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1 Introduction

In standard corporate finance models, the entrepreneur and investors are endowed with the same

belief about the venture’s productivity. In reality and entrepreneurial finance cases analyzed in

MBA classrooms, the entrepreneur and investors rarely agree on the venture’s cash-flow projection,

as “unknown unknowns” are common for early-stage entrepreneurial firms. Early-stage ventures

may be in uncharted waters with very limited data that investors and the entrepreneur can use

to form their beliefs. Being concerned about the entrepreneur’s productivity model, investors are

ambiguity averse and want their decision rules to be robust against potentially misspecified models.1

In this paper, we study how investors’s preferences for robustness influence corporate (invest-

ment, financing, payout, compensation, and liquidation) decisions and valuation by adopting the

approach of Hansen and Sargent (2001, 2008) in the dynamic contracting model of DeMarzo, Fish-

man, He, and Wang (2012), henceforth, DFHW (2012). Our formulation is highly tractable yet

rich enough for us to analyze how investors’ ambiguity aversion influences corporate decisions and

valuation in a dynamic agency framework from both conceptual and quantitative perspectives.

In our model, a risk-neutral entrepreneur has an exclusive access to a productive venture with

an initial capital stock but is financially constrained. The entrepreneur’s talent (skill) is described

by a stochastic productivity model. Following Hayashi (1982) and the q-theory literature, we model

the firm’s production technology via standard investment dynamics and capital adjustment costs.

The entrepreneur needs to raise start-up funds from outside risk-neutral investors by writing a

long-term contract, which specifies state-contingent on-going financing, investment, compensation,

payout, and liquidation policies. After the venture is launched, the entrepreneur continuously

chooses his hidden effort level, which affects the venture’s expected productivity. As in DeMarzo

and Sannikov (2006), Biais, Mariotti, Plantin, and Rochet (henceforth, BMPR) (2007), DeMarzo

and Fishman (2007a), DFHW (2012), and Miao and Rivera (2016), the entrepreneur must be

incentivized to exert the appropriate effort levels over time. Alternatively, we can interpret the

agency problem as one in which the agent can divert output for his private benefit.

Unlike DFHW (2012), the investors in our model do not fully trust the entrepreneur’s produc-

tivity model. We build on the multiplier preferences proposed by Hansen and Sargent (2001) to

model the investors’ objective by scaling the entropy penalty cost by a size-dependent process. This

1Knight (1921) is perhaps the first to point out the difference between risk (known unknowns) and uncertainty
(unknown unknowns). Model uncertainty or ambiguity is often referred to as Knightian uncertainty. The Ellsberg
paradox (Ellsberg (1961)) and the related experimental evidence demonstrate that people are typically averse to
ambiguity. Hansen and Sargent (2001, 2008) interpret decision under ambiguity as robust decision. We adopt both
interpretations interchangeably in this paper.
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generalization allows us to focus on economically interesting cases where the investors’ concerns

for the entrepreneur’s productivity model are always economically relevant regardless of firm size.

The investors design a robust dynamic contract that maximizes their payoffs taking both their

ambiguity aversion and the agency problem into account.

While the entrepreneur is confident about his model, investors view the entrepreneur’s produc-

tivity model as an approximation to the unknown true model and form their own beliefs endoge-

nously based on the venture’s performance and their own degree of ambiguity aversion (preferences

for robustness). The robust contract generates endogenous differences in beliefs: investors are pes-

simistic relative to the entrepreneur. Moreover, the risk-neutral investors behave as if they were

endogenously risk averse for both agency and robustness reasons.

In our dynamic setting, the belief wedge between the entrepreneur and investors varies over time

in response to the venture’s performance. This wedge is captured by the change in the drift of the

Brownian motion process, which can also be interpreted as the market price of model uncertainty

(Anderson, Hansen, and Sargent (2003)). It directly influences optimal pay-performance sensitivity

(PPS) and generates interesting asset-pricing implications for equity premium and credit spread.

As in other dynamic contracting models, the entrepreneur’s continuation value is forward looking

and also history keeping. As in DFHW (2012), the continuation value scaled by the firm’s capital

stock is the effective state variable. We show that, following good performances, the entrepreneur’s

scaled continuation value increases, the belief wedge decreases, and investors’ endogenous risk

aversion also decreases.

We find that the PPS in our model is a function of the entrepreneur’s scaled continuation value

depending on both agency and investors’ preferences for robustness– this is in sharp contrast to the

standard rational-expectations agency models, where the PPS is solely determined by the binding

incentive constraint. Similar to Miao and Rivera (2016), we find that there are two endogenously

determined regions for the PPS depending on whether the entrepreneur has done sufficiently well

in the past, i.e., whether his scaled continuation value exceeds an endogenous cutoff value.

When the entrepreneur’s scaled continuation value exceeds the cutoff, investors sufficiently

trust the entrepreneur’s model. Both the PPS and corporate investment increase with the scaled

continuation value. Additionally, the incentive constraint does not bind. The optimal PPS takes

a form resembling Merton’s (1971) optimal portfolio rule. In particular, it increases with the

market price of model uncertainty and decreases with investors’ endogenous risk aversion and

productivity volatility. As endogenous risk aversion decreases at a rate faster than the market

price of uncertainty, the optimal PPS increases with the scaled continuation value.
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When the scaled continuation value is below the endogenous cutoff, both investors’ endogenous

risk aversion and the belief wedge are sufficiently large. Investors want to significantly reduce

their risk exposure but still have to induce the entrepreneur to exert effort. In this case, the

agency problem dominates investors’ concerns for the entrepreneur’s model, causing the incentive

constraint to bind as in the standard contracting models under rational expectations.

A striking result of our paper is that early liquidation can be optimal and occurs when investors

lose confidence in the entrepreneur and the belief wedge is sufficiently large. In this case, investors

voluntarily terminate the long-term contract with the entrepreneur even doing so yields a higher

payoff to the entrepreneur than his outside option value. In reality, investors protect themselves

against the entrepreneur’s persistent poor performances with various protective measures, e.g.,

liquidation preferences and anti-dilution protection in venture capital (VC) term sheets.2 Our

early liquidation result is in sharp contrast with rational-expectations contracting models, e.g.,

DeMarzo and Sannikov (2006) and DFHW (2012), where investors fully trust the entrepreneur’s

model and liquidation is inefficient. In Miao and Rivera (2016), early liquidation does not take

place either.

Our model’s dynamic predictions are broadly consistent with VC contracting evidence docu-

mented by Kaplan and Strömberg (2003), who find that entrepreneur has stronger control rights

when the firm performs well, while the investors have greater control over the project following a

sequence of weak performances. Our explanation based on model uncertainty complements that

advocated by the incomplete contracting literature (e.g., Aghion and Bolton (1992)).

We then implement the optimal contract by using debt, equity, cash, and a financial derivative,

whose payoff is determined by the venture’s productivity shocks. The key and novel component

of our optimal security design is the time-varying demand for the derivative asset. This seemingly

speculative demand arises from investors’ concern for the entrepreneur’s productivity model and

is optimal for the venture. As the venture’s performance improves, the entrepreneur’s stake in the

venture increases, its cash (financial slack) increases, investors becomes less pessimistic, the agency

problem weakens, and corporate investment increases. Since in equilibrium the entrepreneur is

more optimistic than investors about the venture’s productivity, investors also optimally increase

the venture’s exposure to its own risk by increasing its long position in the derivative asset and the

cumulative gains/losses contribute partly to finance future compensation to the entrepreneur.

We calibrate our model and quantify the implications of investors’ concern about the en-

2Kaplan and Strömberg (2003) and Metrick and Yasuda (2010) describe and analyze the economics of VC con-
tracting term sheets. Admati and Pfleiderer (1994) develop a model that shows the value of inside investors, such as
venture capitalists, in resolving agency conflicts that arise in a multistage financial contracting problem.
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trepreneur’s model for investment, compensation, and valuation (e.g., Tobin’s average q, equity

premium, and credit spreads). We find that quantitative effects are significant based on plausible

parameter values in DFHW (2012). The only new parameter in our model is the entropy penalty

parameter θ that measures ambiguity aversion or concerns for robustness. We calibrate θ using the

detection error probability methodology advocated by Anderson, Hansen, and Sargent (2003), and

Hansen and Sargent (2008). We find that the mean of Tobin’s q is 1.10 for our calibrated robustness

model, which is 12% lower than the value (1.25) in DFHW (2012), and that the payout boundary

is 1.12, which is more than 2.5 times the value (0.43) in DFHW (2012). The average investment

rate and investment volatility in our model are respectively 3.5 and 0.2 percentage points lower

than those in DFHW (2012). Moreover, the annual equity premium is 3.8%, even though investors

are risk neutral, compared to zero equity premium in DFHW (2012). In sum, although moments

matching is not our main goal in this paper, we show that our parsimonious model presents a

plausible economic mechanism that generates quantitative predictions in the right direction.

Our model also predicts that the equity premium and credit spread decrease with the level of

investment and Tobin’s average q. In this sense our model generates value premium, provides a

framework to generate empirically observed relation between the investment and asset returns in

asset markets (see, e.g., Zhang (2005) and Hou, Xue, and Zhang (2015)).

Finally, we use our model to shed light on a key valuation issue widely discussed in the VC

community and also in MBA Entrepreneurial Finance classes: Why the internal rates of returns

(IRRs) that VCs use to value projects are so high relative to the standard cost of capital calcula-

tions that we use to make capital-budgeting decisions? Our model offers one explanation. Rather

than discouraging and trying to convince the entrepreneur and expressing their concerns for the

entrepreneur’s productivity model, investors can simply use the entrepreneur’s belief model when

quoting the cost of capital for the project to the entrepreneur. Doing so, the VCs achieves the same

goal without making the entrepreneur feel that they do not trust the entrepreneur’s productivity

model. For our baseline calibration, our model predicts that the entrepreneur values the project at

an annualized IRR that is 3.5% higher than investors do. These predictions are consistent with the

empirical evidence documented by Malmendier and Tate (2005), who find that overconfident man-

agers overestimate the returns to their investment projects and curtail investment when external

funds are used. But our interpretation is different from Malmendier and Tate (2005). In our model

the entrepreneur behaves as if he were more optimistic than investors because of investors’ prefer-

ences for robustness. Landier and Thesmar (2008) study the effects of entrepreneurial optimism on

financial contracting.
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Related literature. Our paper builds on the dynamic moral hazard/contracting literature in

finance, e.g., DeMarzo and Sannikov (2006), DeMarzo and Fishman (2007a, 2007b), BMPR (2007),

Sannikov (2008), Biais, Mariotti, Rochet, and Villeneuve (2010), Williams (2009, 2011), DFHW

(2012), and Ai and Bhandari (2020), among others.3 Recently, there has been a growing interest

in introducing robustness and model uncertainty/ambiguity to this literature.

Two approaches are widely used to model decision making under ambiguity in a continuous-

time setup. One approach advocated by Chen and Epstein (2002) builds on the static maxmin

expected utility model of Gilboa and Schmeidler (1989). Using this approach, Szydlowski and

Yoon (2020) study a continuous-time contracting problem where the principal is ambiguity averse

about the effort cost and Dumav (2017) studies a problem where both the principal and the agent

are ambiguity averse. Dicks and Fulghieri (2020b) study a continuous-time contracting model

within organizations, where the principal designs contracts with multiple agents who are exposed

to multiple sources of uncertainty.

The other approach is based on the robust control or multiplier preference model of Hansen and

Sargent (2001, 2008). Adopting this approach, Miao and Rivera (2016) introduce the investors’

concern for the entrepreneur’s model uncertainty into a financial contracting problem based on

DeMarzo and Sannikov (2006). Liu (2020) also adopts this approach in a contracting model with

investment, where the principal is ambiguity averse, but the agent is risk averse.

Our paper differs from Miao and Rivera (2016) and other aforementioned papers in three ways.

First, we incorporate real investment decisions, calibrate our model, and generate quantitative

predictions on corporate investment and Tobin’s average q. Second, we show that it can be optimal

for the firm to terminate the long-term contract early when the investors are sufficiently ambiguity

averse. Upon early liquidation the investors make a lump-sum transfer payment to the entrepreneur

larger than the entrepreneur’s outside reservation value. Miao and Rivera (2016) focus on the case

where early liquidation does not take place.

