasions each, and in
fact are never among the first four excluded. Most conspicuously, however, the USD is never among even
the first seven excluded currencies, possibly consistent with previous studies which discuss the special
role of the USD in the carry trade (e.g., Lustig, Roussanov, and Verdelhan (2014), Daniel, Hodrick, and
Lu (2017)) from various perspectives.

These findings are surprising, as the enhancement rule consistently excludes from the carry trade
precisely the prototypical carry trade currencies, like the JPY and AUD, which have been perpetually
among the lowest- or highest-yielding G-10 currencies, and used most commonly as examples in various
carry trade discussions. Importantly, this consistency refers to the entire period since 1994, therefore the
results are not driven, for example, by the recent financial crisis and the related drastic changes in certain
exchange rates that are often cited to illustrate the risks inherent in the carry trade.

Two further observations can be made at this point. First, the surprise is not limited to the JPY and
AUD. The fact that the enhancement rule also tends to exclude NOK and CHF is similarly unexpected,
given that these have also been among the few highest- or lowest-yielding currencies over our sample
period.

Second, the design of the enhancement procedure, as described in Section leaves open the possi-
bility that at some step no improvement of the Sharpe ratio can be achieved, whereby no further currencies
are excluded on this date and the respective enhanced trades are assigned the SC return for the next trad-

ing period. This possibility is of some concern, as it could blur the distinction between enhanced trades

12



that exclude a different number of currencies. However, Panel B in Table [2] reveals that this has never
happened in our sample, as evidenced by the fact that the sum of the numbers in the first row equals 234,
the sum of those on the second row equals 234 x 2, and so on. Therefore, on each date in the sample
period the enhancement rule has identified seven currencies to be sequentially excluded, and hence seven
distinct enhanced trades to be implemented.

In sum, the conclusion from Table [2]is that the enhancement rule consistently excludes the same few
currencies from the carry trade, among which are those epitomizing the essential concept underlying
carry trades that low (high) yield currencies should be sold (bought). The surprising evidence presented

in Table [2] thus calls for a re-consideration of this concept and/or its implementation.

3.4 Good and bad carry trades from fixed subsets of the G-10 currencies

Prompted by the finding that the dynamic enhancement rule excludes the same currencies over and
over, we now examine carry trades constructed with fixed subsets of the G-10 currencies. While staying
close to the spirit of the enhanced trades, the fixed subsets allow for better comparison with previous carry
trade results, which are similarly obtained using fixed sets of currencies over fixed sample periods. Our
choice of the fixed subsets is informed by the order of exclusion implied by Panel B of Table [2, which
showed that (i) the three currencies that are the least often excluded by the enhancement rule are the GBP,
SEK and USD, (ii) the next three least often excluded are the CAD, NZD and CHF, whereas (iii) the AUD,
NOK and JPY are the most often excluded currencies.

In particular, we construct five carry trades from fixed subsets, which (i) exclude only the AUD, NOK
and JPY, (i1) include the GBP, SEK and USD, together with any of the three possible pairs from the CAD,
NZD and CHF, and (iii) keep only the GBP, SEK and USD. These carry trades are designed to illustrate
the properties of enhanced carry trades, and we denote them by G1 to G5, a notation we shall clarify

shortly. The first column of Table [3| displays the codes of the currencies included in each of these five
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trades. We also consider the trades complementary to G1-G5, which include the currencies that are left
out of each of these trades, and denote these complements by B1 to B5, respectively, with currency codes
again displayed in the first column of Table[3] For example, only the three most often excluded currencies
(AUD, NOK and JPY) enter the B1 carry trade.

In addition, we consider a larger set of trades which can represent more broadly the enhanced carry
trades: it consists of 18 trades from five currencies each, and is denoted by GC, whereby each trade
includes the three least often excluded currencies (GBP, SEK and USD), together with any possible pair
from the remaining currencies which has none or only one of the three most often excluded currencies
(AUD, NOK and JPY). This choice yields a reasonably large cross section of trades which maintains the
predominant presence of currencies that are preferred by the enhancement rule. Again, we also consider
the 18 complementary trades, and denote them by BC. Despite creating many carry trades from only five
currencies, the average correlation among the returns of the 18 good trades is 0.66, and thus lower, for
example, than the average correlation among the 25 value-weighted Fama-French portfolios sorted on size
and book-to-market for the same period, which is 0.80.

Table [3| presents results for the SC trade, the G1-G5 and B1-B5 trades, and the GC and BC trades
described above, using the entire sample period from 12/1984 till 6/2014. Shown are annualized average
returns, return standard deviations and Sharpe ratios, as well as skewness. For the GC and BC trades we
show averages of these quantities. Also reported are p-values for tests of differences between the Sharpe
ratios and skewness coefficients, similar to those in Table 2] In the last two lines, the first (second) number
in parentheses shows how many of the 18 corresponding individual estimates for the GC or BC trades are
significant at the 5% (10%) level. Where p-values are not in square brackets, the null hypothesis is that the
respective Sharpe ratio or skewness does not exceed the one of the SC trade. Where p-values are in square

brackets, the null is that the Sharpe ratio or skewness of a G1-G5 trade or GC trade does not exceed that of
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the corresponding B1-B5 trade or BC trade. Note that over the full sample period the benchmark Sharpe
ratio and skewness remain close to those reported in Panel A of Table [2|for the shorter period since 1994.

The G1-GS5 trades exhibit invariably higher average returns than the SC trade. In addition, their average
returns and return standard deviations tend to increase as the number of currencies in a trade decreases.
The Sharpe ratios of the G1-GS5 trades all exceed the benchmark Sharpe ratio (in two cases by a factor of
about two), with the difference statistically significant at the 5% significance level in three cases out of
five. Skewness increases in three cases for the G1-GS trades, even though this increase is significant only
for G1. Overall, these five trades reproduce, and possibly make more salient the features that characterize
the enhanced trades in Table 21

In contrast, the complementary trades B1-BS fare much worse. The average returns are often two to
three times lower than those of the SC trade, whereas the standard deviations are on average twice higher,
leading to much lower annualized Sharpe ratios, which are between 0.04 and 0.18. In addition, the return
skewness is markedly more negative for these complementary trades, averaging -0.77 (versus -0.11 for the
G1-GS5 trades). Furthermore, the p-values shown in square brackets, pertaining to tests of the differences
in Sharpe ratios and skewness between the corresponding G1-G5 and B1-B5 trades are below 0.02 for
four out of five Sharpe ratios, and show three (one) rejections at the 5% (10%) level for skewness.

The relatively high Sharpe ratios and slightly negative or positive skewness of the G1 to G5 trades
earn them the label ”good” carry trades ("G” for good). Analogously, we refer to the B1 to B5 trades with
low Sharpe ratios and strongly negative skewness as bad” carry trades ("B’ for bad), from now on.

Turning to the larger sets of GC and BC trades, each constructed from five currencies, they broadly
replicate the distinction between the good and bad carry trades above. The GC average returns (Sharpe
ratios) are on average three (three and a half) times higher than those for the BC ones, and the GC skewness

is on average twice lower (in absolute terms), whereby the differences are statistically significant in about
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half the cases. The Sharpe ratios for the GC trades are significantly higher than those for the SC trade in
one third of the cases, in line with what was observed for the comparable G2 to G4 trades.

To further illustrate the properties of the GC and BC carry trades, Panel A of Figure [2] plots their
Sharpe ratios versus skewness, similar to Figure |1, with unfilled circles and black dots, respectively. The
distinction is sharp and clear in the Sharpe ratio dimension, where, with no exception, the GC trades
dominate the BC trades, thus justifying their classification as good trades. On the other hand, a few GC
(BC) trades display low (relatively high) skewness, hence the distinction is not as clear in this dimension,
even though on average the skewness of the BC trades is still twice lower, consistent with the bad trades

classification.
[Figure 2 about here.]

With some data mining even more striking distinctions can be obtained. For example, in Panel B
of Figure 2] the unfilled circles refer to trades from five currencies which again involve the three least
often excluded currencies (GBP, SEK, USD) in each case, but are now combined with any other pair that
excludes the JPY. As before, black dots refer to the complementary trades. These two sets of 15 trades
deliver striking separation in both the Sharpe ratio and skewness dimension. In what follows we retain
the GC and BC trades as described above and in Panel A of Figure [2| which mimic closely the dynamic
enhancement rule of Section[3.1]

Finally, we examine the return correlations between various carry trades, and present the results in
the last two columns in Table 3l The first of these columns shows the correlations between the returns
of the SC trade and the good and bad trades constructed from subsets. The second one shows similar
correlations, but now calculated using only the negative SC returns and the corresponding returns of the
good and bad trades. As do the Sharpe ratios and skewness coefficients, these correlations also exhibit a
strong pattern. First, with the exception of the G1 and B1 trades, the correlations are always higher for the
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bad trades (on average 0.80, versus 0.67 for the good trades). The difference in correlations is large for the
trades using the fewest currencies (0.72 for B1 versus only 0.40 for G5). The SC trade thus likely reflects
more strongly the traits of the bad carry trades. Second, the distinction is even more pronounced with
respect to the correlations with the down-moves in the SC trade. On average these correlations are about
0.70 for the bad trades and less than 0.50 for the good trades. Therefore, explanations of the carry trade
that hinge on moves in the left tail of its return distribution are probably more relevant for the bad carry
trades, and less valid for good carry trades, even though the latter may be of more interest to investors.

In sum, eliminating some typical carry trade currencies, such as the AUD, JPY and NOK, from the
currency set leads to good carry trades, with Sharpe ratios and skewness often higher than those of the
SC trade, and certainly higher than those of the complementary bad carry trades that involve mostly the

typical carry trade currencies. Good trades reduce tail risk considerably.

3.5 Statistical significance of the distinction between good and bad carry trades

Table [3[ shows that the distinction between good and bad carry trades is economically and statistically
important. However, the statistical evidence must be interpreted with caution. In particular, the reported
p-values rely on the block bootstrap procedure under the alternative, developed by Ledoit and Wolf (2008)
(as in Section[3.2]and Appendix [OA-II). While this procedure accounts for certain finite-sample properties
of the distribution of currency returns, it does not reflect two aspects of our good carry trades. First, they
are constructed using information from the enhancement procedure, as reported in Panel B of Table 2| and
thus the procedure suffers from look-back bias. Second, the enhancement procedure applied to a finite
sample is bound to lead to improved Sharpe ratios, even if in population all 10 currencies are necessary
to attain optimal results. Therefore, a modified test is needed to assess the statistical contribution as fairly
as possible. We emphasize, however, that the results in Table [3] need not be statistically significant to

profoundly impact carry research: the finding that the prototypical carry trade currencies, if anything,
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worsen or certainly do not provide a positive contribution to carry returns, suffices.

With respect to the look-back bias, starting the sample in 1994, rather than 1984 weakens the statistical
significance somewhat, but we still retain significance at the 10% level for the majority of the trades (not
reported). A full correction for this bias would require a much longer sample where we actually let the
procedure choose which currencies to exclude ex-ante, before we record trading results.

Incorporating the selection procedure into a test of statistical significance is harder, because it requires
creating a benchmark world in which carry trades still have realistic attractive returns, but somehow the
identity of the currencies contributing to these returns is randomized. Appendix describes in
detail a procedure creating entirely randomized individual currency returns which nonetheless reproduces
exactly the returns of standard carry (SC) in each randomized sample. We then apply our enhancement

strategy to 1000 such randomized samples, finding that:

e the selection procedure biases the Sharpe ratios of the good trades upwards by about 0.15.

e while the observed Sharpe ratios are, on average, higher still, they are only in the 10% right tail of

the simulated distribution for two good trades

e in a proper test using t-statistics, only the G5 (at the 5% level) and G3 (at the 10% level) deliver

statistically significant improvements in Sharpe ratios.

When comparing the Sharpe ratios of good versus bad trades, the bias is worse and only the Sharpe
ratios of G5 and BS are significantly different under the test procedure controlling for selection bias.

