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Abstract

Traditional product line positioning and pricing models assume that firms have full information about

the market demand and consumer preferences. In this paper we consider a setting where the firm has

limited market information and tries to select its product positioning and pricing strategy optimally in

light of this missing market information. To do this, we use competitive ratio and maximum regret

criteria, which measure (respectively) the percentage and absolute loss relative to the benchmark case

where the firm has full knowledge of customer preferences. We provide closed form solutions for the

optimal product line positioning policies under limited market information for both the case of horizontal

and vertically differentiated product lines. Our analysis, while stylized, provides insights into practices

observed in many real world markets. In the case of horizontal differentiation, we show that the optimal

decision for both the competitive ratio and maximum regret criteria is to position products at equal

intervals in the attribute space and to price them identically; that is, to evenly span the product space

with uniformly priced versions of the product. For the vertically differentiated case, we show that the

optimal policy consists of offering some number of highest quality versions, which we call nested quality

offerings. We show in this case that the more ambiguity there is over customers’ taste for quality, the

more product versions the firm should offer.

∗Columbia Business School, Decision Risk and Operations Dep., Uris Hall, 3022 Broadway, New York, NY 10027.
(se2027@columbia.edu, gjv1@columbia.edu)
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1 Introduction

Positioning and pricing a product line is a central problem in marketing. (See Dobson and Yano [9], Green

and Kieger [13], Krishnan and Ulrich [18], Ramdas [26].) In product line positioning, a firm must decide

which different versions of a product to offer. Versions may differ in ways that appeal to the heterogeneous

tastes of consumers, such as offering different colors, sizes or flavors - called horizontal differentiation - or they

may differ in their level of quality and performance - called vertical differentiation. Product line positioning

decisions are intimately related to the prices charged, too; because product versions closer to customers’

preferences for variety or quality provide them more utility and can therefore support higher prices. At the

same time, differentiated versions of the same product are almost always substitutes, so that lower prices for

one version cannibalize demand from the other versions in the product line. Hence, positioning and pricing

a product line should be coordinated decisions.

The difficulty in practice is that often little is known about customer preferences for various product

attributes and the testing necessary to determine their preferences (e.g. conjoint analysis, (see Green and

Srinivasan [14], Green, Carroll and Goldberg [12])) may be either too costly, too time consuming or otherwise

unreliable, as in the case of an innovative product that customers have never experienced using. In such

cases, firms must make product line positioning and pricing decisions with essentially no (or very minimal)

information about customer preferences. This is the problem we address in this paper; it is a real and vexing

problem and one that has received no attention to date in the research literature.

How does one analysis a decision problem with “no information”? And how does one do so in a way that

is both practically meaningful and conceptually sound?

One approach is to use a max-min criterion. That is, one treats the unknown information as being

controlled by an adversary (“nature”) who seeks to construct instances that minimize the firms profits for

any given decision it makes. The firm then seeks policies (product positions and prices in our case) that

produce the maximum profit against this adversary. The difficulty with this approach is that it can lead to

decisions that are driven by excessively extreme and pessimistic scenarios about the unknown information.

Robust optimization is another approach to lack of information; it attempts to reduce the inherent con-

servatism of the max-min criterion by imposing constraints on the adversary. The approach assumes that an

adversary controls certain parameters of the problem (e.g. customer valuations), but that these parameters

are constrained to an “uncertainty set” in which the total deviation of the actual parameter values from

their nominal values is upper bounded by a constant, interpreted as an “uncertainty budget”. Depending on
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the norm used to measure deviations, the constraints are either ellipsoidal (see BenTal and Nemirovski [3],

and ElGhaoui and Lebret [10]), or polyhedral (see Bertsimas and Sim [5], as well as Bertsimas and Thiele

[6], Perakis and Sood [25]). The idea is that it is not usually realistic that all parameters will simultaneously

be at their “worst possible” values and the uncertainty budget in effect defines how many values may be

extreme ones. The approach is appealing computationally, but it suffers from the defect that it becomes

something of an ad hoc choice to select the magnitude of the uncertainty budget - or said differently, selecting

the uncertainty budget amounts to a statement (and not an easy-to-interpret one at that) about the degree

of uncertainty in the information. More to the point, robust optimization is primarily a computational

formalism and doesn’t naturally lend itself to finding analytic solutions that provide structural insights. In

a similar vein, Lim and Shanthikumar [21] recently studied a robust dynamic pricing problem that imposed

a relative entropy constraint to bound the distance of the probabilistic model uncertainty from a nominal

distribution.

A second approach to overcome the excessive conservatism of max-min formulations is to measure perfor-

mance relative to a fully-informed decision maker. That is, this approach assumes what we truly care about

is reducing the gap between the performance we achieve with no information relative to what we could have

achieved with full information. It has the advantage of filtering out instance that produce bad outcomes no

matter what the policy (e.g. consumers who have zero utility for any version we create); clearly we wouldn’t

want to “blame” the decision maker for a bad outcome in such cases and using relative performance measures

reflects this sensibility.

Two such measures are the competitive ratio and maximum regret criteria. Specifically in our case, suppose

the firm first selects a positioning and pricing policy π, and the adversary selects a worst-case distribution

for the unknown consumer preferences, F (·). (These constructs will be made precise below.) Let R(π, F ) be

the actual revenue earned for the pair of actions π and F (·), and R(π∗(F ), F ) be the maximum revenue the

firm could have extracted if it knew the selected distribution F (·); i.e., π∗(F ) denotes the optimal policy if

F was known. Then, the competitive ratio criterion formulation is

c = max
π

min
F

R(π, F )
R(π∗(F ), F )

,

while the maximum regret criterion is

r = min
π

max
F

[R(π∗(F ), F )−R(π, F )] .

That is, the firm strives to either minimize the relative or the absolute difference from the theoretical
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maximum revenues it could have extracted in the full-information case. To contrast, the max-min criterion

takes the form

max
π

min
F

R(π, F ) .

The use of these two criteria implicitly constrains the actions of the adversary and typically results in

more intuitive policy recommendations. These criteria have been used extensively in the computer science

literature and have recently been applied in pricing and operations management problems. Specifically, Ball

and Queyranne [2] used a competitive ratio criterion for a single-resource capacity allocation problem, while

Bergemann and Schlag [4] and Perakis and Roels [24] adopted the regret criterion to study the monopolist

pricing and the newsvendor problems, respectively. Relative performance measures retain the feature of

being analyzable and yielding good structural insight while constituting a more realistic notion of “worst-

case performance”. Still, relative worst-case performance is largely a stylized formalism and the model and

results of our work should be interpreted in this light.

We use these competitive ratio and maximum regret criteria to study product line positioning and pricing

decisions in a setting where the firm does not have information about the distribution that characterizes the

consumers’ preferences over product variety (in the case of horizontal differentiation) or quality (in the case

of vertical differentiation).

Our approach to modeling horizontal product variety is based on classical locational models, in which

each version of the product is mapped into a location in a product attribute space and each consumer’s

location represents her most preferred values of the product attributes (her “ideal point”). The distance

between a customer’s ideal point and the locations of different product versions provides a measure of their

disultility from consuming a less-than-ideal product. Given a distribution of customer locations, one can

then analyze issues of optimal product line design, positioning and pricing. Of course in our case, this

distributional information is what is unknown.

The seminal paper in this area belongs to Hotelling [15], who considers a linear one-dimensional attribute

space. Vickrey [29] is credited for formulating the circular model, which gets rid of the boundary effects of

the linear model. In 1966, Lancaster [19] offered an alternative approach in which the utility of a choice is

determined by a parametric function of the consumer characteristics and product attributes. This theory

significantly increased interest in locational product differentiation models. Salop [27] provides the most

complete treatment of this setup in his seminal paper for monopolistic competition, where he shows a

symmetric equilibrium along the product space (i.e. the circle) exists with equal prices, and all the consumers

in the market (i.e. around the circle) are served. Several extensions of this basic game theoretical model has
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been made covering different scenarios of the market structure. Further interested reader is referred to the

excellent survey paper by Lancaster [20].

Our work is also closely related to the product line positioning literature. The product line position-

ing problem itself is a complex multi-facet problem touching on marketing concerns (consumer utility and

product attributes modeling, pricing and positioning to maximize market share or revenues, etc.), opera-

tions concerns (costs of production, configuration of supply chains for variety, etc.), and engineering design

concerns (product architecture, shared versus unique components, etc.). There are several survey papers

structuring the literature around these three areas. (Again, see Dobson and Yano [9], Green and Kieger [13],

Krishnan and Ulrich [18], Ramdas [26].) Prior work in the literature can be roughly characterized as follows:

most directly uses or is inspired by the utility framework of spatial differentiation models. Generally, models

consider a finite number of possible product offerings and the aim is to choose which of these to offer with

the objective of maximizing market share, revenues, or profits. However, there are a number of papers in

operations literature that solely consider cost minimization or supply chain configuration. It is assumed in

all this literature that customer preferences/valuations for each possible product offering and the potential

market size at each such point are known or can be estimated using conjoint analysis. Moreover, most of

the models do not treat price as a decision variable, though several treat it as part of the attribute space.

The corresponding problems are usually mixed integer programs and exact analytical solutions are generally

not available. Algorithmic solutions usually consist of greedy or simulation based heuristics (e.g. simulated

annealing).

Our work is aligned more closely with the marketing view of the problem explained above. We base

our model on the classical locational attributes and linear utility framework as above. However, unlike the

product line positioning literature above, we try to avoid additional assumptions on top of this basic set up.

Specifically, we allow for uncertainty/ambiguity in customer valuations, and are interested in analyzing the

effects of this uncertainty on optimal policies. Our objective is to maximize revenues; we do not consider

production costs (though variable costs can be added without much change). Further, we only consider a

single dimension of variety for simplicity. Unlike most of the literature, we treat both variety and price as

continuous decision variables; hence, an infinite number of possible product offerings/locations is allowed.

While these assumptions are highly stylized, we are able to derive analytical closed-form solutions for optimal

positioning and pricing policies which provide structural insights and permit sensitivity analysis with respect

to problem primitives.

As mentioned, we also analyze the case of vertical positioning, in which all consumers have a common

ordering of their preferences for different versions, i.e. every consumer agrees that a certain version i is better
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(in terms of what literature denotes as “quality”) than another version j. Our model of vertical positioning is

also classical, and is based on the early influential work of Mussa and Rosen [23], who introduce a framework

that makes use of a linear utility function of quality. This utility framework has been widely adopted by

both following researchers and practitioners. In their seminal paper, Shaked and Sutton [28] use this model

to show that firms can sustain positive profits even under price competition, contrary to the classical “zero-

profit” result of Bertrand price competition, when they are allowed to choose the quality levels of their

products under monopolistic competition. Assuming convex costs as a function of product quality, Mussa

and Rosen, and later Maskin and Riley [22] and Kim[17], show that a firm can increase profits by offering

vertically differentiated products to customers with heterogeneous tastes for quality.