Third, we provide a new and intuitive financial implementation. Under model uncertainty,

optimal securities must be designed to align the conflicts of interests between the investors and

the entrepreneur with different endogenous beliefs. We introduce a financial asset whose payoffs

are contingent on the firm’s productivity shock. Since outside investors are endogenously more

pessimistic than the entrepreneur, it is optimal for the firm to take a speculative position in this

derivative asset and use the proceeds to compensate the entrepreneur (in promise). The speculative

3Broadly speaking, our model is also related to the limited-commitment-based contracting models, e.g., Albu-
querque and Hopenhayn (2004), Quadrini (2004), and Clementi and Hopenhayn (2006), and Ai and Li (2015).
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profits are paid out to creditors. In contrast, Miao and Rivera (2016) introduce special dividends,

which can be received only by outside investors. These special dividends are used to hedge against

model uncertainty. One implication of this implementation is that inside and outside equities are

not pro-rata based.

Our paper is also related to some other papers that apply ambiguity and robustness to corporate

finance. For example, Garlappi, Giammarino, and Lazrak (2017) develop a dynamic corporate

investment problem where decisions have to be made collectively by a group of agents holding

heterogeneous beliefs and recognize the ambiguity-like nature of corporate decisions. Dicks and

Fulghieri (2019) develop a theory of systemic risk based on ambiguity aversion. Lee and Rajan

(2020) study optimal security design when both the entrepreneur and investors are ambiguity

averse. Malenko and Tsoy (2020) study security design under asymmetric information when the

investor is ambiguity averse and show that the equilibrium security depends on the degree of

uncertainty and the nature of private information. Dicks and Fulghieri (2020a) develop a theory of

innovation waves, investor sentiment, and merger activity based on Knightian uncertainty.

2 Model

We formulate our robust financial contracting problem by introducing the principal’s concern for

model misspecification developed by Hansen and Sargent (2001), and Anderson, Hansen, and Sar-

gent (2003) into the continuous-time dynamic-agency model with corporate investment proposed

by DFHW (2012).

2.1 Neoclassic q Theory of Investment and Managerial Agency

We first present the setup of DFHW (2012). A firm employs capital to produce output, whose price

is normalized to one. Let Kt and It denote the level of capital stock and gross investment rate at

time t ≥ 0, respectively. The firm capital stock (Kt) evolves according to

dKt = (It − δKt) dt , (1)

where K0 is given and δ ≥ 0 is the rate of depreciation.

The cost of investment includes both the cost of purchasing investment goods and capital

adjustment costs, as is standard in the q-theory literature. Let C(I,K) denote the cost function.

We assume that C(I,K) is smooth, increasing, and convex in I. To preserve the homogeneity

property, we assume that C(I,K) is homogeneous of degree one in I and K. We use i to denote the
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investment-capital ratio, it = It/Kt, and the homogeneity property allows us to express C(It,Kt) =

c(it)Kt, where c(i) is the scaled investment cost function.

Let dAt denote the firm’s productivity over time interval [t, t+ dt] and (At) be the corresponding

cumulative productivity process. Assuming that the firm’s output over [t, t+ dt] is proportional to

the firm’s capital stock, KtdAt, we express the firm’s incremental cash flow dYt as follows:

dYt = KtdAt − C(It,Kt)dt . (2)

We now introduce managerial agency. The firm is owned by investors who hire an entrepreneur

(agent) to operate the firm. In contrast to the neoclassical model in which the productivity process

(At) is exogenously specified, the productivity process in our model is affected by the entrepreneur’s

unobservable action, i.e., effort. The action at ∈ [0, 1] determines the expected rate of output per

unit of capital, so that (At) satisfies

dAt = atµdt+ σdZat , (3)

where µ, σ > 0 and Za is a standard Brownian motion defined on the filtered probability space

(Ω,F , (Ft)t≥0 , Pa). Here Pa is the probability measure induced by the entrepreneur’s action a and

(Ft) is the filtration generated by (At).
4

The entrepreneur can enjoy private benefits at the rate of λµ(1 − at)dt per unit of the capital

stock from the action at, where λ ∈ [0, 1]. Due to linearity, our model is also equivalent to the

binary effort setup in which the entrepreneur can either shirk, at = 0, or work, at = 1. Alternatively,

we can interpret 1 − at as the fraction of cash flows that the entrepreneur diverts for his private

benefits, with λ being the entrepreneur’s net consumption per dollar diverted. In either case, a

larger value of λ corresponds to a more severe agency problem. The choice of the entrepreneur’s

action is unobservable to the firm’s investors, thereby creating moral hazard issues. The firm’s

investors only observe past and current cash flows and the investors’ information set is represented

by the filtration (Ft)t≥0 generated by (Yt) or equivalently (At).

Investors have unlimited wealth and are risk-neutral with discount rate r > 0. The entrepreneur

is also risk-neutral but more impatient than investors, i.e., the entrepreneur’s discount rate γ is

higher than r, γ > r. As in DeMarzo and Sannikov (2006), DeMarzo and Fishman (2007a, 2007b),

and DFHW (2012), by assuming γ > r, we avoid the scenario in which investors indefinitely

postpone payments to the entrepreneur. This impatience may arise because the entrepreneur may

4All processes in the paper are assumed to be progressively measurable with respect to (Ft). Inequalities in random
variables or stochastic processes are understood to hold almost surely. The triple (A,Za,Pa) is a weak solution to
the stochastic differential equation (3).
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have other attractive outside investment opportunities. The entrepreneur has no initial wealth and

has limited liability, in that investors cannot pay negative wages at any time to the entrepreneur.

Assume that the firm’s capital stock Kt, investment It, and (cumulative) cash flow Yt are

observable and contractible. To maximize their value, investors offer a contract that specifies the

firm’s investment process (It), the cumulative compensation process (Ut), and termination time

τ , all of which depend on the history of (Yt). The entrepreneur’s limited liability requires the

compensation process (Ut) to be nondecreasing and right continuous with left limits.

Upon the contract’s termination, investors recover Lt and the entrepreneur receives his outside

reservation value, which we normalize to zero as in DFHW (2012) and Miao and Rivera (2016).

We will relax this assumption in Section 3.3 and consider the possibility of early termination.

To preserve the homogeneity property, we assume that Lt = `Kt, where ` > 0 represents the

fixed fraction of the firm’s capital stock that investors recover upon liquidation. We assume that ` is

sufficiently small so that the investors do not want to liquidate the firm immediately as liquidation

is inefficient.5

Let Φ = (I, U, τ) denote a contract. For a given contract Φ, the entrepreneur chooses an action

process {ât ∈ [0, 1] : t ∈ [0, τ ]} to maximize the following objective function:

Wt(Φ, a) = sup
â

EPâ
t

[∫ τ

t
e−γ(s−t) (dUs + λµ(1− âs)Ksds)

]
, (4)

where EPâ
t denotes the conditional expectation operator with respect to the measure Pâ given the

information set Ft. The entrepreneur’s objective function includes the present discounted value of

compensation (the first term in (4)) and the potential private benefits from taking action â < 1

(the second term in (4)). The contract Φ is incentive-compatible with respect to the entrepreneur’s

chosen action process (at) if (at) is a solution to the problem stated in (4).

At the time the contract is initiated, the firm has capital stock K0 and the entrepreneur ob-

tains the expected promised payoff W0. The entrepreneur’s W0 will be determined by the relative

bargaining power of the entrepreneur and investors when the contract is initiated. By varying W0,

we can obtain the entire feasible contract curve.

2.2 Robust Contracting Problem

In DFHW (2012), the investors and the entrepreneur share the same belief and both use the

probability measure Pa to evaluate their expected payoffs. In our model, decision makers may be

concerned about model misspecification. To capture the bias that the manager tends to be more

5Since the firm could always liquidate by disinvesting, it is natural to assume ` ≥ c′(−∞).
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confident or optimistic about his ability and talent, we assume that the entrepreneur’s belief is

given by the probability measure Pa. However, the investors do not fully trust the entrepreneur’s

probability model Pa. Instead investors treat Pa as an approximation to the true unknown model.

As a result, investors design the contract so that it is robust to their concerns that the entrepreneur’s

model can be misspecified.

Suppose that the investors consider alternative models as possible and all distorted beliefs are

described by mutually absolutely continuous measures with respect to Pa over any finite time

intervals. This assumption allows us to use Girsanov’s Theorem for changing measures so that

model ambiguity is about the drift of the diffusion process.6 Define a density generator associated

with an action process (at) as a real-valued process (ht). Denote the set of density generators by

Ha. Given a process (ht) in Ha, we define another process
(
ξht
)

as

ξht = exp

(
−
∫ t

0
hsdZ

a
s −

1

2

∫ t

0
h2
sds

)
. (5)

Under the assumption that
∫ t

0 h
2
sds < ∞ for all t > 0, ξht defined in (5) is a (Pa,Ft)-martingale,

which plays an important role in our model.7

By Girsanov’s Theorem, there is a measure Qh corresponding to h defined on (Ω,F) such that ξht

is the Radon-Nikodym derivative of Qh with respect to Pa when restricted to Ft, dQh/dPa|Ft = ξht ,

and the process
(
Zht
)
, defined by

Zht = Zat +

∫ t

0
hsds, (6)

is a standard Brownian motion under measure Qh. We can identify any measure Qh by either its

density generator (ht) or density process
(
ξht
)
. Denote the set of all such measures by Pa.

Under measure Qh, the cumulative productivity (At) defined in (3) can be written as:

dAt = atµdt+ σ(dZht − htdt). (7)

Accordingly, the cash flow process (Yt) under the measure Qh follows

dYt = Kt(atµ− σht)dt− C(It,Kt)dt+KtσdZ
h
t . (8)

Importantly, the firm’s incremental output dYt under measure Qh now depends on both the en-

trepreneur’s effort at and investors’ concerns for the entrepreneur’s model misspecification, which

is described by ht.

6See Epstein and Ji (2013) for a continuous-time model of ambiguity about both the drift and volatility without
the mutually absolute continuity assumption.

7See Hansen et al (2006) for the technical details.
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To incorporate the investors’ concerns for the model misspecification, building on the robust

control and variational utility models of Anderson, Hansen, and Sargent (2003), and Maccheroni,

Marinacci, and Rustichini (2006a, 2006b), we represent the investors’s preferences at time t as

follows:

Ft (Φ, a) = inf
Qh∈Pa

EQh
t

[∫ τ

t
e−r(s−t)dYs + e−r(τ−t)Lτ −

∫ τ

t
e−r(s−t)dUs

]
+Kt(Qh), (9)

where Kt(Qh) represents an ambiguity index.8 Intuitively speaking, investors want their decisions

to be robust to the “worst-case” model Qh, which is chosen from the set Pa to minimize the sum

of the expected present value of payoffs under Qh, which is the first term in (9), and the entropy

penalty term Kt(Qh), which is determined by the degree of concerns for robustness.

Generalizing the relative entropy cost of Anderson, Hansen, and Sargent (2003), Hansen et al.

(2006), and Hansen and Sargent (2008), we follow Maenhout, Vedolin, and Xing (2020) and specify

the penalty term as

Kt (Qh) = EPa
t

[∫ τ

t
e−r(s−t)Θsdφ

(
ξhs
ξht

)]
, (10)

where φ (x) ≡ x lnx and Θt > 0 measures the size of the entropy cost. Maenhout, Vedolin, and

Xing (2020) show that this specification implies

Kt (Qh) =
1

2
EQh
t

[∫ τ

t
e−r(s−t)Θsh

2
sds

]
, (11)

and the utility process in (9) is time consistent. When Θt is constant for all t, (10) is reduced to

the relative entropy penalty of Anderson, Hansen, and Sargent (2003).

To capture the intuitive idea that a larger firm should have a larger entropy penalty (measured

in firm value or other dollar-based value), we assume that Θt increases with capital stock Kt. By

making this assumption, we obtain the economically desirable outcome that the firm will never

grow too large relative to the entropy cost or the ambiguity index. For tractability, we assume that

Θt is proportional to Kt:

Θt = Θ(Kt) = θKt , (12)

where the parameter θ > 0 measures the degree of investors’ concerns for robustness. Following

Maccheroni, Marinacci, and Rustichini (2006a, 2006b), we may also interpret 1/θ as the degree of

ambiguity aversion. We will use these two interpretations interchangeably in the paper.

8In a discrete time setting, Maccheroni, Marinacci, and Rustichini (2006a, 2006b), show that, by appropriately
specifying K, this model includes the multiple-priors model of Gilboa and Schmeidler (1989) and the multiplier model
of Anderson, Hansen, and Sargent (2003), Hansen et al. (2006), and Hansen and Sargent (2008) as special cases.

10



The homogeneity assumption about Θt given in (12) allows us to simplify our analysis by

reducing a two-dimensional robust contacting problem to a uni-dimensional one. Our modeling of

Θ implies that the entropy cost of model uncertainty grows with firm size so that the investors’

aversion to model uncertainty matters for the value of capital, e.g., when measured by Tobin’s

average q. The larger the value of θ, the larger the penalty cost given in (10), and hence the more

the investors trust the entrepreneur’s probability model. In the limit as θ →∞, the investors have

the same belief as the agent and our model becomes DFHW (2012).