In sum, we do find that statistical significance is retained for the G5 carry trade, and perhaps for G3 as
well. Overall there is no strong statistical evidence that the enhancement procedure delivers significantly
higher Sharpe ratios. However, it remains the case that the prototypical, “skewed” carry currencies can be

removed from the trade without worsening performance.
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4 Good carry trades as currency market risk factors

Lustig, Roussanov, and Verdelhan (2011) suggest as a key currency market risk factor the return of
a trading strategy that each month goes long (short) a portfolio with the highest (lowest) forward dif-
ferentials. This is obviously a symmetric carry trade strategy and is denoted here as "HMLX” (to be
distinguished from the Fama-French HML factor used in Section [5]). Creating test portfolios by ranking
currencies on forward differentials, they find that the covariation with HML/X largely explains the dif-

ference in average returns between these portfolios. Furthermore, they propose HML/X

as a proxy for a
global risk factor in a no-arbitrage model explaining the results, and show that it is also related to a mea-
sure of aggregate stock market volatility. Menkhoff, Sarno, Schmeling, and Schrimpf (2012) conduct a
similar exercise using a global exchange rate volatility factor as a proxy for the global risk factor. We now

revisit these findings by considering the good carry trades as risk factors and comparing their performance

with that of the previously used currency market factors.

4.1 Test assets and risk factors

The test assets in our pricing tests are the currency portfolios studied in Lustig, Roussanov, and Verdel-
han (2011), and kindly made available on Adrien Verdelhan’s website for the period ending in 12/2013.
They form five portfolios of currencies of developed countries (denoted "Developed”), and six portfolios
which also include emerging market currencies (denoted ”All”), by sorting the respective set of curren-
cies on forward differentials. We consider these 11 portfolios fogether in our tests, and not the ”All” and
“Developed” separately, as they do. The larger cross section poses a higher hurdle to the various risk
factors that are examined and comparedE] We take the “net” versions of the 11 portfolios, which account

for transaction costs.

ZWhile using some currencies twice in each test, the average correlation between the six ”All” portfolios and five “Devel-
oped” portfolios is only 0.74, which is just slightly higher than the average correlation among the "Developed” (0.72) or the
”All” portfolios (0.68). Moreover, we have verified that the relative performance of the risk factors separately on the ”All” and
“Developed” portfolios remains largely the same.
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Moving to the risk factors, first we use HMLFX (”All” version) as in Lustig, Roussanov, and Verdelhan
(2011) (and available at Verdelhan’s website). Next, we use a mimicking portfolio for the innovations in
foreign exchange volatility (denoted "FXVol”) as in Menkhoff, Sarno, Schmeling, and Schrimpf (2012)E|
Finally, we also consider as risk factors the good carry trades G1-G5 to contrast their performance, par-
ticularly with HML/X. We note that the correlations between the G1-G5 trades and HML'X (FXVol) are
on average 0.39 (-0.29), and do not exceed 0.55 in magnitude, hence using them together does not raise
multi-collinearity concerns. The respective correlations for the B1-B5 trades average 0.64 (-0.71), which
hints at a much closer relation between the previously considered currency market factors and our bad

carry trades.

4.2 Design of asset pricing tests

We adopt a standard asset pricing framework, following Cochrane (2005, Chapters 12 and 13), and
consider linear factor models, both in their beta representation and stochastic discount factor (SDF) form,

assuming SDF’s specified as:

m1 =1 — b (fi1 — E[f]). 3)

In fi+1 1s a K x 1 vector of risk factors and b is a conformable constant vector of SDF coefficients.
Normalization is required when excess returns of the test assets are used (and hence the expectation of the
SDF is not identified), and the adopted specification assumes E (m;41) = 1.

Given , the SDF form of a pricing model is £ [rxf 1mee1] = 0, where rxﬁ | are the excess percent-

+

age returns of the test assets, indexed by i. In addition, we denote by Rx;;| the N x 1 vector of the rx§ 41S

3This factor is obtained as follows: First, we construct a proxy for exchange rate volatility, and for this purpose calculate the
absolute daily log changes of the exchange rates of the G-10 currencies (except the USD) against the USD, using mid-quotes.
We average these log changes over each month, and then across the nine currencies, to get a proxy of the monthly volatility
of the G-10 currencies. Next, we take first differences of the volatility proxy. Finally, we regress these first differences on the
percentage monthly returns (in USD) of long positions in the G-10 currencies (except the USD), calculated as in equation (T,
but using mid-quotes. The factor we use is the fitted value from this regression (multiplied by 100).
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The model is estimated with GMM, where the moment conditions are:

E[Rxi41m41] E[Rx+1 — Rxi1 (f1 — E[f1])0]
g= - : 4
E[fi+1 = E[fi+1]] E[fit1 = E[fin1]]
d 0
The weighting matrix defining which moments are set to zero is a = ,whered = E[Rx; 1}, —
0 Ix

th+1E[ftl+1]]-

If we denote = 1/TY" | f; and Rx = 1 /T Y| Rx,, where T is the length of the return time series,
then the GMM estimates of b are (d'd)~'d’Rx, and that of E[f; ] is u. The standard errors of the b

estimates are obtained from the covariance matrix 1/7(d'd)~'d'Sd(d’'d)~", where S is an estimator of

N . B Rx; 1 1my . _
Zj:_mE[utHqu_j] and u;41 = . As in Lustig, Roussanov, and Verdelhan (2011), we

Jre1—u
use one Newey-West lag throughout to estimate S.

The beta representation of the pricing model is E[rx’ ;] = A’ B, with systematic risk exposures for

t+1
asset i given by the vector B, and A a vector of factor risk prices. The vectors B’ are estimated with GMM

i

from time-series regressions of returns rx;

| on the factors, and A is estimated from a cross-sectional
regression (without a constant) of average returns on the B’s. We report the SDF coefficients b and factor

risk prices A with corresponding p-values, as well as p-values for the > statistic testing if the pricing

errors are jointly equal to zero (see, e.g., Cochrane (2005, page 237)).

4.3 Good carry trades in competition with other currency market risk factors

LFX and the good carry trades

Table shows the results of tests which compare the performance of HM
as risk factors. As in Lustig, Roussanov, and Verdelhan (2011), each test also includes the dollar factor,

denoted RX, which is the average excess return of their basket of currencies held long against the USD.

In each of the two panels of the table, the first line refers to a model with the RX and HMLX factors
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alone, the next five lines to models with RX and each of the good carry trades G1-G5, and the remaining
five lines to models combining RX, HML/X and each of the G1-G5. The top panel summarizes results
from time-series regressions of each of the test assets, and reports average coefficient estimates and (in
parentheses) the number of respective estimates that are significant at the 5 or 10% confidence levels.
(The regression results for each individual test asset are shown in the Online Appendix, Table [DA-7])
The bottom panel reports both the prices of risk A and the SDF coefficient estimates b. The latter are
key in evaluating the relative importance of alternative factors for pricing a given cross section (see, e.g.,
Cochrane (2005, Chapter 13.4)). It is of obvious interest to determine whether good carry trades can
replace HMLX as the dominant currency risk factor, or whether they represent a distinct risk factor in the
case of joint significance.

The top panel of the table does not reveal important differences between HMLX

and the good carry
trades: the slope coefficients B in the time-series regressions are similarly significant; the R? related to
HML/X is slightly higher, but so are the respective intercepts o. When entering the regression jointly,
the two factors also show similar significance, with the HML/X coefficients remaining negative on aver-
age, but the coefficients on the good trades turning all positive on average. The RX factor always has a
statistically significant slope coefficient of around 1.1.

In the bottom panel of Table 4, all two-factor models (RX with either HMLX or a good carry trade)
show significant prices of risk A for HML!X and the good trades (at the 5% level), but not for the RX
factor. However, in the three-factor models the p-values increase somewhat for HML/X, and in three
cases become significant only at the 10% level, while the significance remains unaffected for the A’s of
the good trades.

An essential difference, however, is observed with respect to the SDF coefficients b. In the two-factor

models, the b-coefficient for HML/X is significant at the 10% level only, but at the 5% level for all
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good trades. However, in the three-factor models the b coefficients turn highly insignificant for HML/X,
whereas for the good carry trades they remain significant at the 5% level in three of the five cases, and at
the 10% level in one case. Moreover, the test for the pricing errors being jointly equal to zero rejects in
this sample for the two-factor model with RX and HML¥ with a p-value of zero, while the corresponding
p-values for the models with RX and a good trade are all above 0.10, except for G3 where the p-value is
0.09. The test fails to reject the three-factor models at the 5% level for all specifications. In addition, the b
coefficients appear similar across different specifications for the good trades, but not for the HMLX fac-
tor, where the sign switches across specifications. The results in the bottom panel of Table [ clearly favor
the good carry trades as risk factors explaining the returns of the interest rate-sorted currency portfolios.
Table|OA-1{in the Online Appendix shows results from analogous tests, but with the currency volatility
factor FX Vol replacing HML!X . The conclusions remain robust: the good carry trades again win the horse
race, with p-values for all their SDF coefficients equal to 0.01 or lower, while these p-values are never

below 15% for FXVol.

4.4  Return predictability of good and bad carry trades

The cross-sectional tests we have conducted follow the extant literature and assume constant prices of
risk and betas. It is surely conceivable that these assumptions are violated and thus that additional factors
may affect the unconditional cross section of currency returns (see e.g. Jagannathan and Wang (1996)).
There is, in fact, evidence of carry return predictability.

Bakshi and Panayotov (2013) document that commodity index returns and exchange rate volatility
strongly predict carry trade returns. Further, relying on a model which postulates a link between com-
modity trading and currency dynamics, Ready, Roussanov, and Ward (2017) find time-series predictive
ability of an index of shipping costs, the Baltic Dry Index (BDI), for carry trade returns. They pri-

marily investigate an unconditional carry strategy that is always long the currencies of commodity ex-
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porters (commodity-producing countries) and short those of commodity importers (countries producing
final goods), which is a key component of their theoretical model.

In Table [5| we reconsider the evidence for time-series predictability from the perspective of good and
bad carry trades. To follow closely the empirical design in the two studies cited above, we use log returns
of equally-weighted good and bad carry trades. The commodity index predictor is defined as the three-
month log change in the CRB index. To construct the exchange rate volatility predictor, we first calculate
the annualized standard deviation of the daily log changes over each month ¢ for each of the G-10 spot
exchange rates against the USD. The cross-sectional average of these for month ¢ is denoted o; ©. The
value of the volatility predictor available at the end of month 7 (and used to predict the return for month
t +1) is the three-month log change In (vag / G?K‘g). The shipping cost predictor is the three-month log
change in the BDI. As in Bakshi and Panayotov (2013), we show in-sample predictive slope coefficients
B and their p-values, using Hodrick (1992) standard errors, adjusted R”’s, and p-values for the MSPE-
adjusted statistic of Clark and West (2007)ﬂ In addition, we show an (out-of-sample) measure of the
economic significance of predictability, based on a prediction-based trading strategy. This strategy enters
a carry trade at the end of month 7 only if its predicted return for month 7 4 1 is positive. If a negative
return is predicted, then no position is taken and the strategy’s return for month ¢ + 1 is zero. The reported
measure "A SR” of economic significance equals the difference between the Sharpe ratio of the prediction-
based strategy, implemented with the respective subset of G-10 currencies, and the corresponding carry
trade as shown in the first column. The predictive regressions use an expanding window with initial length

of 120 months.

The main feature that stands out from Table [5]is the sharp difference between the return predictability

*MSPE stands for "mean squared prediction error”. The statistic is obtained using f; 11 = (1 —tr+1)* — [(Vie1 —Hrs1)> —
(41 —Hr+1)%], where T, is the prediction for month ¢ + 1 from a predictive regression y, 1 = a+bx, + &1, and g, 1 is the
historical average of y. Both g1 and u;. | are estimated using data up to month ¢. The null hypothesis is that i, does not
improve on the forecast which uses 14 as the predictor. The test statistic is the ¢-statistic from the regression of f;;| on a
constant, for which we report one-sided p-values.
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results for good and bad carry trades. Out of 15 possible combinations with the three predictors, the
G1-GS5 trades show a significant predictive slope on three occasions, whereas the B1-BS5 trades record 13
occasions with p-values not higher than 0.05 and another one with a p-value below 0.10. The average
predictive R? is 0.7% for the G1-G5 trades and 2.2% for the B1-B5 trades. The MSPE statistics show
significant out-of-sample predictability in one case (out of 15) for the G1-GS5 trades and in 13 cases for
the B1-B5 trades. Finally, exploiting the predictability in dynamic trading does not materially impact the
Sharpe ratio for the G1-GS5 trades (the average change is -0.005), while it mostly improves the Sharpe
ratio for the B1-B5 trades, on average by 0.10. This is economically quite a large improvement, because
the Sharpe ratios for bad carry trades are often below 0.10 (see Table[3)).

