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Abstract

When the government commits to a debt policy, the future value of government primary

surpluses at all horizons is dictated by the debt dynamics under the risk-neutral measure. We

compare the present discounted value of future surpluses implied by the U.S. federal govern-

ment debt dynamics in a no-arbitrage bond pricing model to the PDV of actual government

surpluses. Since the late 1990s, the debt-implied PDV of surpluses have consistently and per-

sistently exceeded realized surpluses. They have also exceeded surplus forecasts resulting from

tax and spending policy rules. U.S. Treasury investors appear to have been overly optimistic

when assessing future surpluses.
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1 Introduction

When the government commits to a debt policy and in the absence of a bubble on government

debt, the debt dynamics imply an expectation of future surpluses under the risk neutral measure.

We propose a flexible model of both U.S. federal government debt dynamics and asset prices and

back out the implied dynamics of government surpluses. Since the late 1990s, the debt-implied

forecast of future surpluses over the next 5 to 10 years has consistently exceeded the forecast from

using the surplus dynamics directly, the cash-flow measure. U.S. bond market investors have

systematically overestimated the surpluses generated by the U.S. federal government. This lends

credence to the view that bond market investors have been overly optimistic.

We assume that the Treasury commits to a debt policy; the debt/output ratio is an affine func-

tion of a rich state vector consisting of macro-economic and financial variables such as bond yields.

If this commitment is credible, then the spending and tax policy will have to adjust at some future

date. As a result, the Treasury cannot also commit to a spending-and-taxation rule. We show how

to back out the implied risk-neutral surplus dynamics from the estimated debt dynamics, and how

to test the transversality (TVC) or no-bubble condition for debt.

The estimated model produces the bond market’s forecast of the PDV of surpluses. We com-

pare these forecasts to the cash-flow-based forecasts obtained when the Treasury commits to a

spending and tax policy. Since the late 90s, the bond market’s forecast systematically exceeds sur-

plus forecasts that are based directly on cash flows from Jiang, Lustig, Van Nieuwerburgh, and

Xiaolan (2019).

There is a large literature in macro-economics that addresses the question of government debt

sustainability, starting with the seminal work by Hansen and Sargent (1980); Hansen, Roberds,

and Sargent (1991) (see Sargent, 2012, for a comprehensive review). This literature largely sidesteps

the issue of priced long-run cash flow risk. Instead, most of the models assume constant discount

factors. From the asset pricing literature, we know that long-run cash flow risk is priced and ac-

counts for a large fraction of risk premia (Alvarez and Jermann, 2005; Hansen and Scheinkman,

2009; Borovička, Hansen, and Scheinkman, 2016; Backus, Boyarchenko, and Chernov, 2018). We

bring Hansen and Jagannathan (1991)’s stochastic discount factor machinery, a critical part of

modern asset pricing, to bear on the valuation of government debt.

In order to uncover the risk-neutral debt dynamics, we need to price claims to debt outstanding

in the future. We refer to these as debt strips. Debt strips are priced like GDP strips when debt

and GDP are co-integrated, even when the debt itself is risk-free.1 If we abstract from priced cash-

flow risk in assessing debt sustainability, we are likely to find that the no-bubble or TVC condition

is violated in government debt markets when the average growth rate exceeds the risk-free rate

1As a result, discounting future debt at the risk-free rate is akin to discounting future output at the risk-free rate. The
ratio of aggregate firm value divided by GDP would be infinite if the average growth rate exceeds the risk-free rate.
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(see Blanchard, 2019; Furman and Summers, 2020, for prominent examples). These assessments

abstract from long-run GDP growth risk that is priced in securities markets. We show how to test

the TVC in a dynamic asset pricing model that takes growth risk into account.

Like Cochrane (2019, 2020a), we decompose variation in the valuation of government debt,

but we enforce no-arbitrage restrictions across asset classes when determining the appropriate

discount rate for valuing future surpluses. When we use the debt dynamics to back out future

surpluses, we need a model that properly prices risky cash flows, because the government’s bor-

rowing capacity in the future depends on future output. We make sure our model matches mo-

ments of other asset returns, including equities.

Our dynamic asset pricing model combines a vector auto-regression model for the state vari-

ables as in Campbell (1991, 1993, 1996) with a no-arbitrage model for the (SDF) as in Duffie and

Kan (1996); Dai and Singleton (2000); Ang and Piazzesi (2003); Lustig, Van Nieuwerburgh, and

Verdelhan (2013); Gupta and Van Nieuwerburgh (2018); Jiang, Lustig, Van Nieuwerburgh, and

Xiaolan (2019).2 Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019)’s work focuses on directly

pricing a claim to government surpluses. Similar to Jiang, Lustig, Van Nieuwerburgh, and Xiaolan

(2019), this paper explores novel no-arbitrage restrictions on the aggregate Treasury portfolio. Dif-

ferent from that paper, this paper considers the implications of the government’s commitment to

a debt policy by adding the debt/output ratio to the state variables. We compare the surpluses

implied by the debt policy to the direct surplus forecasts in Jiang, Lustig, Van Nieuwerburgh, and

Xiaolan (2019). This comparison provides evidence consistent with bond market optimism.

There is a mature literature on rational bubbles in asset markets, starting with the seminal

work by Samuelson (1958); Diamond (1965); Blanchard and Watson (1982). As pointed out by

Giglio, Maggiori, and Stroebel (2016), there is an ongoing debate about whether bubbles can be

sustained in the presence of long-lived investors.3 In the context of government debt, most au-

thors simply compare the growth rate of the economy to the risk-free interest rate to test whether

the no-bubble condition holds. We devise a rigorous test of the no-bubble condition when the

government commits to a debt policy. This test requires comparing the risk-adjusted growth rate

of the economy to the risk-free rate.

In section 2, we show model-free evidence that the relation between the valuation of U.S. gov-

ernment debt and the fundamentals is weak. In section 3, we derive the general relation between

the risk-neutral debt and risk-neutral surplus dynamics. Section 4 explores the implications of a

debt policy in the context of an affine pricing model. Section 5 explores the quantitative implica-

tions. The U.S. bond investors have systematically overestimated the surpluses generated by the

U.S. federal government since the late 90s.

2Lustig, Van Nieuwerburgh, and Verdelhan (2013) study the properties of the price-dividend ratio of a claim to
aggregate consumption, the wealth-consumption ratio, and Gupta and Van Nieuwerburgh (2018) evaluate the perfor-
mance of private equity funds in similar settings.

3Giglio, Maggiori, and Stroebel (2016) devised a model-free test for bubbles in housing markets.
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2 What Drives Variation in the U.S. Debt/Output Ratio? Model-free

Evidence

Cochrane (2019, 2020a) develops a finite horizon version of the log-linear Campbell-Shiller de-

composition of the government’s debt/output ratio. Using Cochrane (2019)’s approach, we find

that most of the variation in the debt/output ratio cannot be attributed to subsequent variation in

fundamentals at short to medium horizons.

2.1 Campbell-Shiller decomposition of the debt/output ratio

Let rd
t+j denote the return on the government debt portfolio, xt+j real GDP growth (in logs), and

πt+j log inflation. We implement Cochrane (2019)’s version of a Campbell-Shiller decomposition

for the log of the debt/GDP ratio vt = log dt:

vt =
T

∑
j=1

(
st+j − r̃d

t+j

)
+ vt+T,

where r̃d
t+j = rd

t+j − xt+j − πt+j and

st+j =
syt+j

ev = vt+j−1 + rd
t+j − xt+j − πt+j − vt+j,

where syt denotes the surplus/output ratio.4 This decomposition expands the debt/output ratio

around the unconditional average r = x+π. Cochrane’s decomposition uses an effective discount

rate of zero for future surplus/GDP ratios. This leaves a future output-to-debt ratio term in the

Campbell-Shiller decomposition. Cochrane (2019)’s decomposition is silent on whether the debt

is valued correctly. That requires taking a stand on what the right discount rate is to eliminate

the vt+T term. Taking covariances with vt on both sides of the previous equation, we obtain the

following :

var(vt) = cov

(
T

∑
j=1

st+j, vt

)
− cov

(
T

∑
j=1

r̃d
t+j, vt

)
+ cov(vt, vt+T). (1)

The log/debt output ratio varies because it predicts future surpluses, future returns, or future

debt/output ratios.

