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Abstract

We develop a tool akin to the revelation principle for mechanism design with

limited commitment. We identify a canonical class of mechanisms rich enough

to replicate the outcomes of any equilibrium in a mechanism-selection game

between an uninformed designer and a privately informed agent. A corner-

stone of our methodology is the idea that a mechanism should encode not only

the rules that determine the allocation, but also the information the designer

obtains from the interaction with the agent. Therefore, how much the designer

learns, which is the key tension in design with limited commitment, becomes

an explicit part of the design. We show how this insight can be used to transform

the designer’s problem into a constrained optimization problem: To the usual

truthtelling and participation constraints, one must add the designer’s sequen-

tial rationality constraint.
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1 INTRODUCTION

The standard assumption in dynamic mechanism design is that the designer can

commit to long-term contracts. This assumption is useful: It allows us to charac-

terize the best possible payoff for the designer in the presence of adverse selection

and/or moral hazard, and it is applicable in many settings. Often, however, this as-

sumption is made for technical convenience. Indeed, when the designer can commit

to long-term contracts, the mechanism-selection problem can be reduced to a con-

strained optimization problem thanks to the revelation principle.1 However, as the

literature starting with Laffont and Tirole (1987, 1988) shows, when the designer can

commit only to short-term contracts, the tractability afforded by the revelation prin-

ciple is lost. Indeed, mechanism design problems with limited commitment are dif-

ficult to analyze without imposing auxiliary assumptions either on the class of con-

tracts the designer can choose from, as in Gerardi and Maestri (2020) and Strulovici

(2017), or on the length of the horizon, as in Skreta (2006, 2015).

This paper provides a “revelation principle” for dynamic mechanism-selection games

in which the designer can only commit to short-term contracts. We study a game

between an uninformed designer and an informed agent with persistent private in-

formation. Although the designer can commit within each period to the terms of the

interaction–the current mechanism–he cannot commit to the terms the agent faces

later on, namely, the mechanisms that are chosen in the continuation game. First, we

show there is a class of mechanisms that is sufficient to replicate all equilibrium out-

comes of the mechanism-selection game. Second, we show how this insight can be

used to transform the designer’s problem into a constrained optimization problem:

To the usual truthtelling and participation constraints, one must add the designer’s

sequential rationality constraint.

The starting point of our analysis is the class of mechanisms we allow the designer

to select from. Following Myerson (1982) and Bester and Strausz (2007), we consider

mechanisms defined by a general communication device as illustrated in Figure 1a:

1The “revelation principle” denotes a class of results in mechanism design; see Gibbard (1973),
Myerson (1979), and Dasgupta et al. (1979).
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Figure (b) Canonical Mechanisms:
M =Θ,S =∆(Θ)

Figure 1: Mechanisms

Having observed her private information (her type, θ ∈Θ), the agent privately reports

an input message, m ∈ M , to the mechanism; this then determines the distribution,

β(⋅∣m), from which an output message, s ∈ S, and an allocation, a ∈ A, are drawn.

The output message and the allocation are publicly observable: They constitute the

contractible parts of the mechanism.

When the designer has commitment, the revelation principle implies that, without

loss of generality, we can restrict attention to mechanisms satisfying the following

three properties: (i) M = Θ, (ii) ∣M ∣ = ∣S∣, and (iii) β is such that by observing the

output message, the designer learns the input message, in this case the agent’s type

report. Moreover, the revelation principle implies that we can restrict attention to

equilibria in which the agent truthfully reports her type, which means that the de-

signer not only learns the agent’s type report upon observing the output message

but also learns the agent’s true type.

It is then clear why restricting attention to mechanisms that satisfy properties (i)-

(iii) and truthtelling equilibria is with loss of generality under limited commitment:

Upon observing the output message, the designer learns the agent’s type report and

hence her type. Then the agent may have an incentive to misreport if the designer

cannot commit to not react to this information. This is precisely the intuition behind

the main result in Bester and Strausz (2001), which is the first paper to provide a

general analysis of optimal mechanism design with limited commitment. Instead

of allowing the designer to choose any mechanism, the authors restrict attention

to mechanisms such that the cardinality of the set of input and output messages is

the same and β is such that by observing the output message, the designer learns the

input message.2 They show that to sustain payoffs in the Pareto frontier, mechanisms

in which input messages are type reports are without loss of generality. However,

focusing on truthtelling equilibria is with loss of generality. In a follow-up paper,

Bester and Strausz (2007) lift the restrictions on the class of mechanisms (i.e., (ii)

and (iii) above) and show in a one-period model that focusing on mechanisms in

2The class of mechanisms considered in Bester and Strausz (2001) encompasses the mechanisms
considered by most papers in the literature on limited commitment starting from Laffont and Tirole
(1988).
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which input messages are type reports and truthtelling equilibria is without loss of

generality. The authors, however, do not characterize the output messages. It is also

unclear whether taking input messages to be type reports is without loss when the

designer and the agent interact repeatedly (see the discussion after Theorem 1).

The main contribution of this paper is to show that, under limited commitment, it is

without loss of generality to take the set of output messages to be the set of designer’s

posterior beliefs about the agent’s type, that is, S =∆(Θ). Theorem 1 shows that the

following two games between an uninformed designer and an informed agent im-

plement the same set of equilibrium distributions over types and allocations. In the

first, the mechanism-selection game, the principal can offer the agent mechanisms

as in Figure 1a. In the second, the canonical game, the principal can offer the agent

mechanisms in which input messages are type reports, output messages are beliefs,

and, conditional on the output message, the allocation is drawn independently of the

agent’s type report (see Figure 1b). Moreover, Theorem 1 shows that any equilibrium

of the canonical game can be replicated by an equilibrium in which (a) the agent

always participates in the mechanism, and (b) input and output messages have a lit-

eral meaning: The agent truthfully reports her type, and if the mechanism outputs a

given posterior, this posterior coincides with the belief that the designer holds about

the agent’s type given the agent’s strategy and the mechanism. Given that any equi-

librium distribution over types and allocations can be replicated by mechanisms in

which input messages are type reports and output messages are beliefs about the

agent’s type, we call this class of mechanisms canonical.

Theorem 1 implies that in mechanism design with limited commitment, the mech-

anism serves a dual role within a period. On the one hand, it determines the allo-

cation for that period. On the other hand, it determines the information about the

agent that is carried forward in the interaction. An advantage of the language of pos-

terior beliefs is that it avoids potential infinite-regress problems. Indeed, in a finite

horizon problem, an alternative set of output messages could be a recommendation

for an allocation today and a sequence of allocations from tomorrow on. In the fi-

nal period, the revelation principle in Myerson (1982) pins down the implementable

allocations. Therefore, the recommended allocations can be determined via back-

ward induction. This idea cannot be carried to an infinite horizon setting: These sets

of output messages would necessarily have to make reference to the continuation

mechanisms, which are themselves defined by a set of output messages.

Theorem 1 affords the analyst two main simplifications. First, it follows from its
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proof that it is without loss of generality to restrict attention to the analysis of the

canonical game, since it implements the same set of distributions over types and al-

locations, and thus payoffs, as the mechanism-selection game. Second, it provides

the researcher with a tractable way to analyze problems of mechanism design with

limited commitment by making how much the principal learns about the agent an

explicit part of the design. The three constraints that the mechanism must satisfy,

the participation and truthtelling constraints for the agent, and the Bayes’ plausibil-

ity constraint, provide us with a tractable representation both of the agent’s behavior

in a given period and of its impact on the mechanism offered in the next via the in-

formation that is generated about the agent’s type in the given period. A major chal-

lenge in the received literature on limited commitment is how to keep track of how

the agent’s best response to the mechanism affects the information that the principal

obtains from the interaction, which in turn affects the principal’s incentives to offer

the mechanism in the first place. Instead, our framework allows us to reduce the

agent’s best response to the principal’s mechanism and its informational feedback

to a familiar set of constraints that the mechanism must satisfy. This avoids having

to consider complicated mixed strategies on the part of the agent (see, for instance,

Laffont and Tirole (1988); Bester and Strausz (2001)) and transforms it instead into a

program that combines elements of mechanism design and information design.

While Theorem 1 assumes that the agent’s type is fully persistent, this is not neces-

sary for its conclusion to hold. Theorem 2 extends Theorem 1 to a version of what

Pavan et al. (2014) denote as Markov environments. These are settings where (i) the

agent’s private information follows a possibly nonhomogeneous Markov process,

(ii) the principal and the agent’s payoffs are time-separable, and their flow payoffs

depend only on today’s allocation and the agent’s current type, and (iii) the tran-

sition probability may depend both on today’s type and today’s allocation. Theo-

rem 2 shows that in Markov environments it is without loss of generality to restrict

attention to the characterization of equilibrium payoffs of the canonical game and to

strategy profiles where the agent participates and truthfully reports her current type

to characterize the set of payoffs the designer can implement in the mechanism-

selection game.