The above patterns are confirmed by the results from the GC and BC trades, where again the GC trades
show insignificant predictive slopes for two of the predictors, twice smaller predictive R’s, rarely signif-
icant out-of-sample predictability, and on average a reduction in Sharpe ratios by 0.01 from exploiting
predictability, in contrast to the BC trades which exhibit an increase by 0.09 in Sharpe ratios on average.

We recognize that our predictability results echo some findings in Ready, Roussanov, and Ward (2017).
The trade (denoted IMX) for which they find the strongest predictability with the CRB commodity index
and the BDI overlaps to a large extent with some of our bad trades. In particular, their Figure 5 shows
that this trade would be long AUD, NZD and NOK, and short JPY and CHF, which is often true for our
bad tradesE] Therefore, our Table [5|confirms the predictive ability of the CRB and BDI for a commodity
focused” carry trade as implied by their commodity trade model. Our contribution here, however, is to
highlight the similarity between the commodity-based trade and our bad carry trades, and the fact that a

commodity-based interpretation of carry trade returns reflects mostly features of bad carry trades.

>They also show that a complement to the IMX trade (denoted CHML) is not predictable at all by the CRB or BDI, and also
has practically zero skewness, similar to some of our good trades. However, the Sharpe ratio of CHML is still below that of their
version of the standard carry trade (0.85 vs. 0.95 in their sample and without transaction costs), hence their orthogonalization
procedure fails to identify a good carry trade.
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Essentially, our article provides an interesting qualification to the prevailing carry return predictability
story. A carry trade that focuses on the prototypical high (low) interest currencies such as the AUD (JPY)
is a rather unattractive strategy, but its return properties can be substantially enhanced by exploiting return
predictability. This predictability may also resurrect the performance of bad trades in the cross-section, ei-
ther through hedging terms or through correlation between conditional betas and the conditional expected
carry return. In contrast, our good carry trades have attractive properties which, however, cannot be en-
hanced by the predictors previously identified in Bakshi and Panayotov (2013) and Ready, Roussanov,

and Ward (2017). It remains, of course, conceivable they are predictable by other variables.

S Good and bad carry trades and previous carry interpretations
This section investigates whether the conclusions of previous studies of carry trades are valid for good

and/or bad trades, and whether the good-bad carry trade perspective may affect such conclusions.

5.1 Explaining carry trade returns with equity market risk factors

We start by re-examining a key result in the literature stating that standard (linear) equity market
factor models cannot explain the time variation in carry returns, which appear uncorrelated with these risk
factors in normal times, but correlate highly with them in crisis times (e.g., Melvin and Taylor (2009),
Christiansen, Ranaldo, and Sdderlind (2011)).

We examine three models: (i) the Fama-French three-factor model, following Burnside, Eichenbaum,
Kleshchelski, and Rebelo (2011) and Daniel, Hodrick, and Lu (2017), (ii) a three-factor model with the
market factor, the global equity volatility factor used in Lustig, Roussanov, and Verdelhan (2011), and
their product, and (iii) a model with two factors which explicitly distinguish the down- and up-moves of
the equity market, in the spirit of Lettau, Maggiori, and Weber (2015). The latter two models effectively

exhibit a non-linearity that may capture the time-variation in the correlation mentioned above. To conserve
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space, we relegate detailed results to the Online Appendix, summarizing the key results here.

Let’s start with the model featuring a market factor (denoted MKT), proxied by the total return of the
MSCI-World equity index, in excess of the risk-free rate and expressed in USD, an equity volatility factor
(EqVol) constructed as in Lustig, Roussanov, and Verdelhan (2011), and the interaction term (the product
of MKT and EqVol). Table shows that in time-series regressions of carry trade returns on the three
risk factors the main difference between good and bad trades is in their loadings on the product factor.
These are typically negative, albeit rarely significant, for the good trades, while they are positive, much
larger in magnitude, and almost always significant at the 5% significance level for the bad trades.

Given that increases in volatility tend to characterize periods of market downturns (the correlation
between MKT and EqVol is -0.24 in our sample), these findings imply that the market risk exposure of the
bad trades increases substantially in bad times. Thus, bad carry trades under-perform in times of crisis,
while good trades are less affected.

We also perform GMM-based cross-sectional tests on the GC and BC return cross sections. For the
GC trades, the risk price for the MKT factor is significant at the 5% level, while for the BC trades no risk
price is significant, although the model is not rejected for either of the two cross sections. When we run a
simple OLS regression of actual average returns on a constant and the model-based expected returns, we
obtain an R? of 0.67 for the GC trades, and 0.29 for the BC trades. The combined evidence suggests that
this three-factor model does not adequately describe the returns of the bad carry trades, but still saliently
reveals the high exposure of these trades to the equity market during high-volatility periods. In contrast, a
significant price of risk for the market factor and tighter link between model expected returns and average
returns show the promise of the model to provide a risk-based interpretation of good carry trades.

The Online Appendix further shows quite similar results for the model with an Up- and Down-market

factors. Table [OA-3|shows that good (bad) carry trades load primarily on the Up (Down)-market factor,
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with beta exposures being economically and statistically very different across the two types of trades.
In the cross-sectional tests, the prices of risk for both factors are significant; the pricing errors are not
statistically different from zero and the model generates expected returns highly (weakly) correlated with
good (bad) carry trades.

The Online Appendix and Table (OA-4|also report analogous results for the Fama-French three-factor
model. Here the time-series regressions reveal that good carry trades do not load much on any of the
three factors, and retain significant alphas relative to the model. In contrast, the bad carry trades feature
significantly higher regression slope coefficients on all three factors and it is striking that their SMB and
HML exposures are positive and economically meaningful (often even above 0.10). However, the Fama-
French model fails to fit expected returns cross-sectionally, with all prices of risk being insignificantly
different from zero for both good and bad carry trades.

In sum, the evidence from Tables|[OA-2] [OA-4] and [OA-3|provides some (weak) support for the ability

of risk factors from the equity market to explain the returns of the good carry trades. Our results are not
directly comparable to extant studies which analyse numeraire-dependent carry trades. While Burnside,
Eichenbaum, Kleshchelski, and Rebelo (2011) and Daniel, Hodrick, and Lu (2017) find that an asymmet-
ric carry trade cannot be explained by the Fama-French model, the latter study also finds this model to

render insignificant the alphas for the dollar-neutral symmetric carry trade.

5.2  Currency crashes as an explanation for the carry return puzzle

One established explanation for the carry trade’s profitability is that it reflects compensation for the
negative return skewness or crash risk, inherent to these trades. For example, Brunnermeier, Nagel, and
Pedersen (2009) argue that ’investment currencies are subject to crash risk, that is, positive interest rate
differentials are associated with negative conditional skewness of exchange rate movements.... The skew-

ness cannot easily be diversified away, suggesting that currency crashes are correlated across different
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countries .... This correlation could be driven by exposure to common, crash-risk factors”. If agents ex-
hibit a preference for positive skewness, an equilibrium model may generate negatively skewed returns
and high Sharpe ratios for the carry trade.

However, the crash risk hypothesis is not consistent with our findings from good and bad carry trades
(see Figure 1| and Table [3)): good carry trades have relatively high Sharpe ratios and slightly negative (or
even positive) skewness. The assertion in Brunnermeier, Nagel, and Pedersen (2009) that the negative
skewness in carry trade returns cannot be diversified away must also be qualified. We have demonstrated
that, in fact, skewness can be dramatically improved by judiciously removing currencies from the carry
trade, without impairing profitability.

Studies relying on option market data (e.g., Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011),
Jurek (2014)) have criticized the crash-risk hypothesis before, because options can essentially hedge away
the crash risk without affecting the carry trade’s profitability very much. In the Online Appendix we
directly examine option-hedged good and bad carry trades. We find that while skewness also improves
across the board, the Sharpe ratio differences between hedged and unhedged trades deliver mixed results.
These differences are relatively small for bad carry trades, but we observe a substantial decrease (increase)
in Sharpe ratios for the G1-G3 (G4-G5) good trades. Our contribution here is to demonstrate that return

skewness can be improved without recourse to currency options, undermining the crash risk hypothesis.

6 Further exploration of good and bad carry trades

In this section we embark on a more detailed examination of the good and bad carry trades, trying to
set the stage for future work that will hopefully clarify fully the economic interpretation of our findings.
First, we reflect on the return components of various carry trades and how they contribute to the differential

performance of the good and bad trades.
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Second, the good carry trades always include the USD (it is never excluded in our selection procedure).
There is a burgeoning literature stressing the special nature of the USD in international financial markets,
so it is perhaps not surprising that relatively sizable currency premiums are attached to dollar exposure. For
example, Adrian, Etula, and Shin (2015) associate increased global dollar funding with expected currency
depreciations; Hassan (2013) argues that economies representing a larger share of world wealth have
low interest rates and low risk premiums, whereas Maggiori (2013) ascribes a low premium to holding the
USD to its role as a reserve currency. The importance of the USD in currency trading was also emphasized
by Lustig, Roussanov, and Verdelhan (2014), who explore a new trade, denoted “dollar carry”, which goes
long (short) in all foreign currencies against the USD with equal weights when their average interest rate
differential relative to the USD is positive (negative). This trade also featured prominently in Hassan and
Mano (2015). The dollar carry trade has a very attractive Sharpe ratio, substantially higher than that of
the standard carry trade (SC). These traits raise the issue that we may have simply repackaged dollar carry
into our good carry trades. We show in this section that this is not the case, and these two types of trades,
while correlated, are economically distinct.

Finally, Lustig, Roussanov, and Verdelhan (2011, 2014) have proposed several economic factors that
are correlated with HML (standard carry) and dollar carry. We revisit this analysis from the perspective

of our good and bad carry trades.

6.1 The sources of good and bad carry returns

In Table [6] we decompose carry trade returns into the carry component (i.e., the forward differential)
and exchange rate change component. The SC trade derives more than 100% of its returns from carry. That
is, the investment currencies do depreciate and/or the funding currencies do appreciate, but the exchange
rate component is sufficiently small relative to carry to leave an attractive return on the table. Bad carry

trades have higher carry return components, both in absolute terms (and the difference is statistically

30



significant) and in relative terms, but even more negative exchange rate components, so that lower returns
than those for standard carry are obtained. In contrast, good carry trades derive their returns both from the
carry and exchange rate components. Their carry component is on average about 20 basis points lower
than that of SC in three cases (and statistically significant at the 5% level for the G4 trade), while it is
significantly higher for the G3 trade (even if still lower than the carry of any bad trade).

The contrast between the carry contributions to the returns of bad and good trades is illustrated in
Panel A of Figure 3| The graph plots total average return on the horizontal axis, and the ratio of carry
to total return on the vertical axis for all trades considered in this paper (18 GC trades, 18 BC trades, as
well as the G1 and G5, and B1 and BS5 trades). The graph also includes the standard and dollar carry
trades. Bad carry trades have lower returns and much higher carry-to-return ratios; good carry trades have
higher returns, and derive between 50 and 100% of their returns from carry (the G5 trade being the only

exception).
[Figure 3 about here.]

Panel B of Figure [3] shows the distinction in an alternative way. We plot, again for all good and bad
carry trades, the carry component on the horizontal axis and the total return on the vertical axis. In this
plot, points at or near the 45-degree line correspond to a random walk model where the average carry
return equals the carry itself, while points at or near the horizontal axis would imply that the unbiasedness
hypothesis holds. Note that while the good carry trades plot barely to the left of the bad trades (that is,
there is still a significant carry component embedded in their returns), their total returns are much higher
because the carry component is not at all eroded by exchange rate depreciation/appreciation. Whereas all
but one of the good trades plot above the 45-degree line, the bad trades all plot below the 45-degree line,
and are often not far away from the horizontal axis.

