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Abstract

The equity variance risk premium is the expected compensation earned for selling variance

risk in equity markets. The variance risk premium is positive and shows moderate persistence.

High variance risk premiums coincide with the left tail of the consumption growth distribution

shifting down. These facts, together with a positive, yet moderate, difference between the

risk-neutral entropy and variance of the aggregate market return, refute the bulk of the extant

consumption-based asset pricing models. We introduce a tractable habit model that does fit

the data. In the model, the variance risk premium depends positively (negatively) on “bad”

(“good”) consumption growth uncertainty.
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1 Introduction

Consumption-based asset pricing models are typically confronted with a set of salient

features regarding the first and second moments of interest rates, equity returns, and

in some cases, bond returns including a low risk free rate, a high equity premium and

high stock market volatility. At this point, the main paradigms, Campbell and Cochrane

(1999)’s habit model, Bansal and Yaron (2004)’s long run risk model and Rietz (1988)’s

disaster risk model can all match these stylized facts. A small subset of the vast literature

on consumption-based asset pricing has started to explore equity option prices to disci-

pline models and uncover what mechanisms best fit the data. These articles include, inter

alia, Du (2011) and Bekaert and Engstrom (2017) for habit models; Bollerslev, Tauchen

and Zhou (2009) and Drechsler and Yaron (2011) for long run risk models; Gabaix (2012)

and Wachter and Seo (2019) for disaster risk models. Option prices are powerful financial

instruments for this purpose, because they reflect at each point in time the conditional

expectation of market participants on the equity return distribution, combining their

preferences and views on the physical distribution of the underlying returns.

In this article, we explore how these models fit salient facts regarding the variance risk

premium and where they fail. The variance risk premium is the expected compensation

earned for selling volatility in equity markets. While it can be measured from variance

swaps, it can also be measured as the difference between the famous VIX index and an

estimate of the conditional variance of equity returns, which is the approach we follow

here. Well-known as a “fear index” for asset markets (Whaley, 2000), the VIX uses a

weighted average of option prices to approximate the risk neutral variance and is usually

higher than the “physical” expected stock market variance. Essentially, this premium

reflects out of the money options being more expensive than near the money option

prices (Britten-Jones and Neuberger, 2000; Bakshi, Kapadia, and Madan, 2003; Martin

2017). The variance premium also varies considerably through time. In periods of stress,

out-of-the money put options that insure against market downturns become relatively

more expensive than call options; protection against increases in variance become more

expensive as well and the VIX and the variance risk premium both increase.

We confront representative models in the literature with three sets of stylized facts

regarding the variance risk premium. The first set comprises time series properties of

the variance risk premium. While many models are presumably calibrated to fit these
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features, the relative fit is still quite different across models. Moreover, the mere fact

that the variance risk premium is positive refutes all models that employ only Gaussian

shocks to key state variables. Such a result has surfaced in the literature before, but

we provide an alternative proof and an alternative result showing that when returns and

the pricing kernel are jointly conditionally log-normally distributed, the variance risk

premium can only be positive if the equity premium is negative. This result is useful

as the standard habit model (Campbell and Cochrane, 1999) and long-run risk model

(Bansal and Yaron, 2004, when solved using the typical first order approximation), are

conditionally Gaussian.

Our second stylized fact regards the relation between tails in the variance risk pre-

mium and consumption growth distributions. For consumption-based asset pricing mod-

els to have any chance of explaining options data, there must be correlation between the

variance risk premium and consumption growth. However, mimicking the general lack

of correlation between asset returns and consumption growth, the correlation between

the variance risk premium and consumption growth is negligible using real consump-

tion growth of non-durables and services (1990:M1-2017:M12) to measure consumption

growth. The correlation with the variance premium at time t is -0.13 using “future” con-

sumption growth between time t and t+ 1; and -0.05 using consumption growth between

time t− 1 and t correlated with the variance risk premium at time t.

However, there is a strong correlation in the tails of the distribution. When the

variance risk premium is relatively high, the consumption growth distribution becomes

more negatively skewed, and the quantile shifts for the consumption growth distribution

when conditioning on low versus high variance risk premiums are statistically significant

for the left tail. These empirical facts pose a challenge for most of the models we examine.

Finally, as our third stylized fact, we rely on Martin (2017) who raises several issues

regarding the measurement of risk neutral variances and shows that the difference between

the risk-neutral entropy and the risk-neutral variance of returns provides a challenging

data moment for various models in the literature. The moderately positive difference

between the risk-neutral entropy and variance of returns is an economically important

moment, because it tells us that the left tail of the risk-neutral aggregate equity return

distribution is heavier than the right tail, but the difference is not large. We examine

a wider set of models than Martin (2017) does, taking the opportunity to clarify the
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empirical and theoretical differences between various concepts of option-implied variances

proposed in the literature.

We find that all models are rejected by these stylized facts. Therefore, we introduce

a tractable version of the “Bad Environment Good Environment” (BEGE henceforth)

framework of Bekaert and Engstrom (2017), which can actually fit the data. We estimate

two versions of the model. In the main version, all risk premiums are driven by “good”

(positively skewed) and “bad” (negatively skewed) consumption growth volatility state

variables, which also drive the variation in stochastic risk aversion (“habit”). In this

model the risk-neutral variance and thus the variance risk premium, loads much more

heavily on “bad” volatility, than does the physical variance, generating a sizable variance

risk premium. The simplest version of the model, as do all other models, does fail to fit the

persistence of the variance risk premium, which is surprisingly low (less than 60%). Most

asset prices require highly persistent state variables to generate sufficiently variable equity

returns and price dividend ratios. While different parameter configurations of our base

model can fit the variance risk premium persistence, the fit wit respect to other moments

then deteriorates slightly. The model can fit the variance risk premium persistence well,

when when we allow for a small pure sentiment shock.

The remainder of the article is organized as follows. Section 2 establishes the stylized

facts in the data. Section 3 outlines the various existing consumption based models we

examine and how they fit the stylized facts. Section 4 describes our new model and its fit

with the data. To provide more over-identification, section 5 investigates how the various

models fit the correlation between volatility and equity premiums. Section 6 concludes.

2 The Variance Risk Premium in the Data

2.1 The Variance Risk Premium

The variance risk premium is usually defined as the difference between the risk neutral

and physical conditional variance of stock returns. The risk-neutral variance can be

computed using option prices or variance swaps (see Bakshi and Madan, 2000; Martin

2017, and Ait-Sahalia, Karaman, and Mancini, 2018). For now, we simply use the square

of the well-known VIX index, published by the CBOE, the implied option volatility of the
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S&P500 index for contracts with a maturity of one month.1 The risk-adjusted measure

shifts probability mass to states with higher marginal utility (bad states) and this implies

that in many realistic economic settings, the variance risk premium is increasing in the

economy’s risk aversion. Our data start on January 02, 1990 (the start of the model-free

VIX series)2 and covers the period until the end of 2017.

We collect high-frequency (5 minute) returns on the S&P500 index to compute the

monthly physical conditional variance, Vt, as:

Vt = Et[RV
(22)
t+1 ]. (1)

Here RV
(22)
t+1 is the S&P500 realized variance measured as the sum of squared 5 minute

returns and close-to-open overnight returns over the next month (22 trading days).3 The

common approach to estimate the conditional variance in (1) uses empirical projections

of the realized variance on variables in the information set. Hence, the problem is reduced

to one of variance forecasting. Building on Corsi (2009) and Bekaert and Hoerova (2014),

we use the one period lagged realized monthly variance, realized variances of the last

and last 5 trading days (computed using high-frequency data) and the squared VIX, as

predictors. While Bekaert and Hoerova (2014) show that alternative, more complicated

models sometimes provide a slightly better fit, this model always provides a very good fit.

For robustness, we also consider an AR(1) model for realized variances and fit a simple

GJR-GARCH(1,1) model (Glosten, Jagannathan, and Runkle, 1993) on stock returns to

extract the conditional variance, with no meaningful differences in results.

We graph the annualized end-of-month variance risk premium in the top panel of

Figure 1. The variance risk premium is counter-cyclical peaking in all three recessions

but also in 1998 and 2011. The variance risk premium as defined above has unintuitive

economic units: for instance, the annualized mean is 0.0196. In some of our empirical

work, we therefore employ the “volatility risk premium”, the conditional risk neutral

1Jiang and Tian (2005) show that the actual computation of the VIX index also introduces errors
relative to the theoretical concept.

2The CBOE changed the methodology for calculating the VIX, initially measuring implied volatility
for the S&P100 index, to be measured in a model-free manner from a panel of option prices (see Bakshi,
Madan and Kapadia, 2003, for details) only in September 2003. It then backdated the new model-free
index to 1990 using historical option prices.

3We use actual simple returns in these computations, whereas some articles suggest using logarithmic
returns. However, we find that realized variances using either method are indistinguishable from each
other, which is not surprising given the high frequency nature of the returns.
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minus physical conditional volatility, that is V IXt − V
1
2
t . These numbers, in annualized

percent, are easy to interpret. For example, for our sample, the unconditional stock

market volatility is 14.64%, the average conditional volatility is 14.42%, and the average

volatility premium is 5.36%. The volatility of the volatility premium is 4.02%. We graph

the end-of-month volatility risk premium in the bottom panel of Figure 1. To avoid any

confusion, we always refer to V IX2
t −Vt as the variance risk premium and to V IXt−V

1
2
t

as the volatility risk premium.

2.2 Consumption Growth and the Variance Risk Premium

To link the variance risk premium to consumption growth, we obtain U.S. monthly

consumption growth for non-durables and services from NIPA from 1990:M1 to 2017:M12.

Our goal is to verify the shape of the consumption distribution as a function of variance

risk premium realizations. The data paucity necessitates us to contrast just two condi-

tional distributions, depending on either “low” or “high” variance risk premiums.

In Table 1, we show the 10th and 90th percentiles of the consumption growth distri-

bution together with the median, conditional on observing either a high or low variance

risk premium. We define a high (low) variance premium as one above (below) the 80th

(20th) unconditional percentile in the data over the sample period. Conditioning on more

extreme tails is impossible given the scant number of monthly observations we have.

Strikingly, the distribution of consumption growth is nearly identical at the median and

90th percentile, but the lower tail is 0.21% lower (2.4 percent lower at an annual rate) in

periods of high variance risk premiums. This difference is statistically significant at the

1% level, where the significance is based on a block-bootstrap with the block length of

60 months using 10,000 replications of historical length.

Figure 2 presents a graphical illustration of what is essentially a quantile shift of the

negative tail of the consumption growth distribution. It shows that the entire distribution

below the median shifts down going from low to high variance risk premiums. The shift

at the 20th percentile is also significant (at the 10% level). This downward quantile shift

reveals a tantalizing link between the real economy and option prices. It also immediately

reveals that the data generating process for consumption growth must accommodate a

shift in its distribution over time. Because this empirical fact is an important ingredient

in our analysis, we provide some robustness checks in Table 2. In Panels A and B, we

show robustness of the result to an alternative choice of the lower/upper percentile, using
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the 75/25th and 85/15th percentiles. In Panel C, we use the conditional variance of a

GARCH model to compute the variance risk premium and in Panel D the VIX itself.4

The quantile shift happens in both cases, but is now only statistically significant at the 5%

level. Thus, the general result is that in times of great financial uncertainty, as measured

by the option implied variance of stock returns or its difference with physical variance,

consumption growth appears more left skewed. In the context of a consumption-based

asset pricing model, this means that financial uncertainty as priced into options may well

reflect real consumption risks.

As a last robustness check, we verify whether the result holds up for a much longer

sample by obtaining annual real per capita consumption growth of non-durables and ser-

vices for the 1929-2017 period. This period has fewer time series observations than our

monthly sample, but witnessed multiple, often severe, recessions. The variance risk pre-

mium is only directly observable for the 1990-2017 period. In order to obtain estimates of

the variance risk premium for the 1929-1989 period, we regress the variance risk premium

during 1990-2017 on the sum of squared realized daily returns excluding dividends for

the past week, month, and quarter and the price-to-earnings ratio (as the price-dividend

ratio exhibits a pronounced time trend during the sample). Note that here we are not

able to use the high-frequency realized returns, because they are not available in the early

sample. We use realized returns excluding dividends, because it implies a slightly higher

explanatory power for the variance risk premium. It does not affect our consumption

growth shift results. We save the regression coefficients and standard deviation of the

residuals. We then conduct a block-bootstrap analysis, as follows:

1. We block-bootstrap the annual 1929-2017 data using a block length of 5 years.

2. Inside the bootstrap, for observations falling in between 1929 and 1989, we input

the variance risk premium using the independent variables at that point of time with

the OLS coefficient, previously estimated, plus a randomly sampled Gaussian shock with

zero-mean and the standard deviation equal to the standard deviation of the regression

residuals above.

3. For the block-bootstrapped data, we compute percentiles of the consumption

growth distribution conditional on a high variance risk premium realization, defined as

above the 80th percentile of the sampled variance risk premium distribution, and the low

4Bekaert and Engstrom (2017) report a similar result for the VIX.
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variance risk premium, defined as below the 20th percentile of the sampled variance risk

premium distribution.

The point estimates for the conditional consumption growth percentiles are medians

across 10,000 block-bootstrap runs. The statistical significance of the difference between

consumption growth percentiles conditional on high and low variance risk premium values

is computed as the percentage of block-bootstrap runs where the difference is below/above

0. Figure 3 shows the results. The downward shift of the consumption growth distribution

when the variance risk premium is high is very similar to what we observe for the most

recent monthly data. The shifts are statistically significant at the 5% level for the 10th

and 20th percentiles. The 10th percentile shifts from slightly positive consumption growth

when the variance premium is low to -4% when the variance premium is high. Generally,

the shift is a bit more extreme than with monthly data and starts to be already visible

around the 60th percentile.

2.3 Martin’s (2017) “bound”

The VIX is actually a weighted average of call and put option prices. Because

the weights are proportional to the inverse of the squared strike price (see Bakshi and

Madan, 2000, and Britten-Jones and Neuberger, 2000), out of the money put prices re-

ceive relatively more weight. Martin (2017) shows that the V IX2 can be interpreted

as twice the risk-neutral entropy of the simple return (the entropy for a variable X is

2 · (ln[E(X)]−E[ln(X)])), and then shows that the risk neutral variance can be approx-

imated using equally weighted call and option prices. He denotes the square root of the

risk-neutral variance the “SVIX”. While empirically SVIX and VIX are typically close to

one another, the VIX is always higher than SVIX. Economically, the difference between

VIX and SVIX is an informative moment, because it indicates that the left tail of the

risk-neutral distribution of the aggregate equity return is only moderately heavier than

the right tail. Martin (2017) then shows that this difference is very difficult to fit by

existing consumption-based models. While Martin’s article is mostly about using the

SVIX index as a lower bound for the equity premium, we use the empirical difference

between the VIX and SVIX as a powerful statistic to help refute existing consumption

based asset pricing models.
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3 The Variance Risk Premium and the Consumption-

based Asset Pricing Literature

The previous section has uncovered three sets of stylized facts involving the volatility

premium and option implied volatility, which we will demonstrate to be very challenging

for existing consumption-based asset pricing models to fit. Here, we survey the various

models and the mechanism they use to generate a meaningful volatility premium, and

then verify whether they actually fit the stylized facts. We start with a theoretical result

showing that log-normal models cannot possibly fit the facts, which is powerful as it

immediately refutes the original formulation of the habit and long-run risk models as

suitable candidates.