To compute the variance decomposition, we estimate a system of forecasting regressions for

(st+1, r̃d
t+1, vt+1) using the lagged debt/output ratio as a predictor. Based on the U.S. evidence

on the partial autocorrelation function for the debt/output ratio, we choose an AR(2) model for

4Note that this is not the actual surplus/output ratio but an approximation constructed to ensure that st+1 + vt+1 =
vt + rd

t+1 − xt+1 − πt+1
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debt/output vt+1. Therefore, the predictors are (vt, vt−1):

st+1 = as + b1
s vt + b2

s vt−1 + εs
t+1,

r̃t+1 = ar + b1
r vt + b2

r vt−1 + εr
t+1,

vt+1 = φ0 + φ1vt + φ2vt−1 + εr
t+1. (2)

We obtain the following covariance terms for each horizon j:

cov(st+j, vt)

var(vt)
= ρ

j−1
1 (b1

s + b2
s ρ1),

cov(r̃t+j, vt)

var(vt)
= ρ

j−1
1 (b1

r + b2
r ρ1),

cov(vt+j, vt)

var(vt)
= ρ

j−1
1 (φ1 + φ2ρ1),

where the first-order autocorrelations are given by: ρ1 = φ1/(1− φ2). We obtain the following

expression for the terms in the variance decomposition (1):

cov(∑T
j=1 st+j, vt)

var(vt)
=

1− ρT
1

1− ρ1
(b1

s + b2
s ρ1),

cov(∑T
j=1 r̃t+j, vt)

var(vt)
=

1− ρT
1

1− ρ1
(b1

r + b2
r ρ1),

cov(vt+T, vt)

var(vt)
= ρT

1 . (3)

The cross-equation restriction (b1
s + b2

s ρ1) − (b1
r + b2

r ρ1) + (φ1 + φ2ρ1) = 1 is automatically

satisfied. This follows from the definition of st.

The upper panel of Figure 1 reports the decomposition of the variance into the component due

to fundamentals (surpluses and returns combined) and future debt/output ratios for each horizon

T. The bottom panel reports the fraction of variance in vt that can be attributed to surpluses,

discount rates, and future debt/GDP ratios. We compute this decomposition by estimating the

regressions in Equation 2. Then we use Equation 3 to compute the variance decomposition. The

standard errors were bootstrapped by drawing 50,000 random samples with replacement from the

estimated system of equations in Equation 2, and re-estimating the coefficients. The cross-equation

restrictions hold for each draw. We plot two standard error bands around the point estimates.

At the one-year horizon, 99% of the variance is attributed to the future debt/output ratio. The

log debt/output ratio is highly persistent. The first-order autocorrelation ρ1 is 0.98.5 To develop

intuition for how this persistence impacts the variance decomposition, consider the simpler case

5Using the Augmented Dickey-Fuller test, we cannot reject the null hypothesis of the presence of the unit root in the
log debt/output ratio in our sample period.
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in which the debt/ouput ratio follows an AR(1): φ2 = b2
r = b2

s = 0. The variance decomposition is

given by bs(1− φ)T/(1− φ1),−br(1− φ1)
T/(1− φ1) and φT

1 . In this case, as φ1 → 1, vt+T accounts

for all of the variation in vt at horizon T.

Even at the 5-year (10-year) horizon, more than 82% (62%) is attributed to the future debt/output

ratio. These numbers reflect the slow mean-reversion in the debt/output ratio.

The two most left panels in the bottom row of Figure 1 decompose the contribution to the

variance of fundamentals into its constituent components. The data are silent about whether the

adjustment happen through adjustments in future returns or surpluses. There is no statistical

evidence that the debt/output ratio predicts either the surplus or returns. The larger contribution

of fundamentals at longer horizons is completely driven by the mean-reversion in the debt/output

ratio.

Figure 1: Variance Decomposition of log debt/output ratio
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Variance decomposition of the log debt/output ratio vt into components due to (∑T
j=1 st+j, ∑T

j=1 r̃t+k , vt+T) using Equation 3 where
r̃d

t+1 = rd
t+1 − xt+1 − πt+1 and st+1 =

syt+1
ev on vt in Equation 2. Annual data. Sample: 1947-2019. Standard errors by bootstrapping

50,000 samples of the same size by drawing with replacement from the innovations in Equation 2 .

There is a large literature in asset pricing which tests the present value equation for long-lived

assets, including stocks and bonds, starting with the seminal work by Shiller (1981); LeRoy and

Porter (1981); Campbell and Shiller (1988); Giglio and Kelly (2018). The prices of these long-lived

assets seem excessively volatile relative to their fundamentals. In contrast, the valuation of the
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entire U.S. government debt portfolio does not respond enough to the fundamentals.

Mechanically, the small role of fundamentals is the combined result of the persistence of the

debt/output ratio and the lack of return and surplus predictability. The log of the U.S. debt/output

ratio does not forecast returns or surpluses. Table 1 reports predictability results for horizons from

1 to 5 years by regressing cumulative returns or surpluses directly on the log of the debt/output

ratio, following Jordà (2005). There is no statistical evidence that the log debt/output ratio predicts

either returns or surpluses. The null hypothesis that there is no predictability in returns cannot be

rejected at any horizon. Similarly, the null that there is no predictability in future surpluses cannot

be rejected. At the 5-year horizon, we cannot even reject the joint null that the debt/output ratio

does not predict the sum of surpluses and returns. At the 5-year horizon, 82% of the debt/output

ratio fluctuations can be attributed to the future debt/output ratio.

Table 1: Forecasting Returns and Surpluses with log debt/output ratio

Regression of ∑T
j=1 st+j, ∑T

j=1 r̃t+j, vt+T on vt: Annual data. Sample: 1947-2019. HAC standard errors.

Horizon 1 2 3 4 5
Forecasting ∑T

j=1 r̃t+j

−bT
r 0.012 0.034 0.048 0.058 0.070

s.e. [0.015] [0.025] [0.032] [0.040] [0.047]

R2 0.010 0.027 0.032 0.032 0.034

Forecasting ∑T
j=1 st+j

bT
s -0.007 0.012 0.043 0.073 0.110

s.e. [0.019] [0.035] [0.050] [0.063] [0.076]

R2 0.0017 0.0018 0.0111 0.02 0.0308

Forecasting ∑T
j=1(st+j − r̃t+j)

−bT
r + bT

s 0.0059 0.047 0.091 0.131 0.181
s.e. [0.027] [0.049] [0.067] [0.081] [0.097]

R2 0.00065 0.0131 0.027 0.037 0.0509

Forecasting vt+T
φT 0.994 0.953 0.908 0.869 0.819
s.e. [0.027] [0.049] [0.066] [0.081] [0.096]

R2 0.949 0.847 0.734 0.632 0.525

2.2 Structural Breaks

There may have been structural shifts in the relation between the valuation of debt and the funda-

mentals. A major contributor to the small role of fundamentals is the large run-up in government

debt during the GFC which was not followed by commensurate increases in surpluses or decreases
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in returns. There is statistical evidence of a structural break in the log debt/output ratio in 2007.

The Chow test for structural breakpoints rejects the null hypothesis of no structural break at the

1% level in 2007 (and at no other date).

We allow for a structural break in the log debt/output ratio by demeaning the log debt/output

ratio ṽt with a lower pre-2007 sample mean (0.30) and a higher post-2007 sample mean (0.66). The

structural break introduces a 36 percentage point permanent increase in the debt/output ratio.

Figure 2 plots the resulting series. It is clearly less persistent than the original series.

Following Lettau and Van Nieuwerburgh (2008), we demean the log debt-to-output ratio with

two different means (before and after 2007), and then re-estimate the forecasting regressions. As

reported in Table 2, the fundamentals now explain 45% of the variation in the log debt/output

ratio with a structural break in 2007 at the 5-year horizon. This approach restores a role for fun-

damentals, but obviously does not explain the permanent increase in the debt/output ratio in the

post-2007 sample.

Figure 2: Debt/Output Ratio with Break
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The full line is the demeaned log debt/output ratio. The dashed line is the demeaned log debt/output ratio, demeaned by two
different sub-sample means before and after 2007. The null hypothesis of no structural break is rejected in 2007 at the 1% level with
F-statistic of 8.81.