These models were widely adopted as they successfully explained product differentiation seen in the

traditional manufactured goods. However, the theory fell short of explaining product differentiation, or

“versioning”, for information goods. Information goods are particularly relevant in our case since most pro-

duction costs are sunk development costs and thus profits maximization coincides with revenue maximization,

which is the case we analyze.

Several early works (see Bhargava and Choudhary [8], Jones and Mendelson [16], Acharyya [1]) use

the linear utility function for quality and conclude that there are no gains to product differentiation for

information goods and the product should be produced and supplied only at the highest quality levels to

prevent cannibalization. Yet empirical evidence [11] shows that information goods have high levels of quality

differentiation. Only the highest quality is produced, as predicted by the above works, but the product is

then degraded afterwards and offered at varying levels of quality in the market. In order to explain this

practice, several models with different and more complex utility functions have been proposed, but none

has been as widely accepted as the linear utility function of quality. Finally, Bhargava and Choudhary

[7] demonstrated that previous insights about suboptimality of vertical differentiation are not robust, and

showed that quality differentiation does indeed occur under a general class of utility functions and sunk costs

assumptions. They conclude that the higher the heterogeneity in consumers’ taste for quality, the more likely

vertical differentiation is and that the highest quality version is always offered in the product bundle. Other

popular marketing texts (see for example, Lilien et al. [?]) also conclude that versioning is attractive when

consumers are sufficiently heterogeneous.

The remainder of the paper is organized as follows: in Section 2, we consider the horizontal positioning of a

monopolist’s product line using Salop’s classical circular model of spatial differentiation. For both competitive

ratio and maximum regret criteria, we first derive the optimal pricing policy for a given product line with

fixed attributes. We show that the optimal price vector depends on the maximum attribute difference
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among neighboring products. We also show that the worst-case performance decreases (i.e. the competitive

ratio decreases or the regret increases) as the consumers’ sensitivity for differentiating attribute increases,

consumers’ nominal valuations for their ideal product decreases, or the maximum attribute difference among

neighboring products increases. Then, we show that for both criteria, the optimal positioning and pricing

policy is to position products at equal intervals in the attribute space and to price them identically; that is,

to evenly span the product space with uniformly priced versions of the product. This type of positioning of

a product line is frequently observed in practice and our results provide one explanation for why it occurs.

In Section 3, we study the vertical positioning of a product line using the linear utility of quality framework

of Mussa and Rosen. Again, we first derive the optimal pricing policy for a fixed number of versions with

given quality levels. Furthermore, consistent with Bhargava and Choudhary’s results, we show that the

optimal policy consists of offering some number of highest quality versions, which we call nested quality

offerings; and that the number of versions offered increase as the heterogeneity and ambiguity in consumers’

taste for quality increases. This result is consistent with empirical evidence and conclusions about versioning

in information goods in literature. (See again [11] and [?].)

For both the case of horizontal and vertical positioning, we solve for the optimal policy in closed form,

which provides a detailed description of the optimal pricing and positioning strategies for the firm and the

resulting worst-case revenue loss. Our analysis, while stylized, provides insights into practices observed in

many real world markets. In order to provide a continuous exposition, proofs of all results are relegated to

the Appendix.

2 Horizontal Product Line Positioning

We first look at the case of horizontal positioning. We begin by defining the model and the formulation of

the basic competitive ratio and maximum regret problems. We then analyze each of these problems in turn.

2.1 Model

We use Salop’s classical model of spatial differentiation, also known as the circular Hotelling model. In it,

versions of the product are differentiated along a single attribute, represented by a location on the unit circle

(attribute space). Each version j is represented by a location lj in this attribute space.

We assume the firm can offer at most K versions of a product. Such a limitation could, for example, reflect
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minimum efficient economies of scale needed for production. We do not incorporate fixed or variable costs of

producing up to this upper limit of K versions; rather, our analysis concentrates on revenue maximization.

However, it is easy to incorporate linear variable costs in our analysis simply by rescaling the nominal

valuations for products. If one wanted to analyze the optimal level of variety given such costs, it is possible

to solve our model for different values of K and use the solutions to determine if changes in revenue off-set

the costs of production and warrant increasing or decreasing the level of variety. But again in what follows

below, we shall assume K is fixed.

Consumer preferences are also represented by locations on the unit circle. A randomly selected customer

location is denoted l with distribution F (·). Our key assumption is that this preference distribution F (·)
is unknown to the firm and it must therefore make its positioning and pricing decisions accounting for this

missing information.

Consumers have a common deterministic nominal valuation, v, for the product, which represents the

maximum amount they would be willing to pay if the product were at their preferred location. The market

size (“number of customers”), denoted Λ, is assumed fixed and continuous. Hence, the distribution of

valuations is the only missing information to the firm in our model. We do this primarily to focus on

understanding preference uncertainty and secondarily to simplify the analysis. Still, in many retail contexts

the assumptions are not unreasonable. Retailers often do have a sense of the overall market size from past

experience even though the preferences for individual version is highly uncertain (e.g. different styles of ski

jackets). One can see evidence of this in a typical retail aggregate product planning process, where budgets

are allocated to categories of products based on past sales and the primary uncertainty is how to allocate

that budget to different products. Assuming the valuation v is known is arguably less realistic and certainly

affects the pricing decision. But again this valuation could reflect a historical “price point” for the given

category of products that is relatively well understood from historical experience even though the preference

for individual version is unknown.

Consumers incur a disutility that depends on the distance the product location to their preferred location,

given by θ|l−lj | where θ is a known disutility coefficient, which can be interpreted as the consumers’ sensitivity

for variety and |l− lj | denotes the distance between l and lj on the unit circle. Therefore the net utility for

a consumer of type l buying a product located at lj offered at price pj is given by u(l, j)
def
= v− θ|l− lj |− pj .

Note that the higher the nominal valuation, the lower the consumers’ sensitivity for variety, and/or the closer

the product is to the consumer’s ideal point, the more they are willing to pay for it. For the distance between

two versions to be equal to the directional distance, either clockwise of counter-clockwise, we assume that

K ≥ 3 and that the directional distance between any two versions is not greater than 0.5. This is really
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Figure 1: Horizontal Differentiation on a Unit Circle

a “cosmetic” assumption: all the results in this section can be extended to the general case, but it would

require additional notation and case-wise definitions of all functions.

A consumer of type l between lj and lj+1 prefers lj if v − θ(l − lj) − pj ≥ v − θ(lj+1 − l) − pj+1; that

is if the j-th indifference point xj
def
= pj+1−pj

2θ + lj+1+lj
2 ≥ l. Similarly a consumer with type l between lj

and lj−1 prefers lj if v − θ(l − lj−1) − pj−1 ≤ v − θ(lj − l) − pj ; that is if xj−1 = pj−pj−1
2θ + lj+lj−1

2 ≤ l.

As a result, a consumer of type l ∈ [xj−1, xj ] prefers product j to its neighboring products. Without loss of

generality we denote the location of first version to be l1 = 0 (thus, also l1 = 1 depending on the context).

Consequently, in the remainder of the section whenever j = K, j + 1 denotes 1; and x1 := p2−p1
2θ + l2

2 and

xK := p1−pK

2θ + 1+lK
2 above. Observe that the coefficient θ effects the aggregate demand in the sense that

higher values of θ make all consumers less willing to pay for each version irrespective of its location and

price, reducing the over all demand faced by the firm.

Each consumer has a most preferred product, which yields a utility of u(l)
def
= maxj{u(l, j)} for a given

price vector p, and which is purchased iff u(l) is nonnegative. Note that if a version with a relatively low

price is placed close enough to a version with a high price, the low price version may be preferred over the

high price version by every consumer location on the unit circle. In this case, we say that the low price

version dominates the high price version.
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2.2 Product line positioning and pricing decision

Having introduced the model, let us describe the firm’s decision making process. First, the firm chooses how

many of the K possible versions to offer, the positions of these versions, i.e. vector l = {lj}j=1..K , on the unit

circle, and their prices, i.e. the vector p. Then we evaluate this decision against the “worst-case” outcome

of customer preferences. To do so, we imagine an adversary (nature) that selects a worst-case preference

distribution F (·) in order to minimize the competitive ratio or maximum regret. Thus, the competitive ratio

problem is

max
p,l

min
F

R(l, p; F )
R(l∗(F ), p∗(F ); F )

,

where (l∗(F ), p∗(F )) is the revenue maximizing strategy of the firm given the distribution F (·). Here we

seek a policy which maximizes our revenue as a percentage of the full-information revenue under worst-case

outcomes. For example, a competitive ratio of 1/2 would say we are guaranteed to get at least 50% of

the revenue we could have gotten had we known the exact customer preference distribution. Similarly, the

maximum regret problem is

min
p

max
F

[R(l∗(F ), p∗(F ); F )−R(l, p;F )].

Here we seek a policy which minimizes the difference between our revenues and the full-information revenue

under worst-case outcomes. For example, a maximum regret value of $1,000 would say that the revenue we

achieve with our policy is guaranteed to be no more than $1,000 below the revenue we would have obtained

with exact information on the customer preference distribution.

Our goal is to specify the optimal pricing and product line positioning strategy of the firm for these

two relative performance objectives. Specifically, how many versions should the firm offer? Where should

these versions be positioned on the unit circle? What prices should we charge for the different versions? We

also would like to explain how the answers depend on the nominal valuation, the disutility coefficient, the

maximum number of products, and their relative positions. We begin with the competitive ratio case.

2.3 Competitive Ratio

We begin by assuming a fixed number of versions, K, is offered with fixed attributes (locations on the unit

circle), denoted by vector l ∈ [0, 1]K , and consider the pricing decision of the firm. We say a product i at
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price pi dominates product j at price pj if every customer (regardless of location) prefers i to j. Firstly, we

have the following result:

Proposition 2.1 There exists an optimal pricing policy where no version dominates any other version.

Thus, for the rest of the analysis, we restrict our attention only to such non-dominating pricing policies,

in which case all the consumers of type l ∈ [xj−1, xj ] prefer product version j, and xj ∈ [lj , lj+1] holds for

all j. Also, defining the lengths yj
def
= v−pj

θ , we see that everyone within yj distance of the location lj finds

that buying version j yields a nonnegative net utility. Therefore, everyone with l ∈ [kj , zj ] prefers and buys

product j, where kj and zj are the points defined as zj := min(xj , lj + yj), kj := max(xj−1, lj − yj) for

j = 2 . . .K, and z1 := min(x1, y1) and k1 := max(xK , 1− y1). Consequently, the revenue of the firm can be

written as

R(p, F ) = Λ
K∑

j=1

pj (F (zj)− F (kj)) . (1)

For the competitive ratio problem, we can further characterize the revenue functions using the following

result:

Lemma 2.1 At the optimal solution, the firm sets its prices such that the whole market is served, i.e.

xj ≤ lj + yj and xj−1 ≥ lj − yj holds for all j, and consequently, we have [zj , kj ] = [xj , xj+1] for all j.