3.1 The Variance Risk Premium under Log-Normality

Campbell and Cochrane’s (1999) habit model and the first-order approximation to

Bansal and Yaron’s (2004) long-run risk model are conditionally Gaussian.5 Various

results in the extant literature (see e.g. Bakshi and Madan, 2006, and Bekaert and

Hoerova, 2014) suggest non-Gaussianities in the data generating process for returns are

necessary to produce a positive variance risk premium. Drechsler and Yaron (2011) and

Martin (2017) prove a more general result, indicating that when returns and the pricing

kernel are jointly log-normally distributed, the variance risk premium is exactly zero. In

Internet Appendix I, we provide an alternative proof of this theorem, making use of a

risk neutral moment generating function.

Another result that can be derived rather straightforwardly and offers useful economic

intuition about the variance risk premium is that log-normal models in general cannot

generate simultaneously a positive variance risk premium and a positive equity premium.

The result is rather intuitive: for the risk neutral variance (which apart from pure physical

volatility also reflects covariation of returns with the pricing kernel) to be consistently

5In the long-run risk literature, it is customary to assume that endogenous variables are linear func-
tions of the state variables. Pohl, Schmedders, and Wilms (2018) show that this approximation is actually
rather poor in many settings. Lorenz, Schmedders, and Schumacher (2020) show this specifically in the
context of the Drechsler and Yaron (2011) long-run risk model aimed at explaining the variance risk
premium. However, there are almost no published long-run risk papers that use more accurate solution
techniques. The solution method for the habit model in Campbell and Cochrane (1999) was shown to be
inaccurate by Wachter (2005). In the Campbell and Cochrane-type of models below, we use Wachter’s
more accurate solution method to solve the model.
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above the physical volatility, the covariance between returns and the kernel must be

positive. However, if equity returns tend to offer high returns in bad times (states with

high marginal utility), the equity premium must be negative. We defer a formal proof to

Internet Appendix I.

3.2 Extant Models of the Variance Risk Premium

We reconsider how four different models fit the stylized facts outlined in Section II.

The first model is the “vol of vol” model of Bollerslev, Tauchen and Zhou (2009). It is

important to mention that this paper is one of the first to show that the variance risk pre-

mium predicts stock returns, and the theoretical part of the paper was perhaps not likely

meant as the key contribution. They consider a representative agent with Epstein-Zin

(1989) preferences and consumption (and dividend) growth featuring stochastic volatility.

A second state variable drives time-variation in the volatility of the volatility shocks (“vol

of vol”). The second model, Drechsler and Yaron (2011), is a straightforward extension of

the long-run risk model meant to fit variance risk premium features. Drechsler and Yaron

(2011) add several components to the long-run model including a slow moving compo-

nent of the volatility and importantly jumps to the long-run risk variable (the conditional

mean of consumption growth ) and to volatility. We use the model in Wachter (2013) as

the representative of the disaster risk paradigm. The model features Epstein-Zin prefer-

ences, and (disaster) jumps to the consumption and dividend shocks. While the model

was not designed to fit options data, Wachter and Seo (2019) show that this particular

specification fits option prices rather well. Finally, we consider the habit model of Bekaert

and Engstrom (2017). They add a “bad environment-good environment” structure for

consumption growth to Campbell and Cochrane’s set up. In this model, consumption

growth features “bad” and “good” volatility, with shocks to bad (good) volatility decreas-

ing (increasing) skewness in consumption growth. We now briefly discuss the models in

detail.

3.2.1 Bollerslev, Tauchen, and Zhou (2009)

The utility function is:

Ut =
[
(1− δ)C

1−γ
θ

t + δ(Et
[
U1−γ
t+1

]
)
1
θ

]
, (2)
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where Ct is consumption at time t, 0 < δ < 1 reflects the agent’s time preferences, γ is

the coefficient of relative risk-aversion, θ = 1−γ
1− 1

ψ

and ψ is the intertemporal elasticity of

substitution.

The dynamics for log consumption and dividend growth, gt+1 and dt+1, respectively,

are:

gt+1 = dt+1 = µg + σg,tzg,t+1,

σ2
g,t+1 = aσ + ρσσ

2
g,t +

√
qtzσ,t+1,

qt+1 = aq + ρqqt + φq
√
qtzq,t+1,

zg,t+1 ∼ N (0, 1), zσ,t+1 ∼ N (0, 1), zq,t+1 ∼ N (0, 1),

(3)

where µg is the consumption growth mean, σ2
g,t the conditional variance of the consump-

tion growth, and qt is the conditional variance of the consumption growth variance. It’s

the latter variable that drives variance risk premium variation in this article.

The model is calibrated monthly to fit reasonable unconditional levels of the equity

premium and risk-free rate and the slope coefficient from regressing excess equity returns

on the variance of the risk premium. However, for this calibration exercise the authors

do not refer to any particular time period. The parameters are reported in Internet

Appendix II.

3.2.2 Drechsler and Yaron (2011)

The utility function is:

Ut =
[
(1− δ)C

1−γ
θ

t + δ(Et
[
U1−γ
t+1

]
)
1
θ

]
. (4)

There are 5 macroeconomic variables, which dynamics follow:

gt+1

xt+1

σ̄2
t+1

σ2
t+1

dt+1


=



g0

x0

σ̄2
0

σ2
0

d0


+



0 1 0 0 0

0 ρx 0 0 0

0 0 ρσ̄2 0 0

0 0 (1− ρσ2) ρσ2 0

0 φ 0 0 0





gt

xt

σ̄2
t

σ2
t

dt


+Gtzt+1 + J̃t+1, (5)

where gt is logarithmic consumption growth, xt is the persistent component of consump-
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tion growth and dt denotes dividend growth. The volatility dynamics is governed by two

factors: σ2
t represents the conditional volatility and σ̄2

t is the long-run mean component

of σ2
t .

The vector zt+1 represents Gaussian innovations with Gt capturing time-variation in

volatility:

zt+1 ∼ N (05×1, I5×5), (6)

GtG
′
t = diag(ϕ •

√
1− ω) Ω diag(ϕ •

√
1− ω)′ + diag(ϕ •

√
ω) Ω diag(ϕ •

√
ω)′σ2

t ,

ϕ =



ϕg

ϕx

ϕσ̄2

ϕσ2

ϕd


, ω =



ωg

ωx

ωσ̄2

ωσ2

ωd


,Ω =



1 0 0 0 Ωcd

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

Ωcd 0 0 0 1


,

where diag is the vector-to-diagonal matrix operator and • is the element-wise multipli-

cation operator.

J̃t+1 is a 5 × 1 vector of demeaned jump shocks: J̃t+1 = Jt+1 − EtJt+1. Jt+1 is a

5 × 1 vector of compound-Poisson jumps: Jt+1,i =
∑N i

t+1

j=1 ξji , where N i
t+1 is the Poisson

counting process for the ith jump component and ξji is the size of the jump that occurs

upon the jth increment of N i
t+1. The intensity process for Nt+1 is l1σ

2
t , where l1 =(

0 l1,x 0 l1,σ2 0
)′

: there are only jumps in the variance and the persistent component

of consumption growth.6 The persistent component of the expected consumption growth

jump size follows an i.i.d. demeaned Gamma distribution multiplied by -1 (that is,

the distribution is negatively skewed with limited right and unlimited left tails): ξx ∼
−Γ(νx,

µx
νx

) + µx. The variance jump size follows an i.i.d. Gamma distribution: ξσ2 ∼
Γ(νσ2 ,

µσ2
νσ2

). Here, νi is the shape and µi
νi

, (i = x, σ2) are the scale parameters, respectively.

These jump variables deliver the potential non-Gaussianities driving variation in the

variance risk premium. However, consumption growth itself is conditionally Gaussian in

this model.

The model is calibrated monthly to match a wide set of unconditional macroeconomic

and financial moments of quarterly US data 1930-2006. The parameters are in Internet

6There are no jumps in the long-run mean of the volatility.
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Appendix II.

3.2.3 Wachter (2013)

Wachter’s model is formulated in continuous time. The utility function is:

Ut = Et

∫ ∞
t

β(1− γ)Us(lnCs −
1

1− γ
ln((1− γ)Us)ds. (7)

Consumption (Ct) and dividends (Dt) follow:

dCt = µCt−dt+ σCt−dBt + (eZ − 1)Ct−dNt,

dDt = (φµ+
1

2
φ(φ− 1)σ2)Dt−dt+ φσDt−dBt + (eφZ − 1)Dt−dNt,

(8)

where Bt is a Brownian motion and Nt is a Poisson process with a time-varying intensity

λt: dλt = κ(λ̄ − λt)dt + σλ
√
λtdBλ,t with Bλ,t also a Brownian motion. Bt, Bλ,t, and

Nt are independent. Z is a time-invariant distribution independent of Bt, Bλ,t, and Nt

which determines the jump (disaster) size. All processes are assumed to be right contin-

uous with left limits. For process x, xt− denotes lims↑t xs (intuitively, this corresponds

to approaching from s < t), and xt denotes lims↓t xs (intuitively, this corresponds to

approaching from s > t).

Parameters are chosen through a combination of estimation and calibration. First,

the distribution of jumps in consumption (eZ − 1) is estimated from a set of 17 OECD

and 5 non-OECD countries between 1870 and 2006. The unconditional jump (disaster)

probability, λ̄, is taken from Barro and Ursua (2008). Second, the remaining parameters

are calibrated to match a set of unconditional macroeconomic and financial moments of

quarterly US data for the 1947-2010 period. Importantly, the moments are matched for

the sample conditional on no disasters, since there have been no consumption disasters in

1947-2010 US data. For this purpose, the model is Euler-discretized and sampled at the

monthly frequency and months with no disasters are picked to compute model-implied

moments. The parameters are reported in Internet Appendix II.
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3.2.4 Bekaert and Engstrom (2017)

The utility function falls into the external habit class:

Et

∞∑
j=t

δj−t
(Cj −Hj)

1−γ − 1

1− γ
, (9)

where Cj is consumption and Hj is the habit stock with Cj > Hj.

Log-consumption and dividend growth (gt+1 and dt+1, respectively) follow:

gt+1 = ḡ + σcpωp,t+1 − σcnωn,t+1,

dt+1 = ḡ + σdpωp,t+1 − σdnωn,t+1,

ωp,t+1 ∼ Γ(p̄, 1)− p̄,

ωn,t+1 ∼ Γ(nt, 1)− nt,

nt+1 = n̄+ ρn(nt − n̄) + σnnωn,t+1,

(10)

where Γ(x, y) is a gamma distribution with shape parameter x and scale parameter y.

Following Campbell and Cochrane (1999), St = Ct−Ht
Ct

, which can be interpreted as

the consumption surplus ratio, is modeled in logs as an autoregressive process:

st+1 = s̄+ φ(st − s̄) + λt(gt+1 − ḡ),

λt =

 1
st

√
1− 2(st − s̄)− 1, if st < st,max

0, otherwise
,

st,max = s̄+
1

2
(1− S̄2

t ),

S̄t =

√
(σ2

cpp̄+ σ2
cnnt)

γ

1− φ− b
γ

.

(11)

Note that the surplus ratio shock is perfectly correlated with consumption growth.

The modeling of the price of risk variable, λt, is analogous to the specification in Campbell

and Cochrane (1999), adjusted for the presence of consumption heteroskedasticity.

The model is estimated in 3 steps. First, the consumption growth parameters (ḡ, σcp,

σcn, p̄, n̄, ρn, and σnn) are estimated via classical minimum distance to match uncondi-

tional moments of quarterly US consumption growth for the 1958-2013 period. Second,
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dividend growth parameters (σdp and σdn) are estimated to match unconditional dividend

growth volatility and the correlation between consumption and dividend growth. Third,

the preference parameters (δ, γ, s̄, φ, and b) are estimated to minimize the distance

between the model-implied and 1958-2013 US unconditional asset pricing moments. The

parameters are reported in Internet Appendix II.

3.3 General Asset Return Properties

We start by showing how the various models fit the standard salient asset features in

Table 3. All the moments shown are annualized monthly values. For the data moments,

we show two samples, 1990 to 2017 to correspond to the available data we have for the

variance risk premium; and a longer sample extending to 1969. The real risk-free rate

is measured as the difference between the monthly nominal risk-free rate from Ibbotson

Associates and the monthly counterpart to the Survey of Professional Forecasters ex-

pected inflation for the corresponding quarter; specifically, with π the quarterly inflation

forecast, we use (1 + π)
1
3 . The risk-free rate is lower in the short sample (0.64%) than

in the longer sample (1.35%) and has a variability of around 2%. For the stock market,

we use logarithmic returns on the S&P500 index in excess of the risk-free rate. The eq-

uity premium is 4.92% over the short sample and 6.15% over the longer sample with the

volatility at about 15%. We also report the mean and variance of the price dividend ratio,

noting that this variable has been subject to trending behavior due to tax policy changes

in the U.S. (Boudoukh et al., 2007). The standard errors in parentheses are obtained

by block-bootstrapping 10,000 times series of historical length using a block length of 60

months, to accommodate persistence in the levels and volatilities of the variables.

Because we use the calibrations/estimations provided in the various original papers,

we do not expect the various models to fit all these moments exactly. The fit of the BTZ

model is particularly poor, because their calibration focused on the unconditional equity

premium and risk-free levels. However, their calibration also implies very unrealistic

values for other important moments. These values are not reported in the article but

can be directly computed from the formulas in the paper. For instance, the average

annualized physical variance of the equity return obtained by plugging the values into

equation (12) in the paper is 5.70%, which is about one third of the data counterpart.