We illustrate how our results can be used to shed new light on seemingly well-understood

problems with an example in Section 4.3 Section 4 considers a seller, who owns one

3Theorem 1 also opens the door to the analysis of optimal mechanisms under limited commitment
in infinite-horizon settings. We illustrate this in Doval and Skreta (2020a), where we solve an infinite-
horizon binary-type version of the sale of a durable good.
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unit of a durable good, and interacts over two periods with a buyer with persistent

and private information, as in Skreta (2006). Whereas the seller in Skreta (2006) is

allowed to offer any mechanism amongst those considered by Laffont and Tirole

(1988); Bester and Strausz (2001), we allow the seller to choose any canonical mech-

anism. In contrast to the main result in Skreta (2006), we show in Proposition 1 that

rationing can strictly dominate posted prices (Remark 2 discusses how canonical

mechanisms differ from the mechanisms in Skreta (2006), which explains the dif-

ference in the results.) This allows us to connect the mechanism design literature

on the sale of a durable good with the work in theoretical industrial organization

on alternative strategies for a durable good monopolist, such as rationing (Denicolo

and Garella (1999); Gilbert and Klemperer (2000); McAfee and Wiseman (2008)) and

clearance sales (Nocke and Peitz (2007)). Indeed, Proposition 1 provides a micro-

foundation for a mechanism first suggested by Denicolo and Garella (1999) and a

new rationale for the use of clearance sales.

Our work brings forth a new application of information design by placing its tools

at the service of characterizing optimal mechanisms under limited commitment. By

highlighting the canonical role of beliefs as the signals employed by the mechanism,

Theorem 1 and Theorem 2 underscore the importance of jointly determining the

mechanism together with how information is used in the mechanism and transmit-

ted across periods. In doing so, it marries information design, which studies the de-

sign of information structures in a given institution, with mechanism design, which

generally studies institutional design within a given information structure.

Related Literature: The paper contributes to the literature on mechanism design

with limited commitment with an informed agent with persistent private informa-

tion, referenced throughout the introduction.4 Following the seminal contribution

of Bester and Strausz (2001), a body of work studies optimal mechanisms under

limited commitment in settings with finitely many types and finite horizon (e.g.,

Bisin and Rampini (2006); Hiriart et al. (2011); Fiocco and Strausz (2015); Beccuti and

Möller (2018)). Since the results in Bester and Strausz (2001) do not extend to settings

with a continuum of types and/or infinite horizon, the characterization of optimal

mechanisms under limited commitment in these settings has proven elusive. On

the one hand, Skreta (2006); Deb and Said (2015); Skreta (2015) study mechanism-

selection games with a continuum of types and finite horizon. All three papers lever-

4A designer’s lack of commitment can take various forms that are not considered in this paper
but have been studied in others. See, for instance, McAdams and Schwarz (2007), Vartiainen (2013),
and Akbarpour and Li (2020), in which the designer cannot commit even to obeying the rules of the
current mechanism.
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age the assumption of finite horizon, which pins down the optimal mechanism in the

final period, to characterize the implications of the principal’s sequential rationality

constraints for the set of incentive-feasible outcomes. On the other hand, the small

set of papers that study infinite-horizon problems of design under limited commit-

ment do so under assumptions on either the set of mechanisms the designer is al-

lowed to offer (e.g., Acharya and Ortner (2017); Strulovici (2017); Gerardi and Maestri

(2020)) or the solution concept (e.g., Acharya and Ortner (2017)). All these papers use

the set of mechanisms in Laffont and Tirole (1988); Bester and Strausz (2001).

Due to the difficulties with the revelation principle, a large body of work in pub-

lic finance, political economy and taxation considers optimal time-consistent poli-

cies in settings where private information is fully nonpersistent (see, for instance,

Sleet and Yeltekin (2008); Farhi et al. (2012); Golosov and Iovino (2016)). Moreover,

a large literature studies the effect of limited commitment within a specific class of

“mechanisms”: The papers in the durable-good monopolist literature (Bulow (1982);

Gul et al. (1986); Stokey (1981)) study price dynamics and establish (under some

conditions) Coase’s conjecture whereby a monopolist essentially loses all profits if

it lacks commitment. In an analogous vein, Burguet and Sakovics (1996), McAfee

and Vincent (1997), Caillaud and Mezzetti (2004), and Liu et al. (2019) study equilib-

rium reserve-price dynamics without commitment in different setups. The common

thread is, again, that the seller’s inability to commit reduces monopoly profits.

By highlighting the role that the designer’s beliefs about the agent play in mecha-

nism design with limited commitment, our paper also relates to Lipnowski and Ravid

(2020) and Best and Quigley (2017), who study models of direct communication be-

tween an informed sender and an uninformed receiver.

Organization: The rest of the paper is organized as follows. Section 2 describes the

model and notation. Section 3 introduces the main theorem and provides a sketch

of the proof. Section 4 analyzes a two-period version of the model in Skreta (2006) to

illustrate how one can apply Theorem 1 in a setting with a continuum of types and

shed new light on a classic problem. Section 5 presents Theorem 2, which extends

Theorem 1 to Markov environments. All proofs are in Appendix B and the supple-

mentary material, Doval and Skreta (2020c) (Appendices C-E).

2 MODEL

Primitives: Two players, a principal (he) and an agent (she), interact over T ≤ ∞
periods. Before the game starts, the agent observes her type, θ ∈ Θ, which is dis-
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tributed according to a full support distribution µ0. Each period, as a result of the

interaction between the principal and the agent, an allocation a ∈ A is determined.

Let AT+1 denote the set ×T
t=0 A. For the principal, assume that there exists a function

W ∶ AT+1 ×Θ↦ R such that his payoff from allocation aT+1 ∈ AT+1 when the agent’s

type is θ is given by W (aT+1,θ). Similarly, for the agent, when her type is θ, her payoff

from allocation aT+1 ∈ AT+1 is given by U(aT+1,θ).

For every t ≥ 1 and every sequence of allocations at = (a0, a1, . . . , at−1), the prin-

cipal can only choose at ∈ A(at) in period t . That is, there is a correspondence

A ∶ ∪T
t=1 At ↦ A such that for t ∈ {1, . . . ,T} and at ∈ At , A(at) describes the set of

allocations that the principal can offer in period t given the allocations he has of-

fered through period t − 1. On the one hand, the correspondence A encodes that

the set of feasible allocations may be time dependent, so thatA depends on at only

through the time index t . On the other hand, it allows for the case in which the past

allocations restrict what the principal can offer the agent in the future, as in the ap-

plication in Section 4. Assume that there exists an allocation a∗ ∈ A such that a∗ is

always available. Below, allocation a∗ plays the role of the agent’s outside option.

Given the general structure of payoffs, it is without loss of generality to take it to be

time-independent.

We impose some technical restrictions on our model.5 The sets Θ and A are Polish,

that is, completely metrizable, separable, topological spaces. They are endowed with

their Borelσ-algebra. We also assume thatΘ is compact. Endowing product sets with

their product σ-algebra, we assume that the principal and the agent’s utility func-

tions, W and U , are bounded measurable functions. Similarly, the correspondence

A is measurable.

Mechanisms: In each period, the principal offers the agent a mechanism,

Mt = (M Mt ,SMt ,βMt ), where M Mt and SMt are Polish, and βMt is a transition proba-

bility from M Mt to SMt × A. We endow the principal with a collection (Mi ,Si)i∈I of

input and output message sets in which ∣Θ∣ ≤ ∣Mi ∣ and ∣∆(Θ)∣ ≤ ∣Si ∣. Moreover, we

assume that (Θ,∆(Θ)) is an element in that collection. Denote byM the set of all

mechanisms with message sets (Mi ,Si)i∈I , i.e., {β ∶Mi ↦∆(S j × A) ∶ i , j ∈ I}.

5In what follows, we adopt the following notational conventions. First, all Polish spaces are en-
dowed with their Borel σ-algebra. For a Polish space, X , BX denotes its Borel σ-algebra. Second,
product spaces are endowed with their product σ-algebra. Third, for a Polish space, Y , we let ∆(Y )
denote the set of all Borel probability measures over Y , endowed with the weak∗ topology. Thus,∆(Y )
is also a Polish space (Aliprantis and Border (2013)). For any two measurable spaces X and Y , a map-
ping ζ ∶ X ↦∆(Y ) is a transition probability from X to Y if for any measurable C ⊆ Y , ζ(C ∣x) ≡ ζ(x)(C)
is a measurable real valued function of x ∈ X .
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Three remarks are in order. First, the restriction that Mi has at least as many mes-

sages as types is without loss of generality. The principal can always replicate a mech-

anism with a smaller set of input messages by using a larger set of input messages.6

Second, we restrict the principal to choosing input and output messages within the

set (Mi ,Si)i∈I . This allows us to have a well-defined set of deviations for the princi-

pal, thereby avoiding set-theoretic issues related to self-referential sets. The analysis

that follows shows that the choice of the collection plays no further role in the analy-

sis. Finally, we note that all aspects of the environment, except the agent’s type θ ∈Θ,

are common knowledge between the principal and the agent.