In summary, this model-free exercise suggests that the bond market’s assessment of future

surpluses may diverge from the econometrician’s. The latter does not anticipate larger surpluses

when the debt/output ratio rises. In section 4, we use a no-arbitrage model to tackle this issue

more carefully.
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Table 2: Forecasting Returns and Surpluses with break in log debt/output ratio

Regression of ∑T
j=1 st+j, ∑T

j=1 r̃t+j, vt+T on ṽt with structural break in 2007. Annual data. Sample: 1947-2019. HAC standard errors .

Horizon 1 2 3 4 5
Forecasting ∑T

j=1 r̃t+j

−bT
r 0.015 0.04 0.0483 0.0399 0.0396

s.e. [0.0309] [0.0618] [0.0876] [0.116] [0.142]
R2 0.00712 0.0201 0.0183 0.0091 0.00681

Forecasting ∑T
j=1 st+j

bT
s 0.0784 0.178 0.269 0.346 0.41

s.e. [0.0361] [0.0592] [0.0778] [0.0947] [0.106]
R2 0.0636 0.155 0.24 0.309 0.375

Forecasting ∑T
j=1(s− r̃t+j)

−bT
r + bT

s 0.0934 0.218 0.317 0.385 0.45
s.e. 0.0421 0.0613 0.0737 0.0817 0.0881
R2 0.0665 0.156 0.216 0.252 0.286

Forecasting vt+T
φT 0.907 0.782 0.683 0.615 0.55
s.e. [0.0546] [0.094] [0.125] [0.158] [0.181]
R2 0.87 0.706 0.562 0.462 0.375

3 Risk-Neutral Debt Dynamics and Risk-Neutral Surplus Dynamics

We follow Cochrane (2020b)’s suggestion to include the market value of debt in the econometri-

cian’s information set when assessing government debt sustainability. However, we show that

the government commits to a debt policy if we include the debt in the state vector and impose no-

arbitrage conditions. This debt policy fully determines the risk-neutral dynamics of the surpluses.

We use Tt to denote government revenue, and Gt to denote government spending. Mt,t+j

denotes the cumulative stochastic discount factor (SDF) used to discount risky cash flows j periods

in the future. Dt denotes the market value of debt at the end of the period. We consider an investor

who buys the entire government debt portfolio at the end of period t. Her total return is given

by the value of the debt at the end of the period t + 1 plus the cash flow, which consists of the

primary surplus:

RD
t+1 =

Dt+1 + Tt+1 − Gt+1

Dt
.

The standard no-arbitrage condition for the entire debt portfolio is given by:

Et[Mt,t+1RD
t+1] = 1.

Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019) do not impose this no-arbitrage condition.
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Instead, they allow for the possibility that debt is mis-priced:

Dt 6= Et[Mt+1(Tt+1 − Gt+1)] + Et[Mt+1Dt+1],

We use ηt to denote the wedge in the Euler equation for the debt portfolio such that:

Et[Mt,t+1RD
t+1] = 1 + ηt.

Proposition 3.1. The PDV of k future surpluses is implied by current debt, the PDV of future debt,

and the PDV of k future wedges:

Et

k

∑
j=1

Mt,t+jSt+j = Dt + Et

k

∑
j=0

Mt,t+jDt+jηt+j −Et[Mt,t+kDt+k],

where the primary surplus St = Tt − Gt.

The present discounted value of future surpluses cannot be simply inferred from the dynamics

of the debt value. However, if we impose no-arbitrage conditions on the entire debt portfolio, and

debt is in the state vector, then the PDV of future surpluses is dictated by the dynamics of debt

under the risk-neutral measure.

Corollary 3.2. If the debt is fairly priced and the no-arbitrage restrictions hold for the entire debt

portfolio, for j = 1, . . . , k

Et+j−1[Mt+j−1,t+jRD
t+j] = 1,

then, for any j, the PDV of k future surpluses is implied by current debt and the PDV of future

debt:

Et[
k

∑
j=1

Mt,t+jSt+j] = Dt −Et[Mt,t+kDt+k].

If the debt is currently above its risk-adjusted discounted mean, then the future surpluses

under the risk-neutral measure can be inferred from the predicted mean-reversion under the

risk-neutral measure. Put differently, the government can commit to running deficits over short

horizons only if it convinces the debt markets that future debt will be higher than current debt:

Et[Mt,t+kDt+k] > Dt. This is true even if the debt is not risk-free.

This corollary has important implications. Under the risk-neutral measure, the future sur-

pluses are implied by expected value of future outstanding debt. When the government commits

to a process for debt dynamics, the process for future surpluses is implied. Hence, there is no

need to forecast future surpluses. They are already implied by the dynamics of the debt variable
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in the state vector. So, if the null hypothesis is that debt is fairly priced, then there is no point

in including surpluses and debt in the same VAR, because the debt dynamics imply the surplus

dynamics.

If we allow for mispricing of government debt, then the gap between these 2 forecasts reveals

the PDV of the wedges:

Et

k

∑
j=1

Mt,t+jSt+j − (Dt −Et[Mt,t+kDt+k]) = Et

k

∑
j=0

Mt,t+jDt+jηt+j. (4)

Convenience yields would imply negative wedges (ηt < 0).6 In what follows, we assume that

the wedges are zero.

4 No-Arbitrage Implications of the Government Debt Policy

We explore the cross-equation restrictions in affine asset pricing models when debt is included

in the state vector. When we include the debt or the debt/output ratio in the state vector, we

effectively assume that the government commits to a debt policy that is an affine function of the

state vector zt. We devise a test of the transversality condition.

4.1 A Simple Risk-Neutral Example

We start with a simple model in which investors are risk-neutral. There is no growth in this

economy. Suppose the SDF Mt,t+j = βj and the state vector zt = (Dt, St) follows VAR(1) dynamics:

zt = Ψzt−1 + Γεt,

then Proposition 3.2 implies the following restrictions on the expected present-discounted value

(PDV) or future primary surpluses:

e′s
k

∑
j=1

βjΨjzt = Et[
k

∑
j=1

βjSt+j] = Dt − βkEt[Dt+k] = e′d(I − βkΨk)zt,

6There is a large literature on the specialness of U.S. government bonds, which finds that U.S. government bonds
trade at a premium relative to other risk-free bonds (Longstaff, 2004; Krishnamurthy and Vissing-Jorgensen, 2012;
Fleckenstein, Longstaff, and Lustig, 2014; Krishnamurthy and Vissing-Jorgensen, 2015; Nagel, 2016; Bai and Collin-
Dufresne, 2019). Greenwood, Hanson, and Stein (2015) study the government debt’s optimal maturity in the presence
of such premium, and Jiang, Krishnamurthy, and Lustig (2018) study this premium in international finance. We tackle
the question of how expensive a portfolio of all Treasuries is relative to the underlying collateral, a claim to surpluses.
Using the standard convenience yield estimates of Krishnamurthy and Vissing-Jorgensen (2012), Jiang, Lustig, Van
Nieuwerburgh, and Xiaolan (2019) finds that convenience yields help to partly explain why government debt appears
to be valued more than the PDV of future surpluses. This leaves open the possibility that convenience yields are much
larger, as suggested by Jiang, Krishnamurthy, and Lustig (2018).
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at each horizon k = 1, . . . , ∞, where es select the first row of zt, and ed select the second row of zt.

These restrictions can be restated without the state vector:

e′s
k

∑
j=1

βjΨj = e′d(I − βkΨk), for k = 1, . . . , ∞.

We can restate this expression as follows:

e′s(I − βΨ)−1βΨ(I − βkΨk) = e′d(I − βkΨk), for k = 1, . . . , ∞. (5)

which collapses to a single restriction:

e′s(I − βΨ)−1βΨ = e′d. (6)

The long-run discounted forecast of the future surpluses, a linear combination of the state vari-

ables, has to equal the debt at all times. As a result, this imposes a cross-equation restriction on the

dynamics of the state variables. If this cross-equation restriction is not imposed, then the dynamics

of the surplus will violate this restriction.

We can back out the forecast of future surpluses implied by the debt dynamics, e′d(I− βkΨk)zt,

and compare it to actual realized surpluses, even in a model without surpluses in the state vector.