As another example, plugging the numbers into equation (6) in the paper results in an

average annual price dividend ratio of 2.04. A more serious problem with the model
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part in Bollerslev, Tauchen, and Zhou (2009) is that the model parameters imply that

the consumption growth variance (σ2
g,t) and the variance of consumption growth variance

(qt) both hit the zero-lower bound in more than 10% of the simulations. This results in

significant deviations of simulated asset prices from their theoretical counterparts. For

instance, theoretically the unconditional equity premium in Table 3 is 7.79%, but the

population mean from sampling 100,000 observations is 14.12%. The population value is

much higher, because the equity premium is increasing in consumption growth volatility

and the volatility of volatility variables, and simulated values for these volatilities are

higher than implied by the theoretical model, because the left tails of their distributions

are cut due to the zero-lower bound. Analogously, sampling 100,000 observations to infer

the population mean for the interest rate delivers an average risk-free rate of −2.95%

compared to the theoretical value of 0.69% in Table 3. The population value is much lower

for the same reason as before, but now the risk-free rate is decreasing in the consumption

growth volatility and the volatility of volatility variable. Apparently, the theoretical asset

pricing formulas are unreliable when zero-lower bounds are violated so frequently.

The DY model generally does well with respect to the risk-free rate and equity return

moments generating values for the means of both variables within a two standard devia-

tion band around the data moments. It slightly overshoots equity return volatility, but it

also underestimates the variability of the price-dividend ratio by an order of magnitude.

The asset pricing statistics for Wachter’s model are computed for the population

including disasters. Asset pricing statistics for the sample excluding disasters (which

Wachter argues to be the best comparison for the post-war US data) are not very different

(for instance, the average equity premium is slightly higher and less volatile), because the

intensity of the disaster (λt) and shocks to it, not the disaster realization itself, are the

key variables driving return dynamics. The sample including realized disasters, unlike

the sample excluding disasters, implies rather extreme consumption and dividend growth

statistics: for instance, the annualized consumption growth volatility in the sample with

disasters is 6.22% versus 2.00% in the sample without disasters. However, a consumption

growth model without disasters would have no chance to fit the link between consumption

growth and variance risk premiums. Table 3 reports the “true” (default-free) risk-free rate

in Wachter (2013), whereas Wachter (2013) defines a government bond rate assuming the

bond defaults with a probability of 40% when a consumption disaster occurs. This results

in a substantially higher “risk-free” rate of 1.00% versus 0.47% in Table 3. Wachter’s
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model generally fits the salient asset return features well, producing average risk free rates

and an equity premium close to the data moments. It does generate excessive risk-free

rate and equity return volatility, and also overshoots both the mean and volatility of the

price-dividend ratio.

The BEGE model fits the risk-free rate and equity return moments, with the exception

of generating interest rate volatility that is slightly too low. While doing better than the

BTZ and DY models, it still undershoots the mean and the variability of the price-

dividend ratio. Overall, while statistically all models are strongly rejected by the data,

we argue that DY, Wachter (2013), and BEGE fit general asset prices reasonably well.

3.4 Variance Risk Premium Fit

Table 4 focuses on variance risk premium statistics. As indicated before, the variance

risk premium is measured by the difference between V IX2 and the expected physical re-

turn variance. The physical variance is obtained by linearly projecting realized monthly

variances computed using high-frequency data onto their one month lagged values, V IX2,

and squared S&P500 daily returns for the previous trading day and previous 5 trading

days. This model is one of the better models in Bekaert and Hoerova (2014)’s out-of-

sample horse race for forecasting physical realized variances. It simply adds the squared

VIX to the well-known “HAR-RV” forecasting model of Corsi (2009). The variance pre-

mium is only available in the shorter sample and has a mean of 0.0195 and a volatility

of 0.0225, with these moments rather precisely estimated. For ease of economic interpre-

tation, Panel B of Table 4 also reports the volatility premium fit, which simply replaces

the variances by volatilities.

To compute the variance risk premium in the models, our first set of statistics use the

risk-neutral minus physical annualized variance of the aggregate stock market log-return.

Following most of the structural literature, we report the statistics for log instead of

gross returns, but the differences between the two concepts are economically small. As

discussed in Martin (2017), the V IX2 actually represents the risk-neutral entropy and

always exceeds the risk neutral variance in the data. We return to this issue separately

in the next subsection.

Table 4 reveals that the variance risk premium is identically equal to zero in the BTZ

model, as it is a log-normal model (see section 3.1). Both the DY and BEGE models

generate meaningful variance risk premiums, but they are still too small relative to the

16

Electronic copy available at: https://ssrn.com/abstract=3553547



data. The Wachter’s model generates a much too high volatility risk premium of 15%. It

also overshoots the variability of the volatility risk premium, whereas the DY and BEGE

models undershoot it.

Our definition of the variance risk premium is different than the way it is defined

in the original BTZ and DY articles. To illustrate the difference, let rt+1 be the ag-

gregate equity log-return between time t and t + 1 while rt+2 is the aggregate equity

log-return between time t + 1 and t + 2. BTZ define the variance risk premium as the

difference between the risk neutral and physical variance skipping one period (month):

V arQt (rt+2)−V art(rt+2), instead of V arQt (rt+1)−V art(rt+1). This allows them to gener-

ate a positive variance risk premium instead of the zero value under log-normality, which

we report, because returns skipping one period are not log-normal in their model. DY

define the variance risk premium as the sum of the difference between the next month’s

risk-neutral and physical variance, V arQt (rt+1) − V art(rt+1) (which they call the “level

difference”), and the difference between the risk-neutral and physical variance skipping

one month, V arQt (rt+2) − V art(rt+2) (which they call the “drift difference”). This addi-

tional “drift difference” component allows DY to generate a much higher average variance

risk premium: 12.62% instead of 2.35% in Table 4 (which only takes into the account the

“level difference”, the V arQt (rt+1) − V art(rt+1) term). However, both the BTZ and DY

definitions of the variance risk premium are inconsistent with the real-world specification

of the VIX and variance swaps.

Finally, we report the autocorrelation of the variance risk premium. The premium’s

autocorrelation is only 0.52 in the data. This low value may reflect measurement error,

because we require an empirical model to measure the physical variance, which surely

introduces some noise. For instance, Figure 1 illustrates that the variance risk premium is

particularly volatile during the Great Recession when financial markets were in turmoil,

potentially leading to imprecise measurement. However, even during the period pre-Great

Recession (January 1990-November 2007), the variance risk premium autocorrelation was

only 0.49. Furthermore, the value of around 0.50 is robust to alternative models of the

conditional physical variance.

Nevertheless, all the models generate very persistent autocorrelation. The main reason

for this is that the model’s state variables, which determine all asset prices, including

the variance risk premium, are all very persistent. This persistence is required, so that
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realistically small shocks to the state variables generate realistically large asset pricing

implications.7

3.5 Martin (2017) bounds

In Table 5, we report the average VIX and SVIX, computed as proposed by Martin

(2017), and the average difference for the 1996-2012 sample, the sample period used

in Martin’s (2017) article. The difference is 1.41% on average. None of the models

can actually fit the Martin’s bounds. In line with Result 4 in Martin (2017), BTZ

counterfactually implies a negative difference between VIX and SVIX as it is a log-

normal model. The rare disasters model of Wachter (2013) substantially overstates the

differnce (6.48% versus 1.41% in the data). The BEGE and DY models do generate

smallish positive SVIX-VIX differences, with the BEGE model slightly better than the

DY model (0.18% versus 0.08%), although the difference is not substantial. Both models

still dramatically underfit the VIX-SVIX difference.

The economic intuition behind this result is explained in Section VII of Martin (2017).

The V IX2 can be viewed as a risk-neutral return entropy while SV IX2 is a measure of

the risk-neutral return variance; viewed as a portfolio of options, the VIX weights option

prices by the inverse of squared strike prices, whereas the SVIX uses equal weighting.

Therefore, the V IX2 is more sensitive to left-tail events (relative to SV IX2), while

SV IX2 is more sensitive to right tail events (relative to V IX2). Thus, the disaster

model generating a V IX much higher than the SV IX indicates that left-tail return

outcomes are too severe compared to right-tail outcomes in the model, compared to the

data. Similarly, the other models fail to generate a large enough V IX compared to the

SV IX, indicating that the left-tail return outcomes are not severe enough compared to

right-tail outcomes in these models compared to the data. Overall, fitting options data

requires that the left side of the risk-neutral return distribution is somewhat, but not too

much, heavier than the right side of the distribution.

No model that we examined produces the tail behavior implied by the Martin (2017)

bounds. Note that BTZ is not able to produce such a behavior even theoretically, as it

is log-normal (see section 3.1), whereas the disaster risk model in Wachter (2013) cannot

7Another potentially interesting moment is the skewness of the variance or volatility risk premium.
However, we find that the skewness of the variance risk premium is not a robust moment, varying between
sharply negative and sharply positive depending on how the physical variance is computed, while it is
close to zero using our baseline methodology.
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produce this behavior without altering its basic asset pricing fit, because a heavy left-tail

of consumption growth is required to reproduce all key asset pricing moments, including

the equity premium and low risk-free rate. This heavy left-tail then implies that risk-

neutral entropy of the aggregate return is much higher than its risk-neutral variance,

because the risk-neutral return distribution is strongly left-skewed. Of the four models

we consider, only DY and BEGE are potentially able to reproduce the observed tail

behavior, albeit under alternative parameterizations than in the original papers.

3.6 Consumption Growth Quantile Shifts and the Variance Pre-

mium

The essence of a consumption-based asset pricing model is to link actual consumption

data to asset returns. In Section 2, we showed that there is a significant link between the

downward shifts in the left tail of consumption growth and the incidence of high variance

risk premiums. Here we examine which of the existing models can fit this data pattern.

We collect the results in Table 6, reporting the results replicating the data results of

Table 1 for samples of 1,000,000 months simulated from the various models. We show

the 10th, 50th and 90th percentile of the consumption growth distribution, conditioning

on either the variance premium being above its 80th unconditional percentile or below its

20th percentile. We also report the difference in the furthermost right column.

Panel A of Table 6 indicates that BTZ model is not able to replicate the downward shift

in the left percentiles of consumption growth following the high variance risk premium.

Instead, in the model a high variance risk premium signals a low conditional variance

of consumption growth. The underlying mechanism owes to the fact that a positive

variance risk premium and equity risk premium cannot coexist in conditionally log-normal

models (see Internet Appendix I) because the former (latter) is increasing (decreasing)

in the covariance between returns and the stochastic discount factor. Let’s denote this

covariance as σmr,t. Note that σmr,t = ρmr,tσm,tσr,t, where ρ is the correlation coefficient

and σm/r represent standard deviations. In the BTZ calibration, ρmr,t is negative, as

it is a necessary condition to achieve a positive equity premium. At the same time,

σm,t and σr,t are increasing in the conditional consumption growth volatility, because,

in the BTZ model, dividend growth is assumed to equal consumption growth, and with

Epstein-Zin preferences the pricing kernel encompasses both consumption growth and

the aggregate wealth return. Thus, in BTZ a higher conditional consumption growth
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volatility decreases σmr,t, which then decreases the variance risk premium. Note that the

conditional consumption growth volatility in the BTZ model is unrealistically high for

both the high variance risk premium and, especially, for the low variance risk premium

realizations. This is because the simulated consumption growth volatility is much higher

than the consumption growth volatility implied by theory (which is realistic), due to the

volatility often hitting the zero-lower bound as discussed in Section 3.3.

Panel B of Table 6 shows that the model of Drechsler and Yaron (2011) also cannot

match the asymmetric percentile shifts documented before. Instead, the higher variance

risk premium is associated with a higher “symmetric” volatility of consumption growth

next period: that is left-tail percentiles shift to the left and right-tail percentiles shift

to the right by the same amount. This occurs because in the model the variance risk

premium is linearly proportional to σ2
t (the consumption growth volatility) and to the

intensity of jumps in long-run consumption growth xt and volatility (see equation (22)

in Drechsler and Yaron, 2011). Economically, the variance risk premium is high when

σ2
t is high, because σ2

t is the intensity of future jumps in long-run consumption growth

xt and the volatility of consumption growth, and an Epstein-Zin agent is averse to un-

certainty about these jumps. Note from equation (4) in Drechsler and Yaron (2011)

that possible jumps in xt only affect consumption growth between time t + 1 and t + 2;

however, consumption growth between t and t + 1 is conditionally Gaussian and, thus,

symmetric at time t, making asymmetric percentile shifts impossible. Theoretically, the

model of Drechsler and Yaron (2011) could generate the percentile shift in the left tail

of consumption growth distribution by skipping one month (that is, for consumption

growth between t + 1 and t + 2) through the higher probability of a left-skewed jump

in long-run consumption growth xt. However, Panel C of Table 6 documents that this

is not the case: while the shift happens, it is economically negligible. The magnitude

is small because in long-run risk models, variation in xt (where the jump happens and

which represents predictable consumption growth) contributes little to the total variation

in consumption growth. An alternative specification with normally (instead of gamma)

distributed jumps in xt considered by Drechsler and Yaron (2011), cannot generate even

the minor shift shown in Panel C of Table 6, because Gaussian jumps are symmetric.

Panel D of Table 6 shows that Wachter’s model generates a minuscule shift in the left

conditional percentiles of the consumption growth distribution. The shift is much smaller

than the one observed in the data. This is because the disasters are very extreme and,
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thus, affect percentiles of the distribution that are more extreme than the 10th percentile

on which we condition. This mismatch between the assumptions regarding consumption

data in disaster risk models and option prices is reminiscent of but different than the

evidence in Backus, Chernov, and Martin (2011), who show that options data imply

less extreme disasters than those implied by disaster consumption models. Panel E of

Table 6 shows that the BEGE model replicates the left-tail percentile shifts conditioned

on the high variance risk premium reasonably well, although the shifts are of somewhat

smaller magnitude than observed in the data. BEGE is able to replicate these shifts,

through the bad environment shock ωsn,t. A large bad environment shock increases the

shape parameter of the bad consumption shock, shifting the left-tail percentiles of con-

ditional consumption growth distribution down. Simultaneously, the shock decreases the

surplus ratio increasing risk-aversion. These increases in the shape parameter of the bad

consumption shock together with the increasing risk aversion then increase the variance

risk premium (see Figure 8 in Bekaert and Engstrom, 2017). Note that the BEGE model

also generates a small increase in the right-tail percentiles of the conditional consumption

growth distribution following a high variance risk premium. This occurs because increas-

ing the “bad” shape parameter also increases the magnitude of the right tail realizations

from the bad environment component, although the magnitude is not nearly as strong as

for the left tail because the right tail of the bad environment distribution component is

finite (see Figure 3 in Bekaert and Engstrom, 2017). The evidence for such a right-tail

shift in the data is mixed however (see Table 2).

To summarize, the DY and BTZ models are not able to reproduce the link between the

downward shifts in the left tail of consumption growth and the incidence of high variance

risk premiums even theoretically, because these models feature conditionally Gaussian one

period ahead consumption growth (although DY model features non-Gaussian jumps in

the variance of the future consumption growth and expected consumption growth). The

Wachter (2013) model is not able to replicate the link, because the model requires negative

consumption growth realizations which are too severe to fit key asset pricing moments.