In addition, we run a cross-sectional regression of our various carry trade returns (G1, G5, B1, B5, 18
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GC and 18 BC, a total of 40 trades) onto a constant and the carry, accommodating an interaction effect for

the good trades.

ret; = 09+ 0 DUMMY; + (Bo + B1 DUMMY;)carry; + €, &)

where ref; is average return of a carry trade, DUMMY; is one for a good trade and zero otherwise, and
carry; is average carry. We find the dummy to be insignificant for the slope, but highly significant for
the constant. Leaving out the interaction for the slope coefficient, we find 0p = —0.16 (0.47), o,y = 1.63
(0.20) and By = 0.42 (0.23), with standard errors in parentheses. Thus, the returns of both good and bad
carry trades are significantly related to carry (but not one for one), whereas the significant constant for
good trades reflects the positive exchange rate component of their returns. We add the corresponding
parallel regression lines (top for good trades and bottom for bad trades) to Panel B of Figure 3]

The above results suggest that the unbiasedness hypothesis may not be strongly rejected for bad carry
currencies, which include the prototypical carry currencies. Recall that a necessary condition for a carry
trade to deliver excess returns is that the unbiasedness hypothesis does not hold, at least over some time
periods (see Bekaert, Wei, and Xing (2007) for recent tests of the hypothesis). However, when examining
standard regressions testing the unbiasedness hypothesis for the four pairs containing prototypical carry
currencies, AUD/JPY, NZD/JPY, AUD/CHF and NZD/CHF (see Table , we find no strong rejections
of the hypothesis. In particular, we regress future exchange rate changes onto a constant and the current
forward differential, and the null hypothesis is that the constant is zero and the slope coefficient is one.
The constants in all four regressions are insignificantly different from zero, and the slope coefficients
are insignificantly different from one. Most saliently, the slope coefficient for the AUD/JPY regression
is 0.92, and thus remarkably close to one. However, our analysis reveals the NOK also to be a bad”
currency, more so than the CHF and the NZD. Interestingly, Table [/| shows that the slope coefficient in

unbiasedness regressions of the NOK relative to the CHF and JPY is either not significantly different
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from one, or exceeds one by a large amount, indicating an expected depreciation of the NOK relative to
the JPY when the NOK interest rate exceeds the JPY one. This is partially counteracted by a positive and
significant constant.

The decomposition and the regression results above also suggest that the good carry trades are likely to
be more “active” than the bad or standard carry trades, i.e., they likely involve more frequent re-balancing.
The insightful paper by Hassan and Mano (2015) decomposes the carry trade into a “static” trade (which
goes long (short) currencies with unconditionally low (high) forward differentials) and a dynamic trade,
which also helps explain deviations from unbiasedness. Such deviations, driven by the slope coefficient
in the unbiasedness regressions being different from one, lead to dynamic trades when forward premiums
are high or low relative to their unconditional means. However, carry trades can also be profitable simply
through non-zero constants in the unbiasedness regressions (see also Bekaert and Hodrick (2012, Chapter
7).

Table 8| provides some evidence regarding the dynamic nature of the various carry trades. We create a
dummy variable that records the proportion of currencies that change position (from long to short or vice
versa) at each point of time. For example, for a completely static trade this proportion would be zero,
whereas a trade where half the currencies switch positions at each point of time would record 50% on
this measure. Furthermore, since the dynamic nature may be related to the number of currencies in the
trade, it is important to take sampling error into account. The table shows the sample averages of these
proportions, together with 95% confidence intervals, computed using the bootstrapped carry trade returns
that we have employed in the exercise reported in Section

Clearly, the good carry trades are more “dynamic” than the bad trades and the SC trade. Note that
the average proportions for good trades are invariably above the confidence interval for SC, and in turn,

that for SC is always below the good carry confidence intervals. Yet, the proportions for the good carries
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and SC are relatively highly correlated in the time series, suggesting that these trades switch currency
positions at roughly similar times (the correlations in the fourth column of Table [§| range between 49%
and 82%). For bad carry trades the proportion of switches is typically within the confidence interval of
SC, except for the B3 trade.

The last three columns in Table [§| reports results related to the decomposition in Hassan and Mano
(2015). In particular, we show the ratios between the average returns of various static carry trades (which
are never re-balanced), and the returns of the corresponding good or bad carry trade. Hassan and Mano
(2015) find that static trade returns account for about 70% of carry trade returns (but the standard error on
that estimate is substantial), whereas according to Lustig, Roussanov and Verdelhan (2011) this proportion
is between one third and one half.

To obtain the results in the last three columns of Table [§] we mimic the Hassan and Mano (2015)
methodology, and now use log returns and carry weights equal to the demeaned and normalized forward
differentials at each trading date over 1/1995-6/2014. The trades are constructed with all G-10 currencies,
as well as with the currencies entering the G1-G5 and B1-B5 trades. The various “static trades” thus
obtained use as weights the average forward differentials over the 12/1984-12/1994 period (the first 120
months of our sample), demeaned and normalized to have absolute values that sum to one. The weights
are kept fixed for the entire sample period 1/1995-6/2014, without ever re-balancing.

The average return of the static SC trade in Table |8|is about half of that of the original SC trade, con-
firming results in the literature. Importantly, there is a clear distinction between the relative performance
of the static versions of the good and bad carry trades, with the ratios between the corresponding average
returns never exceeding 0.30 (and sometimes going negative) for the good trades, but ranging between
0.60 and 1.2 for the bad trades. The distinction is even clearer in terms of Sharpe ratios (see the last two

columns), which for the good static trades rarely exceed 0.15, much worse than their re-balanced coun-
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terparts. In contrast, the Sharpe ratios of the re-balanced and static "bad” trades are quite close to one
another.

Hence, good carry represents a dimension of standard carry that is not well explained by its static
component. This is intuitive, because good carry trades tend to exclude currencies with either the highest
or lowest forward differentials, and thus do not have stable short and long positions. In contrast, the
currencies involved in bad carry trades typically switch less often from long to short positions and vice
versa, as also indicated more directly above. Our results thus completely confirm the Hassan and Mano
(2015) decomposition for ’bad carry trades”, but not for “good carry trades”. Hassan and Mano (2015)
split up carry trades in the static carry trade we studied above and a dynamic” trade, which essentially
exploits time-variation in the relative ranking of currencies in terms of their forward differentials, relative
to their unconditional counterparts. This dynamic trade must necessarily be relatively more important for
good trades, which feature currencies with less extreme interest rate differentials relative to the dollar,
and for which the unbiasedness hypothesis does not hold. The dynamic trade therefore also contributes
positively to the trade exploiting deviations from unbiasedness (what they called the “forward premium
trade”). Do note that our results are not entirely comparable to Hassan and Mano (2015) because they do

not impose symmetry on their carry trade, while we do.

6.2 Good carry versus dollar carry

As indicated before, the dollar carry trade and our good carry trades should show some relation, since
they share a large USD exposure. In this section, we fully characterize the differences and similarities.

First, note that dollar carry (hereafter DC for short) does not satisfy the standard conditions for a carry
trade as discussed in Section 2| Carry trades go long (short) high (low) yield currencies, whereas DC
combines high and low yield currencies on one side of the trade. Going back to Table [6] the last column

reports the carry and exchange rate change components for DC, and the last row of the table reports
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p-values for a test of equality between the carry components of the trade in the respective column and
DC. The DC trade derives most of its substantial returns from currency appreciation, and only 22% from
interest rate differentials. This proportion is significantly lower than that of any other carry trade. Perhaps
not surprisingly, the G5 trade, only featuring three currencies and including the USD comes closest to
DC. In Figure 3] the DC trade also represents somewhat of an outlier. Moreover, given its small carry
component, the DC trade has a return significantly above (at the 1% level) the return predicted by the
regression in Figure |3| (panel B). To drive home the different nature of DC relative to our good and bad
carries, we also constructed versions of DC from ”good” and “bad” currencies separately, and find that
their Sharpe ratios are very similar.

Second, DC is much less dynamic than the good trades: the last row of Table 8| shows that it switches
positions more rarely than any other trade (in spite of the fact that any switch involves all currencies).
Besides, the switching proportions are in fact not too correlated with those for the good trades (at most
39%) or the SC trade (47%). Furthermore, Table (8| (column “days w/o switch”) shows that while the
typical proportion of days when not a single currency switches position from long to short or vice versa
in carry trades ranges between 0.60 and 0.80, it is 0.93 for DC.

Third, because good carry trades eliminate some non-dollar exposure, they should be more correlated
with DC than SC or the bad carries are. Table E] confirms this intuition, showing in Panel A that DC has
the highest correlation with good trades. However, for the G1, G2 and G3 trades the correlation is less
than 50%, and it does not exceed 70% for the G5 trade. Besides, the correlations between the good trades
(except GS5) and SC are higher than those for DC. Good carries thus preserve their close link with the SC
trade, and remain distinct from DC.

In Panel B of Table[9|we report on regressions which have the returns of SC, DC or good carries either

as dependent or independent variables. Both SC and good carries have explanatory power for the DC
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trade, but SC is insignificiant in two specifications. The R?’s are relatively low, however, less than 40%
in all but one case. The DC trade mostly delivers significant alphas relative to these two factors, which is
not surprising, given its very attractive return profile.

Next, both SC and DC have explanatory power for good carry trades, with almost all slope coeffi-
cients featuring p-values below 1% and R*’s ranging from 43 to 75%. The coefficients on SC, however,
are typically much larger than the coefficients on DC. The G2, G3 and G5 trades still show significant
alphas with respect to these two factors. Finally, the return of SC is explained with R?s between 18 and
75% and all intercepts are insignificantly different from zero. The explanatory power in this case comes
predominantly from the good carries, as evidenced by the small coefficients and some high p-values on
DC.

The main message of Table [J]is that neither good carries, nor DC can be perfectly spanned by other
trades, despite being correlated with them. In contrast, SC is spanned, and this is mostly due to the good
carry trades. Being proper carry trades, the good carries should therefore be viewed, unlike DC, as better

versions of SCE]

6.3 Revisiting the factor pricing of currency returns

We now compare the performance of DC and good carries as pricing factors for the interest rate-sorted
portfolios, discussed in Section .3|above. Table[I0]reports results from pricing tests, which juxtapose DC
with the G1-GS5 trades, but do not include the RX factor (which only shorts the USD and has correlation
of 0.53 with DC)E] The top panel summarizes, as in previous tables, results from time-series regressions

on individual portfolios, while the bottom panel presents results from cross-sectional tests. (The first-pass

®For further validation of this claim, in unreported results we consider creating a mean-variance efficient portfolio from DC,
SC and one of the G1-G5 portfolios. When we do so, the good carries invariably get a large positive weight, always exceeding
that of DC, sometimes by factor of two or three, and SC is always shorted (except if paired with the G5 trade, when its weight
is close to zero). In other words, good carries dominate DC and SC is pushed out.

"DC is short the dollar about 70% of the time in our sample, and its profitability is entirely driven by these short dollar
positions. Note that this is not true for the good carry trades, which gain both when the dollar is short and long.
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regression results for each individual test asset are shown in the Online Appendix, Table [OA-§])

DC alone explains reasonably well the time-series behavior of the test assets - none of the intercepts
and all slope coefficients are significant, even at the 5% confidence level, with a relatively high R? of 21%.
The performance of the good trades alone is similar with respect to the intercepts, while the slopes are
not always significant and the R*’s are much lower in three out of five cases. Moving to the cross-section,
however, we observe that the price of risk for DC is significant only with a p-value of 0.07, while three of
the good trades show significance at the 5% level. In addition, the test for the pricing errors being jointly
equal to zero rejects with a p-value of 0.03 for DC, but never rejects for individual good carries, even at
the 10% confidence level.