Timing: In each period t , the game proceeds as follows. The principal offers the

agent a mechanism, Mt , with the property that for all m ∈ M Mt ,βMt (SMt×A(at)∣m) =
1, where at describes the allocations implemented through period t −1. Observing

the mechanism, the agent decides whether to participate in the mechanism (p = 1)
or not (p = 0). If she does not participate in the mechanism, a∗ is implemented and

the game proceeds to t+1. Instead, if she chooses to participate, she sends a message

m ∈ M Mt , which is unobserved by the principal. An output message and an allocation

(st , at) are drawn according to βMt (⋅∣m); the output message and the allocation are

observed by both the principal and the agent.

The above defines an extensive-form game, which we dub the mechanism-selection

game and denote by GM. Public histories in this game are

ht = (M0, p0, s0, a0, . . . ,Mt−1, pt−1, st−1, at−1),

where pr ∈ {0,1} denotes the agent’s participation with the restriction that pr = 0⇒
sr =∅, ar = a∗.7 Given a mechanism Mt , let z∅(Mt), denote the tuple Mt ,0,∅, a∗ and

let z(st ,at)(Mt), denote the tuple Mt ,1, st , at . Note that any public history at the end

of period t can be written as (ht , z∅(Mt)) or (ht , z(st ,at)(Mt)).

Public histories capture what the principal knows through period t . Let H t denote

the set of all period t public histories. A history for the agent consists of the public

history of the game together with the agent’s inputs into the mechanism (henceforth,

the agent history) and her private information. Formally, an agent history is an ele-

6To see this, suppose that the principal would rather use a mechanism, M′
t , with a message space

M M′
t with cardinality strictly less than ∣Θ∣. Then he can choose a mechanism Mt with M Mt =Θ, choose

βMt to coincide with βM′
t on the first ∣M M′

t ∣ messages, and have βMt coincide with βM′
t (⋅∣m′

1) for all
remaining messages.

7While there is no output message when the agent does not participate in the mechanism, we
denote this by s =∅ to keep the length of all the histories the same.
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ment

ht
A = (M0, p0,m0, s0, a0, . . . ,Mt−1, pt−1,mt−1, st−1, at−1),

with pr = 0⇒mr = ∅. Given a public history ht , let H t
A(ht) denote the set of agent

histories consistent with ht . The agent also knows her type, and hence a history

through period t is an element of {θ}×H t
A when her type is θ.

Strategies: Since the principal’s action space,M, is an uncountable set of functions,

we model the principal’s behavioral strategy, (σP t)T
t=0, following Aumann (1964).

That is, endow [0,1] with the Borel σ-algebra and the Lebesgue measure, λ. Then,

σP t is defined as a jointly measurable function from H t × [0,1] toM.8 We denote

the collection (σP t)T
t=0 by σP . The agent’s participation strategy is a transition prob-

ability, πt , fromΘ×H t
A×M to {0,1}. Conditional on participating in the mechanism

Mt , her reporting strategy is a transition probability, rt , fromΘ×H t
A(ht)×M×{1} to

∪i∈IMi such that rt(θ,ht
A,Mt) ∈ ∆(M Mt ).9 We denote the tuple (πt ,rt) by σAt , and

the collection (σAt)T
t=0 by σA.

The definitions above assume that one can define a measurable structure onM such

that we can define the principal and the agent’s strategies as measurable functions of

the histories. As noted by Aumann (1961), this requires thatM be a standard Borel

space. As we explain in Appendix C, this is the case when Θ is finite or countable.

Instead, when Θ is a continuum, the set M is not a standard Borel space. When

Θ is a continuum, there are two approaches one may follow. The first approach is

to allow the principal to choose from a subset M′ ⊂ M which is a standard Borel

space, in which case it is correct to write the principal and the agent’s strategies as

conditioning on the past chosen mechanisms. The second approach relies on the

idea that one can represent a very large set of mechanisms in terms of a standard

Borel space, without ex-ante restricting the mechanisms the principal is allowed to

choose from. This approach, which we implicitly use in our applications, requires

defining the principal and the agent’s strategies in a different way, so we relegate this

discussion to Appendix C.10

8To keep notation simple, we do not add the restriction that if Mt is in the support ofσP t(ht), then
βMt (SMt ×A(at)∣m) = 1, where at is the allocation up to period t according to ht .

9While technically the agent’s reporting strategy should be written rt(θ,ht
A ,Mt ,1) to account for

the agent’s decision to participate, we omit the 1 to simplify notation.
10The issue of choosing mechanisms at random also shows up in the competing principals liter-

ature, where it is typical to restrict attention to pure strategy equilibria of the mechanism-selection
game.

10



A belief for the principal at the beginning of time t , history ht , is a distribution

µt(ht) ∈∆(Θ×H t
A(ht)). The principal is thus uncertain both about the agent’s payoff-

relevant type, θ, and her payoff-irrelevant private history, ht
A. The collection (µt)T

t=0

denotes the belief system.

An assessment is a tuple (σP t ,σAt ,µt)T
t=0 ≡ (σP ,σA,µ). Our focus is on studying

the equilibria of the mechanism-selection game. By equilibrium, we mean Perfect

Bayesian equilibrium (henceforth, PBE), defined as follows:

Definition 1. A Perfect Bayesian Equilibrium is a tuple (σP ,σA,µ) such that the fol-

lowing holds:

1. (σP ,σA,µ) is sequentially rational (Definition A.1), and

2. The belief system satisfies Bayes’ rule where possible (Definition A.2).

The formal statement is in Appendix A. For now, we note that if the principal’s strat-

egy space were finite, Θ is finite, and the mechanisms used by the principal have fi-

nite support, then this coincides with the definition in Fudenberg and Tirole (1991).11

The prior µ0 together with a strategy profile (σP ,σA) determine a distribution over

the terminal nodesΘ×H T+1
A .12 We are interested instead in the distribution they in-

duce over the payoff-relevant outcomes, Θ× AT+1. We say that γ ∈ ∆(Θ× AT+1) is a

PBE outcome of the mechanism-selection game if there exists a PBE of the mechanism-

selection game that induces γ. We denote by O∗M the set of PBE outcomes of GM.

Our main result establishes the equivalence between the set of PBE outcomes of the

mechanism-selection game and those of another game, which we dub the canonical

game and introduce next.

The canonical game: The canonical game is essentially the same as the mechanism-

selection game except for two features. First, in every period the principal can only

choose canonical mechanisms, which we denote by MC . Canonical mechanisms

differ from the mechanisms introduced above in two respects. First, the sets of input

and output messages are given by (Θ,∆(Θ)). Second, if (Θ,∆(Θ), β̃) ∈ MC , then

there exist two transition probabilities, β fromΘ to ∆(Θ) and α from ∆(Θ) to A such

11The only difference between Bayes’ rule where possible and consistency in sequential equilibrium
is the following. Under PBE, the principal can assign zero probability to a type and then, after the
agent deviates, can assign positive probability to that same type.

12This distribution, which exists via the Ionescu Tulcea extension theorem (Tulcea (1949)), is for-
mally defined in Appendix A.
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that, for all θ ∈Θ, and for all measurable subsets Ũ × Ã ⊆∆(Θ)× A

β̃(Ũ × Ã∣θ) = ∫
Ũ
α(Ã∣µ)β(dµ∣θ),

so that conditional on the output message µ ∈∆(Θ), the allocation is drawn indepen-

dently of the type report. Third, at the beginning of each period both players observe

the realization of a public randomization deviceω ∼U[0,1]. We denote the canonical

game by G and its set of PBE outcomes byO∗.

Remark 1 (An auxiliary game). The proofs of our results require translating strategy

profiles from the mechanism-selection game to the canonical game, which is nota-

tionally involved. To facilitate the presentation of our results we rely on a third aux-

iliary game, G A
M, which is exactly like the mechanism-selection game, except that at

the beginning of each period the principal and the agent observe a draw from a public

randomization device ω ∼U[0,1]. Note that one can trivially adapt any strategy pro-

file σ of the mechanism-selection game to a strategy profile σ′ of the auxiliary game

simply by specifying thatσ′ followsσ for every realization of the public randomization

device. Similarly, any strategy profile σ′ of the auxiliary game in which the principal

chooses a canonical mechanism at every history can trivially be adapted to a strategy

profile σ̃ of the canonical game simply by specifying that σ̃ coincides with σ′ only at

histories where the principal has offered canonical mechanisms throughout.