As a result of this lemma, we can restrict our attention to policies where the firm collects pj from everybody

within the interval [xj , xj+1] for all j. For a distribution function F (·), define the probability mass allocated

to each such interval as fj := F (xj+1) − F (xj) for j = 1 . . . K − 1 and fK := F (x1) + 1 − F (xK). Using

the above result, we can characterize the worst-case distribution as follows:

Lemma 2.2 The worst-case competitive ratio distribution function F (·) allocates the mass fj to location

lj for all j.

Corollary 2.1 The revenue function can be written as R(p, F ) = Λ
∑K

j=1 pjfj, and the maximum revenue

the firm could extract under full information is R(p∗(F ), F ) = Λv.

As a consequence of all these results, we can write down the competitive ratio problem as the following

maxmin formulation

max
p

min
f





Λ
∑

j pjfj

Λv
: pj + pj−1 + θ|lj − lj−1| ≤ 2v ∀j, p ≥ 0,

∑

j

fj = 1, f ≥ 0



 ,
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where constraints pj + pj−1 + θ|lj − lj−1| ≤ 2v impose the condition the whole market must be served and

where |l1 − lK | equals to 1 − lK . This formulation can be reduced to a linear program, and can be solved

analytically as shown in the proof of the following proposition. The intuition behind the analysis is that the

worst-case distributions are extreme point distributions, and the firm’s optimal response is to choose prices

so that the adversary is indifferent among these extreme point distributions.

Proposition 2.2 For fixed number of versions K, and their attributes l, consider the following indexing

of the price vector that satisfies p[1] ≤ p[2] ≤ p[3] ≤ . . . ≤ p[K], and the vector p̄ solving the equations

p̄[j] = 2v − p̄[j−1] − θ |l[j] − l[j−1]| ∀j, then the optimal price vector p satisfies

p[1] = p[2] = p̄[1] = p̄[2] = v − θ maxj |lj − lj−1|
2

and p[j] ∈ [p[1], p̄[j]] for j = 3..K,

and the resulting optimal competitive ratio is c = 1−θ maxj |lj−lj−1|
2v .

Thus, we see that the minimum price is charged at two neighboring locations which are the furthest apart on

the unit circle, and the competitive ratio depends on these minimum prices. The competitive ratio decreases

as the consumers’ sensitivity for differentiating attribute increases, consumers’ nominal valuations for their

ideal product decreases, or the maximum attribute difference among neighboring products increases.

Inspecting the above formula for the optimal competitive ratio, we see that it is maximized when the

term maxj |lj − lj−1| is minimized, which would occur when |lj − lj−1| = 1/K for all j. In other words, we

have the following result:

Proposition 2.3 For fixed K, the optimal product line positioning and pricing decision is to locate prod-

ucts at equally spaced intervals along the attribute space and price them equally, in which case the optimal

competitive ratio is c = 1− θ
2v K .

The proof of this result is straight forward and omitted.

2.4 Maximum Regret

For the maximum regret problem, we consider again the case with fixed number of versions K and fixed

attributes for different versions, l ∈ [0, 1]K , and focus on the pricing strategy first. It is easy to see that

the worst-case distribution can again be reduced to deciding how much probability mass to allocate to the

intervals [zj , kj ], j = 1, . . . , K. However, unlike the competitive ratio case, it is not necessarily the case
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that [zj , kj ] = [xj , xj+1] for all j. In other words, it might be the case that not everybody chooses to buy

at the optimal prices. We will denote such a pricing strategy where some consumers choose not to buy a

non-spanning pricing policy. Formally, defining the set of indices S(p) = {j | xj > lj +yj , or xj−1 < lj−yj)}
for a given price vector p, if the set S(p) is empty then p is a spanning price policy. The structure of the

worst-case distribution changes according to whether the pricing policy used is spanning or non-spanning in

the above sense. The following result formalizes this claim:

Lemma 2.3 For a given price vector p, the maximum regret is

r(p)
def
=





Λ (v −minj pj) if S(p) is empty

Λ max{(v −minj pj) , maxj∈S(p) pj} otherwise

Furthermore, using this lemma one can easily prove the following:

Lemma 2.4 There exists an optimal price vector with equal components.

Thus, finding the optimal prices reduces to a single dimensional decision of finding the best uniform price

to offer for all versions. Using Lemmas 2.3 and 2.4, we can now prove our main result for the maximum

regret problem:

Proposition 2.4 For fixed number of versions, K, with fixed attributes, l, the optimal regret value is

r = Λ min
{

θ maxj |lj − lj−1|
2

,
v

2

}
.

which is achieved by charging equal prices for different versions

pj =





v − θ maxj |lj−lj−1|
2 , ∀j, when v ≥ θ maxj |lj − lj−1| (spanning optimal policy)

v/2, ∀j, when v < θ maxj |lj − lj−1| (non-spanning optimal policy) .

The intuition lying behind this result is as follows: when θ is high or v is low, the firm faces a linear

demand curve with downward slope of θ for each version, because cannibalization is not an issue as it is too

costly for a customer close to a version to consider some other version. As a result, the firm charges the

revenue maximizing price for a monopolist, i.e. v/2, which corresponds to a non-spanning pricing policy.

On the other hand, when θ is low or v is high, it is less costly for consumers close to a version to consider

other versions; and therefore, cannibalization is an issue. Charging the revenue maximizing price v/2 for
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a version cannibalizes neighboring versions. Therefore, the firm charges a higher price for the version, i.e.

v − θ maxj |lj−lj−1|
2 > v/2.

Note the regret above is minimized irrespective of v when maxj |lj − lj−1| is minimized, which again

occurs when |lj − lj−1| = 1/K for all j. Thus, we have the same result as in the competitive ratio case:

Proposition 2.5 For fixed K, the optimal product line positioning decision is to locate versions at equally

spaced intervals along the attribute space and to price them equally according to Proposition 2.4, in which

case the optimal regret is r = Λ min
{

θ
2K , v

2

}
.

We therefore have shown that for both the competitive ratio and maximum regret criteria, the opti-

mal pricing policy is a function of attribute differences between neighboring versions. This policy reflects

the firm’s sensitivity for potential cannibalization among versions (e.g. non-dominating pricing policies).

The worst-case performance decreases (i.e. the competitive ratio decreases or the regret increases) as the

consumers’ sensitivity for differentiating attribute increases, consumers’ nominal valuations for their ideal

product decreases, or the maximum attribute difference among neighboring products increases. The optimal

positioning decision is to span the attribute space with equally spaced product versions and to sell them

at a uniform price. In other words, to cover the product space uniformly with a collection of products

offered at a single price. Interestingly, this “equally-space and equally-price” strategy is a celebrated Nash

Equilibrium for the classical horizontal differentiation game where each version is controlled by a different

firm, which is well studied by Salop and others. (See Salop [27].) In the competitive case, this arises as

an equilibrium response among competing firms. In our case, it arises as an optimal hedge against another

sort of adversary: “nature” - the unknown preferences of customers. While stylized, this sort of positioning

and pricing structure is seen commonly in real-world markets. For example, iTunes offers music downloads

spanning all genres of music at a uniform price of $0.99; apparel retailers normally charge to same price

for a garment sold in different colors and sizes; ice cream vendors carry a range of flavors sold at the same

price-per-cone, etc.

Notice also that the optimal prices charged, and thus, revenues earned increases with the number of

versions K, increasing the competitive ratio and decreasing the regret. This is the typical profit maximization

response when there are no economies of scale to production of variety. However, when there are economies

of scale, one needs to balance the revenue gain of more variety against the cost of producing many versions.
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3 Vertical Product Line Positioning

We next consider the case of vertical product positioning, in which versions correspond to different quality

levels over which consumers share a common ranking (though with heterogenous willingness-to-pay for

quality). Specifically, there are K distinct quality versions of a product that the firm considers potentially

offering. The quality level of version j is denoted by lj . The indexing satisfies l1 < l2 < . . . < lK , so that l1

is the lowest quality level, whereas lK is the highest. In order to reduce the heavy notation induced by the

analysis of this setting, we assume there is a continuum of consumers of unit mass. All the results can be

scaled to any market size without changing the optimal policy.

Each consumer has a distinct taste for quality, denoted by v, which is an independent and identically

distributed random variable with unknown distribution F (·) on a known interval [
¯
v, v̄]. This distribution is

the key missing information to the firm in our model.

If a consumer has a quality taste level of v and purchases product version j, her net utility is given by

u(v, j)
def
= v lj − pj , where pj is the price of product j. Consequently, the higher the taste for quality or the

higher the quality level, the more a consumer is willing to pay for a particular version. A consumer prefers

version j over version i if u(v, j) = v lj − pj > v li − pi = u(v, i) holds. Therefore, unlike the horizontal

differentiation model in the previous section, each consumer enjoys the higher quality versions more. As a

tie-breaking assumption, we assume that a consumer prefers the higher quality version when faced with two

versions giving the same utility. For a given vector of prices p, a consumer buys the version of the product

which yields the highest net utility provided that is nonnegative, i.e. u(v)
def
= maxj{v lj − pj} ≥ 0, or will

not buy any product otherwise.

The sequence of events is as follows: first, the firm decides on how many versions to offer at what quality

levels, and chooses their prices without knowing the distribution of the random taste for quality. Then, we

evaluate the decision against the worst-case distribution F (·) of the taste for quality. Our goal is again to

find the optimal product line positioning (this time in terms of quality levels) and pricing policy of the firm.

Specifically, we want to answer the following questions: How many versions should the firm offer? What

quality levels should be offered and how should they be priced? And how do these decisions change with

respect to the uncertainty level of costumer taste for quality? We begin with the competitive ratio case and

then analyze the case of maximum regret.
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3.1 Competitive Ratio

First, let us assume for the moment that the firm offers all K quality levels of the product. If we define

vj as the quality level where a consumer switches from version j to version (j + 1), then vj must satisfy

vj lj − pj = vj lj+1 − pj+1, yielding vj = pj+1−pj

lj+1−lj
for j = 1 . . .K − 1 . Using the definition of u(v, j), it is

easy to see that version j is preferred over version (j + 1) by those consumers with v < vj , and similarly,

version (j + 1) is preferred over version j, when v ≥ vj . We say version j is strictly dominated by versions

(j − 1) and (j + 1), if version (j − 1) or version (j + 1) yields strictly more utility for every consumers type

v ∈ [
¯
v, v̄] than version j. The necessary and sufficient condition for this is vj−1 > vj , which can be easily

seen graphically in Figure 2.