We also perform cross-sectional tests which include both DC and a good trade, as reported at the
bottom of Table The price of risk A is now statistically significant for DC at the 5% level in only
two out of five cases, whereas four out of the five p-values for the good carries are at 2% or below. The
p-values for the SDF coefficients b, which provide the proper horse race test, are all above 0.20 for DC.
In contrast, four of these p-values for the good trades are below or equal to 0.10. While the statistical
significance in favor of good trades is borderline, this evidence points to an important distinction between
DC and the good carry trades. Also note that the b-coefficients for the good trades are quite stable (see
also Table [)), whereas the b-coefficients for DC even switch sign across specifications. The conjecture
that good trades may be simply reflecting features of DC is thus not supported here. We also note that the

relatively high correlation between DC and the G5 trade likely leads to insignificant coefficients.

6.4 Economic correlations

It appears that the extant academic literature does not have a complete economic explanation for the
risk/return profile exhibited by the standard and dollar carry trades. Adding the distinction between good

and bad carry trades makes the task even more challenging. We now provide some summary analysis
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linking currency returns to economic factors, largely building on the work of Lustig, Roussanov, and
Verdelhan (2011, 2014), who estimate reduced-form pricing kernel models and perform a host of interest-
ing regressions.

In particular, we run multivariate regressions to investigate the explanatory power of three economic
factors for various carry trades, including DC. The first factor is the global equity market volatility, pro-
posed by Lustig, Roussanov, and Verdelhan (2011) as a global risk factor to help explain carry returns.
Next, we consider two real variables: global industrial production growth, proxied by the OECD total
growtkEl, and the residual from regressing the US industrial production growth onto the global growth
variable; Lustig, Roussanov, and Verdelhan (2014, Section 6.2) suggest that the expected return of the DC
trade ought to be correlated with such a US-specific growth variable.

To conserve space the results are reported in Online Appendix Table [OA-6] but they are summarized
here. First, none of the three variables has explanatory power for DC in our sample period. In contrast,
there are non-zero adjusted R?%’s for all carry returns, standard, good and bad. Second, for SC and most of
the bad carry trades, the equity volatility factor is significant at the 5% level, while among the good trades
this factor is significant at the 5% level only for G3. OECD industrial production growth is statistically
relatively more important for SC and good carries than for bad carries. Finally, the US-specific component
of industrial production growth is not significantly related to any of the trades in our sample period. In
summary, the various carry trades are similarly related to the macro factors considered, except for DC,
which appears to have no significant link to these factors.

To gain further intuition, we also simulated the Lustig, Roussanov, and Verdelhan (2014) model, using
the calibrated parameters provided in their paper to investigate whether it could generate the distinction

between good and bad carry returns that we find in the data. While the model does generate realistic HML

8from stats.oecd.org, Monthly economic indicators, Production of total industry excluding construction, growth rate over
the previous month, seasonally adjusted
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returns, our simulation results reveal that it does not reproduce the good-bad carry phenomenon. In fact,
good carry trades perform worse than standard carry in the simulated data.

Linking this finding to a possible economic interpretation, we note that the model is essentially Gaus-
sian and does not incorporate skewed returns. At the same time, good carry trades invariably exhibit less
negative return skewness than standard carry or bad carries. This seems essential to understand the good
/bad carry return distinction. Consider the small table underneath, which shows average forward differ-
entials against the USD for the remaining G-10 currencies over our full sample period 12/1984 to 6/2014
(together with the first three moments of the percentage returns of long positions in each currency against

the USD, not adjusted for transaction costs). All numbers are annualized and in percent, except for skew-

NZD AUD NOK GBP SEK CAD EUR CHF JPY
avg. forw. differ.  4.40 3.26 1.98 2.19 1.63 0.83 -041 -1.58 -2.51

avg. return 7.23 4.42 3.82 4.11 3.27 1.81 285 276 121
stand. dev. 12.40 11.88 1024 1083 11.31 7.10 1092 11.82 11.46
skewness -0.137 -0.585 -0.374 -0.048 -0.321 -0.331 -0.139 0.109 0.497

ness. The bad carry currencies (JPY, AUD and NOK) do not only have the highest forward differentials,
they also are the most skewed. The good carry trades essentially remove these currencies and thereby
do not worsen and mostly improve the return-risk properties of the trade. Therefore, this skewness must
be idiosyncratic and not priced, or it must be endogenously generated by carry traders. Why this is the
case remains an important open question for further research, but it surely undermines any explanation
of attractive carry returns based on priced “crash” risk. The DC and good carry trades use very different
mechanisms to eliminate the impact of bad carry currencies. While the good trades simply remove the

currencies, DC puts such naturally ”long” and “’short” currencies on the same side of the trade.
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7 Conclusion

This paper introduces “good” and “bad” carry trades, which are all constructed from subsets of the
G-10 currencies, but exhibit markedly different properties. The differences are evident in return features
like Sharpe ratios and skewness, and also change previous interpretations of carry trades. Surprisingly,
trades that just exclude some of the typical carry trade currencies do perform significantly better than
the benchmark SC trade, while trades that only include the typical carry currencies have inferior return
profiles. These findings challenge the conventional wisdom on the construction of carry trades from an
investor’s view point. Furthermore, the trades from subsets also challenge some of the available conceptual
interpretations of the carry trade. We document that several of these interpretations appear to be mostly
consistent with the bad carry trades, but are less applicable to good trades.

We find that good carry trades can serve as risk factors, able to explain a cross section of currency
portfolio returns, and in this role can drive out previously suggested risk factors, such as the HML/X
factor of Lustig, Roussanov, and Verdelhan (2011). Further, the returns of good carry trades can be
explained to a certain extent with risk factors from the global equity market. While good carry trades
are more strongly correlated with the “dollar carry” trade of Lustig, Roussanov, and Verdelhan (2014)
and Hassan and Mano (2015) than is the standard carry trade, good trades remain symmetric carry trades,
deriving the bulk of their returns from carry, and offer a distinct return profile.

The results in this paper, even though largely focused on the statistical properties of carry trade returns,
should impact the study of carry trades in various directions. First, exploring crash risk or differentiating
fundamental risks of commodity producers versus exporters are unlikely fruitful avenues of research.
Second, our reported asset pricing tests can inform further risk-based interpretations of carry trade returns.
Finally, it can be promising to explore, in the spirit of Koijen, Moskowitz, Pedersen, and Vrugt (2015),

the notion of good and bad carry trades from financial assets other than currencies.
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Table 8

Dynamic nature of carry trades

The table characterizes the dynamic behavior of the the standard carry trade (SC), the G1 to G5 and B1
to BS5 trades, and, in the last row, the dollar carry trade (DC) of Lustig, Roussanov, and Verdelhan (2014),
which we consider in more detail in Section The first column of the table shows, for each trade,
the time-series average of the proportion of currencies that change (switch) position, from long to short
or vice versa, at each point of time. The average proportion is given in percent. The next two columns
show bootstrapped 95% confidence intervals for these average proportions. The column denoted “days
w/o switch” shows the proportion of dates in the sample when not a single currency changed position
from short to long or vice versa. Next the table shows the correlation between the proportions for the
G1 to G5 and B1 to BS trades, and those for standard carry (SC). The last three columns aim to compare
static and dynamic versions of our various trades. Static trades have been defined in Hassan and Mano
(2015), and, to keep close to their setup, we use as weights the average forward differentials of the re-
spective currencies over 12/1984-12/1994, demeaned and normalized to have absolute values that sum to
one. These weights are kept fixed for the rest of the sample period for the static trades, without ever re-
balancing. Dynamic trades are the usual (dynamically re-balanced) trades, as considered throughout this
paper, but with weights again equal to the cross-sectionally demeaned forward differentials, normalized to
have absolute values that sum to one. Shown are the ratios between the average returns of the respective
static and dynamic carry trade, and the corresponding Sharpe ratios. Average returns and Sharpe ratios
are calculated for the period 12/1994 to 6/2014.

switch (%)  95% conf. int.  days w/o correl. ratio of static to Sharpe ratios:

switch with SC dynamic avg. ret. dynamic static
SC 8.22 [5.72  11.05] 0.68 0.45 0.41 0.21
Gl 12.75 [9.27 16.47] 0.66 0.82 0.23 0.51 0.14
G2 12.97 [9.35 16.88] 0.73 0.75 -0.23 0.34 -0.10
G3 11.90 [8.73  15.18] 0.75 0.59 0.24 0.55 0.14
G4 17.22 [13.20 21.25] 0.63 0.63 0.28 0.50 0.13
G5 16.34 [11.99 20.96] 0.78 0.49 -0.01 0.69 -0.01
B1 9.82 [5.67 14.64] 0.86 0.53 1.07 0.21 0.23
B2 9.97 [6.35 13.94] 0.78 0.56 1.16 0.22 0.29
B3 12.18 [8.44  16.60] 0.73 0.59 0.75 0.25 0.22
B4 10.14 [7.25  13.20] 0.78 0.50 0.61 0.24 0.16
B5 10.12 [6.92 13.60] 0.71 0.65 0.82 0.27 0.24
DC 6.80 [3.40 11.05] 0.93 0.47
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Figure 1: Good and bad carry trades from sets of five G-10 currencies

Large black dots plot skewness versus Sharpe ratio of all possible 21 carry trades trades constructed
from five G-10 currencies, which include the AUD, CHF and JPY, together with any possible pair from
the remaining seven currencies. Circles with no fill plot similarly skewness versus Sharpe ratio for the
complementary trades, each including the five currencies left out of one of the previous 21 trades. For
each trade, currencies are sorted on their forward differentials (against the USD) at the end of each month
over the period 12/1984 to 6/2014, and the two currencies with highest differentials are held long over the
next month, while the two with the lowest premiums are shorted, all with equal weights. A vertical and
horizontal lines indicate the Sharpe ratio and return skewness of the standard carry trade (denoted SC),
constructed with all G-10 currencies. Percentage carry trade returns are calculated with spot and forward
quotes from Barclays Bank, available via Datastream, and with transaction costs taken into account.
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A. GC and BC sets of 18 carry trades
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B. Alternative sets of 15 good and bad carry trades
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Figure 2: Sharpe ratios versus skewness for sets of good and bad carry trades

In Panel A, circles with no fill plot skewness versus Sharpe ratio for 18 carry trades, each constructed from
five of the G-10 currencies, with equal weights. Each of these trades uses the three currencies (GBP, SEK
and USD) which are least often excluded by the enhancement rule in Section|3.1|and Table 2l These three
currencies are combined with any possible pair of the remaining G-10 currencies, which contains none or
only one of the three most often excluded currencies (AUD, NOK and JPY). Large black dots plot similarly
the skewness versus Sharpe ratio for the complementary carry trades, which use the five currencies left
out of one of the previous 18 trades. These two sets of 18 trades are denoted in Section [3.4] and Table [3]
and others as GC and BC. In Panel B, circles with no fill or black dots plot skewness versus Sharpe ratio
for two alternative sets of 15 trades, representing good or bad carry trades and also constructed from five
G-10 currencies with equal weights. The ”good” trades exclude the JPY and include the GBP, SEK, USD
and any other pair of the remaining six currencies, while each of the complementary “bad” trades includes
the five currencies left out of one of the 15 ”good” trades. Both panels also show the standard carry trade
(SC), denoted by a star. The sample period is 12/1984 to 6/2014.
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Figure 3: Decomposing carry trade returns

For all trades considered in this paper (18 GC trades, 18 BC trades, as well as G1 and G5, and B1 and BS)
Panel A of the figure plots total average returns (horizontal axis) versus the ratios of average carry to total
return (vertical axis). As previously, white (black) dots correspond to good (bad) trades. For visual clarity,
four outlier points (all referring to bad carry trades) are not shown on this plot, but their coordinates are
displayed in the top left corner. Panel A plots similarly the standard and dollar carry trades (SC and DC).
Horizontal lines correspond to carry-to-return ratio of one (all average return comes from carry alone),
and one half (return comes equally from carry and exchange rate changes). For the same trades, Panel
B plots carry versus total return, together with the 45-degree line, corresponding again to carry-to-return
ratio of one. The two additional parallel lines in Panel B are regression lines from equation (5)), which
includes a dummy variable for the intercept for good carry trades.