3 MAIN RESULT

Section 3 presents the main result of the paper. Theorem 1 shows that the mechanism-

selection game and the canonical game have the same set of equilibrium outcomes.

Moreover, any PBE assessment of the mechanism-selection game can be replicated

by a PBE assessment of the canonical game in which (a) the agent always participates

in the mechanism, and (b) input and output messages have a literal meaning: The

agent truthfully reports her type, and if the mechanism outputs µ ∈∆(Θ) at the end

of period t , then µ is indeed the belief the principal holds about the agent at the end

of that period.

Theorem 1. The mechanism-selection game and the canonical game have the same

set of PBE outcomes, i.e., O∗M =O∗ for any collection of mechanisms,M, with which

we endow the principal.

Moreover, for any PBE outcome of GM, there exists a PBE assessment (σP ,σA,µ) of G

that implements the same outcome and satisfies the following properties:
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1. The agent’s strategy depends only on her private type and the public history.

2. For all public histories ht , for all θ in the support of µt(ht), the agent participates

in the mechanism offered by the principal at that history and with probability one

truthfully reports her type,

3. For all public histories ht , if the mechanism offered by the principal at ht outputs

a posterior µ′, the principal’s updated equilibrium beliefs about the agent coincide

with µ′. That is, for all measurable subsets Θ̃, Ũ , and Ã of Θ, ∆(Θ), and A,

∫
Θ
∫

Ũ
∫

Ã
µt+1(Θ̃∣ht , z(µ′,at))α

Mt (d at ∣µ′)βMt (dµ′∣θ)µt(dθ∣ht) =

=∫
Θ̃
∫

Ũ
αMt (Ã∣µ′)βMt (dµ′∣θ)µt(dθ∣ht) = ∫

Θ
∫

Ũ
∫

Ã
µ′(Θ̃)αMt (d at ∣µ′)βMt (dµ′∣θ)µt(dθ∣ht).

Theorem 1 plays the same role in mechanism design with limited commitment as the

revelation principle does in the commitment case. First, it identifies a well-defined

set of mechanisms,MC , to which we can restrict the principal’s choice set without

loss of generality. Second, it simplifies the analysis of the behavior of the agent in the

game induced by the mechanisms chosen by the principal: We can always restrict

attention to assessments where the agent participates and truthfully reports her type.

As is evidenced by the application in Section 4, this allows us to reduce the agent’s

behavior to a set of constraints that the mechanism must satisfy, exactly as in the

case of commitment.

The proof that any PBE outcome of the mechanism-selection game can be achieved

as a PBE outcome of the canonical game that satisfies the properties listed in Theo-

rem 1 relies on four steps, which we review next.13

Input messages as type reports: To fix ideas, consider the typical proof for the stan-

dard revelation principle in static settings. The mechanism, M, together with the

agent’s reporting strategy induces a transition probability from Θ to SM× A. This al-

lows us to conclude that we can replace the set of input messages with the set of type

reports, as illustrated in Figure 2a.

In the dynamic setting, however, this argument would only allow us to conclude that

we can rewrite the mechanism as a transition probability from Θ×H t
A(ht) to SMt ×

A, as illustrated in Figure 2b. Indeed, to replicate the agent’s reporting strategy, the

13In Doval and Skreta (2020b), we provide a proof of these four steps for the case in whichΘ is finite
and the principal can only offer mechanisms M such that, for all m ∈ M M, the support of βM(⋅∣m) is
finite. That proof mirrors the one in Appendix B, but is technically simpler and more accessible.
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Θ SM× A

M M

r βM

βM ○ r

Figure (a) Static revelation
principle

Θ×H t
A(ht) SMt × A

M Mt

r βMt

βMt ○ r

Figure (b) Mechanism selection game

Figure 2: Type reports as input messages

mechanism needs to obtain all the information on which the agent conditions her

strategy, which potentially is (θ,ht
A).

To circumvent this difficulty, we show that given a PBE in which the agent conditions

her strategy on the payoff-irrelevant part of her private history at some public history

ht , there exists another outcome-equivalent PBE in which she does not and in which

the principal obtains the same payoff after each continuation history consistent with

ht and the equilibrium strategy (see Proposition B.1). Thus, conditional on the pub-

lic history ht , the agent’s reporting strategy and the mechanism induce a transition

probability from Θ to SMt × A, so we can always take the set of input messages to

be the set of type reports.14 This result relies on two observations. First, because

input messages are payoff irrelevant and unobserved by the principal, if the agent

chooses different strategies at (θ,ht
A) and (θ, h̃t

A) with ht
A, h̃t

A ∈ H t
A(ht), then she is

indifferent between these two strategies. However, the principal may not be indif-

ferent between these two strategies. The second step is to show that we can build

an alternative strategy for the agent that conditions only on (θ,ht) and yields the

principal the same payoff.

This first step also gives us an important conceptual insight: The principal cannot

peek into his past mechanisms. To do so, he would have to ask the agent to report

her previous communication to him. Our result implies that this information cannot

be elicited in any payoff-relevant way.

It follows from this first step that it is without loss of generality to focus on equilib-

rium assessments of the mechanism-selection game such that the principal offers

mechanisms where the set of input messages are type reports, i.e., M Mt =Θ, and the

agent truthfully reports her type. In what follows, when we refer to a PBE assessment

of GM, we mean one that satisfies these properties.

14This result is useful also in applications. It states that in our game the set of PBE payoffs coincides
with the set of Public PBE payoffs (Athey and Bagwell (2008)). In games with time-separable payoffs,
Public PBE payoffs have a recursive structure and are amenable to self-generation techniques, as in
Abreu et al. (1990). For an example, see Doval and Skreta (2020a).

14



Output messages as beliefs: To understand the steps involved in showing that out-

put messages can be taken without loss of generality to be the principal’s beliefs

about the agent’s type, it is useful to consider the other uses the principal may have

for the output messages beyond encoding information about the agent.

First, the principal could use SMt to encode randomizations on the allocation, e.g.,

two tuples, (st , at) and (s′t , a′t), may be associated with the same posterior belief.

This is not an issue, however, since a canonical mechanism allows the principal to

randomize on the allocation conditional on the posterior belief.

Second, the principal could use SMt to coordinate continuation play, e.g., two tuples

(st , at),(s′t , at) may be associated with two different continuation equilibria, even

if they induce the same posterior belief.15 This is where canonical mechanisms and

the property that output messages must coincide with the principal’s updated beliefs

may be more restrictive than other elements inM: Beliefs are not a rich enough lan-

guage to encode both the principal’s updated beliefs and the suggested continuation

play.16 Nevertheless, the canonical game has a feature that the mechanism-selection

game does not: the public randomization device. As we explain next, this allows us

to subsume the second role of the output message.

The potential challenge in using the public randomization device to subsume the

second role of the output message is that, by definition, the use of the public ran-

domization device in the canonical game can only depend on publicly available in-

formation, while the output message in the mechanism-selection game is drawn as

a function of the agent’s type, since the agent is reporting truthfully. We leverage

here that canonical mechanisms use beliefs as output messages. To see this, note

that beliefs are a sufficient statistic for the information about the agent’s type that

is encoded in the output messages of the mechanism-selection game. Thus, con-

ditional on the induced belief and the allocation, the selection of continuation play

contains no further information about the agent’s type. This is how we are able to

decompose the mechanism in the mechanism-selection game into a mechanism in

the canonical game that uses beliefs as output messages and a public randomization

15The same idea arises in the literature on Bayesian persuasion. Implicit in the result in Kamenica
and Gentzkow (2011) that any experiment can be written as a distribution over posteriors is the as-
sumption that the receiver breaks ties in favor of the sender. Unlike in Bayesian persuasion, it is not
clear that the players may be indifferent between two continuation equilibria, so the public random-
ization device does not generally reduce to simple tie-breaking.

16Note that this is not a matter of cardinality, but a consequence of the restriction that suggested be-
liefs must coincide with equilibrium beliefs. Ultimately, by Kuratowski’s theorem (see Parthasarathy
(2005)), ∆(Θ) is in bijection with ∆(Θ)×[0,1] so there are enough messages to encode both the prin-
cipal’s updated beliefs and the suggested continuation play.
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device.

The above argument also explains why in a canonical mechanism, conditional on

the output message, the allocation can be drawn independently of the agent’s type

(report). Ultimately, conditional on the induced belief, the allocation contains no

further information about the agent’s type.