In summary, we study the following contracting problem when the investors are concerned about

the entrepreneur’s model misspecification:

Problem 1 (robust contract)

P (K0,W0) = sup
(Φ,a)

F0 (Φ, a) , (13)

subject to (1), (2), (7), and the constraints that Φ is incentive-compatible with respect to the action

process a and W0(Φ, a) = W0 ≥ 0, where Wt(Φ, a) and Ft (Φ, a) for t ≥ 0 are defined in (4) and

(9), respectively,

3 Solution

In this section, we first summarize the first-best (FB) solution under rational expectations without

agency frictions and then derive the solution for the robust contract with agency.

Let qFB denote Tobin’s average q under the first best. As in Hayashi (1982), the homogeneity

property implies that the marginal q is equal to the average q and

qFB = c′
(
iFB

)
= max

i

µ− c (i)

r + δ − i
, (14)

where i = I/K and iFB is the solution to (14). We require that µ < c(r+δ) so that the firm’s value

under the first-best is well defined and given by (14). Both iFB and qFB are then constant. Let

wt denote the entrepreneur’s scaled value: wt = Wt/Kt. It is immediate to see that the investors’

scaled value function is given by pFB (w) = qFB − w.

3.1 Robust Contract with Agency

As for our FB case, we focus on the contract in which the high effort level a∗t = 1 is always optimal

and hence should be implemented.9 We then derive the robust contract heuristically and leave

technical details including certain regulation conditions to Appendix A.

9See the sufficient condition in Proposition 3 in Appendix A.
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By using the martingale representation theorem, we can express the entrepreneur’s promised

utility process (Wt), defined in (4), via the following controlled diffusion process under the high-level

effort a∗t = 1:

dWt + dUt = γWtdt+ βtKt (dAt − µdt) = γWtdt+ βtKtσdZ
a
t , (15)

where βt is endogenously determined. The left side of (15) is equal to the entrepreneur’s incre-

mental compensation at t, which is equal to the sum of the cash payment dUt and the change

in the entrepreneur’s promised utility, dWt. The right side of (15) states that the change of the

entrepreneur’s total compensation over time increment dt is equal to the sum of γWtdt and a

mean-zero diffusion term under the entrepreneur’s belief Pa.

To understand the determinant of βt, we need to consider the possibility that the entrepreneur

deviates from the FB effort level, a∗t = 1. Intuitively, shirking (by choosing at < 1) gives the

entrepreneur a private benefit λµKt(1 − at) but lowers his promised utility in expectation by

βtµKt(1 − at) per unit of time due to the fall of the firm’s expected output. To ensure that the

high effort level is incentive compatible, the cost of shirking must be larger than the benefit for all

t so that

βt ≥ λ . (16)

This result follows DeMarzo and Sannikov (2006), DeMarzo and Fishman (2007a), and DFHW

(2012). However, because of the investors’ concern for the entrepreneur’s model misspecification,

the solution for β is much different.

As investors do not trust the entrepreneur’s model Pa∗ induced by a∗ = 1, their belief is

represented by Qh as discussed in Section 2.2. Under the belief Qh and a∗t = 1, we use Girsanov’s

Theorem to rewrite (15) as

dWt = (γWt − βtKtσht) dt− dUt + βtKtσdZ
h
t . (17)

Importantly, the drift (expected change) of the entrepreneur’s value over dt, dWt+dUt, viewed from

the investors’ perspective, (i.e., under Qh), is equal to the difference between γWtdt and βtKtσhtdt.

The wedge between the drift in (15) with that in (17), βtKtσht, captures the effect of the investors’

concerns for the entrepreneur’s model misspecification.

Using (8), (9), and (11), we can rewrite the objective function under measure Qh as

EQh
[∫ τ

0
e−rt (Kt(µ− σht)dt− C(It,Kt)dt− dUt) + e−rτLτ +

1

2

∫ τ

0
e−rtΘ(Kt)h

2
tdt

]
. (18)
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Then the value function P (Kt,Wt) satisfies the following HJB equation in the interior region:

rP (Kt,Wt) = sup
It, βt

inf
ht

Kt(µ− σht)− C(It,Kt) +
1

2
Θ(Kt)h

2
t + PW (Kt,Wt) (γWt − βtKtσht)

+PK (Kt,Wt) (It − δKt) +
1

2
PWW (Kt,Wt) (βtKtσ)2 , (19)

subject to the incentive constraint given in (16).

Compared with the HJB equation in DFHW (2012), there are four key differences due to model

uncertainty. First, as investors have preferences for the contract to be robust, we must have an inf

problem to determine h, which equivalently pins down the measure Qh. Second, there is a quadratic

entropy penalty term Θ(Kt)h
2
t /2, which generates a tradeoff for the choice of ht. Third, the drift

of productivity (At) under Qh is lowered by σht from µ due to the belief distortion. Finally, the

drift of the entrepreneur’s promised utility (Wt) under Qh is lowered by βtKtσht from γWt.

To solve the dynamic programming problem in (19), we first consider how to determine h∗t .

On one hand, increasing ht (which means that investors’ belief Qh is more distant from the

entrepreneur’s model Pa∗) makes investors better off as doing so protects them against the en-

trepreneur’s model misspecification. On the other hand, increasing ht raises the entropy cost for

investors. The first-order condition (FOC) for ht equates the marginal entropy cost Θ(Kt)ht with

the marginal benefit Ktσ[1 + βtPW (Kt,Wt)] of guarding against model misspecification.10 Simpli-

fying this FOC, we obtain

h∗t =
Ktσ[1 + β∗tPW (Kt,Wt)]

Θ(Kt)
. (20)

Second, consider the optimal PPS β∗t . Substituting (20) into the FOC for βt yields the following

expression for a candidate interior solution if βt > λ:

βt =
PW (Kt,Wt)

Θ(Kt)PWW (Kt,Wt)− PW (Kt,Wt)2
. (21)

As the incentive constraint (16) has to hold, the following equation fully characterizes the optimal

sensitivity:

β∗t = max

{
PW (Kt,Wt)

Θ(Kt)PWW (Kt,Wt)− PW (Kt,Wt)2
, λ

}
. (22)

Third, the FOC for investment equates the marginal benefit of investing, PK(Kt,Wt) with the

marginal cost of investing CI(It,Kt). Because CII (I,K) > 0, this FOC implies the following

implicit function for the optimal investment I∗t :

CI(I
∗
t ,Kt) = PK (Kt,Wt) . (23)

10Since Θ(Kt) > 0, this condition is also sufficient for h∗t to be the minimizer.
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This equation shows that the marginal cost of investing is equal to marginal q, PK (Kt,Wt). Al-

though robustness does not directly impact the investment FOC, it impacts investment indirectly

via its effect on the endogenously determined marginal q.

Given the homogeneity property of our model, we use the lower-case letter to denote the cor-

responding upper-case letter scaled by the firm’s contemporaneous capital stock. For example, we

write wt = Wt/Kt, p(wt) = P (Kt,Wt)/Kt, it = It/Kt, and dut = dUt/Kt. We first focus on the

case where optimal liquidation occurs when wt reaches 0 for the first time. In Section 3.3, we show

that early liquidation is also possible. The following proposition characterizes the optimal robust

contract.

Proposition 1 Let a∗t = 1 be implemented. Suppose that p (w) satisfies the following ordinary

differential equation (ODE) on [0, w] :

rp (w) = max
β≥λ, i

µ− c (i) + (i− δ)p(w) + (γ + δ − i)wp′(w) +
σ2

2
p′′(w)β2 − σ2

2θ

[
1 + p′ (w)β

]2
(24)

subject to the conditions: p′ (w) > −1 on [0, w), p(0) = `, and

p′(w) = −1, p′′(w) = 0. (25)

Suppose that ` is sufficiently small and

θp′′(w)−
[
p′ (w)

]2
< 0 on [0, w]. (26)

Then: (i) For w ∈ [0, w], the investors’ scaled value function is p (w) . The optimal sensitivity,

β∗(w), is given by

β∗(w) = max

{
p′(w)

θp′′(w)− [p′ (w)]2
, λ

}
(27)

and the worst-case density generator is given by

h∗(w) =
σ

θ
[1 + β∗ (w) p′(w)]. (28)

The optimal investment rate i∗(w) satisfies

c′(i∗ (w)) = p(w)− wp′(w). (29)

The entrepreneur’s scaled continuation value wt satisfies the following diffusion process:

dwt = [(γ + δ − i∗(wt))wt − β∗ (wt)σh
∗(wt)] dt− du∗t + β∗ (wt)σdZ

h∗
t , (30)
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for wt ∈ [0, w]. The firm is liquidated whenever wt = 0 for the first time. The optimal compensation

dU∗t = Ktdu
∗
t keeps (wt) reflecting at w and satisfies

du∗t = max {wt − w, 0} . (31)

(ii) For w > w, p(w) = p(w)− (w − w). The investors pay w − w immediately to the entrepreneur

and the contract continues with the entrepreneur’s new initial value w.

In Appendix C we present the solution for the robust contract without agency and show that

the corresponding scaled value function p (w) is concave. By contrast, for the robust contract with

agency, p (w) may not be concave as shown in Miao and Rivera (2016). Inequality (26) is a sufficient

condition for the optimality of β∗, which does not imply that p (w) is concave.11

As in DFHW (2012), the key variable that determines the firm’s performance and its financial

constraint is the entrepreneur’s scaled continuation value w. Unlike in DFHW (2012), there is

an additional term −β∗ (wt)σh
∗(wt) in the drift of equation (30) under the investors’ endogenous

belief Qh∗ . Under the entrepreneur’s belief Pa∗ , equation (30) becomes

dwt = (γ + δ − i∗(wt))wtdt− du∗t + β∗ (wt)σdZ
a∗
t . (32)

By comparing the dynamics for w in (30) and (32), we see that the expected value of dwt from

investors’ perspective is lower than the expected value of dwt, as the wedge between the drifts of

wt is equal to β∗ (wt)σh
∗(wt), which we show is positive.

3.2 Properties of the Contract

We use Figure 1 to discuss the properties and intuition of the optimal robust contract.

Investors’ scaled value function p(wt) and optimal investment-capital ratio i∗(wt). Pan-

els A and B of Figure 1 plot the investors’ scaled value function p (w) and the investment-capital

ratio i∗ (w), respectively. We find that p (w) is globally concave. We are unable to prove this result

generally, but show that it holds for the robust contract without agency for λ → 0 (see Appendix

C). The intuition is as follows. In the absence of managerial agency, the first-best outcome is for

investors to sell the firm to the entrepreneur if the entrepreneur is wealthy enough to purchase

11If p (w) is not globally concave, the Bellman-Isaacs condition does not hold so that we cannot exchange the order
of optimization (Hansen et al. (2006)). As a result we cannot offer an ex post Bayesian interpretation for the robust
contract. We refer to Miao and Rivera (2016) for more discussions on this issue. However, in all our numerical
examples below, we find that p (w) is globally concave.
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Figure 1: Optimal robust contracting. The optimal payout boundary for the robust contract is
w1, larger than for the rational-expectations DFHW (2012) contract w2. For the robust contract,
ŵ1 denotes the value of w above which β∗(w) > λ, i.e., the incentive constraint does not bind.

the firm. However, because the entrepreneur is financially constrained and also protected by lim-

ited liability, the entrepreneur cannot provide full insurance against investors’ ambiguity about

his model Pa∗ . Therefore, in equilibrium investors are endogenously averse to output fluctuation.

Similar intuition also applies to the robust contract with agency with one difference. For a low w,

the marginal benefit p′ (w) to the investors may increase with w when the firm is away from the

liquidation boundary as discussed in Miao and Rivera (2016).

Panels A and B of Figure 1 show that the investors’ concern for model misspecification lowers

their scaled value p(w) (see Proposition 2 in Appendix A) and reduce investment i(w). Technically

speaking, the only difference between the ODE for p(w) in our model and that in DFHW (2012) is

the last term on the right side of (24), which is negative and proportional to σ2/θ. Intuitively, the

greater the investors’ concern for the entrepreneur’s model misspecification (i.e., the lower the value

of θ), the more pessimistic the investors are about their value (i.e., the lower their value p(w)).

This also causes them to be more pessimistic about the marginal benefit of investment, leading to

a lower investment rate i∗ (w) .
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PPS β∗(wt) and endogenous belief wedge h∗(wt). Panel C plots the firm’s optimal β∗(w).