Note the product line positioning and pricing decisions of the firm can be aggregated into the single

decision of offering all K quality levels of the product and choosing only the prices offered. To see this,

assume that some version j is not offered under some policy. Analytically, this is equivalent to offering that

version at some price pj that satisfies vj−1 = vj , because at that price level no consumer strictly prefers

version j, but a consumer of type v = vj−1 = vj has the same value of utility for consuming versions (j−1), j

and (j + 1). However, she prefers version (j + 1) over others due to the tie-breaking assumption. Therefore,

at price pj version j is effectively a “dummy version” which is not chosen by any consumer, and this case is

therefore analytically equivalent to not offering version j.

For the competitive ratio problem, we first prove that there exists an optimal price vector where no

product strictly dominates any other product at the optimal solution and further that the consumer with

the lowest taste for quality earns zero utility at the optimal solution. These properties are formalized in the

following proposition:

Proposition 3.1 There exists an optimal price vector where no product strictly dominates any other product

and which satisfies
¯
v ≤ v1 ≤ v2 ≤ . . . ≤ vK−1 ≤ v̄.

The next result shows that there exists an optimal policy where only some number of highest quality versions

of the product are offered:

Proposition 3.2 (Nested Quality Offers) There exists an optimal solution where only the (K − j + 1)

highest quality products are offered for some j = 1 . . .K.

Using Proposition 3.1 and our previous observations, we conclude that offering only the (K − j + 1)

highest quality products is analytically equivalent to offering all K quality levels of the product, but fixing
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the prices of the first j quality versions to be p1 =
¯
vl1, p2 =

¯
vl2, . . . , pj =

¯
vlj . This is illustrated in Figure

2. The remainder of the competitive ratio section tries to identify the best competitive ratio that can be

vv3 v4v1=v2=v

u

pi=liv
i=1..3

Figure 2: An example plotting the utilities by different versions of a feasible policy for c3 when K = 5.

achieved by the firm using a policy which offers only the (K − j + 1) highest quality versions, denoted by

cj . Then, the optimal value of the competitive ratio problem satisfies c = maxj{cj}.

For the problem of finding cj , we show that for a given pricing policy p satisfying above structure, the

worst-case distribution allocates the whole unit probability mass arbitrarily close to v̄ or to some vj , where a

consumer is indifferent between two neighboring quality offers. The resulting value of the competitive ratio

for this response is characterized as follows:

Lemma 3.1 When a pricing policy p offering only the (K − j + 1) highest quality products is used, the

worst-case distribution yields a competitive ratio arbitrarily close to

cj(p)
def
= min

{
min

i=j...K−1
{pi/lKvi} , pK/lK v̄

}
.

This result helps us write-down the competitive ratio problem when (K − j + 1) highest quality versions are

offered as

cj = max
p

min
{

min
i=j...K−1

{pi/lKvi} , pK/lK v̄

}

s.t. p1 =
¯
vl1, p2 =

¯
vl2, . . . , pj =

¯
vlj

¯
v < vj ≤ vj+1 ≤ . . . ≤ vK−1 ≤ v̄

In the proof of the following proposition in the appendix, we first relax constraint
¯
v < vj above, and

define cr
j as the best ratio that can be achieved by this relaxed formulation, which yields an upper bound
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on cj . Then, we convert the formulation of cr
j to an equivalent linear program, and use weak duality to

upper bound cr
j , which in turn yields another upper bound on cj . Finally, using strong duality on this dual

problem, we show that cj achieves these upper bounds for all j, letting us characterize the optimal policy

and the corresponding competitive ratio as follows:

Proposition 3.3 The optimal competitive ratio for the vertical product positioning problem is given by

c = maxj{cj}, where cj satisfies

¯
v

v̄
lj

∏K
i=j+1(li − li−1 + cj lK)

(cj lK)K+1−j
= 1 for j = 1 . . .K − 1 and cK = ¯

v

v̄
.

If c = cj, only the (K − j + 1) highest quality version are offered with the following optimal prices

pj =
¯
v lj , and pn =

¯
v lj

∏n
i=j+1(li − li−1 + cj lK)

(cj lK)n−j
for n = j + 1 . . . K.

We see that the optimal policy charges a price premium for each higher quality level as a function of the

quality difference offered at each step, li − li−1.

Define γ =
¯
v/v̄ and γj =

lK−j
jQK

i=j+1(li−li−1+lj)
for j = 1 . . .K − 1. Observe that γ is a measure of

potential market heterogeneity for quality: as γ decreases, the relative difference between the lowest and the

highest taste for quality,
¯
v and v̄, increases, and vice versa. We further prove the following result tying the

heterogeneity level to the optimal portfolio of offered quality levels:

Proposition 3.4 As the potential market heterogeneity for quality increases (which can also be interpreted

as increasing uncertainty in taste for quality for this model), i.e. as γ decreases, it is optimal to offer more

quality versions of the product. Specifically, for γ ∈ [0, γ1) the optimal solution offers all the K versions of

the product; for γ ∈ [γj , γj+1) the optimal solution offers (K-j)-highest quality versions of the product for

j = 2 . . . K − 2; and for γ ∈ [γK−1, 1] the optimal solution offers only the highest quality version of the

product.

Just as suggested by Bhargava and Choudhary [7] and Lilien et al. [?], this result shows that versioning

becomes more attractive when consumers are sufficiently heterogeneous, which is reflected by the range of

valuations for quality,
¯
v and v̄, in this model. When the potential market heterogeneity for quality increases,

i.e. γ decreases, and the exact valuations of customers for quality are unknown, it is optimal to offer more

and more quality levels.
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3.2 Maximum Regret

For the maximum regret problem, it is no longer the case that u(
¯
v) = 0 and u(v) > 0 for v ∈ (

¯
v, v̄] at

the optimal solution. The firm can choose a pricing policy where consumers of type v ∈ [
¯
v, v0) choose not

to buy any version for some v0 ∈ [
¯
v, v̄], i.e. u(v) < 0 for v ∈ [

¯
v, v0). Every feasible price vector p implies

a corresponding point v0. Thus, we can divide the decision of the firm into two parts: first selecting the

optimal value of v0, i.e. selecting which segment of the market to serve, then selecting optimal price vector

which serves that particular segment. That is defining

r(v0) := min
p∈P (v0)

max
F

[R(p∗(F ), F )−R(p, F )] (2)

where P (v0) = {p | u(v0) = 0}, we can rewrite maximum regret problem as

r∗ = min
p

max
F

[R(p∗(F ), F )−R(p, F )] = min
v0∈[

¯
v,v̄]

r(v0) .

For fixed v0, there again exists a non-dominating optimal pricing policy, denoted by the vector p(v0) ∈
P (v0), offering only the (K − j + 1) highest quality versions for the problem of identifying r(v0), as stated

by the following results, proofs of which follow identical reasoning with the competitive ratio case and are

thus omitted.

Proposition 3.5 There exists an optimal price vector p(v0) for the problem in (2) above, where no product

strictly dominates any other product, and which satisfies v0 ≤ v1 ≤ v2 ≤ . . . ≤ vK−1 ≤ v̄.

Proposition 3.6 (Nested Quality Offers) There exists an optimal solution p(v0) for the problem in (2)

where only the (K − j + 1)-highest quality versions are offered for some j = 1 . . . K.

For fixed v0, let us again confine our attention to pricing policies offering only the (K − j + 1) highest

quality products for j = 1 . . . K, and define the minimum regret that can be achieved using such a pricing

policy as rj(v0), then by definition the equality r(v0) = minj{ rj(v0)} holds. The optimal response by the

adversary under the problem of identifying rj(v0) is to choose a deterministic valuation arbitrarily close to v0,

vK or vj for some j = 1 . . .K − 1, which is formalized by the following result. The proof again uses identical

logic and steps with the corresponding lemma for the competitive ratio case, and therefore is omitted.

Lemma 3.2 For fixed v0, when a pricing policy p ∈ P (v0) offering only the (K − j + 1) highest quality
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products is used, the regret, denoted by rj(v0, p), is given by

rj(v0, p) = max
F

[R(p∗(F ), F )−R(p, F )] =





max {v0 lK , maxi=j...K−1{lKvi − pi}, lK v̄ − pK} if v0 >
¯
v

max {maxi=j...K−1{lKvi − pi} , lK v̄ − pK} if v0 =
¯
v .

Then, we have rj(v0) = minp∈Pj(v0) rj(v0, p) by definition. However, the exact specification of rj(v0) depends

on whether v0 >
¯
v or v0 =

¯
v, as shown above.

Using the above results, the optimal regret value the firm can achieve satisfies

r∗ = min
v0∈[

¯
v,v̄]

r(v0) = min{ r(
¯
v), inf

v0∈(
¯
v,v̄]

r(v0)} = min{ min
j
{rj(¯

v)}, inf
v0∈(

¯
v,v̄]

min
j
{rj(v0)}}

= min{ min
j
{rj(¯

v)}, min
j
{ inf

v0∈(
¯
v,v̄]

rj(v0)}} = min
j
{ min{ rj(¯

v) , inf
v0∈(

¯
v,v̄]

rj(v0) }} .

However, using Lemma 3.2, we can characterize the terms at the right hand side of the last equality as

inf
v0∈(

¯
v,v̄]

rj(v0) = inf
v0∈(

¯
v,v̄]

min
p∈Pj(v0)

rj(v0, p) = inf
v0∈(

¯
v,v̄]

min
p∈Pj(v0)

max
{

v0 lK , max
i=j...K−1

{lKvi − pi}, lK v̄ − pK

}
,

and rj(¯
v) = min

p∈Pj(
¯
v)

rj(¯
v, p) = min

p∈Pj(
¯
v)

max
{

max
i=j...K−1

{lKvi − pi} , lK v̄ − pK

}
.

These characterizations can be written as equivalent linear programs. For example, for infv0∈(
¯
v,v̄] rj(v0), we

have the following formulation:

inf
v0∈(

¯
v,v̄]

rj(v0)
def
= rj

0 = min
p,v0,r

r (3)

s.t. r ≥ v0 lK (4)

r ≥ vn lK − pn n = j . . . K − 1 (5)

r ≥ v̄ lK − pK (6)

vn−1 =
pn − pn−1

xn
≤ pn+1 − pn

xn+1
= vn n = j + 1 . . .K − 1 (7)

vK−1 =
pK − pK−1

xK
≤ v̄ (8)

vj =
pj+1 − pj

xj+1
≥ v0 (9)

pj = v0 lj (10)

v0 >
¯
v (11)
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where the constraints (4),(5) and (6) reflect the possible choices of the adversary that appear in the char-

acterization of infv0∈(
¯
v,v̄] rj(v0) above, and the constraints (7),(8), (9) and (11) define the feasible region,

v1 = v2 = . . . = vj−1 = v0 < vj ≤ vj+1 ≤ . . . ≤ vK−1 ≤ v̄, for the prices.