Formally, the proof of this result proceeds as follows (see Proposition B.3). Suppose

that the principal offers Mt in period t . The principal’s belief about the agent’s type,

together with the agent’s reporting strategy and the mechanism βMt induces a joint

distribution P overΘ×SMt × A×∆(Θ).17 Since conditional on the induced posterior,

(st , at) ∈ SMt × A carries no further information about the agent’s type, this allows us

to “split” the mechanism into a transition probability β̃ from Θ to ∆(Θ), a transition

probability α from ∆(Θ) to A, and a transition probability ω from ∆(Θ)× A to SMt .

The transition probability α plays the first role of the output message and highlights

the importance of allowing the principal to offer randomized allocations.18 The tran-

sition probabilityω corresponds to the public randomization device: By Kuratowski’s

theorem we can always embed SMt into [0,1] (see Parthasarathy (2005)).19

Three conceptual insights arise from this result. First, when the mechanism is canon-

ical, the principal can separate the design of the information that the mechanism en-

codes about the agent’s type from the design of the allocation. Second, the allocation

has to be measurable with respect to the information generated by the mechanism:

The more the principal desires to tailor the allocation to the agent’s type, the more

he has to learn about the agent’s type through the mechanism.20 Third, it provides a

microfoundation for the public randomization device in the canonical game: it rep-

resents the principal’s attempt to coordinate play in the mechanism-selection game.

17Formally, assume that the mechanism Mt is such that M Mt = Θ and the agent truthfully reports
her type. Let µ ∈ ∆(Θ) denote the principal’s prior belief at ht . Then, the posterior beliefs µ′ satisfy

∫Θ ∫S̃×Ã µ
′(Θ̃∣s, a)βMt (d(s, a)∣θ)µ(dθ) = ∫Θ̃βMt (S̃ × Ã∣θ)µ(dθ) for any measurable subsets Θ̃, S̃, Ã of

Θ, SMt , and A. Note that the posterior beliefs define a transition probability from SMt × A to ∆(Θ).
Denote it by T . Then, the joint distribution P is defined by P(Θ̃× S̃ × Ã × Ũ) = ∫Θ̃ ∫S̃×Ã1[T (s, a) ∈
Ũ]βMt (d(s, a)∣θ)µ(dθ), where Ũ denotes a measurable subset of ∆(Θ).

18Strausz (2003) also stresses the importance of allowing for randomized allocations for the standard
revelation principle to hold.

19One can then apply the integral transform theorem to make the distribution U[0,1].
20Contrast this with the case in which the principal has commitment, where we write a mechanism

as a menu of options, one for each type of the agent. We do this even if the optimal mechanism
offers the same allocation to a set of agent types. When the principal has commitment, it is irrelevant
whether the allocation reveals more information beyond the set of types that receive that allocation,
since additional information can always be ignored. Under limited commitment, however, this is not
the case and the principal in general trades off tailoring the allocation to the agent’s type and the
information that is learned through this.
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Bayes’ rule and participation: Underlying the previous step is the assumption that

the beliefs associated with the output messages are determined via Bayes’ rule. In

particular, the principal is never surprised by any output message he observes. To

achieve this we show in Proposition B.2 that we can “eliminate" from the mecha-

nism all input messages that are used only by types to whom the principal assigns 0

probability. This, of course, may change the participation decision for these types,

which is why Theorem 1 only guarantees participation for those types in the support

of the principal’s beliefs.21

Finally, we show in Proposition B.4 that without loss of generality the agent partici-

pates in the mechanism whenever her type is in the support of the principal’s beliefs.

The logic is similar to that in the case of commitment: Whatever the agent obtains

when she does not participate can be replicated by making her participate. However,

there is a caveat: When the agent does not participate, her outcome is an allocation

for today and a continuation mechanism for tomorrow. Therefore, we must guaran-

tee that, when the agent participates, the principal still offers the same continuation

as when she did not participate. We rely here on the mapping between output mes-

sages and posterior beliefs and the public randomization device. The first allows

us to identify which output message one should associate the types that chose not to

participate: the one that corresponds to the principal’s updated belief conditional on

nonparticipation.22 The public randomization device allows us to replicate the dis-

tribution over continuations the agent faces in the PBE of the mechanism-selection

game for those types that found it optimal to randomize between participating and

not participating in the PBE of the mechanism-selection game.

The arguments so far describe why the mechanism-selection game implements no

more PBE outcomes than the canonical game. While the canonical game has fewer

deviations for the principal, it follows from our proof that the canonical game can-

not sustain more PBE outcomes than the mechanism-selection game. The reason

for this is that our construction applies to each history in the mechanism-selection

game, not only those that are on the path of the equilibrium assessment under con-

sideration. This essentially shows that whatever deviation the principal could en-

tertain, he can also achieve it employing canonical mechanisms.23 Thus, the smaller

21If an agent’s type has zero probability at a specific public history, this means that she can only
reach it through a deviation from σA . This change to the mechanism actually makes the deviation
less attractive, and hence this “disincentivizes" the agent from deviating in the first place.

22Starting from an equilibrium in which the mechanism is rejected with positive probability, this
belief is also determined via Bayes’ rule

23This stands in contrast to the literature on the informed principal and on competing principals,
where oftentimes revelation principle-style arguments apply on the path of play, but not off the path.
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set of deviations in the canonical game fails to provide the principal with “more com-

mitment."

4 EXAMPLE: SALE OF A DURABLE GOOD

We now apply Theorem 1 to study the sale of a durable good in two periods with a

continuum of types. The advantage of this setting is that we know what the seller’s

optimal mechanism is within the set of mechanisms considered previously in the

literature on limited commitment: Skreta (2006) shows that posted prices are op-

timal. The main result of this section, Proposition 1 shows that once we allow the

seller to select from a richer set of mechanisms, posted prices may no longer be op-

timal. In particular, we show that rationing may dominate posted prices, allowing us

to draw connections with the literature in industrial organization that studies alter-

native strategies to posted prices for durable good monopolists (e.g., Denicolo and

Garella (1999); Gilbert and Klemperer (2000); Nocke and Peitz (2007); McAfee and

Wiseman (2008)). Indeed, Proposition 1 provides a microfoundation for a mecha-

nism first suggested by Denicolo and Garella (1999) and a new rationale for the use

of clearance sales as in Nocke and Peitz (2007).

Formally, we consider the following special case of the model in Section 2. A seller

(the principal) and a buyer (the agent) interact over two periods. The seller owns one

unit of a durable good and assigns value 0 to it. The buyer has private information:

Before her interaction with the seller starts, she observes her valuation θ ∈Θ = [θ,θ].

Let F1 denote the seller’s prior belief overΘ.24 We assume that F1 has full support and

is such that the virtual values, ϕ(θ,F1) ≡ θ−(1−F1(θ))/ f1(θ) are nondecreasing. An

allocation is a pair (q, x) ∈ {0,1}×R ≡ A, where q indicates whether the good is sold

(q = 1) or not (q = 0), and x is a payment from the buyer to the seller. If the good is

sold in period 1, the game ends.25 Moreover, if the buyer rejects the mechanism, the

good is not sold and no payments are made, that is, a∗ = (0,0). Payoffs are as follows.

If in period t ∈ {1,2}, the allocation is (q, x), the flow payoffs are u(q, x,θ) = θq − x

and w(q, x,θ) = x. The buyer and the seller share a common discount factor δ ∈ (0,1)
and maximize the expected discounted sum of payoffs.

We proceed as follows. First, we show that we can characterize the seller-optimal

PBE as the solution to a constrained optimization problem that only involves the

seller (Equation 1). This is already in stark contrast to the existing work in mecha-

For an eloquent discussion of this, see Peters (2001).
24We use the standard cdf notation, F1, instead of µ1 to denote the principal’s prior belief since

unlike in Theorem 1, we are now assuming thatΘ is a subset of R.
25Formally,A((1, x)) = {0}×R andA((0, x)) = {0,1}×R.
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nism design with limited commitment, which needs to keep track of how the buyer’s

best response to the seller’s mechanism determines the information that the seller

obtains from the interaction, which in turn affects the seller’s incentives to offer the

mechanism in the first place. Second, Proposition 1 characterizes the solution to

that program under the restriction that the mechanism induces at most one poste-

rior, F2D , such that the seller does not sell the good when the posterior is F2D (delay).

It only remains to verify that it is indeed optimal for the seller to choose such a distri-

bution over posteriors. While we do not pursue this here, we conjecture based on our

previous work, Doval and Skreta (2020a), that this is indeed the optimal information

structure for the seller.

To arrive at the program that characterizes the seller’s maximum revenue, we appeal

to Theorem 1. First, in what follows, we restrict attention to the canonical game.