However, Bekaert and Engstrom’s BEGE model does fit the conditional quantile shifts

in consumption growth.
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4 A New Model

Given that extant models cannot fully fit the empirical facts, we develop an alterna-

tive model here. We have established that BTZ is not able to generate a positive variance

risk premium, because it is conditionally Gaussian. DY, while featuring a conditionally

non-Gaussian stochastic discount factor, is not able to replicate conditional consumption

growth quantile shifts, because consumption growth in the model is conditionally Gaus-

sian. The rare disaster model implies that the risk-neutral entropy is too high compared

to the risk-neutral variance due to the heavy left-tail of the consumption growth neces-

sary to fit standard asset pricing moments. While Bekaert and Engstrom’s (2017) BEGE

model fits the variance risk premium moments poorly at the parameters used in the arti-

cle, it is the only model featuring the economic mechanisms that can match the stylized

facts under an alternative parameterization. However, the evaluation of the BEGE model

requires a time-consuming numerical solution procedure, greatly decreasing its practical

appeal. Thus, we propose a considerably more tractable version of the BEGE model,

which allows for quasi closed-form asset pricing solutions, to study if the model is able

to fit the stylized facts. In Section 4.1, we outline the model and derive expressions for

the risk-neutral and physical variances and the variance risk premium. In Section 4.2, we

provide estimation results for the model parameters and consider its fit with the data.

Section 4.3 considers a slightly different model, focused on fitting the persistence of the

variance risk premium. In Section 4.4, we consider a model incorporating a preference

shock.

4.1 A Tractable BEGE-habit Model

The utility function is standard and given by:

Et

∞∑
j=t

βj−t
(Cj −Hj)

1−γ − 1

1− γ
, (12)

where β is the discount rate, Cj is consumption and Hj is the habit stock with Cj > Hj.

Log-consumption growth, gt+1, has a constant conditional mean but BEGE shocks:

gt+1 = ḡ + σcpωp,t+1 − σcnωn,t+1, (13)
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where σcp > 0 and σcn > 0 and

ωp,t+1 ∼ Γ(pt, 1)− pt,

ωn,t+1 ∼ Γ(nt, 1)− nt,
(14)

where Γ(x, y) is a gamma distribution with shape parameter x and scale parameter y.

Given that the mean value of a Γ(x, y)-distributed variable is x · y, ωp,t+1 and ωn,t+1 are

zero-mean.

The top plot of Figure 4 Panel A illustrates that the probability density function of

ωp,t+1, the “good” component, is bounded from the left and has a long right tail. Similarly,

the middle plot of Figure 4 Panel A shows that the probability density function of −ωn,t+1

(the “bad” component) is bounded from the right and has a long left tail. Finally, the

bottom plot of Figure 4 Panel A plots the component model which has both tails.

We assume that the shape parameters follow autoregressive processes with the same

shocks as the shocks driving consumption growth (see also Gourieroux and Jasiak, 2006):

pt+1 = p̄+ ρp(pt − p̄) + σppωp,t+1,

nt+1 = n̄+ ρn(nt − n̄) + σnnωn,t+1.
(15)

Panel B of Figure 4 illustrates possible conditional distributions of consumption

growth shocks which could arise as a result of the time variation in the shape parameters

in (15). In particular, the probability density function at the top plot of Figure 4 Panel

B characterizes the situation where pt is relatively large and the component distribution

has a pronounced right tail, while the probability density function at the bottom plot of

Figure 4 corresponds to the case where nt is relatively large and the component distri-

bution exhibits a pronounced left tail. Consequently, pt (nt) acts as good (bad) variance

that is associated with positive (negative) skewness in consumption growth.

Analogously to Bekaert, Engstrom, and Grenadier (2010) and Bekaert, Engstrom, and

Xu (2019), we model Qt = Ct
Ct−Ht , which can be interpreted as an inverse consumption

surplus ratio. Denoting qt = ln(Qt), we assume:

qt+1 = q̄ + ρq(qt − q̄) + σqpωp,t+1 + σqnωn,t+1. (16)
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The qt-process drives time-variation in the effective risk aversion of the representative

agent. While we assume the process to be an AR(1), the shocks depend on the same

shocks as consumption growth does. Economically, we expect σqn > 0 and σqp < 0.

Unlike the models in Campbell and Cochrane (1999) and Bekaert and Engstrom (2017),

consumption growth and risk aversion are not perfectly correlated.

We assume the following model for log-dividend growth, dt+1:

dt+1 = ḡ + γg(σcpωp,t+1 − σcnωn,t+1) (17)

We use γg = 3.0762 to match the dividend growth variance, where the monthly

dividend growth is computed as the monthly growth of real unsmoothed annual S&P500

dividends.8 Modelling dividends as levered consumption is popular in the literature with

Bollerslev, Tauchen and Zhou (2009) using γg = 1, and Drechsler and Yaron (2011) and

Wachter (2013) using γg = 3.

The log-pricing kernel, mt+1, for this model can be written as:

mt+1 = m0 +mqqt +mω,pωp,t+1 +mω,nωn,t+1, (18)

where:

m0 = ln β − γḡ + γq̄(1− ρq),

mq = −γ(1− ρq),

mω,p = γ(σqp − σcp),

mω,n = γ(σqn + σcn).

(19)

In all our estimations we find mω,p < 0 and mω,n > 0, that is, good environment shocks

decrease marginal utility and bad environment shocks increase marginal utility.

The key formula to derive most of the results is that for a demeaned gamma random

variable X ∼ Γ(k, θ) − kθ, where k is the shape and θ is the scale parameter, E(eX) =

e−g(θ)k, where the function g(x) is defined as g(x) = x+ln(1−x). Note that g(·) is always

negative. This requires θ < 1. Note that while our fundamental shocks ωp,t+1 and ωn,t+1

8An asset pricing fit similar to the one reported below can be obtained with any values of γg between
1 and 6.
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in (14) formally have θ = 1, in the model they are always premultiplied by σ-coefficients

which are less than 1, making the effective scale of these shocks less than 1, because the

scale of a gamma distributed variable with unit scale multiplied by σ is σ.

The risk-free rate

The continuously compounded log-risk-free rate, rf,t, can be determined the usual

way as the negative of the logarithm of the conditional expectation of the exponentiated

pricing kernel in (18):

rf,t = f0 + fqqt + fppt + fnnt, (20)

where:

f0 = − ln β + γḡ − γq̄(1− ρq),

fq = γ(1− ρq),

fp = g(mω,p),

fn = g(mω,n).

(21)

Here qt represents an intertemporal smoothing effect and is positively associated with

the short rate (fq > 0), whereas pt and nt represent precautionary savings effects and

are negatively associated with the short rate (fn < 0 and fp < 0). Note that in our

estimation fnnt is usually much larger than fppt in magnitude, and therefore the short

rate’s dependence on nt is more pronounced than its dependence on pt.

Equity pricing

The price-dividend ratio can be computed as:

Pt
Dt

= Et

∞∑
i=1

e
∑i
j=1mt+j+dt+j . (22)

By recursively plugging the dividend dynamics from (17) and the stochastic discount

factor from (18) into (22), we obtain an expression for the price-dividend ratio of the

following form:

Pt
Dt

=
∞∑
i=1

eAi+Bipt+Cint+Diqt , (23)
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where the A, B, C, and D coefficients follow difference equations described in Internet

Appendix III. With pdt = ln( Pt
Dt

), we log-linearize equation (23) using a Taylor series

approximation to find:

pdt ≈ K1
0 +K1

ppt +K1
nnt +K1

q qt, (24)

where we again relegate the actual expressions for the K1-coefficients to Internet Ap-

pendix III.

The aggregate market return is defined as:

Rt+1 =
Pt+1 +Dt+1

Pt
=
Dt+1

Dt

1 + Pt+1

Dt+1

Pt
Dt

, (25)

yielding the log-return, rt+1:

rt+1 = dt+1 + ln(1 +
Pt+1

Dt+1

)− pdt. (26)

Analogously to pdt, we can linearize ln(1 + Pt+1

Dt+1
) via a Taylor series approximation as:

ln(1 +
Pt+1

Dt+1

) ≈ K2
0 +K2

ppt+1 +K2
nnt+1 +K2

q qt+1, (27)

where the K2 coefficients are reported in Internet Appendix III.

By plugging (17), (24), and (27) into (26) we obtain the following expression for the

log-return:

rt+1 ≈ r0 + rppt + rnnt + rqqt + rω,pωp,t+1 + rω,nωn,t+1, (28)

where the exact expressions for the coefficients r0, rp, rn, rω,p, and rω,n are once again

in Internet Appendix III. In all our estimations we find rω,p > 0 and rω,n < 0, that is,

good environment shock realizations increase equity returns and bad environment shock

realizations decrease them.

Combining (20) and (28), we get the following expression for the equity premium:

Et(rt+1 − rf,t) ≈ (r0 − f0) + (rp − fp)pt + (rn − fn)nt + (rq − fq)qt, (29)
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where in all our estimations (rp − fp) > 0 and (rn − fn) > 0. This makes economic

sense, because both ωp,t+1 (which conditional variance is pt) and ωn,t+1 (which conditional

variance is nt) move the pricing kernel in (18) and the aggregate equity return in (28) in

opposite directions. In contrast, (rq − fq) is 0 up to approximation error, as qt does not

affect the moments of shocks to the pricing kernel.

The variance risk premium

Following most of the extant literature, we first define the variance risk premium

in the model as the difference between risk-neutral and physical variances of log-returns.

From (28) it follows that the conditional physical variance of the aggregate market return

is:

V art(rt+1) = r2
ω,ppt + r2

ω,nnt. (30)

The risk-neutral (Q-measure) variance of the log-return can be computed by eval-

uating the first and second derivative of the risk-neutral moment-generating function:

EQ
t (rt+1) =

d

dν

[
Ete

mt+1+νrt+1

Etemt+1

]
ν=0

,

EQ
t (r2

t+1) =
d2

dν2

[
Ete

mt+1+νrt+1

Etemt+1

]
ν=0

.

(31)

Plugging mt+1 from (18) and rt+1 from (28) into (31) results in:

V arQt (rt+1) = (
rω,p

1−mω,p

)2pt + (
rω,n

1−mω,n

)2nt. (32)

Bringing (30) and (32) together, we obtain the expression for the variance risk pre-

mium:

V arQt (rt+1)−V art(rt+1) = r2
ω,p

[
1

(1−mω,p)2
− 1

]
pt + r2

ω,n

[
1

(1−mω,n)2
− 1

]
nt. (33)

The premium in (33) is affected by both bad and good uncertainty. However, as we argued

before, good environment shocks decrease the pricing kernel (marginal utility), that is

mωp < 0. Therefore, the coefficient on pt is negative. Analogously, bad environment

27

Electronic copy available at: https://ssrn.com/abstract=3553547



shocks increase the pricing kernel (marginal utility), that is mωn > 0. Therefore, bad

uncertainty has a larger effect on the risk neutral than on the physical volatility and the

reverse is true for good uncertainty, consistent with the intuition that risk neutral pricing

shifts mass to high marginal utility states. As a result, bad (good) uncertainty shocks

increase (decrease) the variance risk premium.

V IX2 and SV IX2 studied by Martin (2017) are, in fact, also available in closed form

in the model. Relegating the derivation to Internet Appendix III, we find:

SV IX2
t = V arQt (

Rt+1

Rf,t

) = exp(m0 + 2r0 − f0 + [mq + 2rq − fq]qt+

[2rp − g(mω,p + 2rω,p)− fp]pt + [2rn − g(mω,n + 2rω,n)− fn]nt)− 1.

(34)

While the expression looks quite different from (32), we show below that the actual values

are very close in our estimation. Next we compute V IX2 as the risk neutral entropy:

V IX2 = 2 · [lnEQ
t (
Rt+1

Rf,t

)− EQ
t (ln

Rt+1

Rf,t

)] = 2 · [lnEQ
t (Rt+1)− EQ

t (lnRt+1)] =

2 · [rf,t −Rf,tEt(Mt+1 lnRt+1)] = 2 · [rf,t − exp(rf,t)Et(exp(mt+1)rt+1)].

(35)

Obtaining a closed-form expression for (35), requires computing the expectation of X ·
exp(X), where X ∼ Γ(k, θ) with k being the shape and θ the scale parameters, re-

spectively. Assuming that θ < 1, which is always satisfied in our estimation, Internet

Appendix III demonstrates that:

E[X · exp(X)] =
kθ

(1− θ)k+1
, (36)

which, as Internet Appendix III shows, leads to:

V IX2
t =

2 · [rf,t − erf,t+m0+mqqt · {e−g(mω,p)pt−g(mω,n)nt · (r0 + rppt + rnnt + rqqt)+

e−g(mω,n)ntrω,p · (−pte−g(mω,p)pt + e−mω,ppt
pt

(1−mω,p)pt+1
)+

e−g(mω,p)ptrω,n · (−nte−g(mω,n)nt + e−mω,nnt
nt

(1−mω,n)nt+1
)}].

(37)

The last part of the expression looks reminiscent of (32).
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4.2 Estimation and Empirical Fit

The model is estimated using the classical minimum distance methodology (Wooldridge,

2002). We match unconditional moments of monthly US real consumption growth of non-

durables and services and the financial series used before for the 1990-2017 period. The

following unconditional moments are used in the classical minimum distance estimation:

consumption growth mean, consumption growth standard deviation, consumption growth

skewness (scaled), consumption growth excess kurtosis (scaled), real risk-free rate mean,

real risk-free rate standard deviation, the first lag autocorrelation of the real risk-free

rate, the average equity premium, physical standard deviation of equity returns, the log-

price-dividend ratio mean, standard deviation of the log-price-dividend ratio, the first lag

autocorrelation of the log-price-dividend ratio, the mean of the variance risk premium

(defined as the risk-neutral variance minus the physical variance of the log-return in the

model and V IX2 minus the physical variance from a Corsi (2009)-type model described

above in the data), the standard deviation of the variance risk premium, the difference

between the risk-neutral entropy (V IX2) and the risk-neutral variance (SV IX2). To

simplify the estimation, we set β = 1.00 and pt = p̄. We also set q̄ = 1, as it is not iden-

tified due to always entering asset pricing equations multiplied by γ. We use a diagonal

weighting matrix to avoid collinearity issues and achieve a more balanced moment fit.

The weighting matrix is the diagonal of the inverse of the covariance matrix estimated

from re-sampling 10,000 time series of the historical length with a block length of 60

months.