Similarly, rj(¯
v) can be written as an equivalent linear program that is almost identical to the above LP

but without the constraints (4) and (11) and with the value of the variable v0 fixed at
¯
v. Thus, the feasible

region for the prices is given by inequalities v1 = v2 = . . . = vj−1 =
¯
v < vj ≤ vj+1 ≤ . . . ≤ vK−1 ≤ v̄, in this

case, and we denote the optimal value to this LP as r
¯
j . This formulation is given in equation (31) in the

Appendix.

In the proof of Proposition 3.7 below, we first relax the strict inequalities (v0 >
¯
v in (3) and vj >

¯
v in

(31)), and solve for the relaxed versions of the LPs in (3) and (31), establishing lower bounds on rj
0 and r

¯
j .

Then, we show that the optimal values, denoted respectively by r′j0 and r
¯
′j , satisfy

r′j0 :=
v̄ lK+2−j

K

(lj + lK)
∏K

i=j+1(hi + lK)
and r

¯
′j :=

v̄ lK+1−j
K∏K

i=j+1(hi + lK)
−

¯
v lj for j = 1 . . .K − 1, with,

r′K0 := v̄ lK/2, and r
¯
′K := (v̄ −

¯
v) lK .

where hj = lj − lj−1 is the quality difference between two neighboring versions.

With these values, we are ready to state our main result of this section:

Proposition 3.7 The optimal regret for the vertical product positioning problem satisfies

r∗ = min
j
{ min{rj(¯

v), inf
v0∈(

¯
v,v̄]

rj(v0)} } = min
j
{ min{r

¯
j , rj

0} } = min
j
{ min{r

¯
′j , r′j0 } } ,

with the optimal price vector having one of the forms

pj = r′j0 lj/lK , and pn+1 =
r′j0 hn+1 + pn(lK + hn+1)

lK
for n = j . . . K − 1 if r∗ = r′j0 for some j, or

pj =
¯
v lj , and pn+1 =

r
¯
′j hn+1 + pn(lK + hn+1)

lK
for n = j . . . K − 1 if r∗ = r

¯
′j for some j .

For example, if r∗ = r
¯
j = r

¯
′j , the optimal policy is to offer (K − j + 1) versions such that all consumers

choose to buy one version, i.e. the whole market is served. The lowest consumer type
¯
v chooses version j

which is priced at pj =
¯
v lj . The market is segmented with respect to quality types in a monotone manner,

and segments with higher quality taste choose higher quality versions and pay higher prices. On the other

hand, if r∗ = rj
0 = r′j0 , the whole market is not served. Consumers of type v ∈ [

¯
v, v0) choose not to buy any
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version, where v0 = r′j0 /lK = v̄ lK+1−j
K

(lj+lK)
QK

i=j+1(hi+lK)
, and consumer type v0 chooses version j which is priced

at pj = v0 lj .

Below we show that the firm can choose not to serve the whole market only when she offers all K versions,

which further reduces the optimal regret formula. This means that some lowest quality types are not served

only when the potential market heterogeneity for quality is so large that even offering all K versions is not

enough to span the market in an optimal manner.

Proposition 3.8 The following inequalities hold v̄ lK/2 > r′K−1
0 > . . . > r′10 , and thus, the optimal regret

can be reduced to the following form

r∗ = min

{
v̄ lK+1

K

(l1 + lK)
∏K

i=2(hi + lK)
, { v̄ lK+1−j

K∏K
i=j+1(hi + lK)

−
¯
v lj} j = 1 . . . K − 1, (v̄ −

¯
v) lK

}

Define again γ =
¯
v/v̄ and γj = lK−j+1

KQK
i=j(hi+lK)

= lK−j+1
KQK

i=j(li−li−1+lK)
for j = 1 . . .K. Remember that γ is a

measure of the potential market heterogeneity for quality. Similar to the competitive ratio case, we prove the

following result tying the degree of heterogeneity to the number of versions offered and their quality levels:

Proposition 3.9 As the potential market heterogeneity for quality increases, i.e. as γ decreases, it is

optimal to offer more quality versions of the product. Specifically, for γ ∈ [0, γ1) the optimal solution offers

all the K versions of the product; and consumers of type v ∈ [
¯
v, v0) choose not to buy any version, where

v0 = v̄ lK+1−j
K

(l1+lK)
QK

i=1(hi+lK)
, i.e. the whole market is not served. For γ ≥ γ1 the whole market is served.

Specifically, for γ ∈ [γj , γj+1) there exists an optimal solution offering (K+1-j)-highest quality versions of

the product for j = 1 . . . K− 1; and for γ ∈ [γK , 1] there exists an optimal solution offering only the highest

quality version of the product.

For both the competitive ratio and maximum regret criteria, we have shown that the optimal pricing

policy charges a price-premium for each higher quality level as a function of the quality difference between

neighboring versions. The optimal pricing and versioning policies are coordinated and take possible canni-

balization effects among versions into account (e.g. non-dominating pricing policies again). The optimal

positioning policy first decides on how much of the potential market to serve, and segments the market by

offering only some number of highest quality versions, i.e. nested quality offers, so that consumers with

higher taste for quality choose higher quality versions and pay higher prices. The number of versions offered

depends on the market heterogeneity for quality. For both criteria, the number of quality levels offered

increases as the uncertainty in the consumers’ preferences increases. This again leads to similar conclusions
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as the one in the previous section: offering different quality versions can be a response to uncertainty and/or

lack of information with respect to consumer preferences as well as serving as a price discrimination mech-

anism. These results are also consistent with the vertical differentiation strategies for many products we

observe in daily life. For products with large and heterogeneous customer bases, such as micro processors

with different speeds and high or low cache memories, professional, standard and student versions of soft-

ware, and consumer electronics product lines with models having increasing functionality with higher prices,

we see many different quality versions offered at different prices.

4 Conclusion and Future Research Directions

Relative performance criteria seem a useful device for analyzing problems with limited market information;

they have good practical motivation yet are simple enough to yield meaningful structural insights. Having

these closed-form solutions readily available makes it easy to perform sensitivity analysis with respect to

changes in these problem primitives. Thus, questions like how the optimal policy changes with respect to

ambiguity level, or how the product variety effects the pricing policy can easily be answered. In addition,

the analysis of these criteria sheds light on the risks firms face due to limited information and the related

trade-offs. Lastly, structurally the results – like the equally-spaced, equally-priced strategy in the horizontal

differentiation case, or more versioning for larger market heterogeneity for quality in the vertical differentia-

tion case– correspond well with what we see in real world markets. Our results in this sense help show that

these everyday strategies may be good responses to limited information from a worst-case perspective.

However, such stylized analysis is not suited to computing recommendations for real-life problems. In

many real-life situations, firms has some limited (albeit often unstructured) information rather than “ no

information” at all. Incorporating such limited additional information into an analysis using relative perfor-

mance criteria is not easy, as most of the analysis depends on extreme point optimality, and the number of

extreme points can grow very quickly in the presence of additional information. It would be interesting to

see if these criteria and the settings considered in this paper can be extended to include further information.

As another future research direction, one might look into the reasons why the sorts of robust strategies we

derive are actually observed in daily practice. Studies on the incentive structures for the decision makers,

and empirical research to see to what extent firms are risk-neutral vs. risk-averse in decision making could

be helpful in explaining this.
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5 APPENDIX

Proof of Proposition 2.1: By contradiction assume at all optimal solutions, there exist a price, pj which

dominates its neighboring price pj+1, i.e. xj > lj+1 or equivalently pj+1 > pj + θ(lj+1 − lj). Then, for any

distribution the adversary chooses, the firm earns pj from those who choose to buy in the interval, [xj−1, xj ].

However, decreasing the price pj+1 to pj + θ(lj+1 − lj), the firm can earn pj + θ(lj+1 − lj) from those in the

interval [xj , lj+1], plus pj from those in the interval [xj−1, lj+1] without changing any other prices or affecting

revenues of other regions, which yields a revenue as at least high as the optimal revenue. Repeating this

augmentation for every dominating price we achieve a price vector where there is no price strictly dominating

any other. 2

Proof of Lemma 2.1: Assume the optimal prices are such that for some lj , we have xj > lj + yj (or

xj−1 < lj − yj). Then the adversary could select a distribution that puts all the probability mass to the

interval [lj +yj , xj ] ( or [xj−1, lj−yj ]), causing zero sales, and thus, achieving a competitive ratio of zero. On

the other hand, any price policy that satisfies inequalities xj ≤ lj +yj and xj−1 ≥ lj −yj for all j guarantees

a positive ratio. 2

Proof of Lemma 2.2: Under a price policy that satisfies xj ≤ lj + yj and xj−1 ≥ lj − yj for all j, the

revenue in equation-(1) depends only on how much probability mass exists within each interval [xj , xj+1],

call fj := F (zj) − F (kj) = F (xj+1) − F (xj). However, the specifics of the distribution function matters

for the adversary, as the maximum revenue that can be achieved, which appears in the denominator of

the competitive ratio to be minimized, depends on this distribution. On the other hand, the value of the

maximum revenue is always less than Λv. Also note that given an aggregate decision to how much probability

mass to put on each interval, the adversary can achieve the maximum revenue Λv in the denominator of

the competitive ratio by putting each mass fj on the point lj for all j. Therefore, the adversary does not

sacrifice in terms of minimization by restricting her decision to how much probability mass to put on each

interval. 2

Proof of Proposition 2.2:

c = max
p

min
f





Λ
∑

j pjfj

Λv
: pj + pj−1 + θ|lj − lj−1| ≤ 2v ∀j, p ≥ 0,

∑

j

fj = 1, f ≥ 0





=
1
v

max
p

{
min

j
{pj} : pj + pj−1 + θ|lj − lj−1| ≤ 2v ∀j, p ≥ 0

}

=
1
v

max
p,s

{ s : s ≤ pj ∀j, pj + pj−1 + θ|lj − lj−1| ≤ 2v ∀j, p ≥ 0}
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As the objective minj {pj} is homogeneous in the components of price vector p, it is obvious that p[1] +p[2] +

maxj |lj − lj−1| = 2v at any optimal solution, and the upper bounds for other prices are given by setting

p̄[j] = 2v − p̄[j−1] − θ|l[j] − l[j−1]| ∀j, which yields the result. 2

Proof of Lemma 2.3: The part of the result for when S(p) is empty is obvious using the arguments

of the previous section as explained above: when S(p) is empty, we have [zj , kj ] = [xj , xj+1] for all j, and

the firm collects pj from everybody within the interval [xj , xj+1] for all j. Also, the maximum revenue that

can be achieved is always less than Λv. Thus the adversary restricts her decision to how much probability

mass fj to put on each interval [xj , xj+1], and allocates each mass fj on the point lj for all j, achieving the

maximum regret of Λ (v −minj pj).