Second, it is without loss of generality to consider assessments where the buyer’s

strategy does not depend on the payoff-irrelevant part of the private history. In par-

ticular, in period 2, the seller’s optimal mechanism only needs to elicit the buyer’s

payoff relevant type, θ. Let F2 denote the seller’s belief in period 2. Since the seller

has commitment in period 2, Proposition 2 in Skreta (2006) implies that the optimal

mechanism in period 2 is a posted price regardless of the properties of F2. We denote

by θ̂2(F2) a solution to his maximization problem.26

Third, it is without loss of generality to consider assessments where (i) the buyer’s

best response to the seller’s optimal choice of mechanism in period 1 is to participate

and truthfully report her type with probability 1, and (ii) when the output message

is F2, the seller updates his belief to F2. Moreover, the assumption of quasilinearity

implies that, without loss of generality, the seller does not randomize on the trans-

fers: Below x(F2) denotes the expected payment conditional on F2 and q(F2) ∈ [0,1]
denotes the probability with which the good is sold. Thus, we can write the seller’s

problem in period 1 as follows:

max
(q,x,β)

∫
Θ
∫
∆(Θ)

(x(F2)+(1−q(F2))δθ̂2(F2)1[θ ≥ θ̂2(F2)])β(dF2∣θ)F1(dθ) (1)

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∀θ ∈Θ) U(θ) = ∫∆(Θ) (θq(F2)− x(F2)+(1−q(F2))δu∗(θ,F2))β(dF2∣θ) ≥ 0

(∀θ, θ̃ ∈Θ)U(θ) ≥ ∫∆(Θ) (θq(F2)− x(F2)+(1−q(F2))δu∗(θ,F2))β(dF2∣θ̃)
(∀Θ̃×Ũ ∈ BΘ⊗∆(Θ))∫Θ ∫Ũ F2(Θ̃)β(dF2∣θ)F1(dθ) = ∫Θ̃β(Ũ ∣θ)F1(dθ)

.

That the seller’s belief about the buyer’s type updates to F2 when the output message

is F2 appears twice in the above expression: first, in the third constraint, which is

26It may be that the seller is indifferent among several prices. We determine the tie-breaking rule as
a solution to the problem in period 1.
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the Bayes plausibility constraint and, second, in the objective function, where the

seller’s payoff in period 2 when the agent’s type is θ and his belief is F2 corresponds

to whether θ buys the good at a price of θ̂2(F2).

The two remaining constraints are the buyer’s participation and incentive compati-

bility constraints. The buyer’s payoff in the mechanism, U(θ), is determined as fol-

lows. For each F2 in the support of β(⋅∣θ), she receives the good with probability

q(F2) and makes a payment of x(F2); with the remaining probability, there is no

trade, and she obtains a continuation payoff, u∗(θ,F2), which describes her optimal

decision of whether to buy the good at θ̂2(F2). The participation constraint states

that the buyer has to earn a payoff of at least 0 by participating. Indeed, since non-

participation is a 0 probability event, we can specify that upon rejection of the mech-

anism the seller believes that the buyer’s valuation is θ, so that in period 2 the seller

chooses a price of θ when the buyer chooses not to participate. The incentive com-

patibility constraint states that when her type is θ the buyer cannot obtain a higher

payoff by reporting that her type is θ̃ ≠ θ. When the buyer reports θ̃, she obtains

a different distribution over output messages β(⋅∣θ̃); however, in period 2, she still

chooses optimally whether to buy the good, which explains the term u∗(θ,F2).

The three constraints in Equation 1 provide us with a tractable representation of both

the buyer’s behavior and its impact on the mechanism offered in period 2 via the

information that is generated about the buyer’s type in period 1. This allows us to

characterize the seller-optimal PBE by focusing only on the period 1’s seller choice

of mechanism, knowing that as long as the mechanism satisfies the constraints we

are able to find a buyer’s strategy in the game to fully specify the PBE assessment that

implements the seller’s maximum revenue.27

As we show in Appendix D, the incentive constraints deliver the envelope represen-

tation of the buyer’s payoffs, so we can replace the transfers out of the seller’s payoff

and reduce Equation 1 to the following program. The seller in period 1 chooses a

distribution over posteriors, P∆(Θ), and, for each posterior he induces, a probability

of trade q(F2), to solve

max
P∆(Θ),q

∫
∆(Θ)

[q(F2)∫
θ

θ
ϕ(θ,F1)F2(dθ)+(1−q(F2))δ∫

θ

θ̂2(F2)
ϕ(θ,F1)F2(dθ)]P∆(Θ)(dF2),

(2)

27The same idea applies in our application to the infinite horizon analysis of the sale of the durable
good in Doval and Skreta (2020a).
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subject to (i) P∆(Θ) must be Bayes’ plausible given F1 and (ii) a monotonicity con-

dition, which states that, in expectation, higher types must trade with higher prob-

ability (see Equation D.4 in Appendix D). Equation 2 describes the seller’s payoff in

terms of the distribution over posteriors induced by the mechanism. If at posterior

F2 the seller sells the good (q(F2) = 1), he obtains the expected virtual surplus, where

the expectation is calculated using F2, but the virtual values are calculated using F1.

This reflects that the probability with which the seller pays rents to a buyer of type θ

is measured by the probability F1(θ) that buyer types below θ receive the good. In-

stead, if at F2 the seller does not sell the good (q(F2) = 0) he obtains the (discounted)

expected virtual surplus of selling the good at price θ̂2(F2). While the posted price

in period 2 is optimal with respect to the posterior virtual values ϕ(θ,F2), it may not

be for the prior virtual values. This reflects the conflict between the period 1 and pe-

riod 2 sellers: if they hold different beliefs about the buyer’s type, they pay rents with

different probabilities, and therefore may prefer different mechanisms.

Instead of fully solving the problem in Equation 1, we restrict attention to mech-

anisms where the seller induces at most one posterior at which q(F2) = 0 and de-

note this posterior by F2D . While we do not show that this is optimal, the analysis of

this simpler class of mechanisms already expands on what is known about optimal

mechanisms for this particular setting. In a slight abuse of notation, let βD(θ) de-

note the probability that a buyer of type θ is delayed, i.e., βD(θ) = β(F2D ∣θ). Then,

the seller’s problem reduces to28

max
βD
∫

θ

θ
ϕ(θ,F1)(1−βD(θ))F1(dθ)+δ∫

θ

θ̂2(F2D)
ϕ(θ,F1)βD(θ)F1(dθ), (OPTβD )

subject to the constraint that βD is nonincreasing.29 Proposition 1 shows that the

solutions to OPTβD are indexed by three parameters θ̃1, θ̃2,γ, with γ ≤ 1 so that

βD(θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if θ ≥ θ̃2

γ if θ ∈ (θ̃1, θ̃2)
1 otherwise

. (3)

Note that when γ > 0, the seller observes whether the good is sold in period 1, but not

whether the buyer’s type is above or below θ̃1. Equation 3 encompasses three selling

28Because the objective function in Equation 2 is linear in F2 when q(F2) = 1, it is without loss
to group all the terms where q(F2) = 1 into one, even if, as we show below, there is more than one
posterior at which the seller sets q(F2) = 1.

29Under the restriction that there is at most one belief at which the seller sets q(F2) = 0, βD nonin-
creasing is equivalent to the monotonicity condition (see Equation D.4).

21



strategies for durable good monopolists considered in the literature. First, whenγ = 0

or θ̃1 = θ̃2, this corresponds to a posted price mechanism, with types above θ̃1 obtain-

ing the good in period 1. Under a posted price mechanism we necessarily obtain a

decreasing sequence of prices: Conditional on the good not being sold in period 1,

the seller learns that the buyer’s type is below θ̃1, so the period 2 demand, 1−F2D(θ),

is lower than the period 1 demand, 1−F1(θ). Second, when γ > 0 and θ̃2 = θ, this

corresponds to what Denicolo and Garella (1999) denote as proportional rationing.

Under proportional rationing, buyer types above θ̃1 obtain the good with probability

less than 1 in period 1. This allows the seller to induce a stronger demand in period

2 and hence avoid decreasing the period 2 price, at the cost of selling the good less

often to high-valuation buyers in period 1. For discount factors close to 1, this cost

is small compared to the benefit of inducing higher prices in period 2. Finally, when

γ > 0 and θ̃2 < θ, the mechanisms in Equation 3 correspond to what Nocke and Peitz

(2007) denote as clearance sales: the seller sets two prices in period 1, one at which

the good is sold with probability 1 and another at which it is rationed. Under clear-

ance sales, the seller cannot induce higher prices in period 2 than in period 1, since

θ̃2 < θ implies that the period 2 demand is lower than the period 1 demand. The proof

of Proposition 1 suggests, however, why such a mechanism may be optimal: It allows

the period 1 seller to satisfy the period 2 sequential rationality constraint while si-

multaneously maximizing the probability with which high buyer types are served in

period 1.