56



Good Carry, Bad Carry

Online Appendix: Not for Publication




OA-I Symmetry and numeraire neutrality of currency trades

This Appendix explains in detail the distinction between several designs of carry trades. Start with
a set of N currencies, e.g. the G-10 currencies in our case. A currency trading strategy is a mapping
between signals at time ¢ and currency positions taken at this time, whereby positions are defined in terms
of the weights of individual currencies. A trading strategy is formulated relative to a benchmark currency,
i.e. positions are taken relative to a certain currency in the forward market. From this perspective, two

properties seem important:

1. Symmetry: the number of short and long positions and their total weights are equal. A stronger

version of symmetry would also require equal weights of the individual short or long positionsE]

2. Numeraire independence: the positions taken in the various currencies are the same, regardless of
which benchmark currency is considered. As a result, only one currency strategy must be defined

for the world at large.

Symmetry and numeraire independence are well-established features of carry trades, and have been both
adopted by recent academic studies, and implemented in investable products (see Table[I]). Together, these
properties imply that the trade’s returns will be very similar from any currency perspective. This invariance
follows from the fact that the translation of returns from one currency to another simply introduces cross-
currency risk on currency returns, which is a second order effect. Conversely, if the ranking of a currency
or the signal depends in any way on the identity of the benchmark currency, then defining the same strategy
from another currency perspective will yield different currency positions and different currency weights,
and this can result in quite different returns. A well-known example is the asymmetric carry strategy in

Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011), which has been shown in Daniel, Hodrick, and

THowever, if weights are defined relative to a benchmark currency (e.g., based on forward differentials), they may differ on
the long and short end, creating weight asymmetry. This would cause the trade to be numeraire-dependent.



Lu (2017) to produce very different (and worse) returns from other, non-USD currency perspectives. In
fact, the USD-based version of this strategy is successful (at least partly) due to is its implicit exposure to
a dollar-centric currency strategy, the “dollar carry” trade of Lustig, Roussanov, and Verdelhan (2014)E|
We now formally show that symmetric, numeraire-independent strategies have largely equivalent re-
turns across the world. Suppose first that the USD is the benchmark currency and define the weight of
currency i as w;. Spot and forward exchange rates are quoted here as USD per one unit of a foreign cur-
rency (reversing the notation from Section [2|above), and denoted as S! and F;'. The return of a US-based

currency trading strategy over the interval 7 to t + 1 is:
USD _ v ' '
it = Y Wil /F = 1], (OA-1)
i=1

If the strategy is numeraire independent, the weights w; are identical for all currency perspectives. For
example, if the trading strategy is based on interest rate signals, these signals should be independent of
the benchmark currency.

Defining such a strategy relative, say, to the Japanese yen, with yen exchange rates denoted by Ei and

fﬁ (JPY per one unit of currency i), its return (in yen) is:
JpPY ol =i y ol =i y
iy = Zwi[st-l—l/Ft —1]= ZWiStH/Fz - Zwi (OA-2)

With symmetric strategies the weights sum to zero, hence the last term cancels, and we are left with

P PY

= Z Wi St 11 /F F By triangular arbitrage and symmetry, we can further derive:

JPY USD USD FUSD _ USD , ppJPY | cJPY
fiv1 = t+1 +ZW1 Siv1 /F 1 *F /St+1~ (OA-3)

The dollar carry weights are 1/(N-1) and are all either positive or negative depending on the average interest rate of the
USD relative to other currencies. The weight on the USD itself is zero. The strategy is thus very asymmetric and yields entirely
different results for other currency perspectives. That is, a ”British pound carry” or ”Swiss franc carry” need not be anything
like dollar carry. Of course, dollar-centric strategies are of interest because of the importance of the dollar in international
finance.



Cross-currency risk could drive, in principle, a wedge between the two currency perspectives, but in
practice the returns and their properties will be rather similar (barring significant differences in transaction
costs), because the forward to spot ratio in (OA-3)) is close to one, and applies to returns. We have
verified that standard carry strategies (as per our definition in Section [2)) yield very similar returns from
any currency perspective.

It is instructive to repeat the previous calculation, but for log returns. In this case:

N ' . N i EUSD
il = ) wilog <5;+1/F;) =) wilog ;1 —%D
i=1 i=1 t Ft
N N
i i USD —=USD
= Zwilog(St+I/E)+Zwilog t+1 /F )
i:1 i=1
USD —=USD Al
= ZWleg ,+1/F)—|—10g( t+1 /F, )Zwi
~ i=1
N
= Z log( t+1/F)+O_rtU+S1D7 (0A-4)

=1

and therefore the log returns of symmetric, numeraire-independent trades are identical from any perspec-
tive; the differences between their percentage returns from different perspectives are of second order.

In sum, a symmetric carry trade, for any benchmark currency has similar returns for investors across
the world. However, symmetry is not a sufficient condition for numeraire independence. It is important to
emphasize this point, because a number of recent articles have considered “currency-neutral” symmetric
strategies, where no position is taken with respect the benchmark currency itself, or in other words, the
weight assigned to the benchmark currency is always zero (this is implicitly true also for dollar carry).
Let’s examine, following Daniel, Hodrick, and Lu (2017), a “dollar-neutral” carry trade with weights
w; = 1/(N — 1) if the interest rate of currency i is in top half of the interest rates of the given set of
currencies, and w; = —1 /(N — 1) otherwise (if N-1 is odd, the currency with the median interest rate is left

out of the trade). This strategy is clearly symmetric. However, it is not numeraire independent because if



we define it relative to another benchmark currency, say the yen, the weight function of this ”yen-neutral”
trade will change, with now non-zero weights on the USD and zero weights on the JPY. Therefore, such
“currency-neutral” trades will produce different returns for different benchmark currencies, going beyond
the differences induced by cross-currency risk.

We recognize that some numeraire-dependent strategies are of obvious interest, but care must be taken
to define them in an international context. For example, the HML factor, introduced by Lustig, Roussanov,
and Verdelhan (2011, 2014) is a carry trade which is symmetric, but not numeraire-independent as it goes
long (short) an extreme portfolio based on an interest rate ranking (as the DB strategy does), but excludes
the USD from any portfolio. This dollar neutrality makes the trade numeraire-dependent. Of course,
when such a trade is defined for benchmark currencies with non-extreme interest rates, it should often
yield similar returns across the different country perspectives.

Our preference for using symmetric, numeraire-independent carry trades is consistent with the best
known investable indices, such as the Deutsche Bank (DB) Harvest Indexes. The DB strategy goes long
(short) the G-10 currencies with the three highest (lowest) interest rates. Importantly, when the USD
interest rate is among the top or bottom three, part of the trade automatically gets a zero return, because a
position in the benchmark currency itself is taken, and hence the trade is not dollar-neutral. However, it is
symmetric and numeraire-independent, which is an advantage for a global currency trading strategy, and
may also be an advantage for a global risk pricing factor. In the trades that we consider, all participating
currencies are given a non-zero weight, including the benchmark currency, which by design yields a zero
return, whether it is held long or short.

Another way to see the fundamental difference between asymmetric, numeraire-dependent trades on
the one hand, and numeraire-independent strategies on the other is to examine what would happen if, say,

a yen-based investor would try to mimic, for example, dollar carry by taking exactly the same positions,



but relative to the yen. That is, she will go long or short in all the currencies (including the yen) as
dollar carry does, thus keeping the same weight function as in the original dollar trade, but for a different
benchmark currency. This strategy would yield quite different returns as it would face full cross-currency
risk, and not just profit and loss currency risk.

<USD —=USD

With the previous notation: r/¥ = [fUSD 1 yN xS, " /F,

puik o vazl w;. Since for dollar carry

these weights add up to one, and not zero as in a symmetric trade, the yen-based return is now:

PY USD USD —=USD USD -JPY ; JPY JPY ;JPY
1=l S FSTT = =P S RS — 1, (OA-5)

which, compared to the expression in (OA-3)), adds a second return term that can well be of similar or

even larger magnitude than the first term.

OA-II Tests for differences in Sharpe ratios and return skewness

Sharpe ratios

The statistical significance of the differences between the Sharpe ratio or skewness of the SC trade
and those of trades from subsets is evaluated using bootstrap tests that follow Ledoit and Wolf (2008) or
Annaert, Van Osselaer, and Verstraete (2009). Skewness difference can be tested in a “direct” bootstrap
that resamples from a distribution which respects the null hypothesis of no difference. In the case of
Sharpe ratios, their difference does not easily admit such a distribution, hence the approach followed is
“indirect” and resamples from the observed data. A version of this approach to comparing Sharpe ratios
has been applied recently, among others, in DeMiguel, Nogales, and Uppal (2014).

In implementing the test for a difference between Sharpe ratios, we depart in two minor ways from
Ledoit and Wolf (2008). First, we only consider the i.i.d. case (their Section 3.2.1). We have verified
that our carry trade return series have insignificant autocorrelations for lags up to 10. Furthermore, the

suggested block size selection procedure (their Algorithm 3.1) results consistently in a selected block



length of one, when using our data. Second, we consider one-sided bootstrap confidence intervals and
p-values, since our null hypothesis is that carry trades obtained with the enhancement rule do not improve
on the Sharpe ratio of the SC trade. We modify accordingly their equation (7).

Following the notation in Ledoit and Wolf (2008), let us and ug denote the sample average returns of
a carry trade from some subset of the G-10 currencies and the SC trade, respectively, while Y5 and Yp are
the sample second moments (uncentered) of the returns of these trades. Let also v = (s, g, Ys,¥s), and
assume that /7 (V—v) 4 (0,¥), where v is the population counterpart, 7' is sample length and ¥ is some
symmetric positive-definite matrix. The latter assumption holds under mild conditions. For the sample
difference A between the Sharpe ratios of the carry trade from a subset of the G-10 currencies and the SC

trade, and the deviation of this sample difference from the population value A, one can write

-~ ~ Us UB
A=f(v)=

—rTo et ad VTR S OVIPVAE). (OA)
S B

where V'f((a,b,c,d)) = < and (a, b, ¢, d) represent the ele-

c . d . a b
(C7a2)1.57 (d7b2)1.57 2(C7a2)1.57 2(d*b2)1'5

ments in ¥, If ¥ is a consistent estimator of ¥, then the standard error of A is given by

@) - \/ ZIGEIG) oA

To test the null hypothesis A < 0, we bootstrap the returns of the two carry trades that are compared,

A*—A
s(A*)

and consider the studentized random variable L = , where A* is a difference in Sharpe ratios computed
with bootstrapped returns, and s(A*) is the corresponding standard error. Even though we bootstrap “under
the alternative”, this procedure generates meaningful sampling variation under the null of no difference
between Sharpe ratios. Given the lack of autocorrelation in the carry trade return series, as noted above,

we use an 1.1.d. bootstrap (5000 samples, with replacement and pairwise, to preserve a possible cross-

sectional correlation between the returns of the two carry trades). A p-value for the null is calculated as



the proportion of bootstrapped series for which:

A—L=A+ s(A) <0, (OA-8)

similar to equation (7) in Ledoit and Wolf (2008). These p-values are reported in Tables[2] and [3]

Skewness

To test for a difference in skewness, Annaert, Van Osselaer, and Verstraete (2009, page 277) first ”sym-
metrize” the compared return series, by appending to them the mirror images of the original observations
in terms of distance to the average return. The skewness (as well as any odd central moment) of these
modified returns is thus zero, and a bootstrap that resamples from them conforms to the null of no differ-
ence in skewness. Given that autocorrelation does not seem to be an issue in our series, we draw pairwise
from the modified series of the compared returns, and compute the p-value as the percentage of draws that
yield higher improvement on the benchmark skewness than that observed in the data. All bootstraps are

performed with 5000 draws.