The first column of Table 7 shows the parameter estimates. In terms of preferences,

γ is close to 2.0, but of course this coefficient no longer represents risk aversion. The qt

process is very persistent, as is typical in habit models; ρq is the main determinant of the

risk-free rate and price-dividend ratio autocorrelation. As expected, ωp,t shocks decrease

risk aversion, that is σqp < 0, whereas ωn,t shocks increase risk aversion, that is σqn > 0.

The latter coefficient is of a much larger magnitude than the former. Unconditionally,

the bad environment process only accounts for 12.3% of the consumption growth variance

( σ2
cnn̄

σ2
cpp̄+σ

2
cnn̄

), but, because pt is constant, nt drives all of its time variation. Therefore, this

ratio increases substantially during recessions. Given that p̄, the unconditional shape

parameter of the good environment shock, is greater than 10, it follows from the properties

of the gamma distribution that good environment shocks are essentially Gaussian. On

the contrary, as n̄ is less than 1, it follows from the properties of the gamma distribution
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that bad environment shocks are very skewed and non-Gaussian. The nt process is highly

persistent.

Table 8 shows how the model fits the data moments. On the right hand side, we

show the data moments and the corresponding standard errors. While the χ2 test for the

overall fit rejects the model at the 5% significance level, the overall fit is good. In fact, the

model moments are always within a two standard error band around the data moments.

The moments driving the statistical rejection, such as the mean consumption growth of

0.17% in the model versus 0.20% in the data, have arguably economically sensible values

in the model.

Taking a closer look at the various moments, the model does generate an equity

premium that is economically smaller than the one observed in the data (but falls within

one standard error around it). This is mainly driven by the large data standard error

associated with the equity premium, which results in a relatively low weight for this

moment in the estimation. Importantly, the model fits the both the mean the variance of

the variance risk premium. It also fits the Martin’s (2017) bound. The model provides the

fit while being entirely consistent with the consumption growth moments. These moments

include a small positive unconditional skewness coefficient and excess kurtosis of around

2.0. Recall that the nt process is very skewed and leptokurtic but unconditionally this

process only accounts for a modest fraction of the total consumption variance and helps

fit the data during recessions, especially the Great Recession.

To further test the model, we consider two moments not used in the estimation:

consumption growth percentile shifts conditional on the variance risk premium and the

autocorrelation of the variance risk premium. Table 9 shows the consumption growth

percentile shifts conditional on the variance risk premium. The model generates the

downward shift in the 10th percentile when the variance risk premium is high, while

showing no other shifts, as is true in the data. However, the shift in the 10th percentile

is smaller than its data counterpart, although still falling inside two standard deviations

from it.

Table 10 shows that the model implied persistence of the variance risk premium is

much higher than in the data. The difference is both statistically and economically large.

Tables 7-10 also report the estimation of a model (the “full” model) with a more
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intricate consumption and dividend growth process:

gt+1 = ḡ + φg(nt − n̄) + σcpωp,t+1 − σcnωn,t+1,

dt+1 = ḡ + φd(nt − n̄) + γg(σcpωp,t+1 − σcnωn,t+1, ) + γn(−σcnωn,t+1).
(38)

First, the conditional means of consumption and dividend growth now vary with nt, as in

Segal, Shaliastovich, and Yaron (2015)’s application of the BEGE model of Bekaert and

Engstrom (2017) and Bekaert, Engstrom, and Ermolov (2015) to a long-run risk model.

Second, apart from the usual leverage term, the dividend growth shock has separate

exposure to ωn,t+1, so that it can have different loadings on good and bad consumption

growth shocks. We use the dividend growth standard deviation, skewness, and kurtosis

as additional moments in the CMD estimation to aid the identification of γg and γn.

Table 7 shows that the overlapping parameters in the base and full models are almost

identical. The conditional means of dividend and consumption growth depend negatively

on nt, in line with the evidence in Segal, Shaliastovich, and Yaron (2015), but only the

consumption growth dependence is statistically significant. In contrast, γn is borderline

significantly negative, so that dividend shocks load heavily on ωn,t making cash flows

riskier than in the base model. The usual leverage coefficient (γg) is close to 3.00, as it

was in the base model.

Table 8 shows that the fit with the data moments is again very good. With one

exception (the standard deviation of equity returns), all moments are within one standard

error of their data counterparts. The model generates slight negative skewness for both

consumption and dividend growth. Not surprisingly, the test of the over-identifying

restrictions now does not reject the model at the 10% level. The equity premium is now

8 basis points higher (almost 1% annualized) than in the base model.

Table 9 reveals that the full model perfectly fits the downward shift in the 10th con-

sumption growth percentile going from low to high variance risk premiums. However, the

full model also generates downward shifts at the 50th and 90th percentiles even though

these are smaller than the negative tail shift, and still within two standard errors of the

shifts observed in the data. This shift is a direct consequence of the dependence of the

mean of consumption growth on nt. Table 10 shows that the full model does not resolve

the failure to fit the variance risk premium persistence.
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4.3 Fitting the Variance Risk Premium Persistence

The model’s failure in fitting the low persistence of the variance risk premium is

easily understood. Both state variables driving asset price dynamics (nt and qt) are

highly persistent. The variance risk premium computed using log returns in (33) in fact

only depends on nt and thus inherits its persistence.

We now investigate if the model is flexible enough to match this moment by explicitly

including it into the classical minimum distance estimation. To conserve space, we rele-

gate all the empirical results to Internet Appendix IV, offering a brief discussion of the

results here. The parameters are largely the same as before, except for the autoregressive

coefficient for nt, which drops from over 0.99 to less than 0.6, and its innovation standard

deviation, which doubles.

Both the base and full models now replicate the low persistence of the variance risk

premium, delivering an autocorrelation of about 0.58 versus 0.52 in the data. While

the models overall are statistically rejected at the 1% significance level, economically the

overall fit is rather adequate. For example, while the standard deviation of the log-price-

dividend ratio in the model is above 2 standard deviations of the data counterpart, the

model implied value of about 0.42 would be consistent with the data if the payout would

be computed as in Boudoukh et al. (2007) and would be lower than the data if the payout

would be computed as in Longstaff and Piazzesi (2004). Overall, of the 16 (19) moments

used in the estimation for the base (full) model, only four moments are outside a two

standard error band around the data moments.

Economically, the most serious violation is that the model-implied variance of the

variance risk premium is very low compared to the data (0.0004 in the model versus 0.0019

in the data). Because the variance risk premium is a linear function of nt, the variance

and persistence of the variance risk premium is increasing in the variance and persistence

of nt. Note from (15) that the unconditional variance of nt is σ2
nnn̄

1−ρ2n
. Decreasing ρn, which

is required to decrease the persistence of the variance risk premium, also decreases the

unconditional variance of nt and consequently the variance of the variance risk premium.

This decrease cannot be offset by changes in other parameters, which are tied to the

consumption growth and asset pricing moments.

The model again matches the left tail consumption growth percentile shifts conditional

on the variance risk premium observed in the data, although these moments are not used
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in the estimation. In fact, the quantile shifts generated by the new models are very

similar to the ones generated under the previous model specifications.

4.4 Model with a Preference Shock

Given that the macroeconomic model in the previous subsection is, despite an ad-

equate economic fit, strongly statistically rejected, we now introduce a pure preference

shock into the model in order to fit the variance risk premium persistence. There are

at least two requirements for the preference shock. First, it needs to be non-Gaussian,

because, as we have shown, a Gaussian shock does not affect the variance risk premium.

Second, the preference shock variance should vary through time and have relatively low

persistence, because the variance risk premium persistence is low in the data. This fol-

lows from the variance risk premium being a linear function of model’s shocks variances

(see equations (30) and (32)). Fortunately, such rapidly mean reverting risk aversion

is consistent with direct and indirect evidence in the recent asset pricing literature (see

Martin, 2017; Bekaert, Engstrom, and Xu, 2019).

We keep the macroeconomic dynamics as in equation (13) and introduce a new pref-

erence shock, ωq,t+1, into the log-inverse consumption surplus ratio equation (16):

qt+1 = q̄ + ρq(qt − q̄) + σqpωp,t+1 + σqnωn,t+1 + σqqωq,t+1. (39)

In line with the rest of our model, ωq,t+1 follows a demeaned gamma distribution:

ωq,t+1 ∼ Γ(st, 1)− st,

st+1 = s̄+ ρs(st − s̄) + σsqωq,t+1.
(40)

The model is solved in closed form exactly as before except that there is one more state

variable, st. We again estimate the model, using the more intricate fundamentals process

of the full model, via the classical minimum distance methodology, but also explicitly

include the variance risk premium autocorrelation at lag 1 as a moment to match.9

Table 11 shows the estimated model parameters. The pure preference shock is strongly

non-Gaussian (s̄ is clearly less than 1), which is required for the shock to have a notable

9We did experiment with a model where qt is also the shape parameter of the ωq,t+1 shock, limiting
the number of state variables to 2. However, in such estimations qt invariably hits its lower boundary of
zero.
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impact on the variance risk premium. Its persistence is low (ρs = 0.5912), which helps to

fit the low variance risk premium persistence. The parameters imply that unconditionally

15.83% of the qt process, which also measures stochastic risk aversion, is driven by a

“sentiment” shock not correlated with fundamentals. While many of the other parameters

are similar to the ones obtained for the full model before (e.g. qt and nt are still highly

persistent), there are also some distinct changes. For example, the qt process loads less

heavily on ωn,t, but the nt process is now estimated to be less non-Gaussian with much

higher innovation variances. The dependence of the consumption process on nt (pt) has

also decreased (increased). This is logical given that the preference shock now helps

account partly for asset price variation. However, the dividend growth process now loads

more heavily on nt than before, making cash flows more exposed to downside risk.

Table 12 shows that, while the model is statistically rejected at the 1% significance

level, it fits the various moments rather well: the vast majority of the model-implied

moments is within one standard deviation of the data counterparts. There is not a single

moment outside a two standard deviation band around the data counterpart.

Table 13 indicates that the model matches the left tail consumption growth percentile

shifts conditional on the variance risk premium observed in the data, although these

moments are once again not used in the estimation. The model-implied shift is now

slightly larger than the value observed in the data, which was not the case before. Note

that the model also generates a slight negative shift in right tail consumption growth

percentiles following a large variance risk premium, although the shift is much smaller

than for the left tail consumption growth percentiles. While the data do not generate

such a shift, the model shift is within one standard error of what is observed empirically.

In sum, the model with a preference shock fits all the salient features of the data.

5 Excess Return Predictability

It is well-known that the variance risk premium predicts stock returns (see Bollerslev,

Tauchen, and Zhou, 2009, for the seminal work in this area). In this section, we verify

whether the various models can replicate the real world predictability. We do so using a

simple univariate regression of future excess stock returns on the variance risk premium.

We also go one step further, and test whether the models can match the evidence uncov-

ered in Bekaert and Hoerova (2014). They regress stock returns onto the variance risk

premium and the conditional (physical) variance of stock returns. They find that the

34

Electronic copy available at: https://ssrn.com/abstract=3553547



variance risk premium predicts stock returns with a positive sign, but the stock market

variance predicts returns with a negative sign. Significant predictability is present at the

one month and three month horizons. This result will be challenging to replicate in many

of the models as they lack on obvious channel for uncertainty to negatively predict stock

returns. Moreover, it implies that volatility dynamics in the model must be driven by at

least two lowly correlated state variables.

Table 14 shows the empirical result for our particular sample for one- and three-month

forecasting horizons. The variance risk premium predicts returns more strongly both

economically and statistically at the three-month horizon, but the regression coefficient

is still significant at the 10% level at the one-month horizon. The evidence regarding

conditional physical uncertainty is weaker in this sample. The coefficient is negative at

both horizons but not statistically significant.10 The addition of the uncertainty variable

does not alter the variance risk premium coefficient or its significance.

Table 14 also shows the regression coefficients produced by various models. The

BTZ model produces the wrong sign both for the variance risk premium and physical

uncertainty. This occurs, because as shown in Internet Appendix I, in log-normal models

the variables which increase the variance risk premium decrease the equity premium.

The DY model moderately and Bekaert and Engstrom (2017) model strongly overshoot

the predictive power of the variance premium for stock returns. Note that in the DY

model physical and risk-neutral variances are perfectly correlated, as both are linear in

σ2
t , rendering the multivariate regression undefined. The same is true for our base and

full models, as the variance risk premium is linear in nt and thus they generate perfect

correlation between the variance risk premium and the conditional variance of stock

returns. The preference shock model has two state variables, so that it can potentially

replicate the bivariate evidence. The new BEGE models generate regression coefficients

that are within a two standard error band of the data values for all coefficients considered

but cannot generate a negative value for the physical conditional variance coefficient. The

rare disaster model does generate such negative coefficients and also generates coefficients

within a two standard error band around all data coefficients. It tends to overshoot

(undershoot) the conditional variance (variance risk premium) coefficient.

10The t-statistics are higher in absolute magnitude for some alternative measurements of the condi-
tional variance, but it appears that the significance is weakened by the addition of more data after 2010,
the end of the Bekaert-Hoerova sample.

35

Electronic copy available at: https://ssrn.com/abstract=3553547



In sum, the predictability evidence is not favorable to the extant models, except for the

disaster models. The new BEGE model introduced in this article can match the evidence

in a statistical fashion. However, as most equilibrium models do, it implies a positive

risk-return trade-off with physical risk, whereas this trade-off in the data is weak and

maybe even negative. Lochstoer and Muir (2019) explain such evidence using a model

where the representative agent underreacts (and ultimately overreacts) to volatility news.

The predictability mechanism in our model is consistent with the empirical evidence in

Kilic and Shaliastovich (2019), as the predictability is driven by the “bad” uncertainty

state variable.

6 Conclusion

In this article, we use properties of the variance risk premium, the premium for selling

variance risk in the equity market, to discipline and refute existing consumption-based

asset pricing models. The main result from our exercise is that extant models have a

hard time matching simultaneously even simple features of asset returns such as the

equity premium with features of options prices as reflected in the properties of the vari-

ance risk premium, and, importantly, the link between consumption growth and option

prices. We therefore introduce a new and tractable model that does fit these facts. The

model features a “BEGE” structure with “good” and “bad” volatility driving consump-

tion growth and risk aversion shocks, with bad (good) volatility decreasing (increasing)

unscaled skewness of these shocks. The model fits the data even better when a small

sentiment shock is allowed.

Bollerslev, Tauchen and Zhou (2009) show that the equity premium and variance

premium are correlated. As an “out-of-sample” experiment, we verify how the various

models match the evidence on the predictability of the variance risk premium for stock

returns. The new BEGE model and Wachter’s (2013) model are the only models that

can fully match the predictability evidence.