As in DFHW (2012), for incentive compatibility, the investors optimally expose the entrepreneur’s

value to sufficiently large volatility, i.e., βt ≥ λ. Unlike in DFHW (2012) where the incentive

constraint always binds, i.e., βt = λ, it can be optimal for the entrepreneur to be exposed more to

the cash-flow uncertainty when the investors are ambiguity averse. We show that with sufficiently

large values of w, we have βt > λ.

Panel D plots the endogenous belief wedge h∗(w), which is always positive. The intuition is

that ambiguity aversion generates pessimistic beliefs so that the drift of productivity (At) perceived

by the ambiguity averse investors is always lower than the drift under the entrepreneur’s belief as

shown in (32) and (30). Moreover, this belief wedge h∗(w) decreases towards zero as w increases

towards the payout boundary w. The intuition is that as the entrepreneur’s performance improves

and hence w increases, the investors increasingly trust the entrepreneur’s model more.

When w is sufficiently low, the firm’s liquidation risk is high. The dominant consideration in

this low-w region is to preserve the firm’s going concern value by setting β (w) = λ to minimize the

risk of inefficient liquidation as in DFHW (2012).

In contrast, when w is sufficiently high, liquidation risk is much less of a concern. The optimal

policy from the investors’ perspective is to let the entrepreneur bear more cash-flow risk as the

entrepreneur is risk neutral, but the investors are ambiguity averse. It is optimal for the robust

contract to transfer uncertainty from the investors to the entrepreneur.

Therefore, there exists an endogenous cutoff value ŵ, such that the incentive constraint binds,

β∗ (w) = λ, only when w ∈ [0, ŵ]. In the region where w ∈ (ŵ, w), the incentive constraint does not

bind, β∗(w) > λ, as the investors’ concern for the entrepreneur’s productivity model is the primary

driving determinant for β∗.

In this region (ŵ, w), by substituting h∗ given by (28) into (27), we may write β∗(wt) as follows:

β∗(wt) =
p′(wt)

θp′′(wt)− [p′ (wt)]
2 =

h∗(wt)

σπ(wt)
, for wt ∈ (ŵ, w) , (33)

where π(w) can be interpreted as a measure of investors’ endogenous (absolute) risk aversion:

π(w) =
p′′(w)

p′(w)
. (34)

The investors’ endogenous risk aversion π(w) depends on the agency problem (λ), liquidation risk

(σ), and the investors’ concern for the entrepreneur’s model misspecification.12

12Note that we do not have a minus sign in p′′(wt)/p
′(wt) for the definition of absolute risk aversion. This is

because here the entrepreneur’s w is the investors’ liability rather than asset. In particular, both p′′ (w) < 0 and
p′ (w) < 0 for w ∈ (ŵ, w).
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Equation (33) resembles the optimal asset allocation rule in the dynamic portfolio choice liter-

ature (e.g., Merton (1971)). The analogy is as follows: (i) the belief wedge h∗t = h∗(wt), which can

be interpreted as the market price of model uncertainty as will be shown in Section 4, is analogous

to the market price of risk in Merton (1971); (ii) π(wt) = p′′(wt)/p
′(wt) is analogous to the coeffi-

cient of absolute risk aversion in Merton (1971). The larger the wedge h∗t , the more optimistic the

entrepreneur is relative to the investors, the greater the investors benefit by letting the entrepreneur

bear the firm’s risk, i.e., the higher the value of β∗. Unlike Merton (1971), h∗t = h∗(wt) and π(wt)

are both endogenous and indeed perfectly correlated in our model.

As the entrepreneur’s wt increases (e.g., following good performances), the wedge h∗ between

the entrepreneur’s model Pa∗ and investors’ belief Qh∗ decreases but importantly the investors’

endogenous risk aversion π(wt) = p′′(wt)/p
′(wt) decreases even more. As a result, β∗t increases

with wt as one can see from Figure 1. That is, once the entrepreneur has earned sufficiently high

stake in the firm, i.e., wt ∈ (ŵ, w), it is optimal to increase the entrepreneur’s PPS β∗(wt) with

wt. In this way, the ambiguity-averse investors can transfer more uncertainty to the risk/ambiguity

neutral entrepreneur. This PPS has critical implications for the firm’s payout policy and its choice

between hedging and speculation.

Payout boundary w. Substituting the smooth-pasting condition, p′(w) = −1, and the super-

contact condition, p′′(w) = 0, given in (25) into (24), we obtain the following condition at w :

rp (w) = max
i

µ− c (i) + (i− δ)p (w)− (γ + δ − i)w .

DFHW (2012) show that this condition can be equivalently expressed as the “steady-state” valua-

tion condition:

p (w) + w = max
i

µ− c (i)− (γ − r)w
r + δ − i

. (35)

Although the boundary conditions for w are the same as in DFHW (2012), the economics in our

model is quite different from that in DFHW (2012).

In our model, at the payout boundary w, it follows from (25), (27), and (28) that

h∗(w) = 0 and β∗(w) = 1 , (36)

The intuition for (36) is as follows. At the payout boundary w, investors fully trust the en-

trepreneur’s model and the belief wedge disappears: h∗(w) = 0. Otherwise, it is always optimal

for the investors to pay the entrepreneur in promise by increasing w rather than in cash. Since the

entropy penalty cost is quadratic in ht, the marginal entropy cost is linear in ht and hence equals
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zero at w as h∗(w) = 0. The marginal benefit is proportional to 1 + βtPW = 1 − βt at w = 0.

Therefore, it is optimal to set βt = 1 at the payout boundary w as doing so equates the marginal

benefit with the zero marginal cost. The result β∗(w) = 1 is fundamentally different from the result

that the incentive constraint always binds, β∗(w) = λ for all w ∈ [0, w], in standard contracting

models under rational-expectations.

As a result, our model allows us to separately identify volatility σ and the agency parameter λ,

which is infeasible in DFHW (2012), as λσ always appears multiplicatively in DFHW (2012). In

contrast, in our model, it is optimal for the entrepreneur to be the entire residual claimant when

the firm is at its payout boundary w, regardless of the severity of agency, measured by λ.

Because β∗(w) = 1 > λ, in order to deliver the same level of promised w, the investors need

to further back-load compensation and delay cash compensation. That is, the endogenous payout

boundary under robustness, w1, is larger than the boundary w2 in DFHW (2012), as we see in

Figure 1.

So far, we have focused on the case where the investors always wait until the last moment to

liquidate the firm. Next, we consider the possibility that the investors may choose to liquidate the

firm before the entrepreneur’s participation constraint Wt ≥ 0 binds.

3.3 The Case with Early Liquidation

In DeMarzo and Sannikov (2006) and DFHW (2012), it is never optimal for the investors to

liquidate the firm before the entrepreneur’s participation constraint binds. The intuition is that

with rational expectations the investors fully trust the entrepreneur’s talent and is only worried

about the agent’s incentive problem. Therefore, the investors optimally delay using the stick (to

inefficiently terminate the project) as much as possible.

However, in our model as the investors are ambiguity-averse, early liquidation can be optimal

when the investors are sufficiently concerned about the entrepreneur’s productivity. We show that

it can be optimal for the investors to compensate the entrepreneur when the investors no longer

consider the entrepreneur to be sufficiently productive. In this case, it is optimal for the investors to

pay a lump-sum amount before the agent’s participation constraint binds. This lump-sum payment

can be viewed as a severance compensation or a golden parachute.

The intuition is that the investors are so worried about the entrepreneur’s productivity (model)

that it is better off for the investors to “buy out” the entrepreneur so that the firm can be liquidated

sooner than later. This early liquidation is triggered in equilibrium by the investors’ belief that the

entrepreneur’s productivity is really low not because of the agency problem.
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Formally, the investors offer Wτ > 0 to the entrepreneur at the termination time τ . For a

given contract Φ, the entrepreneur chooses an action process {ât ∈ [0, 1] : t ∈ [0, τ ]} to maximize

the following objective function:

Wt(Φ, a) = sup
â

EPâ
t

[∫ τ

t
e−γ(s−t) (dUs + λµ(1− âs)Ksds) + e−γ(τ−t)Wτ

]
. (37)

The investors’ payoff at time t is as follows:

Ft (Φ, a) = inf
Qh∈Pa

EQh
t

[∫ τ

t
e−r(s−t)(dYs − dUs) + e−r(τ−t)(Lτ −Wτ )

]
+Kt(Qh). (38)

Then the robust contract with early liquidation is defined in the same away as in Problem 1 where

Wt(Φ, a) and Ft (Φ, a) for t ≥ 0 are given in (37) and (38), respectively. As in Proposition 1, we

consider the case in which the high effort (a∗ = 1) is implemented.

Let w denote the entrepreneur’s scaled promised utility wτ = Wτ/Kτ when the investors ter-

minate the contract at time τ . Then w satisfies

w = inf {w ≥ 0 : p (w) = `− w} .

Intuitively, at the liquidation time τ , the investors offer w ≥ 0 to the entrepreneur who is willing to

accept it as the payoff is higher than his reservation value of zero. The investors obtain p (w) = `−w

upon liquidation. For w > w, Proposition 1 applies and will not be stated here again.

Figure 2 shows that as we decrease θ from 1.0 to 0.2, the investors become more concerned

about the entrepreneur’s (productivity) model misspecification, liquidate the project sooner, and

pay out to the entrepreneur later (larger w).

Importantly, rather than waiting to terminate the entrepreneur’s employment when w reaches

his reservation value of zero for θ = 1.0, the investors choose to terminate the contract earlier when

w reaches w = 0.07 for θ = 0.2. This is because it takes fewer negative shocks for more ambiguity-

averse investors to lose confidence in the entrepreneur’s productivity and hence it is optimal for

them to liquidate the project sooner despite paying a liquidating payoff w = 0.07, which is higher

than the entrepreneur’s outside option value of zero.

Additionally, the investors’ value p(w) decreases, investment i(w) falls, and the equilibrium

belief wedge h∗(w) increases for all levels of w (see Panels A, B, and D) as investors become more

concerned about the entrepreneur’s productivity.

What is not obvious is that as θ decreases from 1.0 to 0.2, the PPS β∗ decreases for a given

level of w. Intuitively, liquidation occurs sooner at w2 = 0.07 for θ = 0.2, and in order to reduce

liquidation risk, the optimal contract with θ = 0.2 calls for a lower uncertainty exposure β∗(w)
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Figure 2: Equilibrium early liquidation (w > 0). As we decrease θ from 1.0 to 0.2, the
liquidation boundary increases from zero to w2 = 0.07.

for any w ∈ [w2, w1] than the contract with θ = 1.0 does. Moreover, the investors with θ = 0.2

delay payout to the entrepreneur as paying the entrepreneur in promise rather than in cash is more

efficient for the firm both because the entrepreneur is more optimistic about the firm’s prospect and

also because it is optimal for the firm to keep more slack in the long-term contracting relationship

when the investors are more concerned about the entrepreneur’s productivity.

4 Security Design and Financial Implementation

In this section we show that our robust contracting solution can be implemented by dynamically

managing the firm’s financial slack (e.g., cash reserves), choosing a capital structure with a mix of

debt, inside equity, and outside equity, and dynamically trading a derivative contingent on the firm’s

output.13 Our implementation builds on DeMarzo and Sannikov (2006), BMPR (2007), DeMarzo

and Fishman (2007a, 2007b), DFHW (2012), Miao and Rivera (2016), among others. What is new in

our implementation is the entrepreneur’s speculative hedging demand that arises endogenously from

the equilibrium belief wedge between the entrepreneur and investors. For expositional simplicity,

13It is well known in the security design literature that implementation is not unique. We provide an economically
intuitive implementation that uses simple and standard contracts.
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we study financial implementation for the case without early liquidation, as the case where early

liquidation is optimal is similar.

4.1 Security Design and Pricing

Let Bt, St, and Mt denote the market value of the firm’s debt, equity, and its cash balance at time

t. Our goal is to determine these values and design a firm’s dynamic financing policies based on

the optimal contract.

Corporate Liquidity and Risk Management. We denote the scaled cash reserves by mt =

Mt/Kt in [0,m], where mt = wt/λ is the endogenous payout boundary. In the interior region where

the firm’s cash balance Mt lies inside (0,mtKt], the firm dynamically engages in liquidity and risk

management. The firm earns interest on its cash balance Mt at the risk-free rate r.

The firm also has access to a liquid financial asset that is perfectly correlated with its produc-

tivity shock dZh
∗

t . We refer to this asset as the derivative asset and define its payoff structure as

follows: An investor who has a unit of long position in this derivative asset at time t receives a

stochastic payoff dZh
∗

t at t+ dt under Qh∗ . As investors have no wealth constraints and their equi-

librium belief is given by the measure Qh∗ , all contingent claims can thus be priced in a perfectly

competitive market under Qh∗ . Therefore, it is costless for investors to take either a long or a short

position in this derivative asset as doing so is a mean-zero preserving spread for risk-neutral in-

vestors under Qh∗ . However, because the entrepreneur is relatively more optimistic than investors,

the entrepreneur is willing to pay for this derivative asset as this asset provides a positive expected

payoff h∗tdt to him.