OA-III Differences in Sharpe ratios - accommodating the selection

The enhancement procedure described in Section [3]introduces a possible selection bias, which is not
accounted for by the bootstrap-based test described above, following Ledoit and Wolf (2008). To address
this issue, we suggest an alternative approach, and instead of bootstrapping the actual carry returns, we

adopt the following randomization procedure:

e at the end of month ¢ keep the interest rate differentials as in the data, but assign to each of them ar

random any of the ten returns for the following month 7 4 1.

e to each of these ten returns for month 7 4 1 add the same constant ¢;1. We call the returns obtained

in this way “randomized” returns.



e the constant ¢; | can be positive or negative, and is chosen so that a carry trade that uses all ten
“randomized” returns would have exactly the same return as the actual SC trade for month 7 + 1.
Such a carry trade would choose the currencies to be long or short exactly as the SC trade, based on

sorting the same interest rate differentials.

e do this for all months in the sample, and repeat 1000 times, to obtain 1000 sets of ten “random-
ized” return series, that correspond to the actual interest rate differentials. Given the large number

permutations of ten numbers, we do not bootstrap in addition the interest rate differentials.

e note that the constants ¢;4; are different for different months, and that each “randomized” return
corresponding to a particular interest rate differential is potentially very different from the actual
one. This approach may associate, for example, the JPY returns predominantly with the highest
interest rates in some randomization trials. However, the returns for each month, and hence the
Sharpe ratios of the carry trades with ten currencies (all 1000 with “randomized” returns and the

actual SC trade) are exactly the same.

e on each of the 1000 sets of 10 time series reproduce the enhancement procedure described in Section
Based on the order of exclusion obtained from this procedure, identify for each of the 1000 sets

the currencies that would enter ”good” and ’bad” carry trades.

e in the full sample period construct trades with the least excluded three, five or seven currencies,
corresponding to our G1-GS5 trades, and similarly with the most often excluded three, five or seven

currencies, corresponding to our B1-B5 trades.

For each of 1000 sets of 10 series of randomized carry trade returns, A* denotes the difference between
the annualized Sharpe ratio of a good carry trade (from three, five or seven currencies), constructed from
this set following the enhancement procedure, and the SC trade or the corresponding bad trade. As in

8



Appendix [OA-II} A denotes the sample difference between the annualized Sharpe ratio of a good carry
trade and the SC trade or the corresponding bad trade. We now show A for each good carry trade, the
average of the 1000 A*’s for trades from as many currencies as the good trade on the same line, and the

proportion of such A*’s exceeding A.

Good trades vs. SC Good vs. bad trades

A avg. A* %A >A A avg. A* %A >A
Gl 0.20 0.14 0.21 042 042 0.50
G2 0.18 0.16 0.43 0.31 041 0.71
G3 0.30 0.16 0.09 0.57 041 0.19
G4 0.20 0.16 0.37 045 041 0.41
G5 0.39 0.14 0.02 0.56 0.32 0.05

There is substantial bias in the comparison between the G1-G5 carry trades with the SC trade, with
the selection procedure adding 14% (for G1 and GS5) or 16% (for G2 to G4) to the annualized Sharpe
ratio. Yet, in every case the observed increases in the Sharpe ratio (denoted by K) are even higher, and
for two out of the five good trades the observed Sharpe ratio is in the 10% right tail of the distribution
of the Sharpe ratios obtained under the selection procedure using the randomized (scrambled) currency
returns. When comparing the G1-G5 carry trades to the corresponding B1-B5 trades, the bias is relatively
more important, and in fact at least as large as the observed difference in Sharpe ratios for the G1 and G2
trades. Only the G5 versus B5 comparison yields a Sharpe ratio of a good trade in the right tail (5.3%) of
the corresponding distribution under scrambled currency returns.

Of course, these observations alone do not constitute a proper test, since the randomization procedure
also can change the variability of the returns, and proper testing requires the use of a pivotal test statis-

tic, such as a t-statistic. To create a proper test statistic, we modify the procedure in Ledoit and Wolf



(2008) by bias-correcting our sample Sharpe ratios, and using t-statistics from the empirical distribution
as in Appendix [OA-IIl The results, which also reproduce the relevant portion from Table 3| to facilitate

comparison are as follows:

Good trades vs. SC Good vs. bad trades

avoret std. SR bstrp. rand. avoret std. SR bstrp. rand.
SC 1.02  3.30 0.31
Gl 1.67 329 051 0.02 0.18 B1 0.68 7.50 0.09 [0.01] [0.50]
G2 1.70 347 049 0.13 044 B2 098 554 0.18 [0.07] [0.72]
G3 249 409 061 0.01 0.06 B3 021 491 0.04 [0.01] [0.16]
G4 222 439 051 012 0.39 B4 028 496 0.06 [0.02] [0.42]
G5 397 571 069 0.03 0.04 B5S 061 4.66 0.13 [0.01] [0.09]

Let’s first focus on the G1 trade. The t-statistic for its Sharpe ratio (0.51) being different from the
benchmark Sharpe ratio (0.31) has a p-value of 0.02. When we do the test using the randomized samples,
correcting for selection bias, the p-value increases to 0.18, and the difference is no longer statistically
significant. The p-values invariably increase for all carry trades, but remain significant at the 5% level
for G5, and at the 10% level for G3. For the good vs. bad carry trade comparison, the p-values increase

dramatically and only the G5 trade has a significantly higher Sharpe ratio than B5 (at the 10% level).

OA-IV Factor models explaining good and bad carry trades

Tables [OA-2] to [ODA-4] present the results separately for the standard carry trade (SC), the G1-G5 and
B1-B5 trades, and the GC and BC trades on average. The first column in Table also shows the
respective average returns that are to be explained. For the G1-GS5 trades these range between 1.7 and 4%

(annualized), and are all significantly different from zero at the 1% confidence level (with GMM standard

10



errors); for the GC trades they are on average 2%, and all but two out of 18 are significant at the 5% level.
In contrast, the average returns for the bad carry trades never exceed 1%, and are never significant, even
at the 10% level.

A. Model with equity volatility

The market factor (denoted MKT) in the model is proxied by the total return of the MSCI-World equity
index, in excess of the risk-free rate and expressed in USD. The equity volatility factor (EqVol) reflects
innovations in global equity volatilities, as constructed in Lustig, Roussanov, and Verdelhan (2011), and
is taken from Verdelhan’s website (data until 12/2013). The interaction term (product of MKT and EqVol)
is denoted “prod”, and exhibits highly negative skewness (-7.6).

The top panel of Table (OA-2| reports results from time-series regressions of carry trade returns on
the three risk factors. The market betas are significant for both good and bad trades, and of comparable
magnitudes. However, the slope coefficient estimates on the product factor are typically negative, albeit
rarely significant for good trades, while they are positive, mostly much larger in magnitude, and almost
always significant at the 5% significance level for the bad trades. The F-test for no difference between
the average slope coefficients across the GC and BC trades rejects only for f3,,,,4. Given the high negative
skewness of the product factor, the large positive value of B, implies that the market risk exposure of
the bad trades increases substantially in highly volatile times, helping to explain the negative skewness of
the bad trades as shown in Table 3l

From the perspective of a time-varying market beta, the large B,,,s implies, for example, that the
effective market beta for bad carry trades ranges between 0.025 and 0.083 for the 10-th and 90-th percentile
observations of EqVol (which are -0.67 and 0.59, respectively). This regime dependence is much weaker
for good carry trades, due to their smaller f3,,,4 estimates. The SC trade resembles the bad trades in this

respect, with a 3,4 that is positive and marginally significant (at the 10% level). Given that increases in
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volatility tend to characterize periods of market downturns (the correlation between MKT and EqVol is
-0.24 in our sample), our findings attribute the under-performance in times of crisis mostly to bad carry
trades, while good trades are less affected.

The alpha’s obtained in the time-series regressions are difficult to interpret in the presence of non-
traded factors. Therefore, we also perform GMM-based cross-sectional tests on the GC and BC return
cross sections, and show the results in the last two rows of the table. For the GC trades, the risk price for
the MKT factor is significant at the 5% level, while for the BC trades no risk price is significant. However,

the joint test does not reject for either of the two cross sections, delivering large p-values.
[Figure 4 about here.]

For further clarification, Panels A and B in Figure 4| plot model-predicted vs. actual average returns for
the GC and BC trades, where we see practically no relation for the BC trades, but a much better fit for the
GC trades, albeit with a few outliers. When we run a simple OLS regression of actual average returns on
a constant and the model-based expected returns, we obtain an R? of 0.67 for the GC trades, and 0.29 for
the BC trades. The combined evidence suggests that this three-factor model does not adequately describe
the returns of the bad carry trades, but still saliently reveals the high exposure of these trades to the equity
market during high-volatility periods. In contrast, a significant price of risk for the market factor and

Figure [] show the promise of the model to provide a risk-based interpretation of good carry trades.

B. Model with Up and Down equity market factors

Our interest in such a model is motivated both by the asymmetric patterns in carry trade returns docu-
mented above, and the recent work of Lettau, Maggiori, and Weber (2015), who find support for a similar
model pricing the joint cross section of several asset classes, including the returns of interest-rate-sorted

currency portfolios. Note that their model employs the market factor itself, together with a separate down-
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market factor, whereas we use uncorrelated down- and up-market factors, which help sharpen the focus
on the asymmetric return behavior across good and bad carry trades (see also Ang, Chen, and Xing (2006,
Table 2)). Keeping the notation MKT for the total return of the MSCI-World equity index, in excess of
the risk-free rate and expressed in USD, the Down factor is taken to be min(MKT,0), and the Up factor is
max(MKT,0).

Table[OA-3|shows that in the time-series regressions the slope coefficient estimates on the Down factor
are not statistically significant for about 70% of the good carry trades, but are significant for all but one
of the bad carry trades. The pattern is reversed for the Up factor, where the estimates are significant for
most of the good trades, but are in fact never significant for the bad trades, even at the 10% confidence
level. The magnitudes of the respective slope coefficients for good versus bad trades also differ largely, by
a factor of three or four, and these differences are highly significant, as evidenced by the reported p-values
from GMM tests for the equality of the average Bpown, or Py across the 18 GC and BC trades. Additional
joint tests for pairwise equality between the corresponding coefficients for the GC and BC trades reject
with even smaller p-values. As above, the SC trade exhibits mixed features, with both slope coefficients
being significant.

The cross-sectional test results resemble those from Table , in that both risk prices Apoy, and Ay
are statistically significant for good trades, and highly insignificant for bad trades, while the tests for the
pricing errors being jointly equal to zero fail to reject, with high p-values. Moreover, the plots of model-
based versus actual average returns, similar to those in Figure []) again reveal a reasonable fit for good
trades, but no apparent relation for bad trades, indicating that the model with down- and up-market factors
more adequately describes the returns of good carry trades. The important additional insight from this
model, however, is the striking dichotomy between the returns of good carry trades, which have relatively

high Up-market betas but decouple in bad times, and the returns of bad carry trades, which have relatively
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high Down-market betas.

C. Fama-French three-factor model

Similar to Table @ and in the same format, Table @] illustrates the ability of the Fama-French
three-factor model to explain the returns of good and bad carry trades, and the main finding is that the
model does not perform well with respect to good carry trades.

The top panel of this table refers to time-series tests, and shows that the betas on the market factor
are economically small for these trades (0.05 on average), albeit often significant, while those on the
other two factors typically are not significantly different from zero. The adjusted R?’s in the time-series
regressions are relatively low, even sometimes negative, whereas the alphas are only about 5 to 30% lower
than the unconditional average carry trade returns, and still statistically significant for all G1-G5 trades
and 14 of the GC trades. On the other hand, for bad carry trades the betas on all three factors are higher
and statistically significant in most cases, and the R?’s are on average 0.12. A test for no difference
between the average slope coefficients across the 18 GC and BC trades rejects for By k7 and Bsys, at the
5% confidence level. Interestingly, the model renders all alphas much lower than the respective average
returns for the bad carry trades, so that these trades can be qualified as “negative alpha trades”, from
the perspective of this model. The model also explains a large part of the SC trade’s average returns,
with statistically significant factor loadings and a high R>. The time-series tests therefore suggest that
the good carry trades pose a problem for this model, whereas the SC trade and the bad trades at least are
meaningfully exposed to standard risk factors. In addition, a test for alphas being jointly equal to zero
does not reject for both the GC and BC sets of carry trades, with p-values above 0.30.

The last two lines of the table show results from GMM-based cross-sectional tests, using the GC and
BC trades as test assets. The estimates of the risk prices A are all statistically insignificant, except for

Ayt for the GC trades, while the tests for the pricing errors being jointly equal to zero exhibit p-values
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above 0.70. The results for the risk prices thus cast doubt on the explanatory power of the Fama-French

three-factor model for the BC trades as well, whereas the joint test results may reflect power issues.