While we examine models representing the various main asset paradigms, research

is continually evolving and alternative models may likewise be successful. For instance,

Schreindorfer (2019) combines a non-linear data-generating process for consumption growth

(a special case of the BEGE fundamentals), with generalized disappointment aversion

preferences as in Routledge and Zin (2010) and is able to match several of the data

features we consider. However, Drechsler (2018) shows that disappointment aversion
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preferences imply counterfactual option price dynamics once the disappointment thresh-

old is passed. Our model is not subject to this critique. Schreindorfer (2019) also matches

a decomposition of the equity premium in components driven by tail risks and normal

risks stressed by Bollerslev and Todorov (2011). Beason and Schreindorfer (2019) show

that extant representative agent models fare poorly in matching this evidence but the

published BEGE paper by Bekaert and Engstrom (2017) at least matches part of it. We

plan to verify how our new BEGE model fares with respect to this evidence in future

work.

There are alternative empirical approaches to discipline and refute models that may

prove useful for further testing of the new BEGE model. For example, Zviadadze (2018)

shows that the term structure of risk in expected returns and cash flow growth is challeng-

ing to a number of standard equilibrium models (including disaster risk and long-run risk

models). She assigns a large role to the dynamics of consumption variances in matching

stock return dynamics. Because time-varying consumption variances play a large role in

the BEGE model we introduce, even in the variant with preference shocks, it has potential

to be consistent with her findings.
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Figure 1 – Variance and Volatility Risk Premia. Data is monthly from January 1990 to
December 2017. The variance risk premium is the difference between annualized V IX2

and expected physical variance of the S&P500 return from Corsi (2009)-type model. The
volatility risk premium is the difference between annualized VIX and expected physical
standard deviation of the S&P500 return from Corsi (2009)-type model. NBER recessions
are shaded.

40

Electronic copy available at: https://ssrn.com/abstract=3553547



Figure 2 – Percentiles of Next Month Consumption Growth Conditional on the Current
Variance Risk Premium in the US data. Data is monthly from January 1990 to December
2017. Green up-pointing triangles correspond to quantiles conditional on the low variance
risk premium, and red down-pointing triangles correspond to quantiles conditional on
the high variance risk premium. The variance risk premium is the difference between
V IX2 and expected physical variance of the market return obtained from a Corsi (2009)-
type model. High variance risk premium is defined as the variance risk premium above
80th unconditional percentile in the data and low variance risk premium as the variance
risk premium below 20th unconditional percentile in the data. *** and * correspond to
statistical significance at the 1% and 10% levels, respectively. Statistical significance is
determined based on block-bootstrap standard errors computed by re-sampling 10,000
time series of historical length with the block length of 60 months.

41

Electronic copy available at: https://ssrn.com/abstract=3553547



Figure 3 – Percentiles of Next Year Consumption Growth Conditional on the Current
Variance Risk Premium in the US data. Data is annually from 1929 to 2017. Green up-
pointing triangles correspond to quantiles conditional on the low variance risk premium,
and red down-pointing triangles correspond to quantiles conditional on the high variance
risk premium. High variance risk premium is defined as the variance risk premium above
80th unconditional percentile in the data and low variance risk premium as the variance
risk premium below 20th unconditional percentile in the data. ** corresponds to statistical
significance at the 5% level, respectively. Statistical significance is determined based on
block-bootstrap computed by re-sampling 10,000 time series of historical length with the
block length of 5 years.
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Figure 4 – Bad Environment - Good Environment Distribution. Graphs are probability
density functions.

43

Electronic copy available at: https://ssrn.com/abstract=3553547



Table 1 – Percentiles of Next Month Consumption Growth Conditional on the Current
Variance Risk Premium in US data. Data is monthly from January 1990 to December
2017. The variance risk premium is the difference between V IX2 and expected physical
variance of the market return obtained from a Corsi (2009)-type model. High variance
risk premium is defined as the variance risk premium above 80th unconditional percentile
in the data and low variance risk premium as the variance risk premium below 20th

unconditional percentile in the data. Standard errors in parentheses are block-bootstrap
standard errors computed from 10,000 re-samples of historical length with a block length
of 60 months. *** corresponds to statistical significance at the 1% level.

High variance risk premium Low variance risk premium High-Low Difference
10th percentile -0.23% -0.02% -0.21%***

(0.07%) (0.03%) (0.07%)
50th percentile 0.18% 0.20% -0.02%

(0.06%) (0.03%) (0.05%)
90th percentile 0.50% 0.50% 0.00%

(0.07%) (0.03%) (0.07%)
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Table 2 – Percentiles of Next Month Consumption Growth Conditional on the Current Variance Risk Premium in
US data: Alternative Specifications. Data is monthly from January 1990 to December 2017. In Panels A and B the
variance risk premium is the difference between V IX2 and expected physical variance from a Corsi (2009)-type model. In
Panel C the variance risk premium is computed using conditional physical variance from GJR-GARCH model of Glosten,
Jagannathan and Runkle (1993). In Panel C, high variance risk premium is defined as the variance risk premium above 80th

unconditional percentile in the data and low variance risk premium as the variance risk premium below 20th unconditional
percentile in the data. Standard errors in parentheses are block-bootstrap standard errors computed from 10,000 re-samples
of historical length with a block length of 60 months. *** and ** correspond to statistical significance at the 1% and 5%
levels, respectively.

Panel A: High and low variance risk premia are defined as 75th and 25th unconditional percentiles, respectively
High variance risk premium Low variance risk premium High-Low Difference

10th percentile -0.25% -0.04% -0.20%***
(0.06%) (0.03%) (0.06%)

50th percentile 0.18% 0.20% -0.02%
(0.05%) (0.02%) (0.05%)

90th percentile 0.51% 0.50% 0.00%
(0.06%) (0.02%) (0.06%)

Panel B: High and low variance risk premia are defined as 85th and 15th unconditional percentiles, respectively
High variance risk premium Low variance risk premium High-Low Difference

10th percentile -0.26% -0.01% -0.24%***
(0.07%) (0.03%) (0.08%)

50th percentile 0.15% 0.21% -0.06%
(0.07%) (0.04%) (0.06%)

90th percentile 0.45% 0.50% -0.05%
(0.09%) (0.04%) (0.08%)

Panel C: Variance risk premium is defined as VIX-GJR-GARCH conditional variance
High variance risk premium Low variance risk premium High-Low Difference

10th percentile -0.22% -0.04% -0.18%**
(0.07%) (0.05%) (0.09%)

50th percentile 0.19% 0.20% -0.01%
(0.08%) (0.03%) (0.09%)

90th percentile 0.51% 0.50% 0.01%
(0.09%) (0.04%) (0.10%)

Panel D: Consumption growth conditional on VIX2 alone

High VIX2 Low VIX2 High-Low Difference

10th percentile -0.25% -0.05% -0.20%**
(0.07%) (0.04%) (0.08%)

50th percentile 0.17% 0.21% -0.04%
(0.08%) (0.03%) (0.08%)

90th percentile 0.49% 0.50% -0.01%
(0.09%) (0.04%) (0.09%)
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Table 3 – General Asset Pricing Fit. Values are unconditional moments. Moments are an-
nualized monthly values. In data, the aggregate stock market is approximated by S&P500
index. Real risk-free rate is approximated as the difference between monthly nominal risk-
free rate from Ibbotson Associates and the monthly counterpart of Survey of Professional
Forecasters expected inflation for the corresponding quarter. Block-bootstrap standard
errors in parentheses are obtained by re-sampling 10,000 time series of the historical length
with a block length of 60 months. ** and *** correspond to the rejection of the model at
the 5% and 1% significance levels, respectively. BTZ refers to Bollerslev, Tauchen, and
Zhou (2009), DY to Drechsler and Yaron (2011), Wachter to Wachter (2013), and BEGE
to Bekaert and Engstrom (2017).

BTZ DY Wachter BEGE US: 1990-2017 US: 1969-2017

E(rf,t) 0.69% 0.95% 0.47% 1.24% 0.64% 1.35%
(0.60%) (0.52%)

Std(rf,t) 9.86% 2.12% 2.73% 1.46% 1.92% 2.30%
(0.18%) (0.21%)

E(rt − rf,t) 7.79% 6.04% 4.92% 6.15% 4.92% 6.15%
(2.69%) (2.02%)

Std(rt) 5.70% 18.10% 21.31% 16.81% 14.64% 15.64%
(1.33%) (0.86%)

E( PtDt ) 2.04 19.96 93.77 19.53 51.95 40.74

(4.69) (4.94)

Std( PtDt ) 0.09 2.96 26.72 5.35 14.30 17.25

(2.61) (2.86)

χ2-test (1990-2017) 3468∗∗∗ 190∗∗∗ 130∗∗∗ 144∗∗∗

χ2-test (1990-2017): no P
D stats 2645∗∗∗ 12∗∗ 43∗∗∗ 20∗∗∗

χ2-test (1969-2017) 1647∗∗∗ 83∗∗∗ 177∗∗∗ 123∗∗∗

χ2-test (1969-2017): no P
D stats 1611∗∗∗ 15∗∗ 64∗∗∗ 21∗∗∗
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Table 4 – Variance and Volatility Risk Premium Moments Fit. Values are computed
from monthly data and annualized. The model variance risk premium is defined as the
difference between the conditional risk-neutral and physical variances of the next month’s
log-market return. The model volatility risk premium is defined as the difference between
the conditional risk-neutral and physical standard deviations of the next month’s log-
market return. In data the risk-neutral log-return variance is proxied by V IX2 and
physical log-return variance by the value implied by a Corsi (2009)-type model using
high-frequency data. In data the risk-neutral log-return volatility is proxied by V IX
and physical log-return standard deviation by the value implied by a Corsi (2009)-type
model using high-frequency data. The block-bootstrap standard error in parentheses are
obtained by re-sampling 10,000 time series of the historical length with a block length of
60 months. BTZ refers to Bollerslev, Tauchen, and Zhou (2009), DY to Drechsler and
Yaron (2011), Wachter to Wachter (2013), and BEGE to Bekaert and Engstrom (2017).

Panel A: Variance Risk Premium Moments Fit
BTZ DY Wachter BEGE US: 1990-2017

Mean 0.0000 0.0093 0.1208 0.0064 0.0195
(0.0026)

Standard deviation 0.0000 0.0199 0.1025 0.0023 0.0225
(0.0051)

Lag 1 autocorrelation 1.00 0.90 0.99 0.95 0.52
(0.09)

Panel B: Volatility Risk Premium Moments Fit
BTZ DY Wachter BEGE US: 1990-2017

Mean 0.00% 2.35% 15.08% 1.87% 5.36%
(0.58%)

Standard deviation 0.00% 1.94% 9.52% 0.39% 4.02%
(0.33%)

Lag 1 autocorrelation 1.00 0.89 0.99 0.97 0.45
(0.10)
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Table 5 – Martin (2017) Bound Fit. Standard errors in parentheses are computed via
bootstrapping the historical time series 10,000 times. VIX and SVIX are defined as in
Martin (2017). Model values are obtained by simulating 100,000 monthly observations
for each model. BTZ refers to Bollerslev, Tauchen, and Zhou (2009), DY to Drechsler and
Yaron (2011), Wachter to Wachter (2013), and BEGE to Bekaert and Engstrom (2017).

BTZ DY Wachter BEGE US: 1996-2012

V IX 19.58% 16.70% 38.79% 17.94% 22.32%
Standard error (0.59%)
SV IX 19.61% 16.62% 32.31% 17.76% 20.91%
Standard error (0.53%)
V IX − SV IX -0.03% 0.07% 6.48% 0.18% 1.41%
Standard error (0.06%)
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Table 6 – Percentiles of Next Month Consumption Growth Conditional on the Current
Variance Risk Premium Fit. In models the variance risk premium is defined as the differ-
ence between the conditional risk-neutral and physical variances of log-market returns.
In data the risk-neutral log-return variance is proxied by V IX2 and physical log-return
variance by the value implied by a Corsi (2009)-type model using high-frequency data.
High variance risk premium is defined as the variance risk premium above 80th uncondi-
tional percentile and low variance risk premium as the variance risk premium below 20th

unconditional percentile. Values are computed numerically by simulating time series of
1,000,000 months under each model. BTZ refers to Bollerslev, Tauchen, and Zhou (2009),
DY to Drechsler and Yaron (2011), Wachter to Wachter (2013), and BEGE to Bekaert
and Engstrom (2017). For the High-Low Difference, *** indicates that the model value
is more than 2.58 standard deviations away from the data counterpart.

Panel A: BTZ

High variance risk premium Low variance risk premium High-Low Difference

10th percentile -1.62% -11.91% 10.29%∗∗∗

50th percentile 0.15% 0.15% 0.00%
90th percentile 1.92% 12.21% −10.29%∗∗∗

Panel B: DY

High variance risk premium Low variance risk premium High-Low Difference

10th percentile -1.06% -0.47% −0.59%∗∗∗

50th percentile 0.16% 0.16% 0.00%
90th percentile 1.38% 0.79% 0.59%∗∗∗

Panel C: DY skipping forward one month

High variance risk premium Low variance risk premium High-Low Difference

10th percentile -1.03% -0.47% −0.56%∗∗∗

50th percentile 0.16% 0.16% 0.00%
90th percentile 1.34% 0.79% 0.55%∗∗∗

Panel D: Wachter

High variance risk premium Low variance risk premium High-Low Difference

10th percentile -0.55% -0.53% −0.02%∗∗∗

50th percentile 0.20% 0.21% -0.01%
90th percentile 0.94% 0.94% 0.00%

Panel E: BEGE

High variance risk premium Low variance risk premium High-Low Difference

10th percentile -0.31% -0.20% -0.11%
50th percentile 0.17% 0.16% 0.01%
90th percentile 0.56% 0.51% 0.05%

Panel F: US 1990-2017

High variance risk premium Low variance risk premium High-Low Difference

10th percentile -0.23% -0.02% -0.21%
50th percentile 0.18% 0.20% -0.02%
90th percentile 0.50% 0.50% 0.00%
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Table 7 – Classical Minimum Distance Parameter Estimates. Values are monthly. The
weighting matrix is the inverse of the covariance matrix estimated from re-sampling 10,000
time series of the historical length with the block length of 60 months. A diagonal
weighting matrix is used. Standard errors are in parentheses.