For the other part, fix some price p for which S(p) is not empty ( i.e. p is a non-spanning price policy), and

define the regret as a function of distribution F as r(p, F ) := R(p∗(F ), F )− R(p, F ). For a given F , define

oj = F (zj)−F (kj) and rj = F (kj+1)−F (zj), i.e. oj is the fraction of customers that are served by price pj ,

and rj is the fraction of customers that are not served either by price pj or pj+1, so that
∑

oj +
∑

rj = 1.

Now, we can see the adversary’s problem of finding the best distribution to maximize the regret function

as a two-step optimization of first choosing o and r vectors, then choosing a distribution function satisfying

the requirements of these vectors. That is,

max
F

r(p, F ) = max
o,r

max
F

{ r(p, F ) : oj = F (zj)− F (kj), rj = F (kj+1)− F (zj) ∀j} (12)

If we concentrate on the inner maximization for given vectors of o and r, we see that R(p, F ) = Λ
∑

ojpj .

As for the function R(p∗(F ), F ), the revenue generated by the optimal price vector p∗(F ) at each region

[kj , zj ] is obviously bounded by Λ oj v. In addition, for the vector p∗(F ) to be able to sell to customers with

preferences in the region [zj , kj+1] either p∗j (F ) < pj or p∗j+1(F ) < pj+1 must hold. Therefore, the revenue

generated by the optimal price vector p∗(F ) at each region [zj , kj+1] is bounded by Λ rj max(pj , pj+1). Also

observe that whenever rj > 0, the prices pj and pj+1 has to satisfy pj + pj+1 + θ|lj+1 − lj | > 2v, which

implies xj > lj + yj , and xj < lj+1 − yj+1, thus both j, j + 1 ∈ S(p). Combining these observations, we see
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that the regret function for any given F satisfies:

r(p, F ) ≤
∑

Λ oj v +
∑

Λ rj max(pj , pj+1)−
∑

Λ oj pj

≤
∑

Λ oj v +
∑

Λ rj max
j∈S(p)

{pj} −
∑

Λ oj min
j
{pj}

= Λ
∑

oj (v −min
j
{pj}) + Λ

∑
rj max

j∈S(p)
{pj}

≤ Λ max{(v −min
j
{pj}) , max

j∈S(p)
{pj}} .

Therefore, the regret function r(p, F ) is upper-bounded by Λ max{(v−minj{pj}) , maxj∈S(p){pj}} indepen-

dent of F . However, as explained above, the adversary can achieve this bound by putting the whole unit mass

to the location of the product with the minimum price achieving a maximum regret of Λ(v −minj pj) when

S(p) is empty, or she can select the maximum price whose index-i is in the set S(p), and put the whole mass

arbitrarily close to point lj +yj ( if xj > lj +yj ) or lj−yj ( if xj−1 < lj−yj ), which ever gives a greater regret

value, achieving (or coming arbitrarily close to) a maximum regret of Λ max{(v−minj pj) , maxj∈S(p) pj}. 2

Proof of Lemma 2.4: Consider an optimal solution p∗. If the set S(p∗) is empty, the result is obvious

in that for the optimal vector p∗, the vector p with equal components of pj = minj p∗j ∀j has the same

regret by definition in equation (2) and by the fact that S(p) is necessarily empty as p ≤ p∗. Therefore,

assume the set S(p∗) is not empty for the optimal price vector p∗ whose components are not equal. Then

we have r(p∗) = Λ max{maxj∈S(p∗) p∗j , (v − minj p∗j )}. However, the vector p with equal components of

pj = minj p∗j ∀j has at most the same regret as shown below, and therefore, is also optimal

r(p∗) = Λ max{ max
j∈S(p∗)

p∗j , (v −min
j

p∗j )}

≥ Λ max{min
j

p∗j , (v −min
j

p∗j )} as min
j

p∗j ≤ max
j∈S(p∗)

p∗j

≥ r(p) by definition of r(p) for pj = min
j

p∗j ∀j . 2

Proof of Proposition 2.4: As a consequence of Lemma 2.4, we can restrict our attention to the pricing

policies with equal components. This reduces the decision vector to one dimension. Thus, given a decision

p ∈ R+, the maximum regret as a function of is:

r(p) =





Λ (v − p) if S({p}) is empty

Λ max{(v − p) , p} otherwise
(13)
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We prove the resulting in two parts. First, we show that for v ≥ θ maxj |lj − lj−1|, the optimal price

vector has pj = v− θ maxj |lj−lj−1|
2 ∀j: If we can show that at the optimal price {p} with equal components

of p, the set S({p}) is empty, then the result follows directly from the analog steps of competitive ratio

analysis which shows that minimum value of maximum regret is achieved for p = (v− θ maxj |lj−lj−1|
2 ) which

yields minimum value of Λ[v − (v − θ maxj |lj−lj−1|
2 )] = Λ θ maxj |lj−lj−1|

2 . Therefore assume by contradiction

that the set S({p}) is not empty. Then, we have

r(p) ≥ Λ pj > Λ (v − θ maxj |lj − lj−1|
2

) ≥ Λ
θ maxj |lj − lj−1|

2

where the first inequality follows from definition of r(p) in equation (13) , the strict inequality follows from

the fact that {p} must violate the inequality pj + pj+1 + θ maxj |lj − lj−1| = 2p + θ maxj |lj − lj−1| ≤ 2v

as the set S({p}) is not empty, and last inequality follows by the specification of v in this region. Therefore,

the non-spanning policy {p} gives strictly more regret, and cannot be optimal in this case.

Second, for v < θ maxj |lj − lj−1|, we show that the optimal price vector has pj = v
2 ∀j below. Using

the previous case, we know that the firm can guarantee a regret value of Λ θ maxj |lj−lj−1|
2 using a price policy

low enough to span the whole unit circle. Now, we show that a strictly less regret is possible by charging

pj = v
2 ∀j, which is a non-spanning policy for values of v in this region, therefore S({v

2}) is not empty. If

the firm uses a non-spanning pricing policy the maximum regret is given by Λ max{p , (v− p)} by equation

(13). However, this function is minimized when p = v
2 , as it is the maximum of two linear functions one

increasing the other decreasing in p. As this yields a regret value of Λv
2 < Λ θ maxj |lj−lj−1|

2 , the optimal price

of pj = v
2 ∀j for this region. Combining the two cases yields the result. 2

Proof of Proposition 3.1: We prove the result in several steps. As the first step, let us show that for

every optimal price vector p where a version is strictly dominated by others, there exists another optimal

price vector p̂ where no version strictly dominates (i.e, yields strictly more utility for all quality types) any

other version. It is sufficient to show the result for any neighboring product pairs. Assume at the optimal

solution, some version j is strictly dominated by version j−1 and version j +1. The necessary and sufficient

condition for this is easily seen to be vj−1 > vj using the definition of vj . Consider such an optimal solution

with vj−1 > vj . Decreasing only the price for version j , pj , to a level where v̂j−1 = v̂j , while keeping the

other prices fixed, the revenues earned by the firm does not change regardless of the quality taste distribution

selected by the adversary. Decreasing any dominated price in such a fashion yields another optimal price

vector, p̂ where v̂1 ≤ v̂2 ≤ . . . ≤ v̂K−1 holds, i.e. an optimal price vector where no version strictly dominates

any other.
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Next step is to show that the customer with lowest taste for quality (type) earns zero utility at any optimal

price, i.e. u(
¯
v) = 0, and that there exists an optimal price vector where u(

¯
v) =

¯
v l1 − p1 = 0. Notice that

u(
¯
v) = maxj{¯v lj − pj} ≥ 0 must hold at the optimal price p, as otherwise the adversary would guarantee a

competitive ratio of zero by selecting the distribution with P(v =
¯
v) = 1. Assume δ

def
= maxj{¯v lj −pj} > 0,

which would imply that u(v) > 0 for ∀v ∈ [
¯
v, v̄], i.e. all consumers have strictly positive utility or surplus,

and consider the price vector p̂ with p̂j = pj + δ ∀j . Notice that the resulting indifferent customer types

satisfy v̂j = vj ∀j . Thus, p̂ strictly increases the revenues earned by the firm whatever the distribution

selected by the adversary is . Consequently, p̂ would yield a strictly better competitive ratio leading to a

vj=v vv(j+1)

u

δδδδ δδδδ

vv(j+1)v

u

δδδδ

contradiction of the optimality of p.

As a result, we have u(
¯
v) = 0. Now , using the first step’s conclusion, we have an optimal solution where

¯
v l1 − p1 ≤ 0 = maxj{¯v lj − pj}, as otherwise p1 would be strictly dominated. Assume

¯
v l1 − p1 < 0,

decreasing only the first price to
¯
v l1 does not change the revenues earned by the firm under any distribution

selected by the adversary, yielding the same optimal competitive ratio, and thus, we always have an optimal

price vector with
¯
v l1 − p1 = 0. Combining all these results so far, we conclude that there exists an optimal

solution where
¯
v ≤ v1 ≤ v2 ≤ . . . ≤ vK−1 holds. Observe that all customer types choose to buy under such

an optimal solution.

The final step is to show that there exists an optimal solution with vK−1 ≤ v̄. Consider an optimal

solution with vK−1 > v̄, that is pK > v̄ (lK − lK−1) + pK−1 . The highest quality product is not sold under

this optima, and the highest type customer buys version K − 1. Reducing only the price of the highest

quality version to a level p̂K = v̄ (lK − lK−1) + pK−1, so that v̂K−1 = v̄, the firm guarantees to earn at least

the same revenue regardless of the distribution selected by the adversary. Thus, we achieve another optimal

solution satisfying vK−1 ≤ v̄. Combining all of the arguments above yields the result of the proposition.
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Proof of Proposition 3.2: Using the previous proposition, the result is trivially true for j = 1 if

¯
v < v1 in the optimal solution. If

¯
v = v1 = . . . = vj−1 < vj for some j = 2 . . .K − 1, we can solve for the

optimal price components of the first j versions as p1 =
¯
vl1, p2 =

¯
vl2, . . . , pj =

¯
vlj using the definitions

of vi for i = 1 . . . j. Thus, the customer with lowest quality taste chooses version j by the tie-breaking

assumption as u(
¯
v, 1) = u(

¯
v, 2) = . . . = u(

¯
v, j). Furthermore, u(

¯
v, 1) < u(

¯
v, 2) < . . . < u(

¯
v, j) for ∀v >

¯
v as

l1 < l2 < . . . < lj . Consequently, the versions 1 to j−1 are not bought by any type of customers. Therefore,

offering only the (K − j + 1) highest quality version with their optimal prices achieves the same product

selection for each type of customer for ∀v ∈ [
¯
v, v̄] with same prices, resulting in the same revenue collected

by the firm and the same response chosen by the adversary, therefore achieving the optimal competitive

ratio. 2

Proof of Lemma 3.1: For the problem where only the (K − j + 1) highest quality versions are offered,

observe that the best competitive ratio satisfies cK = pK

v̄ lK
= ¯

v lK
v̄ lK

= ¯
v
v̄ . Let us now consider the problem

of finding cj for j = 1 . . . K − 1. Defining fj = P(v < vj), and fi = P(v ≥ vi−1) − P(v ≥ vi) for

i = j + 1 . . . K − 1, and fK = P(v ≥ vK−1) the competitive ratio achieved by a pricing policy satisfying

¯
v = . . . = vj−1 < vj ≤ vj+1 ≤ . . . ≤ vK−1 ≤ v̄ is given by:

cj = max
p

min
F

∑K
i=j fi pi∫ vj

¯
v

pF (v) dF (v) +
∑K−2

i=j

∫ vi+1

vi
pF (v) dF (v) +

∫ v̄

vK−1
pF (v) dF (v)

(14)

where pF (v) is the price paid by a customer of type v for her best choice under the revenue maximizing

pricing scheme pF (·) for a given quality taste distribution F (·).