Let xtKt denote the firm’s demand for this hedging asset at t. Over [t, t+ dt], the firm’s

cash-flow exposure to this hedging asset dHt is then given by the product of xtKt and dZh
∗

t , in that

dHt = xtKtdZ
h∗
t , (39)

where xt is to be determined.

Equity. Because the ambiguity-averse investors are well diversified and financially unconstrained,

they are the marginal investors and therefore the firm’s equity value is given by

St = EQh∗
t

[∫ τ

t
e−r(v−t)dUSv

]
, (40)

where {USv : t ≤ v ≤ τ} is the undiscounted cumulative dividend. Its increment is given by

dUSt = dU∗t /λ , (41)
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where dU∗t is the equilibrium payout to the entrepreneur characterized in Proposition 1. By defin-

ing dividends in this way, we naturally conclude that the entrepreneur receives λ fraction of the

firm’s total equity, as dU∗t = λdUSt under all circumstances. This dividend payment interpretation

specified in (41) is widely used in the literature, e.g., DeMarzo and Sannikov (2006), BMPR (2007),

DeMarzo and Fishman (2007a, 2007b), and Miao and Rivera (2016).

Debt. Similarly, we value the firm’s debt as follows:

Bt = EQh∗
t

[∫ τ

t
e−r(s−t)UBs ds+ e−r(τ−t)`Kτ

]
, (42)

where τ is the endogenous stochastic default time. The firm’s debt service over [t, t+ dt] is given

by UBt dt, where

UBt = (µ− c (i∗t ))Kt + xth
∗
tKt − (γ − r)Mt . (43)

The debt service UBt per unit of time is locally deterministic. The first term in (43) is the expected

operating cash flow. Because debt is senior to equity, it is intuitive that debt holders receive this

expected payoff.14

The second term xth
∗
tKt is from the firm’s speculative position via the derivative asset. Because

the entrepreneur beliefs that the derivative asset has a positive drift of h∗tdt while investors think

the drift of this asset is zero, it is efficient for the firm to take the speculative position xth
∗
tKt and

distribute this amount (in expectation) to debt holders. We will provide more discussions on this

point latter.

The last term in (43) is the adjustment due to the firm’s performance measured by its cash

balance Mt. Because the entrepreneur’s required rate of return is γ and the discount-rate wedge

between the entrepreneur and investors is γ−r > 0, the firm keeps (γ−r)Mt each period for future

dividend payments to shareholders.

Whenever the firm misses its debt payment schedule, creditors have the right to liquidate

the firm. In equilibrium, the firm only defaults on its debt when it exhausts its cash balance,

meaning that the firm declares default at time τ where τ = inf{s ≥ 0 : Ms = 0}. Creditors

collect all liquidation proceeds `Kτ and equity investors are completely wiped out at the moment

of liquidation τ , as implied by the absolute priority rule (APR).

There are two key differences in debt value given in (42) and equity value given in (40). First,

debt is senior to equity as bond holders collect the firm’s entire liquidation proceeds `Kτ and

14Of course, we could also attribute this as part of payout to outside equity investors. Since we are treating inside
and outside equity investors symmetrically, we allocate the expected free cash flows to debt holders.
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shareholders are completely wiped out upon liquidation (e.g., the APR holds in our model.) Second,

debt payment is locally deterministic with coupon payment UBt dt while cash-flow to equity is

stochastic in general.

Cash Balance. The firm’s cash balance is the nexus connecting the firm’s various decisions.

Specifically, in the interior region (0,mtKt], the firm’s cash holding Mt evolves as follows:

dMt = KtdAt︸ ︷︷ ︸
sales

+ rMtdt︸ ︷︷ ︸
interest

− C(It,Kt)dt︸ ︷︷ ︸
Cap Ex costs

− UBt dt︸ ︷︷ ︸
coupon

+ dHt︸︷︷︸
speculation

− dUSt︸︷︷︸
dividends

. (44)

Equation (44) connects the firm’s dynamically changing cash holding M , an item on the balance

sheet, to its three Cash-Flow Statements as follows:

1. cash flows from operating activities, KtdAt;

2. cash flows from investing activities, given by interest income rMt, minus investment costs

C(It,Kt), and minus debt coupon payment at the rate of UBt ;

3. cash flows from financing activities, which include dividend payments dUSt to equity investors

and speculation gains or losses dHt.

The firm pays out dividends, meaning dUSt > 0, if and only if the firm’s cash holding Mt

exceeds mKt, and the dividend policy is to distribute the firm’s “excess” cash so that mt reflects

away from m into the interior region. As we discussed earlier, the dividend payment specification

dUSt allocates the entrepreneur a (non-tradable) λ fraction of the firm’s total payout to equity, so

that inside equity implements the optimal compensation contract for the entrepreneur.

For the above capital structure to implement the robust contract characterized in Proposition

1, we use equations (30), (44), Wt = wtKt, and Mt = Wt/λ to solve for the firm’s hedge position:

x∗t =

(
β∗t − λ
λ

)
σ . (45)

This equations shows that, when the incentive constraint binds (β∗t = λ by Proposition 1), the firm

holds no hedging asset.

When the incentive constraint does not bind (β∗t > λ), we have x∗t > 0, which means that

the firm takes a long position in its own cash-flow risk via the hedging asset. This is in contrast

to the conventional wisdom that a financially constrained firm should hedge against its risk by

taking a short position in the hedging asset. The intuition for our results is as follows. Because in

equilibrium the entrepreneur is more optimistic than investors about the productivity, it is optimal
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for the firm to expose itself more to its own risk, as the firm compensates the entrepreneur via λ

fraction of equity, which is cost effective.

From investors’ point of view, the expected profit from speculation is zero because

EQh∗
t [dHt] = EQh∗

t

[
x∗tKtdZ

h∗
t

]
= 0 . (46)

However, the speculation is profitable from the entrepreneur’s point of view. Since investors do not

trust the entrepreneur’s model, their beliefs Qh∗ are different from the entrepreneur’s Pa∗ . As we

discussed earlier, the entrepreneur is endogenously more optimistic than the investors.

Formally, we use (6) to compute

EPa∗
t [dHt] = EPa∗

t [x∗tKtdZ
h∗
t ] = EPa∗

t

[
x∗tKt

(
dZa

∗
t + h∗tdt

)]
= x∗tKth

∗
tdt > 0, (47)

where h∗t > 0 can be interpreted as the market price of uncertainty (Anderson, Hansen and Sargent

(2003)). The speculative profits represent free cash flows which are extracted by the firm via a

higher coupon rate UBt paid to creditors. Doing so alleviates agency issues. If the profits were kept

in the firm, the entrepreneur could divert them for his private benefits.

Under rational expectations, BMPR (2007) show that their optimal contract can be imple-

mented by debt, equity, and cash reserves without speculative demand, i.e., x∗t = 0. DeMarzo

and Sannikov (2006), and DFHW (2012) offer different implementations. Under model uncer-

tainty, Miao and Rivera (2016) introduce special dividends to the implementation, which play a

different role of speculative demand in this paper. It is well known in the literature that financial

implementation is generally not unique.

One robust feature of any financial implementation is that there exists a key state variable to

capture the firm’s financial slack, which is tied to the entrepreneur’s promised utility Wt. Here

we choose cash reserves Mt = Wt/λ. We could have chosen an alternative, e.g., credit line, as in

DeMarzo and Sannikov (2006), and DeMarzo and Fishman (2007a, 2007b).

Next, we discuss the implications of our financial implementation. In doing so, we equivalently

express the contracting solution in Proposition 1 as various functions of the new state variable, the

scaled cash balance m = M/K = w/λ ∈ (0, w/λ). For example, we write β∗ (λm) , h∗ (λm) , and

x∗ (m) by (45). Let s (mt) and b (mt) denote the scaled equity and debt values: s (mt) = St/Kt

and b (mt) = Bt/Kt.

Graphic Illustration. Panels A and B of Figure 3 plot the scaled speculative demand x∗ (m)

and the scaled speculation profits x∗ (m)h∗ (λm), respectively, for two values of θ. Panels C and

D present the corresponding sensitivity β∗ (λm) and belief wedge h∗ (λm) .
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Figure 3: Speculative demand, speculative profits, sensitivity, and belief wedge for high
and low values of θ.

Note that the entrepreneur speculates only when cash holding m is sufficiently high. When m

is low, investors are more concerned about agency problems and the risk of liquidation so that the

entrepreneur’s incentive constraint binds, i.e. β∗ (λm) = λ and hence x∗ (m) = 0, as in rational

expectations models.

However, when m ≥ m̂ = ŵ/λ, the entrepreneur’s incentive constraint no longer binds. Because

the firm has sufficient financial slack, it has more room to exploit the endogenous belief dispersion

between the entrepreneur and investors via speculation, as the firm can buffer losses better via its

savings. For this reason, the speculative demand x∗ (m) increases with m. As one may expect,

the speculation profit first increases with m but then decreases with m after reaching a sufficiently

high level of m. This is due to the countervailing force that the investors increasingly trust the

entrepreneur’s model. As a result, the market price of model uncertainty h∗ (λm) decreases with

the firm’s financial slack m. In the limit, when m = m = w/λ, h∗ (λm) = 0, i.e., the two beliefs

coincide and hence there is no speculation profit. In sum, the speculation profit is hump shaped

and equal to zero when m is either sufficiently low or high.

Figure 3 also shows that when the investors are more ambiguity averse (a smaller θ), the
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speculative profit is higher (Panel B). This is because the belief wedge is larger which implies that

the market price of uncertainty h∗ (λm) is also larger (Panel D.)

The sensitivity β∗ is not monotonic in θ. A firm with a higher value of θ pays out sooner

to shareholders (a lower value of w), and optimally increases exposes the entrepreneur’s exposure

to liquidation risk when its cash balance m is sufficiently high. This is because as w → w, the

investors’ endogenous risk aversion approaches zero and β∗ approaches unity. In contrast, when w

is sufficiently close to the liquidation boundary, the PPS β∗ is always (weakly) lower when investors

are less concerned about the entrepreneur’s model. This is because the going concern value for a

firm with a higher value of θ is larger and as a result investors become more prudent by lowering

β∗(w) when w is not high. This explains why we have a crossing for β∗ for the high and low θ

cases.

Next, we summarize our implementation by linking a firm’s balance sheet to its cash flow

statements.

4.2 Enterprise Value, Tobin’s Average q, and Balance Sheet

The firm’s enterprise value is the present value of the firm’s cash flows under the investor’s en-

dogenously determined belief Qh∗ . Note that here we are netting out the compensation to the

entrepreneur as it is a transfer from investors to the entrepreneur. That is,

Vt = EQh∗
t

[∫ τ

t
e−r(s−t)dYs + e−r(τ−t)`Kτ

]
. (48)

Thus the firm’s enterprise value Vt is equal to the sum of the present value of the cash flows

generated by the firm’s project and the liquidation value. In the first best case, liquidation is never

optimal and the firm’s enterprise value is simply equal to qFBKt where qFB is the firm’s Tobin’s

average q given in (14).

We show that the firm’s enterprise value is equal to the sum of its debt and equity values minus

cash. Creditors and (inside and outside) equity investors together own the firm including its going-

concern value and cash balances. Using outside investors endogenously determined belief Qh∗ , we

may calculate the firm’s enterprise value, Vt, as follows:

Vt = Bt + St −Mt . (49)

Note that the firm’s enterprise value Vt is the sum of the firm’s net debt, Bt −Mt and the market

value of its equity held by both outside equity investors and the entrepreneur. We give the proof

of equation (49) in Appendix A.
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Liquid Assets: 𝑀𝑡 

Capital: 𝐾𝑡 

Goodwill: 𝑉𝑡 − 𝐾𝑡 

Debt:  𝐵𝑡 

(1 − 𝜆) ∙ 𝑆𝑡 

Outside Equity: 

𝜆 ∙ 𝑆𝑡 

Inside Equity: 

Figure 4: Balance Sheet.

Figure 4 illustrates the firm’s balance sheet. On the liability side, the firm’s market value of

debt is Bt and its equity value is St. The fraction λ of its equity is held by the entrepreneur and

the remaining 1− λ fraction is held by outside equity investors. On the asset side, the firm’s cash

holding is Mt, the firm’s capital stock is Kt, and the goodwill is Vt − Kt, where Vt is the firm’s

enterprise value defined in equation (49). At each time t, the two sides of the balance sheet are

equal, i.e., Mt + Vt = Bt + St as given in (49).