In their seminal paper on testing the government budget constraint, Hansen, Roberds, and Sar-

gent (1991) derive a different condition for the case of risk-free debt when devising an econometric

approach to testing the budget constraint:

(Et −Et−1)[
∞

∑
j=1

βjSt+j] = e′s
∞

∑
j=1

βjΨjΓεt = 0,

for all innovations. If the debt is truly risk-free, its value cannot respond to the news about the

surplus at time t. This implies that:

e′s(I − βΨ)−1Γ = 0

Our restriction in Equation 6 applies regardless of whether the debt is risk-free.

4.2 Dynamic Asset Pricing Model

Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019) use a conditionally log-normal Gaussian

model to price a claim to future surpluses. This model is equiped to price a menu of assets,

including bond and stocks. We assume that the N× 1 vector of state variables z follows a Gaussian
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first-order VAR:

zt = Ψzt−1 + ut = Ψzt−1 + Σ
1
2 εt, (7)

with N×N companion matrix Ψ and homoskedastic innovations ut ∼ i.i.d.N (0, Σ). The Cholesky

decomposition of the covariance matrix, Σ = Σ
1
2

(
Σ

1
2

)′
, has non-zero elements on and below the

diagonal. In this way, shocks to each state variable ut are linear combinations of its own struc-

tural shock εt, and the structural shocks to the state variables that precede it in the VAR, with

εt ∼ i.i.d.N (0, I).

By including the log of debt/output ratio in the state vector zt, we assume that the government

commits to a debt policy, and that this commitment is credible. The log of the debt/output ratio is

affine in the state variables. As we will show, this rules out affine spending and tax policies when

we impose the government’s intertemporal budget constraint.

Motivated by affine term structure model developed by Ang and Piazzesi (2003), we specify

an exponentially affine stochastic discount factor (SDF). The nominal SDF M$
t+1 = exp(m$

t+1) is

conditionally log-normal:

m$
t+1 = −y$

t (1)−
1
2

Λt
′Λt −Λt

′εt+1, (8)

The real SDF is Mt+1 = exp(mt+1) = exp(m$
t+1 + πt+1); it is also conditionally Gaussian. The

priced sources of risk are the structural innovations in the state vector εt+1 from equation (7).

These aggregate shocks are associated with a N × 1 market price of risk vector Λt of the affine

form:

Λt = Λ0 + Λ1zt,

The N × 1 vector Λ0 collects the average prices of risk while the N × N matrix Λ1 governs the

time variation in risk premia. Asset pricing in this model amounts to estimating the market prices

of risk in Λ0 and Λ1.

4.3 Testing the No-Bubble Condition

We need to solve for the debt dynamics under the risk-neutral measure. Given the government’s

commitment to a debt policy, we can price debt strips, which are claims to debt at a future date.

The implied present discounted value of the future debt divided by current output is affine in the

state vector zt in this model:

log PD
t (k) =

Et[Mt,t+kDt+k]

Yt
= Ad

0(k) + Ad
1(k)zt.

13



This result is derived by pricing debt strips. For the current debt strip (at maturity zero), we have

that:

log PD
t (0) = log

Dt

Yt
= Ad

0(0) + Ad
1(0)zt,

where Ad
0(0) = µd is the unconditional mean log debt/output ratio and Ad

1(0) = ed, a vector of

zeros except for a one in the location of log debt/output in the VAR. The coefficients Ad
0(k + 1)

and Ad
1(k + 1) follow a system of ODEs obtained by verifying the Euler equation:

Ad
0(k + 1) = −y$

0(1) + x0 + π0 + Ad
0(k) +

1
2
(ex + eπ + Ad

1(k))
′Σ(ex + eπ + Ad

1(k))

−(ex + eπ + Ad
1(k))

′Σ
1
2 Λ0

Ad
1(k + 1) = (ex + eπ + Ad

1(k))
′Ψ− e′yn − (ex + eπ + Ad

1(k))
′Σ

1
2 Λ1

The derivation is in subsection A.3 of the Appendix.

In the model version in which we allow for structural break in the mean debt/output ratio µd

before and after 2007, we have two sets of coefficients (Ad
0(k), Ad

1(k)), one before and one after the

break.

To fix ideas, consider the case in which the government commits to a constant debt/output

ratio. The loadings solve the following recursions:

Ad
0(1) = −y$

0(1) + x0 + π0 + µd +
1
2
(ex + eπ + 0)′Σ(ex + eπ + 0)

−(ex + eπ + 0)′Σ
1
2 Λ0,

Ad
1(1) = (ex + eπ + 0)′Ψ− e′yn−(ex + eπ + 0)′Σ

1
2 Λ1.

The one-period debt strip has an exposure of 1 to real GDP growth and to inflation; see the ex-

pression for Ad
1(1). Hence, nominal output risk is priced in the debt strip, even though the debt

itself is risk-free. The risk premium of the k-horizon debt strip is given by:

Et

[
rd

t+1(k)
]
− y$

t,1 +
1
2

Vt

[
rd

t+1(k)
]

= −Covt

[
m$

t+1,r
d
t+1(k)

]
= (Ad

1(k) + ex + eπ)Σ
1
2 Λt.

This is the same risk premium as the one that obtains for a nominal output strip k periods hence.

With the debt strip prices in hand, we can check the TVC. The TVC requires that:

lim
k→∞

PD
t (k) = lim

k→∞
Ad

0(k) + lim
k→∞

Ad
1(k)zt = 0.

Blanchard (2019) has argued that the U.S. has ample debt capacity to fund additional spending by

rolling over its debt because interest rates are below GDP growth rates. Because of the risk premia,
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the TVC can be satisfied even when the average nominal GDP growth rate exceeds the average

short rate: x0 + π0 > y$
0(1).

Proposition 4.1. When the risk prices of all innovations are zero, Λ0 = 0, then the TVC is violated

limk→∞ PD
t (k)→ ∞ when x0 + π0 > y$

0(1).

To see why, note that:

Ad
0(k + 1) ≥ (k + 1)(x0 + π0 − y$

0(1)) + µd.

The right hand side explodes as k → ∞ if x0 + π0 > y$
0(1). When none of the risk is priced,

Blanchard’s condition a sufficient condition for violations of the TVC. However, if output risk is

not priced, then the value of a claim to GDP divided by current GDP would explode as well.

4.4 Debt-Implied PDV of Surpluses

In the first model, which we label DAPM-D, the government commits to a particular debt policy,

and the spending/taxes will adjust.

Proposition 4.2. When the government commits to an affine debt policy and the debt is priced

fairly (DAPM-D), the present value of future surpluses at any horizon k implied by the debt dy-

namics can be stated as a function of the state vector zt:

Et ∑k
j=1 Mt,t+jSt+j

Yt
= Dt/Yt − PD

t (k) = exp(e′dzt)− exp(Ad
0(k) + Ad

1(k)zt). (9)

This is the bond market’s view of future surpluses when the government commits to an affine

policy for the debt/output ratio. We can back out the PDV of future surpluses at all horizons. We

refer to this as the debt-implied PDV of surpluses.

At the infinite horizon, we obtain the following result.

Corollary 4.3. When the TVC holds and the government commits to a debt policy (DAPM-D), the

value of debt reveals PDV of surpluses.

Et ∑∞
j=1 Mt,t+jSt+j

Yt
= Dt/Yt − lim

k→∞
Et[Mt,t+kDt+k]/Yt

= Dt/Yt − lim
k→∞

PD
t (k)

= Dt/Yt = exp(e′dzt)

Today’s value of debt (relative to current output) reveals the PDV of all future surpluses (rela-

tive to current output).
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4.5 Cash Flow-Implied PDV of Surpluses

In the second model, which we label DAPM-TG, the government commits to a spending and a

tax policy. We stipulate government tax and spending rules as functions of the state, and di-

rectly measure the PDV of future surpluses. This is the approach followed by Jiang, Lustig, Van

Nieuwerburgh, and Xiaolan (2019). In this approach, the debt/output ratio is merely included in

the state vector as a predictor variable.

Let PDj
t(h) denote the price-dividend ratio of the tax revenue strip (j = T) or spending strip

(j = G) with maturity h (Wachter, 2005; van Binsbergen, Brandt, and Koijen, 2012). Then, the

price-dividend ratios on the tax claim and the spending claim are the sum of the price-dividend

ratios of their strips, whose logs are affine in the state vector zt:

PDT
t =

PT
t

Tt
=

∞

∑
h=0

exp(Aτ(h) + B′τ(h)zt), (10)

PDG
t =

PG
t

Gt
=

∞

∑
h=0

exp(Ag(h) + B′g(h)zt). (11)

The proof is in Appendix A.5 and A.6.