Proposition 1. Any solution to OPTβD is as in Equation 3. Moreover,

1. If θ̂2(F2D) < θ̃1, it is optimal to set γ = 0.

2. Otherwise, the seller chooses θ̃1, θ̃2,γ subject to the constraint that θ̃1 ≤ θ̂2(F2D).

Proposition 1 shows that we can reduce the search for the solution to OPTβD to the

comparison between (i) the revenue-maximizing posted price mechanism, and (ii)

the revenue-maximizing “rationing” mechanism such that the period 2 price ex-

cludes at least as many buyer types as the period 1 mechanism.

Proposition 1 clarifies and provides a foundation for the analysis in Denicolo and

Garella (1999). The authors consider a two-period model of limited commitment

where in each period the seller can choose both a price at which to sell the good,

and a probability, γ(θ), with which a buyer of type θ, who wants to buy the good at

the posted price, receives the good. Implicit in their analysis is that the seller only

observes whether the good is sold but not whether the buyer is willing to buy the
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good at the posted price. They focus on the case of proportional rationing and pro-

vide conditions under which it dominates posted prices. While thought-provoking,

their analysis neither shows how the seller can actually implement this alternative

mechanism, nor that this is the optimal mechanism when the seller only observes

whether the good is sold.30 Our analysis allows us to interpret the seller’s strategy set

in Denicolo and Garella (1999) as a special case of a mechanism that induces at most

one posterior at which the seller sets q(F2) = 0. While Proposition 1 shows that pro-

portional rationing is among the candidate mechanisms, it highlights that clearance

sales may also be optimal. Nocke and Peitz (2007) show that clearance sales may

dominate posted prices in a model where, while the seller has commitment, he faces

uncertainty about demand. As we explain below, clearance sales arise as a candidate

mechanism under limited commitment as an instrument for the period 1 seller to

deal with the period 2 sequential rationality constraint.

The proof of Proposition 1 proceeds in two steps. To explain them, we introduce one

final piece of notation. For any incentive-compatible βD , let θ̂ denote the highest

buyer type such that βD(θ) = 1. The first step shows that any incentive-compatible

βD that induces a period 2 price below θ̂ is dominated by a posted price mecha-

nism.31 That is, if rationing is not conducive to more exclusion in period 2 than in

period 1, the seller prefers to post a price in period 1 to reap the benefits of trad-

ing with the high-valuation buyers. Thus, for a non-posted price mechanism to be

optimal it must be that θ̂ ≤ θ̂2(F2D).

The second step is to show that for any incentive-compatible policy βD such that

θ̂2(F2D) ≥ θ̂ there exists an alternative incentive-compatibleβ′D of the form described

in Equation 3 which induces the same price in period 2, but leads to a higher revenue

in period 1. This is where the assumption that virtual values, ϕ(θ,F1), are mono-

tone matters the most. Whenever βD is not as in Equation 3, we show that the seller

can change the probability with which the buyer’s different types are delayed to in-

30Indeed, in footnote 3 Denicolo and Garella (1999) write the following:

“One issue we do not analyze is the determination of the optimal rationing function
γ(v). To implement such a function, the monopolist would have to know the cus-
tomer’s type-which presumably would allow him to engage in perfect static price dis-
crimination. Alternatively, a self-selection constraint should be imposed if rationing is
not proportional."

31Denicolo and Garella (1999) make a similar observation in Proposition 1 of their paper. However,
as we explain in Appendix D, they do not account for the incentive costs of implementing βD when
they argue that a posted price dominates. Indeed, a posted price mechanism leaves more rents to
the buyer than other nonincreasing policies βD . Our proof shows that despite this, a posted price
dominates when θ̂2(F2D) < θ̂.
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crease the probability with which he sells to high types and reduce the probability

with which he sells to low types in period 1, while also implementing the same pe-

riod 2 price. Thus, the candidate mechanisms in Equation 3 satisfy the period 2 se-

quential rationality constraint at the lowest cost for the period 1 seller by allowing

the period 1 seller to maximize the probability with which he trades with high buyer

types.

Figure 3 illustrates the seller’s revenue from the best posted price (γ = 0) and the opti-

mal mechanism as a function of the discount factor in the case in which F1 is U[0,1].

As anticipated above, proportional rationing and clearance sales can only be optimal

when the discount factor is close to 1. Under this parametrization, proportional ra-

tioning is never optimal. Note that when δ = 0 and δ = 1, posted prices achieve the

commitment payoff, which is 0.25 when F1 is U[0,1].

δ

Revenue

0 0.5 1
0.22

0.25

δ

Revenue

0.8 0.9 1
0.22

0.25

Figure 3: Seller’s optimal revenue when F1 is U[0,1]: posted prices (solid), optimal
mechanism (dashed), proportional rationing (right panel, dotted). The right panel

reproduces the left for δ ∈ (0.8,1)

We conclude Section 4 by discussing the connection with previous analysis of this

problem in the literature, particularly its difference with the main result in Skreta

(2006). A reader interested in the case in which the agent’s information evolves over

time and the application to nonlinear pricing can proceed to Section 5 without loss

of continuity.

Remark 2. [Comparison with Skreta (2006)] To understand the difference between the

result in Proposition 1 and that in Skreta (2006), it is instructive to compare the incen-

tive constraints in Equation 1 to those implied by mechanisms where the seller ob-

serves the buyer’s choice of input message as in, for instance, Hart and Tirole (1988);
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Laffont and Tirole (1988); Bester and Strausz (2001); Skreta (2006). While not ex-

pressed in the language of type reports or beliefs, the incentive constraints in Skreta

(2006) require that for each F2 in the support of β(⋅∣θ), the buyer prefers the tuple

(q(F2), x(F2),u∗(θ,F2)) to any other tuple (q(F ′
2), x(F ′

2),u∗(θ,F ′
2)) in the mecha-

nism. In particular, the buyer must be indifferent between any two tuples that she

chooses with positive probability. Contrast this with the incentive constraints in Equa-

tion 1, where the buyer does not necessarily have to be indifferent between the tuples

(q(F2), x(F2),u∗(θ,F2)) in the support of β(⋅∣θ), although in expectation, the lottery

she faces over such tuples under truthtelling must be better than the one she faces by

lying. Indeed, when posted prices fail to be optimal, the seller exploits the weaker in-

centive constraints in Equation 1: Buyer types in (θ̃1, θ̃2) are not indifferent between

receiving the good in period 1 at the rationing price and receiving the good in period 2

at price θ̂2(F2D).

Note, however, that the property that the seller attains a higher payoff when he chooses

canonical mechanisms than that he obtains in the two-period version of the model

in Skreta (2006) is an artifact of the two-period model. Indeed, for any belief that

the seller may have in period 2, his payoff is the same in both models conditional on

the good not being sold in period 1. Proceeding via backward induction, the seller in

our model chooses from a larger set of mechanisms in period 1, while facing the exact

same continuation values. For longer horizons, however, the comparison of the seller’s

payoffs in the two models is not obvious since the larger set of canonical mechanisms

also implies that the seller has a larger set of deviations in our model than in the model

in Skreta (2006).

The previous discussion highlights that under limited commitment the principal

may benefit from employing mechanisms where the output message (and hence,

the allocation) does not reveal the input message that the agent submitted into the

mechanism. This is in contrast with the standard revelation principle for the case

of commitment when the principal faces a privately informed agent (adverse se-

lection): As we explained in the introduction, it follows from the result in Myerson

(1982) that it is without loss of generality in that case to consider mechanisms where

the principal learns the input message from observing the realization of the output

message. Instead, Myerson (1982) shows that adding “noise" to the communication

may be essential when the principal also faces an agent whose actions are not con-

tractible (moral hazard). Indeed, it may be beneficial to pool in the same output mes-

sage different types of the privately informed agent to incentivize the agent whose

action is not contractible to follow the recommendation. Mechanism design with
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limited commitment is closer to the hybrid model of adverse selection and moral

hazard in Myerson (1982) than it is to the model of pure adverse selection. Indeed,

note that in a given period the principal faces, in a sense, two agents whose incen-

tives he needs to manage: the privately informed agent (adverse selection) and his

future self, whose choice of mechanism is not contractible (moral hazard). That is,

today’s principal needs to elicit the agent’s information while simultaneously ensur-

ing that his future behavior is sequentially rational. In the same way that output

messages are key in the presence of moral hazard in Myerson (1982), they feature

prominently in our framework.