We further link the investors’ value function P (Kt,Wt) from the contracting model to the firm’s

enterprise value Vt in our financial implementation as follows:

Vt = P (Kt,Wt) + EQh∗
t

[∫ τ

t
e−r(s−t)dU∗s

]
−Kt (Q∗h) = P (Kt,Wt) + λSt −Kt (Qh∗) . (50)

Therefore, we obtain

Vt − λSt = P (Kt,Wt)−Kt (Qh∗) . (51)

The right side of (51) is equal to the investors’ value P (Kt,Wt) minus the penalty due to investors’

ambiguity aversion. The left side of (51) is equal to the firm’s total enterprise value minus the market

value of the entrepreneur’s inside equity. In equilibrium, as the contracting and implementation

formulations are equivalent and dual to each other, the two sides of (51), using the same belief and

the same discount rate r to value the investors’ total value, have to be equal.

We define average q as the ratio of firm value to the capital stock qa (t) = Vt/Kt. Equation (49)

implies that qa,t = s(mt) + b(mt) −mt. In Appendix B we provide an ODE characterization for
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Figure 5: Tobin’s average q. The agency problem and investors’ concern for the entrepreneur’s
model lower Tobin’s average q from the first-best value qFB. Additionally, Tobin’s average q
increases with cash balance m for a given level of θ. The more the investors are concerned about
the entrepreneur’s productivity model the lower the firm’s average q.

qa(w) = qa(λm). Figure 5 presents average q for the robust contract with agency for two values

of θ and compare with the first-best qFB. Tobin’s average q increases with cash balances m and

ambiguity aversion lowers average q. For all cases average q starts at qa (0) = ` and increases to the

payout boundary such that q′a (w) = 0.

Finally, we conclude our financial implementation by discussing the initial capital structure.

Initial Capital Structure. The firm with an initial capital stock K0 sets up its capital structure

at time 0 by raising debt with market value of B0 and issuing equity to outside investors with market

value of (1 − λ)S0. Because the firm needs to motivate the financially constrained entrepreneur

to exert effort, it allocates λ fraction of its equity as the long-term compensation package to the

entrepreneur. The firm’s initial cash balance is M0 = B0 + S0 − V0.

5 Quantitative Analysis

In this section, we analyze our model’s quantitative implications for asset pricing and corporate

policies.
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5.1 Equity Premium and Default Risk

The investors’ concern about the entrepreneur’s productivity model generates an endogenous mar-

ket price of model uncertainty h∗ (λmt) > 0. By construction, equity premium is zero in DFHW

(2012). In contrast, the market price of uncertainty generates a positive equity premium in our

model. We define the conditional expected equity premium under measure Pa∗ , e (mt), as follows:

e (mt) ≡
1

Stdt
EPa∗
t

(
dU∗t
λ

+ dSt

)
− r ,

where mt is the scaled cash balance. Similar to Miao and Rivera (2016), we can show that

e (mt) = h∗(λmt)
s′(mt)

s(mt)

σβ∗(λmt)

λ
. (52)

We follow BMPR (2007) and use the credit spread on a consol bond to measure default risk.

The consol bond pays one dollar at each date until the firm defaults at τ and nothing afterwards.

Let ∆t denote the credit spread on this consol bond. Equilibrium pricing implies∫ ∞
t

e−(r+∆t)(s−t)ds = EQh∗
t

[∫ τ

t
e−r(s−t)ds

]
. (53)

It is helpful to introduce Dt, the market value of a default-contingent contract that pays the contract

holder one dollar at default time τ . Using investors’ endogenous belief Qh∗ , we have

Dt = EQh∗
t

[
e−r(τ−t)

]
for t ∈ [0, τ ] . (54)

Using (54) to solve ∆t defined in equation (53),15 we obtain ∆t = rDt/ (1−Dt), which implies

that the credit spread ∆t increases with the value of the default-contingent contact, Dt.

Figure 6 presents the equity premium e (m) and the credit spread ∆ (m) as functions of the

level of cash reserves m for three different values of θ. We find that both the equity premium

and credit spread increase with investors’ concern for the entrepreneur’s productivity (1/θ) and

decreases with cash balance (m). Intuitively, investors’ concern for the entrepreneur’s productivity

causes equity value under the endogenous belief Qh∗ to be lower than under the reference belief

Pa∗ as ambiguity-averse investors demands an expected return premium for holding risky equity.

Unlike in Miao and Rivera (2016), the equity premium and credit risk are also related to in-

vestment and average q. Agency and investors’ concern for the entrepreneur’s productivity together

determine corporate investment, the equity premium, and credit spread. Our model predicts that

firms that invest more tend to have a lower equity premium, lower credit spread, and higher cash

balances (or more financial slack). These results are broadly in line with empirical studies by Zhang

(2005), Hou, Xue, and Zhang (2015), and Chordia et al. (2017).

15By using EQh∗
t

(∫ τ
t
e−r(s−t)ds

)
=
∫∞
t

e−r(s−t)ds
[
1− EQh∗

t

(
e−r(τ−t)

)]
= (1 − Dt)/r and the definition for the

credit spread,
∫∞
t

e−(r+∆t)(s−t)ds = 1/(r + ∆t), we obtain ∆t = rDt/ (1−Dt) .
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Figure 6: Equity premium e(m) and credit spread ∆(m). The equity premium and credit
spread are higher when investors are more concerned about the entrepreneur’s productivity model
(i.e., when θ is lower.) Also, both e(m) and ∆(m) decrease with cash balance m.

5.2 Parameter Values

Next, we calibrate our model. We choose the widely used quadratic adjustment cost function:

c (i) = i+
ψ

2
i2 , (55)

where ψ is a positive parameter (Hayashi (1982)). The first-best optimal investment i and average

q are given by

iFB = r + δ −
√

(r + δ)2 − 2

ψ
[µ− (r + δ)], qFB = 1 + ψiFB,

where we assume that (r + δ)2 − 2 (µ− (r + δ)) /ψ > 0. Clearly, assuming ` < qFB is sufficient to

ensure that liquidation is never optimal in the first-best contract.

Table 1 reports the parameter values used for our baseline calculation, which is based on the

baseline case in DFHW (2012). Specifically, we set the annual risk-free rate at r = 4.6%, the

annual mean and volatility of productivity to µ = 20% and σ = 26%. For capital stock, we set the

liquidation recovery at ` = 0.97 per unit of capital, the capital adjustment parameter at ψ = 2,

and the annual depreciation rate of capital stock at δ = 12.5%. Finally, we set the entrepreneur’s

annual discount rate at γ = 5%, and the agency parameter at λ = 0.2.

The new parameter in our model is the key robustness parameter θ. Following Anderson,

Hansen, and Sargent (2003), and Hansen and Sargent (2008), we use the detection error probability

method to calibrate this parameter to 2.8.

Specifically, recall that Pa∗ is the entrepreneur’s belief where the effort level a∗t = 1 for all t,

which is an approximating model to an unknown true model, and Qh∗ is the investors’ equilibrium

31



Table 1: Baseline parameter values. All parameter values are continuously compounded and
annualized whenever applicable.

Parameters Symbol Value

Risk-free rate r 4.6%

Depreciation rate of capital stock δ 12.5%
Mean of productivity shock µ 20%
Volatility of productivity shock σ 26%
Entrepreneur’s discount rate γ 5%
Adjustment cost parameter ψ 2.0
Agency parameter λ 0.2
Liquidation recovery value ` 0.97
Robustness parameter θ 2.8

belief, also the worst-case measure for the robust contract with agency. The likelihood ratio between

these two measures is given by the following Radon-Nikodym derivative:

dQh∗

dPa∗

∣∣∣∣
Ft

= ξh
∗
t = exp

[
−
∫ t

0
h∗(ws)dZ

a∗
s −

1

2

∫ t

0
(h∗(ws))

2 ds

]
, (56)

where h∗ is given in Proposition 1. The detection-error probability is defined as

αT (θ) =
1

2
Pa∗

[
ln(ξh

∗
T ) ≥ 0}

]
+

1

2
Qh∗

[
ln(ξh

∗
T ) ≤ 0

]
(57)

for some large T. This probability αT (θ) describes the likelihood of wrongly rejecting the true model,

which could be either the entrepreneur’s approximating model Pa∗ or the investors’ endogenous

belief Qh∗ , based on a finite sample of T years. We calculate αT (θ) using Monte Carlo simulations

as there is no analytical expression.

We consider two cases with T = 10 and T = 20 years. Figure 7 plots the relation between

αT (θ) and the robustness parameter θ. First, consider the special case where investors fully trust

the entrepreneur’s productivity level (θ = ∞). In this case, there is only one model on the table

(Pa∗ is true and the same as Qh∗). If this model is rejected, it must be erroneous. That is, the

detection error probability is one, which is the value we obtain from (57).

In contrast, when investors are concerned about the entrepreneurs’ model (a finite value of θ),

there is an economic and statistically meaningful difference between Pa∗ and Qh∗ . The lower the

value of θ, the more significant the difference between the two models is. This suggests that the

likelihood of erroneously rejecting the true model decreases as the investors become more concerned

about the entrepreneur’s productivity model (i.e, as θ decreases.) Indeed, Figure 7 confirms our

intuition as αT (θ) increases with θ for a fixed T.
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Figure 7: Detection error probabilities αT (θ) as a function of the parameter θ. We plot
αT (θ) for two cases: T = 10 and T = 20 years. All other parameter values are reported in Table 1.

Anderson, Hansen, and Sargent (2003) suggest that modelers choose θ to target the implied

αT (θ) to at least 10%. By targeting αT (θ) at 10%, we obtain θ = 2.8 for T = 10 years and θ = 4.1

for T = 20 years. Note that with a longer sample (20 versus 10 years), the true model is less likely

to be rejected. Therefore, to attain the same level of detection error probability, e.g., 10%, we need

investors to be less concerned about the entrepreneur’s model for a longer sample. This explains

why θ = 4.1 for T = 20 and θ = 2.8 for T = 10 as α20(4.1) = α10(2.8). For our baseline calculation,

we choose θ = 2.8 and T = 10 (which seems sufficiently long for an entrepreneurial project.)

5.3 Quantitative Results

As in DFHW (2012), we simulate our model at the monthly frequency and generate sample paths

that lasts 20 years unless the firm is liquidated, i.e., ending at min{20, τ}. Each simulation starts

with w0 = arg max p(w). That is, we assume that the investors have all the bargaining power. We

repeat the simulation 5,000 times and report various (sample) moments in Table 2.

Column (1) of Table 2 replicates the results in DFHW (2012) which corresponds to θ = ∞

in our model. Column (6) presents the results for our baseline calibration with θ = 2.8. The

differences between columns (1) and (6) are entirely caused by the investors’ concern for the en-

trepreneur’s productivity model. Investors’ concern for the entrepreneur’s model delays payout to

the entrepreneur, reduces the average level and volatility of the investment-capital ratio, lowers

Tobin’s average q, raises the average credit spread, and induces a large equity premium of 3.79%

per annum, even though investors are risk neutral.

33



Table 2: Quantitative comparative static results with respect to θ and λ. All other
parameter values are reported in Table 1. Under the first best, qFB = 1.31 and iFB = 0.16.

(1) (2) (3) (4) (5) (6) (7)
Robustness parameter θ ∞ 4.1 4.1 4.1 2.8 2.8 2.8
Agency parameter λ 0.2 0.1 0.2 0.4 0.1 0.2 0.4

Payout boundary w 0.43 0.99 1.02 1.10 1.10 1.12 1.18
Investment reduction (%), iFB − i∗(w) 6.14 8.31 8.70 9.48 9.46 9.63 9.89
Investment volatility (%), β∗(w)σi∗′(w) 1.48 0.97 1.26 1.43 0.96 1.24 1.35
Firm value reduction, qFB − qa(w) 0.06 0.19 0.18 0.17 0.23 0.21 0.19
Equity premium (%), e(m) 0.00 1.91 2.38 4.38 2.93 3.79 7.42
credit spread (%), ∆(m) 1.75 0.77 2.42 13.04 0.86 2.84 17.34

Table 2 also presents comparative static results with respect to θ and λ. As the agency problem

becomes more severe when λ increases, the firm becomes more financially constrained and hence

payout boundary w increases, underinvestment distortion iFB− i∗(w) becomes more severe, invest-

ment volatility β∗(w)σi∗′(w) increases, and both the equity premium and credit spread increase.

The effect on firm value reduction qFB − q(w) is subtle. For both θ = 4.1 and θ = 2.8 cases, the

firm value reduction decreases and hence firm’s average q increases with λ.