Now fix some p offering only the (K − j + 1) highest quality versions, then the ratio for this fixed price,

denoted by cj(p), is given by

cj(p) = min
F

∑K
i=j fi pi∫ vj

¯
v

pF (v) dF (v) +
∑K−2

i=j

∫ vi+1

vi
pF (v) dF (v) +

∫ v̄

vK−1
pF (v) dF (v)

≥ min
F

∑K−1
i=j fi pi + fK pK∑K−1

i=j fi lKvi + fK lK v̄

≥ min
{

min
i=j...K−1

{pi/lKvi} , pK/lK v̄

}

where the first inequality follows from the fact that every fixed F (·), pF (v) ≤ lKvj for v ∈ [
¯
v, vj ], pF (v) ≤

lKvi+1 for v ∈ [vi, vi+1], i = j . . . K − 2, and pF (v) ≤ lK v̄ for v ∈ [vK−1, v̄]. However, selecting a

distribution satisfying Pr(v = vi∗ − ε) = 1, where vi∗ is the point where the lower bound above achieves its

minima, for some arbitrarily small ε ∈ R+, the adversary can achieve a competitive ratio that is arbitrarily
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close to the lower bound above.2

Proof of Proposition 3.3: Using the previous lemma, the problem of finding cj can be written as:

cj = max
p

min
{

min
i=j...K−1

{pi/lKvi} , pK/lK v̄

}
(15)

s.t. vn−1 =
pn − pn−1

ln − ln−1
≤ pn+1 − pn

ln+1 − ln
= vn n = j + 1 . . . K − 1 (16)

vK−1 =
pK − pK−1

lK − lK−1
≤ v̄ (17)

vj =
pj+1 − pj

lj+1 − lj
>

¯
v (18)

pj =
¯
v lj

where the constraints (16), (17) and (18) imposes the structure
¯
v < vj ≤ vj+1 ≤ . . . ≤ vK−1 ≤ v̄ for the

pricing policy.

We will first relax constraint (18) above. Define cr
j as the best ratio that can be achieved by relaxing

the constraint (18), which yields an upper bound on cj . Then, we will convert the formulation of cr
j to

an equivalent linear program, and use weak duality to upper bound cr
j , which in turn yields another upper

bound on cj . Finally, using strong duality on this dual problem, we will show that cj achieves these upper

bounds.

Let us first relax constraint (18), and consider

cr
j = max

p
min

{
min

i=j...K−1
{pi/lKvi} , pK/lK v̄

}
(19)

s.t. vn−1 =
pn − pn−1

ln − ln−1
≤ pn+1 − pn

ln+1 − ln
= vn n = j + 1 . . .K − 1 (20)

vK−1 =
pK − pK−1

lK − lK−1
≤ v̄ (21)

pj =
¯
v lj
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or equivalently,

cr
j = max

p,c
c

s.t. c ≥ pn

lKvn
n = j + 1 . . . K − 1

c ≥ pK

lK v̄

vn−1 =
pn − pn−1

ln − ln−1
≤ pn+1 − pn

ln+1 − ln
= vn n = j + 1 . . . K − 1

vK−1 =
pK − pK−1

lK − lK−1
≤ v̄

pj =
¯
v lj .

Renaming the following variables as hj
def
= lj , yj

def
= pj =

¯
v lj and hn

def
= ln− ln−1, yn = pn−pn−1 n =

j + 1 . . . K, we can reexpress the problem as the following linear program

cr
j = max

c
max

y
c (22)

s.t. −
K∑

i=j+1

yi ≤ ¯
v lj − c lK v̄

c lK yn+1 − hn+1

n∑

i=j+1

yi ≤ ¯
v lj hn+1 n = j + 1 . . .K − 1

c lK yj+1 ≤ ¯
v lj hj+1

vn−1 =
yn

hn
≤ yn+1

hn+1
= vn n = j + 1 . . .K − 1 (23)

vK−1 =
yK

hK
≤ v̄ (24)

y, c ≥ 0 .

For any fixed c, the inner maximization problem above is an LP and is feasible for some y iff c ≤ cr
j . For
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fixed c, consider the dual of this LP:

min
w,z,t,q

(
¯
v lj − c lK v̄) w +

¯
v lj

K−1∑

i=j

hi+1 zi + v̄ q (25)

s.t. − w + c lK zj −
K−1∑

i=j+1

hi+1 zi +
tj+1

hj+1
≥ 0

− w + c lK zn−1 −
K−1∑

i=n

hi+1 zi +
tn
hn

− tn−1

hn
≥ 0 n = j + 2 . . . K − 1

− w + c lK zK−1 +
q

hK
− tK−1

hK
≥ 0

w, z, t, q ≥ 0

Observe that for any fixed c, the primal problem is always bounded and the dual problem is always feasible.

Therefore, for any given c, the primal problem is infeasible, i.e. c > cr
j , if and only if the dual is unbounded .

Consider the dual feasible vectors of the form

zK−1 =
w

c lK
and zn =

w
∏K

i=n+2(hi + c lK)
(c lK)K−n

n = j . . . K − 2

that are parameterized over variable w yielding dual objective values

w

[

¯
v lj

∏K
i=j+1(hi + c lK)

(c lK)K−j
− c lK v̄

]
(26)

Then, let γ =
¯
v/v̄ and define cd

j such that

γ lj

∏K
i=j+1(hi + cd

j lK)

(cd
j lK)K+1−j

= 1 (27)

The objective function in (26) is decreasing in c and is equal to 0 whenever c = cd
j . Thus, above dual solution

makes the problem unbounded, whenever c > cd
j by selecting and infinitely large w. Consequently, cr

j cannot

be larger than cd
j . Thus, using the primal-dual feasibility arguments above, we have

cj ≤ cr
j ≤ cd

j , j = 1 . . . K − 1 (28)
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Now consider the following price vector for the problem in (19)

pd
n =

¯
v ln, n = 1 . . . j

pd
n =

¯
v lj

∏n
i=j+1(hi + cd

j lK)

(cd
j lK)n−j

= pd
n−1

(hn + cd
j lK)

(cd
j lK)

n = j + 1 . . . K − 1

which yields the objective value of cd
j . Thus pd is optimal for the problem of finding cr

j by inequality (28)

if we can show that it is feasible for formulation (19). Therefore, we proceed to show to feasibility of pd.

pd satisfies the constraints (20) as vn−1 = pd
n−pd

n−1
hn

= pd
n−1

cd
j lK

≤ pd
n

cd
j lK

= pd
n+1−pd

n

ln+1−ln
= vn n = j + 1 . . . K − 1,

and also the constraints (21), as vK−1 = pd
K−pd

K−1
hK

= pd
K−1

cd
j lK

≤ v̄, where the inequality follows from the

fact that pd
K−1
v̄ lK

≤ pd
K

v̄ lK
≤ cd

j . As a result, pd is feasible and optimal for formulation (19) with the optimal

objective function value of cd
j , i.e. cr

j = cd
j . Observe that above arguments are valid for every j, and

cj ≤ cd
j = cr

j j = 1 . . . K − 1.

Finally, defining cd
K

def
=

¯
v/v̄ = cK

def
= cr

K , and cr = maxj{cr
j}, cd = maxj{cd

j} we proceed to show

c = cr = cd, which will complete the proof.

So far, we have c ≤ cr = cd. Assume cj ≤ c < cd = cr = cr
j for some j, which is achieved only if the

relaxed constraint is violated, i.e. vj ≤ ¯
v or equivalently pj+1 ≤ pj +

¯
v hj+1. Define δ = pj +

¯
v hj+1 − pj+1,

and consider p̂ constructed as p̂i = pi +δ for i = j +1 . . . K, and p̂i = pi for i ≤ j. Then, v̂1 = . . . . = v̂j =
¯
v

and v̂i = vi for i = j + 1 . . .K − 1, yielding pi/vi ≤ p̂i/v̂i for i = j + 1 . . . K − 1, and pK/v̄ ≤ p̂K/v̄.

Consequently, the competitive ratio achieved by p̂ ( call ĉj ) is at least as large as cd
j . On the other hand,

observe that the price vector p̂ is feasible for the primal problem where only the highest K − j quality

products are offered as
¯
v = v̂j < v̂j+1 ≤ v̂n n = j + 2 . . . K − 1, resulting in cr

j ≤ ĉj ≤ cj+1 ≤ c which yields

a contradiction.2

v

vj

v(j+1)v

u

pj=ljv

δδδδ

vj=v vv(j+1)

u

pj=ljv

δδδδ

δδδδ

35



Proof of Proposition 3.4: For γj = lK−j
j /

∏K
i=j+1(hi + lj), observe that cd

j = cd
j+1 = lj/lK by equation

(27). Also by differentiating equation (27), we have

dcd
j

dγ
=

cd
j

γ
(
K + 1− j − cd

j lK
∑K

i=j+1
1

hi+cd
j lK

)

Combining these,

dcd
j+1

dγ
|γ=γj

− dcd
j

dγ
|γ=γj

=
lj

(
1− lj

lj+1

)

γj lK

(
K + 1− j − lj

∑K
i=j+1

1
hi+lj

) (
K − j − lj

∑K
i=j+2

1
hi+lj

) > 0

which shows that for some ε+j , ε−j ∈ R+, cd
j+1 > cd

j ∀γ ∈ (γj , γj + ε+j ), and cd
j+1 < cd

j ∀γ ∈ (γj − ε−j , γj).