Proposition 4.4. When the government commits to spending and tax policies that are affine in the

state vector and the debt is priced fairly (DAPM-TG), the PDV of surpluses can be stated for each

k = 1, . . . , ∞ as:

Et ∑k
j=1 Mt,t+jSt+j

Yt
= =

Tt

Yt

k

∑
h=1

(exp(Aτ(h) + B′τ(h)zt)−
Gt

Yt

k

∑
h=1

(exp(Ag(h) + B′g(h)zt). (12)

We refer to this as the cash flow-implied PDV of surpluses.

4.6 Contrasting the Two Approaches

Corollary 4.5. Under the null that the debt is priced fairly, when the government commits to affine

debt, spending and tax policies, the following cross-equation restrictions need to hold, for all zt:

exp(e′dzt)− exp(Ad
0(k) + Ad

1(k)zt)

= exp(log τt)
k

∑
h=1

(exp(Aτ(h) + Bτ′(h)zt)− exp(log gt)
k

∑
h=1

(exp(Ag(h) + Bg′(h)zt). (13)

In our log-linear model, each of these cross-equation restrictions depend on zt. When the

government commits to a debt policy in the DAPM-D, then the spending and tax policies cannot

both be log-linear in the state. Conversely, when the government commits to these spending and

tax policies in the DAPM-TG, the process for the debt/output ratio cannot be affine. This means
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that we cannot then also assume that the government commits to an independent debt policy.

As we take the limit as k→ ∞ and impose the TVC, we end up with the following condition:

exp(e′dzt) = exp(log τt)
k

∑
h=1

(exp(Aτ(h) + Bτ′(h)zt)− exp(log gt)
k

∑
h=1

(exp(Ag(h) + Bg′(h)zt). (14)

In this log-normal model, the horizon-dependent restrictions in Equation 13 do not collapse the

single restriction in Equation 14 because the model is log-linear rather than linear. Equation 14 is

the implication tested by Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019).

5 Quantitative Implications

To explore the model’s quantitative implications, we need to (i) take a stance on the time-series

properties of revenue and spending, and (ii) a stochastic discount factor Mt,t+j to discount these

cash flows. We specify the quantitative model as in Jiang, Lustig, Van Nieuwerburgh, and Xiaolan

(2019).

5.1 Cash Flow Dynamics

Table 3 summarizes the variables we include in the state vector, in order of appearance of the VAR.

Table 3: State Variables

Position Variable Mean Description
1 πt π0 Log Inflation
2 xt x0 Log Real GDP Growth
3 y$

t (1) y$
0(1) Log 1-Year Nominal Yield

4 yspr$
t yspr$

0 Log 5-Year Minus 1-Year Nominal Yield Spread
5 pdt pd Log Stock Price-to-Dividend Ratio
6 ∆dt µd Log Stock Dividend Growth
7 ∆ log τt µτ Log Tax Revenue-to-GDP Growth
8 log τt log τ0 Log Tax Revenue-to-GDP Level
9 ∆ log gt µg Log Spending-to-GDP Growth
10 log gt log g0 Log Spending-to-GDP Level
11 ∆ log dt µd Log Debt-to-GDP Growth
12 log dt log d0 Log Debt-to-GDP Level

The vector z contains the state variables demeaned by their respective sample averages. The

VAR estimates for the companion matrix Ψ and γ
1
2 are reported in Appendix .

This VAR imposes co-integration between debt and output, spending and output, and taxes

and output. We allow for a structural break in 2007 in the the debt/output ratio by including the

demeaned log debt/output ratio, where the demeaning takes out a different mean pre-2007 and

post-2007. Recall Figure 2. In section 2, we found that the introducing a break restores some of the

link between fundamentals and the debt/output ratio.
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Figure 3 and Figure 4 show the VAR-implied forecasts of the log tax revenue/output ratio and

the log government spending/output ratio. The first columns is the VAR model without debt, the

second column is for the VAR model that adds the debt/output equations to the VAR, and the

third column is for the model with debt/output and the structural break in the mean debt/output

ratio. The legend in each panel reports the root mean-squared forecast error at horizons of 5-years

(top row), 10-years (middle row), and 20-years (bottom row). Adding debt to the VAR does not

meaningfully improve the forecast errors of tax revenues in the long-run, while it improves the

forecasts of spending somewhat. The forecasting performance for ∆ log τ and ∆ log g improves

slightly when using the VAR system with debt and structural break compared to the VAR system

with debt and no structural break.

Figure 5 shows the predictions for future debt/output ratios. The VAR with a break in the

debt/output ratio in 2007 substantially outperforms the VAR with debt and the VAR without

debt when it comes to forecasting the long-run evolution of debt. The long-run forecast errors

for ∆ log(debt/GDP) in the VAR with debt and structural break are much lower than those in the

VAR with debt.

5.2 SDF

We estimate the market prices of risk parameters to best fit a set of bond and stock moments,

following Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019). The resulting point estimates for

the market prices of risk are reported in Appendix B.2.

5.3 Comparing PDV of Surpluses

Based on the estimation of the VAR system with debt (with structural break in the mean debt/output

ratio) and the estimated market prices of risks, we can now compare the debt-implied PDV of sur-

pluses in Equation 9 in the DAPM-D model to the cash flow-implied PDV of surpluses in Equa-

tion 12 in the DAPM-TG model.

We start with the DAPM-D model. The risk-neutral debt dynamics pin down the surplus

dynamics under the risk-neutral surpluses. Figure 6 plots the present value of future surpluses

implied by the debt dynamics over different horizons k ranging from 1 to 500 years. All variables

plotted are divided by current GDP. At short horizons of 5 years, the model predicts surpluses

until 1960, after which the model predicts deficits between 1970 and the early 1980s, followed by

predicted surpluses until the late 90s. At the start of the financial crisis in 2008, the debt dynamics

imply large deficits; the PDV of future debt increases by more than the current debt.

As we examine longer horizons by increasing k, PD
t (k) converges to zero, because of the TVC,

and this risk-neutral forecast of future surpluses converges to the actual market value of debt.

What this means is that bond market investors expect large future surpluses.
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Figure 3: Long Term Forecast for ∆τ
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20 Yr Forecast  

We plot the actual log tax growth rates over 5-year, 10-year and 20-year rolling windows in solid blue lines. The value at each year

represents the k-year growth rates that end at that year. We also plot these rates as forecasted by the benchmark model (the first

column), the rates forecasted by the VAR with debt/gdp ratio (the middle column), and these rates as forecasted by the VAR with

debt/gdp ratio and structural change (the last column). The value at each year represents the k-year growth rates condition on the

information k years ago.

Figure 7 plots the cash flow-implied PDV of surpluses from the DAPM-TG model (solid line),

and compares those against the debt-implied PDV of surpluses from the DAPM-D model (dashed

line). At the 5-year horizon, the debt dynamics seems to track the direct valuation of the surpluses

rather well. However, after the 2008 crisis, the debt-implied PDV of surpluses is 20% of GDP

larger than the cash flow-implied PDV of surpluses. For the past decade, debt markets have been
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Figure 4: Long Term Forecast for ∆g
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We plot the actual log spending growth rates over 5-year, 10-year and 20-year rolling windows in solid blue lines. The value at each

year represents the k-year growth rates that end at that year. We also plot these rates as forecasted by the benchmark model (the first

column), the rates forecasted by the VAR with debt/gdp ratio (the middle column), and these rates as forecasted by the VAR with

debt/gdp ratio and structural change (the last column). The value at each year represents the k-year growth rates condition on the

information k years ago.

forecasting higher surpluses over the next 5 years than those implied by the cash flow dynamics.