The last monotonicity result is the opposite of that in DFHW (2012). The difference is entirely

caused by investors’ concern for the entrepreneur’s model. The intuition is as follows. For incentive

compatibility considerations, a higher value of λ causes the entrepreneur’s w to be more exposed to

cash flow risk. While this higher risk exposure raises the risk of liquidation, it also allows investors

to let the more optimistic entrepreneur own a larger fraction of the firm at a cheaper valuation

under their belief Qh∗ . The net effect is that a firm’s average q is higher if investors’ concern for

the entrepreneur’s model is sufficiently large, for both θ = 2.8 and θ = 4.1 cases.

Now consider the effect of changing the investors’ concern for the entrepreneur’s model by

comparing columns (1), (3), and (6). As investors become more concerned about the entrepreneur’s

model (i.e., as θ decreases), the firm delays its payout (w), under-investment (iFB − i∗(w)) and

firm value loss (qFB − qa(w)) become more significant, and both the equity premium and credit

spread increase. These results are intuitive. The effect of changing θ on investment volatility is less

obvious. Investors who are more concerned about the entrepreneur’s model (a lower θ), are more

averse to inefficient liquidation and hence an optimal contract calls for a less volatile investment,

especially when the entrepreneur’s w is sufficiently large (see Panel C of Figure 3).

The quantitative effects of investors’ concern for the entrepreneur’s model are significant for
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Figure 8: Entrepreneur’s equilibrium overconfidence and the IRR wedge due to the
entrepreneur’s and investors’ belief wedge: IRR(Pa∗)−IRR(Qh∗). Note that IRR(Qh∗) = r.
We use parameter values for the baseline case reported in Table 1 and set w0 at arg maxw p(w).
For our baseline calibration with θ = 2.8, the implied IRR wedge is 3.5% per annum.

both quantities and prices. For example, with our calibrated value of θ = 2.8, the mean of Tobin’s

average q is only 1.10, which is significantly lower than qFB = 1.31 by 0.21, compared with the

value of 1.25 for θ = ∞; the average investment reduction is 9.63% and the investment volatility

is 1.24%, compared with 6.14% and 1.48% for θ = ∞; and the equilibrium equity premium is

3.8% per annum rather than zero for θ = ∞. Our analysis shows that with plausible values for

the robustness parameter θ, the quantitative predictions are drastically different from those in the

standard model with θ =∞.

Our model also sheds light on different return expectations for the entrepreneur and investors in

equilibrium. In the next subsection, we show that different returns can be quite sizable, especially

for early stage projects and/or first-time (less experienced) entrepreneurs.

5.4 Internal Rate of Return (IRR)

A key valuation issue widely discussed in the VC industry and also in MBA Entrepreneurial Finance

classes is why the IRRs that VCs use to value projects are so high relative to the standard cost of

capital calculations (even with large βs) that we use to make investment decisions. There are various

explanations, e.g., VCs’ skill/value-add, network, and market power. One common explanation is

that entrepreneurs tend to be overly optimistic and are often unrealistic about their projections.

Rather than discouraging and trying to convince the entrepreneur and expressing their concerns
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for the entrepreneur’s productivity model, investors can simply use the entrepreneur’s belief model

when quoting the cost of capital for the project to the entrepreneur. Doing so, the VCs achieves

the same goal without making the entrepreneur feel that they do not trust the entrepreneur’s

productivity model Pa∗ .

We now calculate the project’s IRR based on the entrepreneur’s belief Pa∗ . That is, we compute

IRR(Pa∗) by solving the following equation:

V0 = EPa∗
(∫ τ

0
e−IRR(Pa∗ )·sdYs + e−IRR(Pa∗ )·τ `Kτ

)
,

where V0 is the firm’s enterprise value given by (48). Since investors are break-even in our model,

the IRR for the risk-neutral deep pocketed investors is equal to the risk-free rate r under their

equilibrium belief Qh∗ , i.e., IRR(Qh∗) = r. In Appendix B, we verify the following result:

IRR(Pa∗)− IRR(Qh∗) =
σh∗(w) [1 + β∗(w)v′(w)]

v(w)
, w ∈ [0, w] .

Using the ODE for v(w) given in Appendix B, we plot the IRR wedge IRR(Pa∗)− IRR(Qh∗) as a

function of θ in Figure 8.

This figure shows how the IRR wedge decreases as the investors become less concerned about

the entrepreneur’s productivity model. For each level of θ, we set w0 = arg maxw p(w) by assigning

all the bargaining power to the investors in this calculation. At our calibrated value of θ = 2.8,

this IRR wedge is 3.54% per annum, which is quite large. In the limit as θ →∞ (as in the rational

expectations model), the belief wedge disappears, which in turn drives the IRR wedge to zero. As

investors become more concerned about the entrepreneur’s model (as θ decreases), the belief wedge

widens, which in turn causes the IRR wedge IRR(Pa∗)− IRR(Qh∗) to increase.

6 Conclusion

We have developed a continuous-time contracting model with investment in which investors are

concerned about the entrepreneur’s productivity model. We characterize the robust contract and

show that early liquidation can be optimal when investors are sufficiently ambiguity averse. We pro-

vide a novel implementation of the robust contract by debt, equity, cash, and a financial derivative

asset. The derivable asset is used to hedge against the investors’ concern that the entrepreneur’s

productivity model may be misspecified. Our calibrated model generates sizable equity premium

and credit spread. We also find that (i) ambiguity aversion lowers Tobin’s q, the average investment

rate, and investment volatility; (ii) the equity premium and the credit spread decrease with Tobin’s

q, and (iii) the entrepreneur values the project at an internal rate of return 3.5% per annum higher

than investors do.
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Appendices

A Proofs

To ensure that the model is well posed, we impose the following conditions on Kt and the en-

trepreneur’s compensation process Ut. Specifically, under the equivalent measure Qh induced by

h ∈ Ha, where Ha is the set of density generators associated with effort a ∈ [0, 1], we require

EQh
[∫ T

0
(e−rtKt)

2dt

]
<∞, ∀T > 0, and lim

T→∞
EQh

(
e−rTKT

)
= 0, (A.1)

and

EQh

[(∫ τ

0
e−γsdUs

)2
]
<∞ . (A.2)

Proof of Proposition 1. Our proof of Proposition 1 essentially follows the proof of Proposition

1 in DFHW (2012) and the proof of Propositions 1 and 2 in Miao and Rivera (2016). We thus omit

the proof here.

Proof of Equation (49). Using the process (17) for the entrepreneur’s continuous utility Wt,

we obtain:

d(e−rtWt) = e−rtdWt − re−rtWtdt = e−rt
[
((γ − r)Wt − β∗tKtσh

∗
t ) dt− dU∗t + β∗tKtσdZ

h∗
t

]
.

Integrating over the interval [t, T ∧ τ ] for any T > t, we obtain∫ T∧τ

t
d(e−rsWs) = e−r(T∧τ)WT∧τ − e−rtWt

=

∫ T∧τ

t
e−rs

[
((γ − r)Ws − β∗sKsσh

∗
s) ds− dU∗s + β∗sKsσdZ

h∗
s

]
.

Rewriting the preceding equation yields

e−r(T∧τ)WT∧τ = e−rtWt +

∫ T∧τ

t
e−rs

[
((γ − r)Ws − β∗sKsσh

∗
s) ds− dU∗s + β∗sKsσdZ

h∗
s

]
.

By using τ = inf{t ≥ 0 : Wt = 0}, which implies Wτ = 0, letting T → ∞, using Mt = Wt/λ, and

calculating the expectation under the measure Qh∗ , we obtain:

Mt = EQh∗
t

[∫ τ

t
e−r(s−t)

(
dU∗s
λ
− (γ − r)Msds+

β∗sKsσh
∗
s

λ
ds

)]
. (A.3)
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Summing up the firm’s bond value Bt and equity value St, we obtain:

Bt + St = EQh∗
t

[∫ τ

t
e−r(s−t) [Ks(µ− c(i∗s))− (γ − r)Ms] ds+

∫ τ

t
e−r(s−t)

(
β∗s − λ
λ

)
Ksσh

∗
sds

]
+EQh∗

t

[
e−r(τ−t)`Kτ

]
+ EQh∗

t

[∫ τ

t
e−r(s−t)

1

λ
dU∗s

]
(A.4)

= EQh∗
t

[∫ τ

t
e−r(s−t) (Ks(µ− c(i∗s))−Ksσh

∗
s) ds

]
+ EQh∗

t

[
e−r(τ−t)`Kτ

]
+EQh∗

t

[∫ τ

t
e−r(s−t)

(
dU∗s
λ
− (γ − r)Msds+

β∗sKsσh
∗
s

λ
ds

)]
(A.5)

= EQh∗
t

[∫ τ

t
e−r(s−t)dYs + e−r(τ−t)`Kτ

]
+Mt (A.6)

= Vt +Mt , (A.7)

where (A.4) uses the present-value formulas for St and Bt given in equations (40) and (42), (A.5)

rearranges (A.4), and (A.6) uses the expression (A.3) for Mt and the expression (48) for the firm’s

enterprise value, Vt. We now have proved the identity Vt = Bt + St −Mt stated in (49).

Proposition 2 Let assumptions in Proposition 1 hold. Then the scaled value function p (w) in-

creases with θ for w ∈ (0, w) .

Proof. Our proof builds on DeMarzo and Sannikov (2006), and Miao and Rivera (2016). Using

the envelope theorem and differentiating (24) with respect to θ, we obtain

r
∂p(w)

∂θ
= (γ + δ − i∗(w))w

∂p′(w)

∂θ
+ (i∗(w)− δ)∂p(w)

∂θ
+
σ2 [β∗(w)]2

2

∂p′′(w)

∂θ

−σ
2 [β∗(w)p′(w) + 1]β∗ (w)

θ

∂p′(w)

∂θ
+
σ2 [1 + β∗ (w) p′(w)]2

2θ2 .

Using (28) for h∗(w), we rewrite the preceding equation as

(r + δ − i∗(w))
∂p(w)

∂θ
= [(γ + δ − i∗(w))w − β∗ (w)σh∗(w)]

∂p′(w)

∂θ

+
[β∗(w)σ]2

2

∂p′′(w)

∂θ
+

[h∗ (w)]2

2
.

We write the dynamics of wt as

dwt = [(γ + δ − i∗(wt))wt − β∗ (wt)σh
∗(wt)] dt− du∗t + β∗ (wt)σdZ

h∗
t ,

where Zh
∗

is the standard Brownian motion under the measure Qh∗ . Using the Feynman-Kac

formula, we can show

∂p(w)

∂θ
= EQh∗

t

[∫ τ

t
e−

∫ s
t g(wu)du [h∗ (w)]2

2
ds

∣∣∣∣wt = w

]
> 0,

where g(w) = r + δ − i∗(w) . Thus, p(w) is an increasing function of θ for any given w ∈ (0, w).
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Proposition 3 The sufficient and necessary condition of implementing the highest effort a∗ = 1 is

(p(w)− wp′ (w)− 1)2

2ψ
≤ (δ + r)p(w)− p′(w)[(γ + δ)w − λµ] +

σ2

2θ

−σ
2

2
max
β≤λ

[(
p′′(w)− p′(w)2

θ

)
β2 − 2p′(w)

θ
β

]
. (A.8)

Proof. Our proof builds on DeMarzo and Sannikov (2006), DFHW (2012), and Miao and Rivera

(2016). The high effort level is optimal if and only if

rp(w) ≥ sup
i,β≤λ

[
−λµp′(w)− c(i)

]
+ (γ + δ − i)wp′(w)

+(i− δ)p(w) +
σ2β2p′′(w)

2
− σ2

θ

(
1

2
+ p′(w)β +

1

2

[
p′ (w)β

]2)
. (A.9)

Substituting the adjustment cost c(i) = i+ψi2/2 and the optimal rate i∗ (w) = (p(w)−wp′(w)−1)/ψ

into the inequality given in (A.8), we obtain (A.9) stated in Proposition 3.

B Asset Pricing Formulas

ODE for the scaled equity value s(mt). Under the measure Qh∗ , the scaled cash reserves mt

evolves as follows:

dmt = (γ + δ − i∗t )mtdt− du∗t /λ+
β∗t
λ
σ
(
dZh

∗
t − h∗tdt

)
. (B.1)

Using Ito’s Lemma, we obtain the following ODE for s(mt) = St/Kt in the region mt ∈ [0, w/λ]:

rs(m) = (i∗ (λm)− δ)s(m) +
(β∗ (λm)σ)2

2λ2 s′′(m) +

[
(γ + δ − i∗t )m−

β∗ (λm)σ

λ
h∗ (λm)

]
s′(m),

subject to the boundary conditions s(0) = 0 and s′(w/λ) = 1.