Base model Full model
Preferences

β 1.0000 1.0000
(fixed) (fixed)

γ 1.9870 2.0593
(0.5972) (0.6480)

q̄ 1.0000 1.0000
(fixed) (fixed)

ρq 0.9904 0.9873
(0.0121) (0.0147)

σqp −2.64 · 10−5 −2.39 · 10−5

(0.0011) (0.0009)
σqn 0.1140 0.1203

(0.0327) (0.0330)
Consumption growth

ḡ 0.0017 0.0019
(0.0002) (0.0002)

σcp 0.0007 0.0006
(0.0002) (0.0002)

σcn 0.0035 0.0033
(0.0005) (0.0005)

p̄ 11.0848 16.6721
(4.8705) (6.1193)

n̄ 0.0621 0.0822
(0.0211) (0.0223)

ρn 0.9954 0.9915
(0.0164) (0.0205)

σnn 0.0327 0.0394
(0.0159) (0.0168)

φg -0.0056
(0.0023)

Dividend growth
φd -0.0007

(0.0019)
γg 2.9255

(0.3628)
γn 0.7336

(0.3930)
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Table 8 – Classical Minimum Distance Moments Fit. Values are monthly. The weighting
matrix is the inverse of the covariance matrix estimated from re-sampling 10,000 time
series of the historical length with the block length of 60 months. The diagonal weighting
matrix is used. In data the risk-neutral log-return variance is proxied by V IX2 and
physical log-return variance by the value implied by a Corsi (2009)-type model using high-
frequency data. ** and *** correspond to the rejection at the 5% and 1% significance
levels, respectively.

Moment Base model Full model Data Data standard error
Consumption growth

E(gt) 0.0017 0.0019 0.0020 0.0002
Std(gt) 0.0024 0.0024 0.0024 0.0002
Skw(gt) 0.1170 -0.0100 0.1163 0.3141
ExKur(gt) 2.0166 1.8513 2.0186 0.7741

Risk-free rate
E(rf,t) 0.0013 0.0007 0.0005 0.0004
Std(rf,t) 0.0016 0.0016 0.0016 0.0001
Corr(rf,t, rf,t+1) 0.9858 0.9791 0.9735 0.0093

Dividend growth
Std(dt) 0.0074 0.0075 0.0015
Skw(dt) -0.3444 -0.9717 0.6496
ExKur(dt) 3.5383 3.0077 1.4094

Equity
E(rt − rf,t) 0.0020 0.0028 0.0041 0.0023
Std(rt) 0.0462 0.0455 0.0426 0.0039
E(pdt) 6.4515 6.4326 6.3969 0.0644
Std(pdt) 0.3002 0.2384 0.2796 0.0377
Corr(pdt, pdt+1) 0.9897 0.9846 0.9917 0.0079

Options
V arQ(rt)− V ar(rt) 0.0015 0.0016 0.0016 0.0003

Std(V arQt (rt+1)− V art(rt+1)) 0.0020 0.0017 0.0019 0.0003
V IX2 − SV IX2 0.0007 0.0007 0.0006 0.0001
χ2-statistic 12.5042** 6.2485
p-value 1.49% 10.10%
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Table 9 – Percentiles of Next Month Consumption Growth Conditional on the Current
Variance Risk Premium: Model Implications. The model variance risk premium is de-
fined as the difference between the conditional risk-neutral and physical variances of the
next month’s log-market return. In data the risk-neutral log-return variance is proxied
by V IX2 and physical log-return variance by the value implied by a Corsi (2009)-type
model using high-frequency data. High variance risk premium is defined as the vari-
ance risk premium above 80th unconditional percentile and low variance risk premium
as the variance risk premium below 20th unconditional percentile. Values are computed
numerically by simulating time series of 100,000 months under each model. Data block-
bootstrap standard errors in parentheses are obtained by re-sampling 10,000 time series
of the historical length with a block length of 60 months. *** indicates the statistical
significance of the data value at the 1% level.

Panel A: US data 1990M1-2017M2
High variance risk premium Low variance risk premium High-Low difference

10th percentile -0.23% -0.02% -0.21%***
(0.07%)

50th percentile 0.18% 0.20% -0.02%
(0.05%)

90th percentile 0.50% 0.50% 0.00%
(0.07%)

Panel B: Base model
High variance risk premium Low variance risk premium High-Low difference

10th percentile -0.17% -0.10% -0.07%
50th percentile 0.16% 0.15% 0.01%
90th percentile 0.50% 0.48% 0.02%

Panel C: Full model
High variance risk premium Low variance risk premium High-Low difference

10th percentile -0.24% -0.04% -0.20%
50th percentile 0.11% 0.21% -0.10%
90th percentile 0.44% 0.52% -0.08%
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Table 10 – Variance Risk Premium Monthly Autocorrelation. The data values are for
the difference between the V IX2 and the conditional physical variance estimate from a
Corsi (2009) model. Data standard errors in parentheses are obtained by re-sampling
10,000 time series of the historical length with a block length of 60 months. The model
estimates are for the difference between the conditional risk-neutral and physical variances
of log-returns.

Model US data 1990M1-2017M12
Base Full Estimate Standard error
0.9954 0.9915 0.5197 0.0943

53

Electronic copy available at: https://ssrn.com/abstract=3553547



Table 11 – Classical Minimum Distance Parameter Estimates for the Model with a Pref-
erence Shock. Values are monthly. The weighting matrix is the inverse of the covariance
matrix estimated from re-sampling 10,000 time series of the historical length with the
block length of 60 months. A diagonal weighting matrix is used. Standard errors are in
parentheses.

Preferences
β 1.0000

(fixed)
γ 2.1432

(0.6441)
q̄ 1.0000

(fixed)
ρq 0.9926

(0.0211)
σqp −2 · 10−5

(0.0010)
σqn 0.0204

(0.0096)
σqq 0.2085

(0.0584)
s̄ 0.0037

(0.0018)
ρs 0.5912

(0.0179)
σsq 0.0554

(0.0272)
Consumption growth
ḡ 0.0018

(0.0002)
σcp 0.0017

(0.0003)
σcn 0.0012

(0.0004)
p̄ 0.9003

(0.3710)
n̄ 2.1432

(0.8499)
ρn 0.9938

(0.0295)
σnn 0.1705

(0.0514)
φn -0.0002

(0.0001)
Dividend growth

φd -0.0001
(0.0002)

γg 0.9570
(0.4158)

γn 3.5825
(1.0001)
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Table 12 – Classical Minimum Distance Moments Fit for the Model with a Preference
Shock. Values are monthly. The weighting matrix is the inverse of the covariance matrix
estimated from re-sampling 10,000 time series of the historical length with the block
length of 60 months. A diagonal weighting matrix is used. In the data the risk-neutral
log-return variance is proxied by V IX2 and the physical log-return variance by the value
implied by a Corsi (2009)-type model using high-frequency data. *** corresponds to the
rejection at the 1% significance level.

Moment Model Data Data standard error
Consumption growth

E(gt) 0.0018 0.0020 0.0002
Std(gt) 0.0024 0.0024 0.0002
Skw(gt) 0.1097 0.1163 0.3141
ExKur(gt) 2.0303 2.0186 0.7741

Risk-free rate
E(rf,t) 0.0009 0.0005 0.0004
Std(rf,t) 0.0018 0.0016 0.0001
Corr(rf,t, rf,t+1) 0.9686 0.9735 0.0093

Dividend growth
Std(dt) 0.0081 0.0075 0.0015
Skw(dt) -1.2818 -0.9717 0.6496
ExKur(dt) 2.6162 3.0077 1.4094

Equity
E(rt − rf,t) 0.0025 0.0041 0.0023
Std(rt) 0.0419 0.0426 0.0039
E(pdt) 6.4555 6.3969 0.0644
Std(pdt) 0.2791 0.2796 0.0377
Corr(pdt, pdt+1) 0.9919 0.9917 0.0079

Options
V arQ(rt)− V ar(rt) 0.0015 0.0016 0.0003

Std(V arQt (rt+1)− V art(rt+1)) 0.0015 0.0019 0.0003

AC1(V arQt (rt+1)− V art(rt+1)) 0.5939 0.5197 0.0943
V IX2 − SV IX2 0.0007 0.0006 0.0001
χ2-statistic 8.6043***
p-value 0.37%
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Table 13 – Percentiles of Next Month Consumption Growth Conditional on the Cur-
rent Variance Risk Premium: Model with a Preference Shock. The model variance risk
premium is defined as the difference between the conditional risk-neutral and physical
variances of the next month’s log-market return. In data the risk-neutral log-return vari-
ance is proxied by V IX2 and physical log-return variance by the value implied by a Corsi
(2009)-type model using high-frequency data. High variance risk premium is defined as
the variance risk premium above 80th unconditional percentile and low variance risk pre-
mium as the variance risk premium below 20th unconditional percentile. Model values are
computed numerically by simulating time series of 100,000 months. Data block-bootstrap
standard errors in parentheses are obtained by re-sampling 10,000 time series of the his-
torical length with a block length of 60 months. *** indicates the statistical significance
of the data value at the 1% level.

Panel A: Model with a preference shock
High variance risk premium Low variance risk premium High-Low difference

10th percentile -0.25% 0.08% -0.34%
50th percentile 0.11% 0.19% -0.08%
90th percentile 0.44% 0.48% -0.05%

Panel B: US data 1990M1-2017M2
High variance risk premium Low variance risk premium High-Low difference

10th percentile -0.23% -0.02% -0.21%***
(0.07%)

50th percentile 0.18% 0.20% -0.02%
(0.05%)

90th percentile 0.50% 0.50% 0.00%
(0.07%)
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Internet Appendix I: The Variance Risk Premium un-

der Log-Normality

Denote by Mt+1 the gross pricing kernel at time t + 1, and Rt+1 the gross equity

return at time t + 1. In no arbitrage economies, the usual pricing condition implies

Et[Mt+1Rt+1] = 1. We use lowercase letters to indicate the natural logarithms of upper

case variables.

Proposition 1. If Mt+1 and Rt+1 are conditionally log-normal, then the variance

risk premium for log-returns is 0, that is, the physical variance of log-returns is equal to

their risk-neutral variance.

Proof. Suppose that mt+1 and rt+1 both have linear dependence on a multivariate

conditionally Gaussian state vector, Xt+1:

Xt+1 ∼ N (0,Σt),

mt+1 = m̄t + βmXt+1,

rt+1 = r̄t + βrXt+1.

(41)

Note that the moment-generating function for returns under the physical measure is

defined as:

mgfPt (rt+1; ν) =Et[exp(νrt+1)] = Et[exp(νr̄t + νβ′rXt+1)]

= exp(νr̄t +
1

2
ν2β′rΣtβr).

(42)

Calculating the first derivative of mgfPt (rt+1; ν) with respect to ν and evaluating at

ν = 0 yields the conditional mean of returns:

Et[rt+1] = r̄t. (43)

Calculating the second derivative of mgfPt (rt+1; ν) with respect to ν and evaluating

at ν = 0 yields the uncentered second moment, Et[r
2
t+1]. Using the definition of variance,

this leads to the expected expression for variance under the physical measure:

V art[rt+1] = Et[r
2
t+1]− Et[r2

t+1]2 = β′rΣtβr. (44)
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Next, to calculate risk-neutral conditional moments, we need to evaluate the risk-

neutral moment-generating function, which is defined as:

mgfQt (rt+1; ν) =
Et[exp(mt+1 + νrt+1)]

Et[exp(mt+1)]
. (45)

This simplifies to:

Et[exp(mt+1 + νrt+1)]

Et[exp(mt+1)]
= Et[exp(m̄t + νr̄t + (β′m + νβ′r)Xt+1]

= exp(νr̄t +
1

2
ν2β′rΣtβr +

1

2
β′mΣtνβr +

1

2
β′rΣtνβm).

(46)

We proceed, again, by evaluating successive derivatives of mgfQt (rt+1; ν) with respect to

ν and evaluating at ν = 0. Eventually, we arrive at:

V arQt [rt+1] = βrΣtβr, (47)

so that V arQt [rt+1] = V arPt [rt+1].

Proposition 2. If Mt+1 and Rt+1 are conditionally log-normal, then the conditional

equity premium and the conditional variance risk premium can not simultaneously be

positive.

Proof: Given that Mt+1 and Rt+1 are conditionally log-normal:(
mt+1

rt+1

)
∼ N (

(
m̄t

r̄t

)
,

(
σ2
m,t σmr,t

σmr,t σ2
r,t

)
),

the physical return variance can be computed as:

V art(Rt+1) = Et(R
2
t+1)− Et(Rt+1)2 = e2r̄t+2σ2

r,t − e2r̄t+σ2
r,t = e2r̄t+σ2

r,t(eσ
2
r,t − 1). (48)

The risk-neutral expectation is:

EQ
t (Rt+1) =

Et(Mt+1Rt+1)

Et(Mt+1)
.
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The risk-neutral variance can now be computed as:

Et(Mt+1) = Et(e
mt+1) = em̄t+0.5σ2

m,t ,

Et(Mt+1Rt+1) = Et(e
mt+1+rt+1) = em̄t+r̄t+0.5σ2

m,t+0.5σ2
r,t+σmr,t ,

EQ
t (Rt+1) = er̄t+0.5σ2

r,t+σmr,t ,

Et(Mt+1R
2
t+1) = Et(e

mt+1+2rt+1) = em̄t+2r̄t+0.5σ2
m,t+2σmr,t+2σ2

r,t ,

EQ
t (R2

t+1) = e2r̄t+2σmr,t+2σ2
r,t ,

V arQt (Rt+1) = EQ
t (R2

t+1)− EQ
t (Rt+1)2 = e2r̄t+2σmr,t+2σ2

r,t − e2r̄t+σ2
r,t+2σmr,t =

e2r̄t+σ2
r,t+2σmr,t(eσ

2
r,t − 1).

(49)

Comparing the final line of (49) to the final line of (48), we can see that in order for

the variance risk premium to be positive (V arQt (Rt+1) > V art(Rt+1)) as in the data, it

must be the case that σmr,t > 0.

However, note that σmr,t > 0 implies (counterfactually) a negative equity premium.

This can be seen from the typical Euler equation using properties of the log-normal

distribution:

Et(Mt+1Rt+1) = 1,

em̄t+r̄t+0.5σ2
r,t+0.5σ2

m,t+σmr,t = 1,

em̄t+r̄t+0.5σ2
r,t+0.5σ2

m,t = e−σmr,t ,

Et(Rt+1)Et(Mt+1) = e−σmr,t ,

lnEt(Rt+1)− rf,t = −σmr,t,

(50)

where rf,t is the log-risk-free rate.

60

Electronic copy available at: https://ssrn.com/abstract=3553547



Internet Appendix II: Parameterization of Existing

Models

Model Parameters. The notation follows original articles. Parameterizations are monthly
except for the annual parameterization in Wachter (2013). For Bollerslev, Tauchen, and
Zhou (2009) κ1 is the constant in Campbell and Shiller (1988) log-linearization of the
aggregate market return: rt+1 = κ0 + κ1ωt+1 − ωt + dt+1.