OA-V Option-hedged good and bad carry trades

Here we re-examine the prior evidence for the crash-risk interpretation of carry returns from currency
options bringing in the good-bad carry trade angle. Options have been used to explore the peso problem
hypothesis: carry trade returns reflect compensation for small-probability adverse events that are not ob-
served in the researcher’s sample. Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011), for example,
consider a hedged carry trade that adds currency options and, by construction, is immune to large losses
that are potentially associated with a peso event. They find that the hedged carry trade does have lower
returns than the unhedged trade, partially due to the cost of the options used for hedging, but the hedged
and unhedged carry trades have similar Sharpe ratios. They conclude that the returns in the peso state are
not characterized by large negative payoffs, but rather by a large value of the stochastic discount factor
(large price of risk) in that peso state.

We calculate returns of hedged trades following Burnside, Eichenbaum, Kleshchelski, and Rebelo
(2011), in that we use forward differentials and returns net of transaction costs. However, as in Jurek
(2014) we employ option data for all pairs of G-10 currencies, and not only pairs involving the USD,
which yields more efficient hedging (see also Daniel, Hodrick, and Lu (2017, Section 7)). We consider
hedging with either at-the-money put options or out-of-the-money puts with a delta of -0.25, which are
denoted by industry convention as 25 delta puts.

Below we provide details on the construction of the hedged carry trades and the results, presented
in Table can be summarized as follows: Hedged good trades invariably exhibit lower annual-

ized Sharpe ratios than the corresponding unhedged ones, on average by 15 (12) percentage points when
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hedged by at-the-money (out-of-the-money) options. In contrast, the respective reduction in Sharpe ratios
is only six (five) percentage points for hedged bad carry trades, with Sharpe ratios even increasing in some
cases. Moreover, the differences in Sharpe ratios between hedged and unhedged trades are statistically
significant in about two thirds of the cases for good carry trades, but only in a few cases for bad carry
trades. Thus, the risk-adjusted returns of good trades are affected much more by the costs of hedging,
which may indicate that the peso argument may be more applicable to good carry trades. However, hedg-
ing results in very attractive risk-return profiles for the G4 and G5 trades, which use only a few currencies,

with high Sharpe ratios and significant positive skewness, which counters the peso problem argument.

Construction of hedged carry trade returns

In constructing option-hedged carry trades we borrow elements from two previous approaches. First,
as in Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011) we add the hedging component, obtained
separately from options to the already calculated unhedged carry trade returns. We do not rely on put-
call parity, which is done for example in Daniel, Hodrick, and Lu (2017). Unlike Jurek (2014), we
account for transaction costs in both components of the hedged trade, which facilitates comparison with
the corresponding unhedged one.

Second, as in Jurek (2014) we use only put options for hedging, and more specifically puts purchased
on individual pairs of currencies that enter the trade. These pairs do not need to involve the USD and
hedge separately the long and short legs of the trade, thus aiming at a more efficient hedging scheme (see
also Daniel, Hodrick, and Lu (2017, Section 7)). We hedge with at-the-money and 25 delta puts.

Another design choice concerns the currency pairs for which puts are bought. The symmetric trades
we consider have an equal number of long and short positions, with equal weights, and we first take the
pair of the currency with highest forward differential and that with the lowest one, then the pair of the

currency with the second highest and that with the second lowest differential, etc. We have also verified
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that results change little if pairs are assigned via random permutations.

Put option prices are not directly given in the data (JPMorgan’s DataQuery), so we invert the pro-
vided Garman-Kohlhagen implied volatilities, using our forward prices (mid-quotes) and LIBOR’s (also
provided). Deltas are converted into strike prices via equations (8a) and (8b) in Jurek (2014). When
needed, we also use symmetry relations as in equations (11) and (12) in Jurek (2014), and transform
out-of-the-money call prices from provided volatilities into required out-of-the-money put prices.

Regarding transaction costs, the unhedged part of the trade is unchanged. For the hedging part we
follow Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011, page 23) and assume a bid-ask spread of

5%, so we add half of this to the price of a put option obtained using mid-quotes.
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Table OA-7: Detailed version of the top panel of Table@

Good  port. avg.ret. p-val o p-val Brx p-val  Byprrx p-val  Bgooa  p-val R?
1 -1.63 0.25 -1.74  0.00 1.02  0.00 -0.39 0.00 90.3
2 -0.19 0.88 -1.15 0.08 088 0.00 -0.13 0.00 75.8
3 0.79 0.54 -0.28 0.65 0.95 0.00 -0.13 0.00 78.4
4 2.80 0.05 1.12 0.10 1.01 0.00 0.00 0.94 78.4
5 3.68 0.02 1.62 0.03 1.11 0.00 0.05 0.11 80.0
6 4.65 0.01 0.43 0.35 1.03  0.00 0.61 0.00 93.8
7 -0.18 0.92 -0.38 0.67 1.24  0.00 -0.46 0.00 80.5
8 1.04 0.57 -0.14  0.87 1.27  0.00 -0.23 0.00 77.6
9 2.76 0.12 1.16 0.14 1.28  0.00 -0.14 0.00 81.7
10 2.77 0.14 0.39 0.66 1.28  0.00 0.05 0.19 79.7
11 4.79 0.02 1.55 0.13 1.27  0.00 0.27 0.00 75.2

Gl 1 -227 0.00 099 0.00 -0.61 0.00 76.5
2 -0.85 0.15 0.89  0.00 -0.50 0.00 78.8
3 -029  0.63 0.94  0.00 -0.30 0.00 777
4 0.87 0.18 1.00  0.00 0.16 0.03 789
5 1.15 0.10 1.10  0.00 0.41 0.00 823
6 1.40 0.16 1.08  0.00 0.85 0.00 71.0
7 -0.97  0.38 1.21 0.00 -0.75 0.00 69.4
8 0.34 0.66 1.28  0.00 -0.87 0.00 81.7
9 0.71 0.38 1.26  0.00 -0.05 0.62 80.1
10 -0.06 094 1.27  0.00 0.41 0.00 814
11 0.78 0.36 1.25 0.00 1.14 0.00 824

G2 1 -234  0.00 099 0.00 -0.56 0.00 76.0
2 -1.10 0.08 0.88 0.00 -0.34 0.00 76.0
3 -0.57 037 093 0.00 -0.13 0.08 76.2
4 0.72 0.25 0.99  0.00 0.24 0.00 79.6
5 1.34 0.06 1.10  0.00 0.28 0.00 81.1
6 1.94 0.07 1.10  0.00 0.50 0.00 65.9
7 -1.09 0.33 1.20  0.00 -0.66 0.00 68.6
8 -0.31 0.73 1.25  0.00 -0.45 0.00 75.6
9 0.59 0.47 1.26  0.00 0.03 0.74 80.1
10 -0.09  0.92 1.27  0.00 0.42 0.00 81.7
11 1.67 0.12 1.28  0.00 0.56 0.00 73.5

G3 1 -2.14  0.00 1.04  0.00 -0.50 0.00 76.2
2 -0.88 0.16 092 0.00 -0.34 0.00 76.9
3 -0.35 0.57 096  0.00 -0.19 0.00 76.9
4 0.97 0.14 099  0.00 0.06 0.30  78.5
5 1.21 0.09 1.07  0.00 0.27 0.00 814
6 1.19 0.23 1.01 0.00 0.70 0.00 70.8
7 -0.80  0.47 1.27  0.00 -0.61 0.00 69.2
8 0.11 0.89 1.31 0.00 -0.52 0.00 77.5
9 0.87 0.28 1.28  0.00 -0.11 0.16 80.3
10 -0.02 098 1.24  0.00 0.28 0.00 80.7
11 0.59 0.52 1.16  0.00 0.90 0.00 81.2

G4 1 -2.80  0.00 1.05  0.00 -0.26 0.00 714
2 -1.10  0.09 098 0.00 -0.33 0.00 76.3
3 -0.48 044 099  0.00 -0.18 0.00 76.7
4 0.91 0.17 096  0.00 0.13 0.04 78.8
5 1.35 0.05 1.03  0.00 0.27 0.00 812
6 2.12 0.06 1.00  0.00 0.38 0.00 64.8
7 -1.83 0.10 1.23  0.00 -0.19 0.19  63.8
8 -0.23 0.80 1.39  0.00 -0.49 0.00 76.6
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Table OA-8: Detailed version of the top panel of Table
Good  port. avg. ret.  p-val o p-val Boc  p-val  Bgooa  p-val R?
1 -1.63 025  -3.23 0.02 0.38 0.00 12.6
2 -0.19  0.88  -1.37 0.27 0.28 0.00 8.7
3 0.79 054  -0.98 0.41 0.42 0.00 17.6
4 2.80 0.05 0.18 0.88 0.63 0.00 343
5 3.68 0.02 0.81 0.54 0.69 0.00 33.8
6 4.65 0.01 2.27 0.18 0.57 0.00 17.7
7 -0.18 092  -2.64 0.12 0.59 0.00 18.1
8 1.04 057 -1.24 0.45 0.54 0.00 16.1
9 2.76 0.12 0.17 0.91 0.62 0.00 21.7
10 2.77 0.14  -0.18 0.91 0.70 0.00 26.5
11 4.79 0.02 1.53 0.35 0.78 0.00 27.5
Gl 1 -1.63 025  -1.02 0.48 -0.36 0.04 2.1
2 -0.19  0.88 0.28 0.83 -0.28 0.04 1.6
3 0.79 0.54 0.90 0.50 -0.07 0.66 -0.2
4 2.80 0.05 2.13 0.15 0.40 0.01 2.7
5 3.68 0.02 2.54 0.11 0.69 0.00 6.8
6 4.65 0.01 2.77 0.12 1.12 0.00 14.4
7 -0.18  0.92 0.56 0.76 -0.45 0.03 1.9
8 1.04 0.57 1.96 0.30 -0.55 0.00 3.2
9 2.76 0.12 2.31 0.20 0.27 0.26 0.6
10 2.77 0.14 1.55 0.41 0.73 0.00 5.7
11 4.79 0.02 2.36 0.20 1.45 0.00 20.0
G2 1 -1.63 025  -1.07 0.46 -0.33 0.02 1.9
2 -0.19  0.88 0.04 0.98 -0.13 0.33 0.2
3 0.79 0.54 0.64 0.63 0.09 0.51 -0.1
4 2.80 0.05 2.00 0.17 0.47 0.00 4.3
5 3.68 0.02 2.76 0.08 0.54 0.00 4.6
6 4.65 0.01 3.36 0.07 0.76 0.00 7.2
7 -0.18  0.92 0.46 0.80 -0.38 0.05 1.5
8 1.04 0.57 1.31 0.49 -0.16 0.41 0.0
9 2.76 0.12 2.21 0.22 0.32 0.11 1.1
10 2.77 0.14 1.54 0.39 0.72 0.00 6.2
11 4.79 0.02 3.32 0.09 0.86 0.00 7.7
G3 1 -1.63 025  -1.61 0.28 -0.01 0.95 -0.3
2 -0.19  0.88  -0.41 0.76 0.09 0.37 0.0
3 0.79 0.54 0.14 0.92 0.26 0.02 2.0
4 2.80 0.05 1.48 0.31 0.53 0.00 7.7
5 3.68 0.02 1.76 0.26 0.77 0.00 13.7
6 4.65 0.01 1.71 0.29 1.18 0.00 24.7
7 -0.18 092  -0.15 0.94 -0.01 0.93 -0.3
8 1.04 0.57 0.79 0.68 0.10 0.50 -0.1
9 2.76 0.12 1.52 0.40 0.50 0.00 4.3
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Figure 4: Average vs. model-based expected returns

Circles with no fill (large black dots) plot model-based expected monthly returns versus average monthly
returns (annualized and in percent) for the GC (BC) set of 18 carry trades, as described in Table [3| The
model based returns refer to the three-factor model with a market factor (MKT), an equity volatility factor
(EqVol) and the product of MKT and EqVol, and are estimated, for each trade, as the product of its time-
series slope estimates ([3) with respect to the factors in the model, and the corresponding estimates of the
factor risk prices A, as shown in Table The bottom right corner of each plot shows the R? obtained
in regressing average returns on model-based returns (with a constant). The sample period is 12/1984 to
12/2013.
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