Because the debt/output ratio is above its risk-adjusted mean, risk-neutral mean reversion in the

debt/output ratio generates a fast return to positive surpluses coming out of the 2008 crisis. But

the cash flow dynamics tell a different story; they suggest surpluses will remain depressed in

negative territory for years to come. If we had not allowed for a structural break in the mean
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Figure 5: Long Term Forecast for ∆ log(debt/GDP)
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We plot the actual log debt/gdp growth rates over 5-year, 10-year and 20-year rolling windows in solid blue lines. The value at each

year represents the k-year growth rates that end at that year. We also plot these rates as forecasted by the benchmark model (the first

column), the rates forecasted by the VAR with debt/gdp ratio (the middle column), and these rates as forecasted by the VAR with

debt/gdp ratio and structural change (the last column). The value at each year represents the k-year growth rates condition on the

information k years ago.

debt/output ratio in 2007, the DAPM-D model would have implied mean-reversion to a lower

mean and even larger implied surpluses.

At longer horizons (k ≥ 25), the two measures diverge even earlier, in the late 1990s. The debt

dynamics in DAPM-D imply small deficits over the next 50 years, but the cash flow dynamics in

DAPM-TG imply deficits that grow to five times GDPs at the end of the sample. At the 200-year
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Figure 6: PDV of Surpluses Implied by Debt Dynamics
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Plot of the PDV of future surpluses divided by GDP, measured by the debt-to-GDP ratio minus the present value of the debt in k years
Dt/Yt − PD

t (k) divided by GDP in Equation 9. (DAPM-D)

horizon, the gap widens to ten GDPs.

Figure 8 plots the gap between the PDV of surpluses from the DAPM-D and DAPM-TG models

over horizons of 1, 5, 2, 50, 100, and 500 years. The gap is increasing in absolute value in horizon

k. As the horizon k increases, the size of the violation converges to the size of what Jiang, Lustig,

Van Nieuwerburgh, and Xiaolan (2019) call the government debt valuation puzzle.

5.4 Comparing to Realized Surpluses

How do these surplus forecasts in the DAPM-D and DAPM-TG models stack up against the re-

alized surpluses? To construct the PDV of realized surpluses, we discount the realized surpluses

off the Treasury yield curve, and we fill in the data between 2020 and 2030 using the CBO budget

forecasts.

Figure 9 plots the PDV of realized surpluses (fill line) against the PDV of forecasted surpluses

(dashed and dashed-dotted lines) over the next five years. The red line is constructed using the

CBO forecasts to fill in missing data. All variables are scaled by current GDP. The PDV of forecasts

implied by cash flow dynamics in the DAPM-TG tracks the PDV of realized surpluses fairly well,

and more closely than the debt-implied PDV in DAPM-D. The latter is too low in the first half of
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Figure 7: PDV of Surpluses Implied by Debt and Cash Flow Dynamics
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The dashed line is the present value of future surpluses over a k-year horizon implied by the debt dynamics: the debt-to-GDP ratio
minus the present value of the debt in k years Dt/Yt − PD

t (k) in Equation 9 (DAPM-D). The solid line is the present value of future sur-
pluses over a k-year horizon implied by the cash flow dynamics: τt ∑k

h=1 Pτ
t (h)− gt ∑k

h=1 PG
t (h) in Equation 12 (DAPM-TG). Sample:

1947 to 2019.

the sample, and arguably too high in the second half of the sample. In the late 1990s and the 2000s,

even the cash flow-implied forecasts systematically over-predict realized surpluses in the run-up

to the financial crisis. Following the 2008 crisis, there is a marked gap between the debt-implied

and the cash-flow-implied forecasts. The debt measure predicts a speedy return to surpluses. The

cash flow-implied measure does not, but rather stays at a 5-year cumulative deficit of 20% of GDP.

Like the cash flow-implied surpluses, the realized surpluses (full line) do not feature the sharp

reversal implied by the debt dynamics.

Next, we plot the 10-year PDV of realized surpluses (full line) against the PDV of forecasted

surpluses (dashed and dashed-dotted lines) in Figure 10. We observe the same pattern. The cash

flow-implied forecasts do rather well when plotted against the PDV of realized 10-year cumulative

(discounted) surpluses. Again, the debt-based measure implies a reversal after the 2008 crisis to
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Figure 8: PDV of Wedges over Horizon k
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The figure shows the PDV of wedges over horizon of k years: Et ∑k
j=0 Mt,t+jDt+jηt+j in ??.

Figure 9: PDV of 5-Year Discounted Realized and Model-Implied Surpluses
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The full line plots the realized discounted surpluses over the next 5 years. The red line is constructed using the Sept 2020 CBO forecasts.
The dashed-dotted line is the present value of future surpluses over a k-year horizon implied by the debt dynamics: the debt-to-GDP
ratio minus the present value of the debt in 5 years Dt/Yt − PD

t (k) in Equation 9 (DAPM-D). The dashed line is the present value of
future surpluses over a 5-year horizon implied by the cash flow dynamics: τt ∑k

h=1 Pτ
t (h)− gt ∑k

h=1 PG
t (h) in Equation 12 (DAPM-TG).

Sample: 1947 to 2019.

0% of GDP. However, the realized surpluses and the cash-flow based forecasts remain at around

-50% of GDP.

24



Since the mid-1990’s, the debt-implied surpluses have been too optimistic. In other words,

the realized surpluses have been consistently lower than what bond market investors would have

expected. This points to irrationality, beliefs that deviate from rational expectations, on the part of

bond investors.

Figure 10: PDV of 10-Year Discounted Realized and Model-Implied Surpluses
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The full line plots the realized discounted surpluses over the next 10 years. The red line is constructed using the Sept 2020 CBO
forecasts. The dashed-dotted line is the present value of future surpluses over a k-year horizon implied by the debt dynamics: the debt-
to-GDP ratio minus the present value of the debt in 10 years Dt/Yt − PD

t (k) in Equation 9 (DAPM-D). The dashed line is the present
value of future surpluses over a 10-year horizon implied by the cash flow dynamics: τt ∑k

h=1 Pτ
t (h) − gt ∑k

h=1 PG
t (h) in Equation 12

(DAPM-TG). Sample: 1947 to 2019.

5.5 Reverse Engineering PDV of Taxes

We can impose the cross-equation restrictions in Equation 13 and use them to back out the PDV(taxes):

Corollary 5.1. If the government commits to a policy for spending and debt (DAPM-DG) and the

debt is fairly priced, then the implied PDV of taxes is given by:

PDVt[T]/Yt = exp(e′dzt)− exp(Ad
0(k) + Ad

1(k)zt)

+ exp(log gt)
k

∑
h=1

(exp(Ag(h) + Bg′(h)zt). (15)

This means we back out the right tax process to enforce the government’s budget constraint.

We call this the DAPM-DG model.

Figure 11 plots the implied PDV of tax revenues over the next five years divided by current

output against the discounted value of realized tax revenues to current output. Figure 12 does the
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same for ten-year cumulative tax revenues.

Figure 11: PDV of 5-Year Discounted Realized and Model-Implied Taxes
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The dashed line plots the realized discounted surpluses over the next 5 years, discounted off the Treasury yield curve. The red line
is constructed using the Sept 2020 CBO forecasts. The full line is the present value of future taxes over a 5-year horizon reverse
engineered from Equation 15 to enforce the cross-equation no arbitrage restriction.

Over the first six decades of our sample, the PDV of realized taxes exceeds the valuation to the

tax stream imputed by our DAPM-DG model. The tax claim is quite risky, due to its pro-cyclicality

and its cointegration with GDP in the long run. As a result, the model tends to overstate the PDV

of taxes when discounting it off the risk-free yield curve. However, starting in the late 90s, the gap

between these 2 measures closes. The implied PDV of taxes over the next 10 years surpasses the

realized tax measure by almost 40% of GDP at the end of 2019. This is an understatement of the

true gap since realized future tax revenues should not be discounted at the risk-free rate but at a

higher rate that reflects their risk.

6 Conclusion

Bond market investors pricing the debt of the federal government of the United States appear to

systematically overstate future primary surpluses, even over long horizons. We find little evidence

in the post-WW II sample that higher debt/output ratios are followed by subsequent surpluses.
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Figure 12: PDV of 10-Year Discounted Realized and Model-Implied Taxes
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The dashed line plots the realized discounted surpluses over the next 10 years, discounted off the Treasury yield curve. The red line
is constructed using the Sept 2020 CBO forecasts. The full line is the present value of future taxes over a 10-year horizon reverse
engineered from Equation 15 to enforce the cross-equation no arbitrage restriction.

27



References

Alvarez, F., and U. Jermann, 2005, “Using Asset Prices to Measure the Measure the Persistence of

the Marginal Utility of Wealth.,” Econometrica, (4), 1977–2016.