However, whenever cd
j+1 > cd

j for some γ, we have

dcd
j+1

dγ
|γ −

dcd
j

dγ
|γ

=
cd
j+1 lK

(
K + 1− j − cd

j lK
∑K

i=j+1
1

hi+cd
j lK

)
− cd

j lK

(
K − j − cd

j+1 lK
∑K

i=j+2
1

hi+cd
j+1 lK

)

tlK

(
K + 1− j − cd

j lK
∑K

i=j+1
1

hi+cd
j lK

) (
K − j − cd

j+1 lK
∑K

i=j+2
1

hi+cd
j+1 lK

)

≥
cd
j+1 lK

[(
K + 1− j − cd

j lK
∑K

i=j+1
1

hi+cd
j lK

)
−

(
K − j − cd

j+1 lK
∑K

i=j+2
1

hi+cd
j+1 lK

)]

tlK

(
K + 1− j − cd

j lK
∑K

i=j+1
1

hi+cd
j lK

)(
K − j − cd

j+1 lK
∑K

i=j+2
1

hi+cd
j+1 lK

)

≥
cd
j+1 lK

(
1 − cd

j lK

hj+1+cd
j lK

)

tlK

(
K + 1− j − cd

j lK
∑K

i=j+1
1

hi+cd
j lK

)(
K − j − cd

j+1 lK
∑K

i=j+2
1

hi+cd
j+1 lK

) > 0

As a result, we conclude that cd
j+1 > cd

j for ∀ γ > γj using the first theorem of calculus. Also similarly we

can show that cd
j+1 < cd

j for ∀ γ < γj . Then, the result follows as the above arguments are valid for all

j = 1 . . .K − 1. 2

Proof of Proposition 3.7: The result will be established in several steps. First we will analyze the

relaxed versions of the problems infv0∈(
¯
v,v̄] r(v0) and r(

¯
v), then we will show that these relaxed versions are

sufficient to characterize the optima.

In this respect, let us first consider the relaxed version of the LP in (3) that ignores (11). To find the

optimal solution to this relaxed version, we first ignore the constraints (7),(8) and (9); and find r and p that

solves for constraints (4), (5), (6) and (10) as equalities. This yields the optimal value denoted by r′j0 below

r′j0 =
v̄ lK+2−j

K

(lj + lK)
∏K

i=j+1(hi + lK)
(29)
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which is attained by the following price vector

pj = v0 lj = r′j0 lj/lK and pn+1 =
r′j0 hn+1 + pn(lK + hn+1)

lK
n = j . . . K − 1 (30)

Below we show this solution satisfies constraints (7), (8) and (9), justifying its optimality for the relaxed

LP that ignores constraint (11). For inequality (7), we use the definition of p in (30):

vn−1 =
pn − pn−1

hn
=

r′j0 + pn−1

lK
≤ r′j0 + pn

lK
=

pn+1 − pn

hn+1
= vn n = j + 1 . . . K − 1

For inequality (8), we use constraint (6)

vK−1 =
pK − pK−1

hK
=

r′j0 + pK−1

lK
≤ r′j0 + pK

lK
=

v̄ lK
lK

= v̄

Finally, for inequality (9), we first use the definition of p in (30), then constraint (4) to get:

vj =
pj+1 − pj

hK
=

r′j0 + pj

lK
=

r′j0 + v0 lj
lK

=
v0 lK + v0 lj

lK
≥ v0

Similarly, let us now consider finding rj(¯
v). We have

rj(¯
v) = min

p∈Pj(
¯
v)

rj(¯
v, p) = min

p∈Pj(
¯
v)

max
{

max
i=j...K−1

{lKvi − pi} , lK v̄ − pK

}

which also can be reexpress with the following LP formulation

r
¯
j def

= rj(¯
v) = min

p,r
r (31)

s.t. r ≥ vn lK − pn n = j . . . K − 1 (32)

r ≥ v̄ lK − pK (33)

vn−1 =
pn − pn−1

hn
≤ pn+1 − pn

hn+1
= vn n = j + 1 . . . K − 1 (34)

vK−1 =
pK − pK−1

hK
≤ v̄ (35)

vj =
pj+1 − pj

hj+1
≥

¯
v (36)

pj =
¯
v lj (37)

Consider now the relaxed version of this LP which ignores constraint (36). To find the optimal solution to
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this relaxed version, we first ignore the constraints (34) and (35), and find r and p that solves for constraints

(32), (33) and (37) as equalities. This yields,

r
¯
′j def

=
v̄ lK+1−j

K∏K
i=j+1(hi + lK)

−
¯
v lj (38)

with the following optimal price vector

pj =
¯
v lj and pn+1 =

r
¯
′j hn+1 + pn(lK + hn+1)

lK
n = j . . . K − 1 (39)

Below we show this solution satisfies constraints (34) and (35), justifying its optimality for the relaxed

LP that ignores constraint (36). For inequality (34), we use the definition of p in (39):

vn−1 =
pn − pn−1

hn
=

r
¯
′j + pn−1

lK
≤ r

¯
′j + pn

lK
=

pn+1 − pn

hn+1
= vn n = j + 1 . . . K − 1

and for inequality (35), we use constraint (33)

vK−1 =
pK − pK−1

hK
=

r
¯
′j + pK−1

lK
≤ r

¯
′j + pK

lK
=

v̄ lK
lK

= v̄

Finally, we establish that considering these relaxed versions are sufficient to characterize the optima, by

showing that

r∗ = min
j
{ min{rj(¯

v), inf
v0∈(

¯
v,v̄]

rj(v0)} } = min
j
{ min{r

¯
j , rj

0} } = min
j
{ min{r

¯
′j , r′j0 } } .

We have minj{ min{r
¯
′j , r′j0 } } ≤ minj{ min{r

¯
j , rj

0} } = minj{ min{ rj(¯
v), infv0∈(

¯
v,v̄] rj(v0) } }. Assume

min{r
¯
′j , r′j0 } = minj{ min{r

¯
′j , r′j0 } } < minj{ min{ rj(¯

v), infv0∈(
¯
v,v̄] rj(v0) } } for some j, which implies

r
¯
′j < rj(¯

v) or r′j0 < infv0∈(
¯
v,v̄] rj(v0) or both.

If r
¯
′j < rj(¯

v), we must have vj <
¯
v at optimal price p for the relaxed problem of finding r

¯
′j , or equivalently

pj+1 < pj +
¯
v hj+1. Also, optimality conditions impose that r

¯
′j = vi lK − pi for i = j . . . K − 1. Define

δ = pj +
¯
v hj+1 − pj+1, and consider some p̂ constructed as p̂i = pi + δ for i = j + 1 . . . K, and p̂i = pi

for i ≤ j. Then, v̂1 = . . . . = v̂j =
¯
v and v̂i = vi for i = j + 1 . . .K − 1, yielding v̂i lK − p̂i < vi lK − pi

for i = j + 1 . . . K − 1. Consequently, rj+1(¯
v) ≤ max {maxi=j+1...K−1{v̂i lK − p̂i} , v̄ lK − p̂K} < r

¯
′j as p̂ is

feasible for the problem of finding rj+1(¯
v).

On the other hand, if r′j0 < infv0∈(
¯
v,v̄] rj(v0), we must have v0 ≤ ¯

v at optimal price p for the relaxed
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problem of finding r
¯
′j ; which implies u(

¯
v) =

¯
v lj+1−pj+1 =≥ 0. Also, optimality conditions impose that r′j0 =

vi lK−pi for i = j . . .K−1. Define δ = u(
¯
v), and consider, some p̂ constructed as p̂i = pi+δ for i = j+1 . . . K,

and p̂i = pi for i ≤ j. Then, v̂1 = . . . . = v̂j =
¯
v and v̂i = vi for i = j+1 . . .K−1, yielding v̂i lK−p̂i ≤ vi lK−

pi for i = j + 1 . . . K − 1. Consequently, rj+1(¯
v) ≤ max {maxi=j+1...K−1{v̂i lK − p̂i} , v̄ lK − p̂K} ≤ r′j0 as p̂

is feasible for the problem of finding rj+1(¯
v). Combining these two cases we have min{r

¯
′j , r′j0 } ≥ rj+1(¯

v) ≥ r∗

which yields a contradiction.2

Proof of Proposition 3.9: The first inequality is obtained as follows

v̄ lK
2

=
v̄ l3K
2l2K

>
v̄ l3K

2l2K + hK lK−1
=

v̄ l3K
l2K + lK(lK + hK) + hK lK−1

=
v̄ l3K

(lK−1 + lK)(lK + hK)
= r′K−1

0

Similarly, for the other inequalities, we note that

1
lj+1 + lK

>
lK

l2K + lK lj+1 + hj+1 lj
=

lK
l2K + lK(lj + hj+1) + hj+1 lj

=
lK

(lj + lK)(lK + hj+1)
,

multiplying both sides by v̄ lK+1−j
KQK

i=j+2(hi+lK)
yields r′j+1

0 > r′j0 , which is valid for j = 1 . . . K − 1. 2

Proof of Proposition 3.4: For γ < γ1, we have

γ =
¯
v/v̄ <

lKK∏K
i=1(hi + lK)

⇒
¯
v < v̄

lKK∏K
i=1(hi + lK)

⇒
¯
v l1 < v̄ l1

lKK∏K
i=1(hi + lK)

⇒ 0 < v̄
l1

h1 + lK

lKK∏K
i=2(hi + lK)

−
¯
v l1

⇒ 0 < v̄
l1

l1 + lK

lKK∏K
i=2(hi + lK)

−
¯
v l1 as h1 = l1 by definition

⇒ v̄
lK

l1 + lK

lKK∏K
i=2(hi + lK)

< v̄
lKK∏K

i=2(hi + lK)
−

¯
v l1

⇒ r′10 < r
¯
′1 .

Similarly, using the reverse arguments, we can show that for γ ≥ γ1, we have r′10 ≥ r
¯
′1.
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Now, let us show that for γ < γj+1, we have r
¯
′j < r

¯
′j+1; and γ ≥ γj+1, we have r

¯
′j ≥ r

¯
′j+1. For γ < γj+1,

γ =
¯
v/v̄ <

lK−j
K∏K

i=j+1(hi + lK)

⇒
¯
v hj+1 < v̄ hj+1

lK−j
K∏K

i=j+1(hi + lK)

⇒
¯
v hj+1 < v̄

hj+1

hj+1 + lK

lK−j
K∏K

i=j+2(hi + lK)

⇒
¯
v hj+1 < v̄

(
1− lK

hj+1 + lK

)
lK−j
K∏K

i=j+2(hi + lK)

⇒
¯
v (lj+1 − lj) < v̄

(
1− lK

hj+1 + lK

)
lK−j
K∏K

i=j+2(hi + lK)

⇒ v̄
lK−j+1
K∏K

i=j+1(hi + lK)
−

¯
v lj < v̄

lK−j
K∏K

i=j+2(hi + lK)
−

¯
v lj+1

⇒ r
¯
′j < r

¯
′j+1 .

Similarly, using the reverse arguments, we can show that for γ ≥ γj+1, we have r
¯
′j ≥ r

¯
′j+1. Then, the result

follows as the above arguments are valid for all j = 1 . . . K. 2
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