Panel A: Bollerslev, Tauchen, and Zhou (2009)
Preferences δ γ ψ κ1

0.997 10 1.5 0.9
gt µg

0.0015
σ2
g,t aσ ρσ

1.34 · 10−6 0.978
qt aq ρq φq

2 · 10−7 0.8 0.0010
Panel B: Drechsler and Yaron (2011)

Preferences δ γ ψ
0.999 9.5 2.0

gt g0 ϕc ωc
0.0016 0.0066 0.5

xt x0 ρx ϕx ωx l1,x µx νx
0 0.976 0.0002 1 0.0667 0.0008 1

σ̄2
t σ̄2

0 ρσ̄2 ϕσ̄2 ωσ̄2

0.015 0.985 0.1 0
σ2
t σ2

0 ρσ2 ϕσ2 ωσ2 l1,σ2 µσ2 νσ2

0 0.87 0.35 1 0.0667 2.55 1
dt d0 φ ϕd ωd Ωcd

0.0016 2.5 0.0376 0.125 0.2
Panel C: Wachter (2013)

Preferences β γ
0.012 3

Ct µ σ Z
0.0252 0.02 Table 8 in Barro and Ursua (2008)

Dt φ
2.6

λt λ̄ κ σλ
0.0355 0.08 0.067

Panel D: Bekaert and Engstrom (2017)
Preferences δ γ s̄ φ b

0.9999 11.43 -1.5585 0.9963 0.0099
gt ḡ σcp σcn p̄ n̄ ρn σnn

0.0014 0.0007 0.0019 11.43 1.56 0.91 0.32
dt σdp σdn

-0.0055 0.0217
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Internet Appendix III: Model Solution

The price-dividend ratio is:

Pt
Dt

=
∞∑
i=1

eAi+Bipt+Cint+Diqt ,

A1 = ln β + (1− γ)ḡ + γ(1− ρq)q̄,

B1 = −g(mω,p + ασcp),

C1 = −g(mω,n − ασcn),

D1 = −γ(1− ρq),

An = An−1 + A1 +Bn−1p̄(1− ρp) + Cn−1n̄(1− ρn) +Dn−1q̄(1− ρq),

Bn = Bn−1ρp − g(mω,p + ασcp +Bn−1σpp +Dn−1σqp),

Cn = Cn−1ρn − g(mω,n − ασcn + Cn−1σnn +Dn−1σqn),

Dn = Dn−1ρq +D1.

(51)

The Taylor series log-linearization of (51) is:

pdt ≈ K1
0 +K1

ppt +K1
nnt +K1

q qt,

K1
p =

∑∞
i=1Bi exp(Ai +Bip̄+ Cin̄+Diq̄)∑∞
i=1 exp(Ai +Bip̄+ Cin̄+Diq̄)

,

K1
n =

∑∞
i=1Ci exp(Ai +Bip̄+ Cin̄+Diq̄)∑∞
i=1 exp(Ai +Bip̄+ Cin̄+Diq̄)

,

K1
q =

∑∞
i=1Di exp(Ai +Bip̄+ Cin̄+Diq̄)∑∞
i=1 exp(Ai +Bip̄+ Cin̄+Diq̄)

,

K1
0 = ln[

∞∑
i=1

exp(Ai +Bip̄+ Cin̄+Diq̄)]−K1
p p̄−K1

nn̄−K1
q q̄.

(52)
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The Taylor series linearization of ln(1 + Pt+1

Dt+1
) is:

ln(1 +
Pt+1

Dt+1

) ≈ K2
0 +K2

ppt+1 +K2
nnt+1 +K2

q qt+1,

K2
p =

∑∞
i=1Bi exp(Ai +Bip̄+ Cin̄+Diq̄)

1 +
∑∞

i=1 exp(Ai +Bip̄+ Cin̄+Diq̄)
,

K2
n =

∑∞
i=1 Ci exp(Ai +Bip̄+ Cin̄+Diq̄)

1 +
∑∞

i=1 exp(Ai +Bip̄+ Cin̄+Diq̄)
,

K2
q =

∑∞
i=1Di exp(Ai +Bip̄+ Cin̄+Diq̄)

1 +
∑∞

i=1 exp(Ai +Bip̄+ Cin̄+Diq̄)
,

K0
2 = ln[1 +

∞∑
i=1

exp(Ai +Bip̄+ Cin̄+Diq̄)]−K2
p p̄−K2

nn̄−K2
q q̄.

(53)

The expression for the log-return is:

rt+1 ≈ r0 + rppt + rnnt + rqqt + rω,pωp,t+1 + rω,nωn,t+1,

r0 = ḡ +K2
0 −K1

0 +K2
p p̄(1− ρp) +K2

nn̄(1− ρn) +K2
q q̄(1− ρq),

rp = K2
pρp −K1

p ,

rn = K2
nρn −K1

n,

rq = K2
qρq −K1

q ,

rω,p = ασcp +K2
pσpp +K2

qσqp,

rω,n = −ασcn +K2
nσnn +K2

qσqn.

(54)

SV IX2 can be computed as:

SV IX2 = σ2
Q,t(

Rt+1

Rf,t

) =
1

R2
f,t

σ2
Q,t(Rt+1) =

1

R2
f,t

(EQ
t (R2

t+1)− (EQ
t Rt+1)2) =

1

R2
f,t

(Rf,tEt(Mt+1R
2
t+1)− (Rf,tEt(Mt+1Rt+1))2) =

1

R2
f,t

(Rf,tEt(Mt+1R
2
t+1)−R2

f,t) =

Et(Mt+1R
2
t+1)

Rf,t

− 1 = Et[exp(mt+1 + 2rt+1 − rf,t)]− 1.

(55)
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By plugging (18), (20) and (28) into (55) we obtain:

SV IX2
t = exp(m0 + 2r0 − f0 + [mq + 2rq − fq]qt+

[2rp − g(mω,p + 2rω,p)− fp]pt + [2rn − g(mω,n + 2rω,n)− fn]nt)− 1.
(56)

Computation of E [X · exp(X)], where X ∼ Γ(k, θ) with k being the shape and θ the

scale parameters, respectively:

E[X · exp(X)] =
1

Γ(k)θk

∫ ∞
0

xk−1e−
x
θ xexdx =

1

Γ(k)θk

∫ ∞
0

x(k+1)−1e
− x

θ
1−θ dx =

1

Γ(k)θk
· Γ(k + 1) · ( θ

1− θ
)k+1 · 1

Γ(k + 1) · ( θ
1−θ )

k+1
·
∫ ∞

0

x(k+1)−1e
− x

θ
1−θ dx︸ ︷︷ ︸

=1, as pdf of gamma distribution with shape k + 1 and scale θ
1−θ

=

Γ(k + 1) · ( θ
1−θ )

k+1

Γ(k)θk
=

kθ

(1− θ)k+1
,

(57)

where the last step uses the property of the gamma function that Γ(k + 1) = k · Γ(k)

and the second line requires θ < 1 in order for 1
Γ(k+1)·( θ

1−θ )k+1 ·
∫∞

0
x(k+1)−1e

− x
θ

1−θ dx to be a

proper probability density function. This condition is always satisfied in our estimation.

Now V IX2
t can be computed by plugging (18), (20), and (28) into (35):

V IX2
t = 2 · [rf,t − erf,t·

Et{em0+mqqt+mω,pωp,t+1+mω,nωn,t+1 · (r0 + rppt + rnnt + rqqt + rω,pωp,t+1 + rω,nωn,t+1)}] =

2 · [rf,t − erf,t+m0+mqqt · Et{emω,pωp,t+1+mω,nωn,t+1 · (r0 + rppt + rnnt + rqqt)+

emω,pωp,t+1+mω,nωn,t+1 · (rω,pωp,t+1 + rω,nωn,t+1)}] = 2 · [rf,t − erf,t+m0+mqqt ·

{e−g(mω,p)pt−g(mω,n)nt · (r0 + rppt + rnnt + rqqt) + Et[e
mω,pωp,t+1emω,nωn,t+1rω,pωp,t+1]+

Et[e
mω,pωp,t+1emω,nωn,t+1rω,nωn,t+1]}] = 2 · [rf,t − erf,t+m0+mqqt · {e−g(mω,p)pt−g(mω,n)nt ·

(r0 + rppt + rnnt + rqqt) + e−g(mω,n)ntrω,pEt[e
Mω,pωp,t+1ωp,t+1] + e−g(mω,p)ptrω,nEt[e

Mω,nωn,t+1ωn,t+1]}] =

2 · [rf,t − erf,t+m0+mqqt · {e−g(mω,p)pt−g(mω,n)nt · (r0 + rppt + rnnt + rqqt)+

e−g(mω,n)ntrω,p · (−pte−g(mω,p)pt + e−mω,ppt
pt

(1−mω,p)pt+1
)+

e−g(mω,p)ptrω,n · (−nte−g(mω,n)nt + e−mω,nnt
nt

(1−mω,n)nt+1
)}],

(58)
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where the last step follows from (57).

Internet Appendix IV: Macroeconomic Models Fit-

ting the Variance Risk Premium Persistence

The estimated models are as in section 4.1, but the variance risk premium persistence

is now explicitly included as a moment into the classical minimum distance estimation.

Classical Minimum Distance Parameter Estimates. Values are monthly. The weighting
matrix is the inverse of the covariance matrix estimated from re-sampling 10,000 time
series of the historical length with the block length of 60 months. A diagonal weighting
matrix is used. Standard errors are in parentheses.

Base model Full model
Preferences

β 1.0000 1.0000
(fixed) (fixed)

γ 2.1853 2.1694
(0.5118) (0.5760)

q̄ 1.0000 1.0000
(fixed) (fixed)

ρq 0.9971 0.9873
(0.0106) (0.0124)

σqp -0.0005 -0.0003
(0.0010) (0.0011)

σqn 0.1150 0.1153
(0.0296) (0.0307)

Consumption growth
ḡ 0.0016 0.0016

(0.0002) (0.0002)
σcp 0.0006 0.0004

(0.0002) (0.0002)
σcn 0.0042 0.0040

(0.0005) (0.0005)
p̄ 14.1687 27.7271

(4.3602) (6.7220)
n̄ 0.0446 0.0459

(0.0180) (0.0198)
ρn 0.5796 0.5812

(0.0062) (0.0086)
σnn 0.0637 0.0646

(0.0121) (0.0145)
φg -0.0003

(0.0018)
Dividend growth

φd -0.0005
(0.0019)

γg 3.5660
(0.4050)

γn 0.9339
(0.4107)
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Classical Minimum Distance Moments Fit. Values are monthly. The weighting matrix is
the inverse of the covariance matrix estimated from re-sampling 10,000 time series of the
historical length with the block length of 60 months. The diagonal weighting matrix is
used. In data the risk-neutral log-return variance is proxied by V IX2 and physical log-
return variance by the value implied by a Corsi (2009)-type model using high-frequency
data. *** corresponds to the rejection at the 1% significance level, respectively.

Moment Base model Full model Data Data standard error
Consumption growth

E(gt) 0.0016 0.0016 0.0020 0.0002
Std(gt) 0.0025 0.0025 0.0024 0.0002
Skw(gt) 0.0283 -0.0536 0.1163 0.3141
ExKur(gt) 2.3589 1.9518 2.0186 0.7741

Risk-free rate
E(rf,t) 0.0015 0.0015 0.0005 0.0004
Std(rf,t) 0.0021 0.0020 0.0016 0.0001
Corr(rf,t, rf,t+1) 0.9713 0.9708 0.9735 0.0093

Dividend growth
Std(dt) 0.0091 0.0075 0.0015
Skw(gt) -0.3866 -0.9717 0.6496
ExKur(gt) 4.1096 3.0077 1.4094

Equity
E(rt − rf,t) 0.0016 0.0016 0.0041 0.0023
Std(rt) 0.0360 0.0371 0.0426 0.0039
E(pdt) 6.4325 6.4286 6.3969 0.0644
Std(pdt) 0.4230 0.4218 0.2796 0.0377
Corr(pdt, pdt+1) 0.9971 0.9971 0.9917 0.0079

Options
V arQ(rt)− V ar(rt) 0.0010 0.0011 0.0016 0.0003

Std(V arQt (rt+1)− V art(rt+1)) 0.0004 0.0005 0.0019 0.0003

AC1(V arQt (rt+1)− V art(rt+1)) 0.5796 0.5812 0.5197 0.0943
V IX2 − SV IX2 0.0005 0.0005 0.0006 0.0001
χ2-statistic 74.9966*** 74.0332***
p-value 0.00% 0.00%
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Percentiles of Next Month Consumption Growth Conditional on the Current Variance
Risk Premium: Model Implications. The model variance risk premium is defined as the
difference between the conditional risk-neutral and physical variances of the next month’s
log-market return. In data the risk-neutral log-return variance is proxied by V IX2 and
physical log-return variance by the value implied by a Corsi (2009)-type model using high-
frequency data. High variance risk premium is defined as the variance risk premium above
80th unconditional percentile and low variance risk premium as the variance risk premium
below 20th unconditional percentile. Values are computed numerically by simulating time
series of 100,000 months under each model. Data block-bootstrap standard errors in
parentheses are obtained by re-sampling 10,000 time series of the historical length with
a block length of 60 months. *** indicates the statistical significance of the data value
at the 1% level.

Panel A: US data 1990M1-2017M2
High variance risk premium Low variance risk premium High-Low difference

10th percentile -0.23% -0.02% -0.21%***
(0.07%)

50th percentile 0.18% 0.20% -0.02%
(0.05%)

90th percentile 0.50% 0.50% 0.00%
(0.07%)

Panel B: Base model
High variance risk premium Low variance risk premium High-Low difference

10th percentile -0.23% -0.12% -0.11%
50th percentile 0.10% 0.15% -0.05%
90th percentile 0.45% 0.48% -0.03%

Panel C: Full model
High variance risk premium Low variance risk premium High-Low difference

10th percentile -0.24% -0.12% -0.12%
50th percentile 0.11% 0.15% -0.04%
90th percentile 0.45% 0.48% -0.03%
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Variance Risk Premium and Excess Equity Return Predictability. The values are slope
coefficients from monthly regressions. The data values are from regressing log aggregate
excess equity returns on the variance risk premium, V Pt. Data standard errors in paren-
theses are obtained by re-sampling 10,000 time series of the historical length with a block
length of 60 months. The model estimates are from regressing log aggregate equity excess
returns on the difference between the variance risk premium of log-market returns. The
model values are obtained by simulating 100,000 monthly samples. * and *** correspond
to the statistical significance at the 10% and 1% levels, respectively.

Specification 1: rt+1 month − rf,t = β0 + βV P · V Pt + εt+1

Base model Full model Data
βV P 0.0127 0.0173 0.0378*

(0.0217)
Specification 2: rt+3 months − rf,t = β0 + βV P · V Pt + εt+1

Base Full Data
βV P 0.0314 0.0359 0.0842***

(0.0309)
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