Ang, A., and M. Piazzesi, 2003, “A No-Arbitrage Vector Autoregression of Term Structure Dynam-

ics with Macroeconomic and Latent Variables,” Journal of Monetary Economics, 50, 745–787.

Backus, D., N. Boyarchenko, and M. Chernov, 2018, “Term structures of asset prices and returns,”

J. financ. econ., 129(1), 1–23.

Bai, J., and P. Collin-Dufresne, 2019, “The CDS-bond basis,” Financial Management, 48(2), 417–439.

Blanchard, O., 2019, “Public Debt and Low Interest Rates,” American Economic Review, 109(4),

1197–1229.

Blanchard, O. J., and M. Watson, 1982, “Bubbles, rational expectations, and financial markets,” in

Crises in the Economic and Financial Structure, ed. by P. Wachtel. Lexington Books.
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A Proofs

A.1 Proof of Proposition 3.1
Proof. We consider an investor who buys the entire government debt portfolio at the end of period t. Her total return is given by the

value of the debt at the end of the period t + 1 plus the cash flow that accrues to the investor which consists of the primary surplus:

RD
t+1 =

Dt+1 + Tt+1 − Gt+1

Dt
.

As a result, we can state the primary surplus at t + 1 as follows: St+1 = DtRD
t+1 − Dt+1, and the primary surplus at t + 2 is given by:

St+2 = Dt+1Rt+2 − Dt+2. Next, we can compute the present discounted value of surpluses in the current and next period:

St+1 + Et+1[Mt+2St+2] = DtRD
t+1 − Dt+1 + Dt+1Et+1[Mt+2Rt+2]−Et[Mt+2Dt+2].

If there is an Euler equation wedge for the entire debt portfolio Et+1[Mt+1,t+2Rt+2] = 1 + ηt+1, we end up with the following expres-

sion:

St+1 + Et+1[Mt+1,t+2St+2] = DtRD
t+1 + ηt+1Dt+1 −Et+1[Mt+1,t+2Dt+2].

By the same logic, the PDV of the first 3 surpluses is given by:

St+1 + Et+1[Mt+1,t+2St+2] + Et+1[Mt+1,t+3St+3]

= DtRD
t+1 + ηt+1Dt+1 + Et+1[Mt+1,t+2ηt+2Dt+2]−Et+1[Mt+1,t+3Dt+3],

where we have used Et+2[Mt+2,t+3Rt+3] = 1 + ηt+2.

Multiplying by Mt,t+1 and taking expectations at time t, we obtain the following general result:

Et

k

∑
j=1

Mt,t+jSt+j = Dt −Et[Mt+1,t+kDt+k ] + Et

k−1

∑
j=0

Mt,t+jDt+jηt+j.

A.2 Proof of Corollary 3.2:
Proof. Follows immediately from Proposition 3.1.

A.3 Present Value of Future Debt
We conjecture that the log discounted value of the future debt to output ratio is affine in the state vector zt:

log PD
t (k) =

Et[Mt,t+kDt+k ]

Yt
= Ad

0(k) + Ad
1(k)zt.

For the strip at zero, we have that:

log PD
t (0) = log

Dt

Yt
= Ad

0(0) + Ad
1(0)zt.

Hence, note that Ad
0(0) = µ(d) and Ad

1(0) = ed, where we assume that d is demeaned in the state vector, and µ(d) denotes the mean.
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We solve for the coefficient Ad
0(k + 1) and Ad

1(k + 1) by verifying the Euler equation:

PD
t (k + 1) = Et

[
Mt,t+1PD

t+1(k)
Yt+1

Yt

]
= Et

[
exp{m$

t+1 + xt+1 + πt+1 + log(PD
t+1(k))}

]
= exp{−y$

0(1)− e′ynzt −
1
2

Λ′tΛt + x0 + π0 + (ex + eπ + Ad
1(k))

′Ψzt + Ad
0(k)}

×Et

[
exp{−Λ′tεt+1 + (ex + eπ + Ad

1(k))
′Σ

1
2 εt+1}

]
We substitute for the affine expression for Λt and use the log-normality of εt+1, and obtain:

PD
t (k + 1) = exp{−y$

0(1)− e′ynzt + x0 + π0 + (ex + eπ + Ad
1(k))

′Ψzt + Ad
0(k)

+
1
2
(ex + eπ + Ad

1(k))
′Σ(ex + eπ + Ad

1(k))− (ex + eπ + Ad
1(k))

′Σ
1
2 (Λ0 + Λ1zt)}

Taking logs and collecting terms, we get

Ad
0(k + 1) = −y$

0(1) + x0 + π0 + Ad
0(k) +

1
2
(ex + eπ + Ad

1(k))
′Σ(ex + eπ + Ad

1(k))

−(ex + eπ + Ad
1(k))

′Σ
1
2 Λ0 (16)

Ad
1(k + 1) = (ex + eπ + Ad

1(k))
′Ψ− e′yn − (ex + eπ + Ad

1(k))
′Σ

1
2 Λ1 (17)

Given that we have a structural break with 2 different values for µ(d), we will have two solutions for (Ad
0 , Ad

1), one before and

one after the break. In the case of constant debt/output ratio, we need to change the initial conditions to Ad
0(0) = µ(d) and Ad

1(0) = 0.

Without re-estimating the model parameters, we can also solve for (Ad
0 , Ad

1) using the unconditional mean for the entire sample µ(d).

A.4 Proof of Proposition 4.1
Proof. We consider the case of a constant debt/output ratio. We set Λ0 = 0 and Λ1 = 0. From the recursions for these coefficients, it

follows that:

Ad
0(0) = µd,

Ad
1(0) = 0

Ad
0(1) = −y$

0(1) + x0 + π0 + µd +
1
2
(ex + eπ + 0)′Σ(ex + eπ + 0)

Ad
0(k + 1) = −y$

0(1) + x0 + π0 + Ad
0(k) +

1
2
(ex + eπ + Ad

1(k))
′Σ(ex + eπ + Ad

1(k))

Next, note that the variance terms are positive. This implies that:

Ad
0(k + 1) ≥ (k + 1)(x0 + π0 − y$

0(1)) + µd.

This term tends to +∞ when x0 + π0 > y$
0(1). Note that the proof generalizes to any debt policy.

It is easy to how that the second loading is given by:

Ad
1(k) = (ex + eπ)

′
k

∑
j=1

Ψj − ke′yn.

This keeps track of forecasted nominal GDP growth minus the nominal short rates over the horizon, conditional on the state variable.

However, the state variables zt have mean zero. Hence, on average, these terms will not matter for the TVC.
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A.5 Spending Claim
Nominal government spending growth equals

∆ log Gt+1 = ∆ log gt+1 + xt+1 + πt+1 = x0 + π0 + µ
g
0 +

(
e∆g + ex + eπ

)′ zt+1. (18)

We conjecture the log price-dividend ratios on spending strips are affine in the state vector:

PG
t (h) = log

(
PG

t (h)
)
= Ag(h) + Bg′(h)zt.

We solve for the coefficients Ag(h + 1) and Bg(h + 1) in the process of verifying this conjecture using the Euler equation:

PG
t (h + 1) = Et

[
Mt+1PG

t+1(h)
Gt+1

Gt

]
= Et

[
exp{m$

t+1 + ∆ log gt+1 + xt+1 + πt+1 + PG
t+1(h)}

]
= exp{−y$

0(1)− e′ynzt −
1
2

Λ′tΛt + µg + x0 + π0 + (e∆g + ex + eπ + Bg(h))′Ψzt + Ag(h)}

×Et

[
exp{−Λ′tεt+1 +

(
e∆g + ex + eπ + Bg(h)

)′ Σ 1
2 εt+1

]
.