ODE for the scaled debt value b(mt). The ODE for b(mt) = Bt/Kt for mt ∈ [0, w/λ] is

rb(m) = µ− c(i∗ (λm))− (γ − r)m+
β∗ (λm)− λ

λ
h∗ (λm)σ + (i∗ (λm)− δ)b(m)

+

[
(γ + δ − i∗t )m−

β∗ (λm)σ

λ
h∗ (λm)

]
b′(m) +

(β∗ (λm)σ)2

2λ2 b′′(m),

subject to the boundary conditions subject to the boundary conditions b(0) = ` and b′(w/λ) = 0 .

Price of Dt = D (mt) defined in (54). Using essentially the same argument as for s (mt) and

b (mt), we obtain the following ODE for Dt = D (mt) for m ∈ [0, w/λ]:

rD (m) =

[
(γ + δ − i∗t )m−

β∗ (λm)σ

λ
h∗ (λm)

]
D′ (m) +

[β∗ (λm)σ]2

2λ2 D′′ (m) ,

subject to the boundary conditions D (0) = 1 and D′ (w/λ) = 0.
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ODE for the scaled market value of firm v(mt). Let v(w) = Vt/Kt. Then v(w) solves the

following ODE:

rv (w) = µ− c (i∗ (w))− h∗ (w)σ + [i∗ (w)− δ] v (w)

+ [(γ + δ − i∗t )w − β∗ (w)σh∗ (w)] v′ (w) +
[β∗ (w)σ]2

2
v′′ (w) ,

(B.2)

subject to the boundary conditions v (0) = ` and v′ (w) = 0. Since Tobin’s average q is given by

qt = Vt/Kt, we may write qt as a function of wt, i.e., qa(wt), where qa(w) = v(w).

ODE for the entrepreneur’s IRR(Pa∗). By recognizing that
∫ t

0 e
−IRR(Pa∗ )·sdYs+e−IRR(Pa∗ )tVt

is a martingale under Pa∗ and using Vt = v(wt)Kt and the property that a martingale’s drift is

zero, we obtain the following differential equation:

IRR(Pa∗)v (w) = µ−c (i∗ (w))+[i∗ (w)− δ] v (w)+[(γ + δ − i∗t )w] v′ (w)+
[β∗ (w)σ]2

2
v′′ (w) . (B.3)

Since investors break even under their belief Qh∗ , we have IRR(Qh∗) = r. Subtracting (B.2) from

(B.3) on both sides and using IRR(Qh∗) = r, we obtain the following IRR wedge:

IRR(Pa∗)− IRR(Qh∗) =
σh∗(w) [1 + β∗(w)v′(w)]

v(w)
, w ∈ [0, w].

C Robust Contract without Agency

When λ → 0, the incentive constraint (16) becomes irrelevant and the solution characterized in

Proposition 1 reduces to the robust contract without agency. For this case, we show that the scaled

value function p (w) is globally concave, h∗ (w) > 0, and β∗ (w) > 0.

Under the belief Qh, we use (6) to rewrite (15) as

dWt = (γWt − βtKtσht) dt− dUt − λµ(1− at)Ktdt+ βtKtσdZ
h
t . (C.1)

Using (2) and the Girsanov theorem, we can rewrite the objective function in (13) under Qh as

EQh
[∫ τ

0
e−rt (Kt(atµ− σht)− C(It,Kt)) dt−

∫ τ

0
e−rtdUt + e−rτ `Kτ +

1

2

∫ τ

0
e−rtΘ(Kt)h

2
tdt

]
.

Investors’ value function P (K,W ) satisfies the HJB equation

rP (Kt,Wt) dt = sup
It,dUt,at,βt

inf
ht

Kt(atµ− σht)dt− C(It,Kt)dt− dUt +
1

2
h2
tΘ(Kt)dt

+PW (Kt,Wt) [(γWt − βtKtσht) dt− dUt − λµ(1− at)Ktdt]

+PK (Kt,Wt) (It − δKt)dt+
1

2
PWW (Kt,Wt) (βtKtσ)2 dt . (C.2)
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Since dUt ≥ 0, the FOC for dUt implies PW (Kt,Wt) ≥ −1. Additionally, if PW (Kt,Wt) > −1, we

have dUt = 0.

Further simplifying the HJB equation (C.2), we obtain

rP (Kt,Wt) = sup
It,at,βt

inf
ht

Kt(atµ− σht)− C(It,Kt) +
1

2
h2
tΘ(Kt)

+PW (Kt,Wt) [(γWt − βtKtσht)− λµ(1− at)Kt]

+PK (Kt,Wt) (It − δKt) +
1

2
PWW (Kt,Wt) (βtKtσ)2 . (C.3)

The FOC for ht is

h∗t =
Ktσ[1 + βtPW (Kt,Wt)]

Θ(Kt)
. (C.4)

Since Θ(Kt) > 0, this condition is also sufficient for h∗t to be the minimizer. Substituting this

expression into the HJB equation (C.3) yields

rP (Kt,Wt) = sup
It,at,βt

Kt[atµ− λµ(1− a)PW (Kt,Wt)]−
K2
t σ

2

2Θ(Kt)
− C(It,Kt)

+(It − δKt)PK(Kt,Wt) + γWtPW (Kt,Wt)−
K2
t σ

2PW (Kt,Wt)βt
Θ(Kt)

+
K2
t σ

2
[
Θ(Kt)PWW (Kt,Wt)− PW (Kt,Wt)

2
]
β2
t

2Θ(Kt)
. (C.5)

If Θ(Kt)PWW (Kt,Wt) − PW (Kt,Wt)
2 < 0, then using the HJB equation (C.5), we obtain the

following FOC for β∗:

β∗t =
PW (Kt,Wt)

Θ(Kt)PWW (Kt,Wt)− PW (Kt,Wt)2
.

Note that a∗t = 1 is optimal for all t. Since C (I,K) is convex in I, the first-order condition

PK(Kt,Wt) = CI(It,Kt) implies the optimal investment rule: I∗t = C−1
I (PK (Kt,Wt) ,Kt) .

Substituting the solutions β∗t , I
∗
t and a∗t into (C.5), we obtain a partial differential equation

for P (K,W ). Let w = W/K and p(w) = P (K,W )/K. Using the homogeneity property, we

characterize the robust contract without agency in the following proposition.

Proposition 4 (robust contract without agency) Suppose that p (w) satisfies the ODE on [0, w] :

rp (w) = max
β, i

µ− c (i) + (i− δ)p(w) + (γ + δ − i)wp′(w) (C.6)

+
σ2

2

(
p′′(w)− p′ (w)2

θ

)
β2 − σ2p′(w)

θ
β − σ2

2θ
,

subject to the conditions p′ (w) > −1 on [0, w) and

p(0) =
µ− c (i∗ (0))− σ2/ (2θ)

r + δ − i∗ (0)
, p′(w) = −1, p′′(w) = 0, (C.7)
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where i∗(w) satisfies (29). Suppose that ` < p (0) and θp′′(w) − [p′ (w)]2 < 0 hold. Then (i) for

w ∈ [0, w], the optimal sensitivity is given by

β∗(w) =
p′(w)

θp′′(w)− [p′ (w)]2
, (C.8)

and the worst-case density generator is given by

h∗(w) =
σ[1 + β∗ (w) p′(w)]

θ
=

σp′′ (w)

θp′′(w)− [p′ (w)]2
. (C.9)

The firm is never liquidated and the principal’s scaled value function is p (w) . The optimal in-

vestment rate is i∗(w). The entrepreneur always exerts high effort level a∗t = 1 and his scaled

continuation value wt satisfies

dwt = [(γ + δ − i∗(wt))wt − β∗ (wt)σh
∗(wt)] dt− du∗t + β∗ (wt)σdZ

h∗
t , (C.10)

for wt ∈ [0, w]. The optimal compensation dU∗t = Ktdu
∗
t keeps (wt) reflecting at w and satisfies

du∗t = max {wt − w, 0} . (C.11)

(ii) For w > w, p(w) = p(w)− (w−w). The principal pays w−w immediately to the entrepreneur

and the contract continues with the entrepreneur’s new initial value w.

The following result shows that p (w) is concave for the robust contact without agency.

Proposition 5 Let assumptions in Proposition 4 hold. The scaled value function p (w) is concave,

h∗ (w) > 0, and β∗ (w) ∈ [0, 1] in the region where (0, w).

Proof: Substituting the optimal i∗ (w) and the optimal sensitivity β∗ (w) into (C.6), we obtain:

(r + δ) p = µ+
(p− wp′ − 1)2

2ψ
+ (γ + δ)wp′ − σ2

2θ

(p′)2

θp′′ − (p′)2 −
σ2

2θ
. (C.12)

Differentiating (C.12), we obtain

(r + δ) p′ =
− (p− wp′ − 1)wp′′

ψ
+ (γ + δ)

(
p′ + wp′′

)
(C.13)

−σ
2

2θ

2p′p′′
[
θp′′ − (p′)2

]
− (p′)2 (θp′′′ − 2p′p′′)[

θp′′ − (p′)2
]2 .

Evaluating (C.13) at the payout boundary w, and using p′ (w) = −1 and p′′ (w) = 0, we obtain

σ2

2
p′′′ (w) = γ − r > 0.

42



Therefore, p′′ (w − ε) > 0 for small ε > 0. Let q (w) = p (w)− wp′ (w) . We may rewrite (C.12) as

(r + δ) q = µ+
(q − 1)2

2ψ
+ (γ − r)wp′ − σ2

2θ

(p′)2

θp′′ − (p′)2 −
σ2

2θ
.

Suppose that there exists w̃ < w such that p′′ (w̃) = 0. Choose the largest w̃ such that p′′ (w̃ + ε) < 0

for a small ε > 0. Evaluating the above equation at w̃, we obtain

(r + δ) q (w̃) = µ+
(q (w̃)− 1)2

2ψ
+ (γ − r) w̃p′ (w̃) .

Since p′ (w) > −1, q (w) < p (w) + w < qFB. Recall that

(r + δ) qFB = µ+

(
qFB − 1

)2
2ψ

.

Therefore, (γ − r) w̃p′ (w̃) < 0, which implies p′ (w̃) < 0. Evaluating (C.13) at w̃, we obtain

(r + δ) p′ (w̃) = (γ + δ) p′ (w̃) +
σ2

2

p′′′ (w̃)

[p′ (w̃)]2
.

As γ > r, the preceding equation implies p′′′ (w̃) > 0. This leads to a contradiction as by assumption

p′′ (w̃) = 0 and p′′ (w̃ + ε) < 0. Therefore, p(w) is concave in w ∈ (0, w).

Since p′′ (w) < 0, it follows from (C.9) that h∗ (w) > 0. Since p (w) takes the largest value at

w = 0 and since p′′ (w) < 0, we deduce that p′ (w) < 0 for w > 0. It follows from (C.8) that

β∗ (w) ∈ [0, 1] .

Panels A and B of Figure 9 present the principal’s scaled value function p (w) and investment

rule i∗ (w) for two different values of θ in the robust contract without agency. Panels C and D of

Figure 9 present the optimal sensitivity β∗ (w) and the corresponding worst-case density generator

h∗ (w). The straight lines in Figure 9 represent the solutions in the first-best case. We find that the

robust scaled value function is concave. Moreover, when the principal is more ambiguity averse,

i.e., when θ is smaller, his scaled value function is smaller, the payout boundary is larger, and the

investment-capital ratio is lower. This means that ambiguity aversion is costly to the principal

(investors), delays payout to the entrepreneur, and causes underinvestment. The i(w) increases

with the entrepreneur’s scaled continuation value w for w ∈ [0, w] .

Panels C and D of Figure 9 show that, when the principal is more ambiguity averse, his belief

is distorted more in the sense that the worst-case density generator h∗ (w) is shifted upward more.

The density generator is positive so that the principal puts more weight on worse outcomes. This

is because the local mean of the Brownian motion is shifted downward under the principal’s worst-

case belief by (6). The density generator decreases to zero at the payout boundary. At w = w, the

boundary conditions p′ (w) = −1 and p′′ (w) = 0 imply that h∗ (w) = 0 and β∗ (w) = 1.
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Figure 9: Optimal robust contract without agency. Investors’ concerns for the entrepreneur’s
model lower p(w) and i∗(w) from the first-best levels. For a given level of θ, the sensitivity β∗(w)
and i∗(w) increase with w, while the belief wedge h∗(w) decreases with w.

The optimal sensitivity β∗ (w) starts at zero when w = 0 and increases to one at the payout

boundary. This means that, in the robust contract without agency, the entrepreneur is partially

exposed to the productivity uncertainty and cannot fully insure the ambiguity averse principal for

low values of w. When w is larger, the entrepreneur can absorb more uncertainty. At the payout

boundary, the entrepreneur fully absorbs model uncertainty.
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