We use the log-normality of εt+1 and substitute for the affine expression for Λt to get:

PG
t (h + 1) = exp{−y$

0(1) + µg + x0 + π0 + ((e∆g + ex + eπ + Bg(h))′Ψ− e′yn)zt + Ag(h)

+
1
2
(
e∆g + ex + eπ + Bg(h)

)′ Σ (e∆g + ex + eπ + Bg(h)
)

−
(
e∆g + ex + eπ + Bg(h)

)′ Σ 1
2 (Λ0 + Λ1zt)}

Taking logs and collecting terms, we obtain

Ag(h + 1) = −y$
0(1) + µg + x0 + π0 + Ag(h) +

1
2
(
e∆g + ex + eπ + Bg(h)

)′ Σ (e∆g + ex + eπ + Bg(h)
)

−
(
e∆g + ex + eπ + Bg(h)

)′ Σ 1
2 Λ0,

Bg(h + 1)′ = (e∆g + ex + eπ + Bg(h))′Ψ− e′yn −
(
e∆g + ex + eπ + Bg(h)

)′ Σ 1
2 Λ1,

and the price-dividend ratio of the cum-dividend spending claim is

∞

∑
h=0

exp(Ag(h + 1) + Bg(h + 1)′zt)

A.6 Revenue Claim
Nominal government revenue growth equals

∆ log Tt+1 = ∆ log τt+1 + xt+1 + πt+1 = x0 + π0 + µτ
0 + (e∆τ + ex + eπ)

′ zt+1. (19)

where τt = Tt/GDPt is the ratio of government revenue to GDP. Note that this ratio is assumed to have a long-run growth rate of

zero. This imposes cointegration between government revenue and GDP. The growth ratio in this ratio can only temporarily deviate

from zero.

The remaining proof exactly mirrors the proof for government spending, with

pτt ≡ log
(

Pτ,ex
t
Tt

)
= log

(
PT

t
Tt
− 1
)
=

∞

∑
h=0

exp(Aτ(h + 1) + Bτ(h + 1)′zt), (20)
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where Aτ and Bτ are as follows:

Aτ(h + 1) = −y$
0(1) + µτ + x0 + π0 + Aτ(h) +

1
2
(e∆τ + ex + eπ + Bτ(h))′ Σ (e∆τ + ex + eπ + Bτ(h))

− (e∆τ + ex + eπ + Bτ(h))′ Σ
1
2 Λ0,

Bτ(h + 1)′ = (e∆τ + ex + eπ + Bτ(h))′Ψ− e′yn − (e∆τ + ex + eπ + Bτ(h))′ Σ
1
2 Λ1.

B Quantitative Model

B.1 VAR Estimates
The log(debt/GPD) series may not be stationary. Using the augmented Dickey-Fuller test cannot reject the null hypothesis of the

presence of the unit root in the log debt-to-GDP ratio in our sample period. In the OLS estimates of the VAR, the coefficient on lagged

debt in the debt equation exceeds 1 (Ψ12,12 = 1.046 > 1). To deal with the issue of non-stationarity, we allow for structural breaks. We

detect a structural break in the debt/output ratio around 2007 (See Figure 2). Chow tests for several potential structural breakpoints

for the debt-to-GDP ratio from 1947 to 2019 show that we can only reject the null hypothesis of no structural break in 2007 at the

1% level. We demean the debt-to-GDP ratio with two different sample (before and after 2007) average, and then re-estimate the VAR,

following recent work by Lettau and Van Nieuwerburgh (2008). The Ψ and γ
1
2 matrices for the VAR with the structural break-adjusted

debt series are reported in Table 4. Note that now Ψ12,12 = 0.96 < 1.

Table 4: VAR with debt-to-GDP Ratio

Ψ =

l.π l.x l.r l.tp l.dp l.dd l.∆τ l.τ l.∆g l.g l.∆debt l.debt
π 0.375 -0.085 0.028 -0.302 -0.008 0.034 0.066 -0.035 -0.015 -0.016 0.001 -0.036
x -0.095 0.191 0.376 0.236 0.021 0.060 -0.028 -0.064 0.057 0.077 -0.037 0.042
r 0.042 0.031 0.888 0.027 0.004 0.033 0.002 -0.037 -0.011 0.021 -0.019 -0.004

tp -0.072 -0.085 -0.044 0.501 -0.008 -0.022 0.013 0.018 0.013 -0.024 0.018 -0.007
dp -2.588 -1.209 0.278 2.397 0.773 -0.212 -0.075 0.191 0.062 -0.255 -0.111 -0.028
dd 0.315 0.257 -0.425 -1.651 0.053 0.157 -0.085 -0.167 -0.125 0.103 0.254 0.060
∆τ -0.689 0.470 0.622 -3.898 0.106 0.106 0.267 -0.539 0.154 0.256 0.131 0.091
τ -0.689 0.470 0.622 -3.898 0.106 0.106 0.267 0.461 0.154 0.256 0.131 0.091

∆g -0.445 0.089 -2.176 -1.207 -0.170 -0.223 0.173 0.136 0.278 -0.535 0.123 -0.214
g -0.445 0.089 -2.176 -1.207 -0.170 -0.223 0.173 0.136 0.278 0.465 0.123 -0.214

∆debt 0.191 -0.850 0.830 4.622 -0.022 -0.237 0.070 0.013 -0.006 0.026 -0.071 -0.040
debt 0.191 -0.850 0.830 4.622 -0.022 -0.237 0.070 0.013 -0.006 0.026 -0.071 0.960

100× γ
1
2

l.π l.x l.r l.tp l.dp l.dd l.∆τ l.τ l.∆g l.g l.∆debt l.debt
π 0.918 0 0 0 0 0 0 0 0 0 0 0
x 0.569 1.843 0 0 0 0 0 0 0 0 0 0
r 0.369 0.503 1.208 0 0 0 0 0 0 0 0 0

tp -0.104 -0.194 -0.277 0.428 0 0 0 0 0 0 0 0
dp -3.403 -2.162 1.242 1.142 14.914 0 0 0 0 0 0 0
dd -0.090 1.245 0.865 -1.315 -0.961 4.649 0 0 0 0 0 0
∆τ 2.340 1.764 0.104 -0.460 1.083 0.246 4.514 0 0 0 0 0
τ 2.340 1.764 0.104 -0.460 1.083 0.246 4.514 0 0 0 0 0

∆g -0.895 -2.178 -1.313 -0.425 0.030 -1.170 -0.054 0 3.326 0 0 0
g -0.895 -2.178 -1.313 -0.425 0.030 -1.170 -0.054 0 3.326 0 0 0

∆debt -2.524 -3.298 -1.321 -0.284 2.656 2.105 -0.669 0 0.284 0 6.396 0
debt -2.524 -3.298 -1.321 -0.284 2.656 2.105 -0.669 0 0.284 0 6.396 0

Σ
1
2 is the Cholesky decomposition of the residual variance-covariance matrix. It is multiplied by 100 for readability.

B.2 Market Prices of Risks
We estimate the market prices of risks and report the estimates in Table 5.
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Table 5: Market Prices of Risks

Λ0 = 0 0.173 -0.375 0.034 0 1.558 0 0 0 0 0 0

Λ1=

0 0 0 0 0 0 0 0 0 0 0 0
0 33.428 0 0 0 0 0 0 0 0 0 0
0 0 -14.182 -95.476 0 0 0 0 0 0 0 0

-4.181 -15.777 -6.165 -3.443 -0.672 1.859 -0.300 -4.767 -0.181 -2.262 -3.995 -3.132
0 0 0 0 0 0 0 0 0 0 0 0

-39.426 -16.107 -18.200 50.462 -4.426 -0.246 -1.965 -0.592 -1.701 -3.654 2.985 -0.197
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

35


	Introduction
	What Drives Variation in the U.S. Debt/Output Ratio? Model-free Evidence
	Campbell-Shiller decomposition of the debt/output ratio
	Structural Breaks

	Risk-Neutral Debt Dynamics and Risk-Neutral Surplus Dynamics
	No-Arbitrage Implications of the Government Debt Policy
	A Simple Risk-Neutral Example
	Dynamic Asset Pricing Model
	Testing the No-Bubble Condition
	Debt-Implied PDV of Surpluses
	Cash Flow-Implied PDV of Surpluses
	Contrasting the Two Approaches

	Quantitative Implications
	Cash Flow Dynamics
	SDF
	Comparing PDV of Surpluses
	Comparing to Realized Surpluses
	Reverse Engineering PDV of Taxes

	Conclusion
	Proofs
	Proof of Proposition  3.1 
	Proof of Corollary  3.2:
	Present Value of Future Debt
	Proof of Proposition 4.1
	Spending Claim
	Revenue Claim

	Quantitative Model
	VAR Estimates
	Market Prices of Risks