Nevertheless, employing mechanisms where the output message does not reveal the

input message the agent submitted into the mechanism might come at a cost: As

we have argued, the allocation has to be measurable with respect to the information

that the mechanism generates about the agent. Thus, the principal trades off the

short-term gains of tailoring the allocation to the agent’s type against the long-term

costs in terms of his future sequential rationality constraints of releasing too much

information about the agent. Contrast this with a model where, while the principal is

allowed to choose a mechanism in each period, he does not observe the outcome of

the mechanism, but only observes whether the relationship with the agent is still on-

going. In this case, within each period the principal could perfectly tailor the alloca-

tion to the agent’s type without having to learn this information. Thus, the principal

can potentially implement the commitment solution, unless the event that the rela-

tionship with the agent is still ongoing reveals information about the agent’s type. An

example of such a model is that in Correia-da Silva (2020), who analyzes a version of

the model in this section under the assumption that the seller only observes whether

the good is unsold in period 2 and shows that in that case the mechanisms in Propo-

sition 1 are optimal. The same way that our two-period model provides an upper-

bound on the seller’s payoff in the model of Skreta (2006), the model of Correia-da

Silva (2020) provides an upper bound on the seller’s payoff in our two-period model.

5 MARKOV ENVIRONMENTS

The case in which the agent’s private information is fully persistent is the cornerstone

of the literature on mechanism design with limited commitment for good reason.

There is, in a sense, a fixed amount of information to be learned about the agent and

the principal needs to trade off the short-term gains and the future losses from the

use of this information. In contrast, when the agent’s type is less than fully persistent,

nature renews the principal’s uncertainty about the agent’s type. Thus, as observed
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in Battaglini (2005), dynamic mechanisms are more often time-consistent when the

agent’s type evolves over time.

Nevertheless, the case in which the agent’s information evolves over time is relevant

for applications as evidenced in, amongst other contributions, the recent public fi-

nance applications of Farhi and Werning (2013); Kapička (2013); Stantcheva (2015)

and the burgeoning literature in dynamic mechanism design (see Pavan et al. (2014)

for references). Thus, we show in this section that Theorem 1 extends to the case in

which the agent’s private information evolves over time. We do so for a version of

what Pavan et al. (2014) denote as Markov environments, which we define next.32

The environment is Markov if the following holds. First, the agent’s private informa-

tion is described by a nonhomogenous Markov process with states in Θ and tran-

sitions Ft ∶ Θ× A ↦ ∆(Θ) so that Ft(Θ̃∣θt−1, at−1) describes the probability that the

agent’s type in period t is in Θ̃ when her type in t − 1 is θt−1 and the allocation is

at−1.33 Second, the principal and the agent’s payoffs are time separable and their

period-t flow payoff only depends on the current allocation and the agent’s period t

type. That is, if (at ,θt)0≤t≤T describes the allocations and agent’s private information

through period T , then

W ((at ,θt)0≤t≤T ) =
T

∑
t=0

δt wt(at ,θt), U((at ,θt)0≤t≤T ) =
T

∑
t=0

δt ut(at ,θt),

denote the payoffs to the principal and the agent, respectively. Everything else is as

in the model in Section 2. However, to keep track of the agent’s time-varying private

information, we index the agent’s private history differently. Namely, the agent’s pri-

vate history through period t , ht
A corresponds to a sequence (θ0,M0, p0,m0, s0, a0,

. . . ,θt−1,Mt−1, pt−1,mt−1, st−1, at−1). Since the agent knows her type at the beginning

of period t , we index her information sets by (ht
A,θt). To simplify notation, we write

the agent’s behavioral strategyσAt(ht
A,θt ,Mt) = (πt(ht

A,θt ,Mt),rt(ht
A,θt ,Mt)) ∈ [0,1]×

∆(M Mt ).

In Markov environments, it is important to keep track of two beliefs for the princi-

pal. The first is the belief he holds about the agent’s type at the end of period t ; the

second is the belief he holds at the beginning of period t +1, after applying Ft+1. We

denote the former by µt+1, anticipating that, as in Theorem 1, this is the belief that

will be used as an output message.34 We denote the latter by νt+1: This is the belief

32We comment at the end of this section on how our results extend outside Markov environments.
33Note that assuming that the set of states is time-invariant is without loss of generality.
34See Ely (2017) for another model where the same choice is made.
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that is used to determine which types have positive probability in period t +1. That

is, µt+1(ht
A,θt ,m, z∣ht , z) is the probability that the principal assigns to the agent be-

ing at information set (ht
A,θt) and sending message m at the end of period t when

z is the outcome of the interaction in period t , while νt+1(ht
A,θt ,m, z,θt+1∣ht , z) =

µt+1(ht
A,θt ,m, z∣ht , z)Ft+1(θt+1∣θt , at) is the probability that the principal assigns to

the agent being at information set (ht
A,θt) in period t and her type being θt+1 in

period t + 1 when the outcome of the interaction in period t is z, where at is the

allocation in period t consistent with z.

To introduce Theorem 2, we need one last piece of notation. Let E∗M and E∗ denote

the set of equilibrium payoffs of the mechanism-selection game and the canonical

game, respectively.

Theorem 2. The mechanism-selection game and the canonical game have the same

set of equilibrium payoffs, i.e., E∗M = E∗ for any collectionMwith which we endow the

principal.

Moreover, for any equilibrium payoff in E∗M, there exists a PBE assessment (σP ,σA,µ)
of G that achieves the same payoff and satisfies the following properties:

1. The agent’s strategy depends on her current payoff-relevant type and the public his-

tory. That is, for all periods t , all public histories ht , all ht
A,h

t
A ∈ H t

A(ht), and all

types θt ∈Θ, σAt(ht
A,θt ,Mt) =σAt(h

t
A,θt ,Mt)

2. For all public histories ht , if θt is in the support of νt(⋅∣ht), then the agent partici-

pates in the mechanism offered by the principal at that history and with probability

one truthfully reports her current type,

3. For all public histories ht , if the mechanism offered by the principal at ht outputs

a posterior µ′, the principal’s updated equilibrium beliefs about the agent coincide

with µ′. That is, for all measurable subsets Θ̃, Ũ , Ã ofΘ, ∆(Θ), and A,

∫
Θ
∫

Ũ
∫

Ã
µt+1(Θ̃∣ht , z(µ′,at))α

Mt (d at ∣µ′)βMt (dµ′∣θ)νt(dθ∣ht) =

=∫
Θ̃
∫

Ũ
αMt (Ã∣µ′)βMt (dµ′∣θ)νt(dθ∣ht) = ∫

Θ
∫

Ũ
∫

Ã
µ′(Θ̃)αMt (d at ∣µ′)βMt (dµ′∣θ)νt(dθ∣ht).

Two remarks are in order. First, the history independence in Theorem 2 is, in a sense,

stronger than that of Theorem 1. The agent does not condition her strategy on either

her past communication or her past payoff-relevant types. This is where we more
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prominently employ the restriction to Markov environments. This affords an impor-

tant simplification: In each period t , the principal only needs to elicit the agent’s

current payoff-relevant type θt , not the past realizations. We believe this simplifi-

cation is important for applications. In more general environments, a similar result

would obtain, but the principal may need to elicit the whole realization (θ1, . . . ,θt).

Note that the stronger form of history independence also implies that contrary to

Theorem 1 the mechanism-selection and canonical games implement the same set

of payoffs but not necessarily the same equilibrium outcomes.35 Second, the sepa-

ration between the beliefs that the output message represents (µt+1) and the beliefs

that the principal uses in the next period to select mechanisms (νt+1) highlights that

the principal in period t attempts to design his prior for period t +1 (which nature

will then push forward using Ft+1.)

The proof of Theorem 2 is in Appendix E. Except for the proof of the stronger form

of history independence, the remaining steps closely follow the proof of Theorem 1,

and thus, we omit them. Moreover, since the extension to the case in which the set

Θ is uncountable or the support of βMt is uncountable should be immediate from

the proof of Theorem 1, we only present the proof under the assumption that Θ is

finite and the principal can only choose mechanisms, M, such that for all m ∈ M M,

the support of βM(⋅∣m) is finite.

REFERENCES

ABREU, D., D. PEARCE, AND E. STACCHETTI (1990): “Toward a theory of discounted
repeated games with imperfect monitoring,” Econometrica, 58, 1041–1063.

ACHARYA, A. AND J. ORTNER (2017): “Progressive learning,” Econometrica, 85, 1965–
1990.

AKBARPOUR, M. AND S. LI (2020): “Credible auctions: A trilemma,” Econometrica,
88, 425–467.

ALIPRANTIS, C. AND K. BORDER (2013): Infinite Dimensional Analysis: A Hitchhiker’s
Guide, Springer-Verlag Berlin and Heidelberg GmbH & Company KG.

ATHEY, S. AND K. BAGWELL (2008): “Collusion with persistent cost shocks,” Econo-
metrica, 76, 493–540.

AUMANN, R. J. (1961): “Borel structures for function spaces,” Illinois Journal of Math-
ematics, 5, 614–630.

35The revelation principle-style arguments in Peters (2001); Hart et al. (2017); Ben-Porath et al.
(2019) are also in terms of payoff equivalence.

29



——— (1964): “Mixed and behavior strategies in infinite extensive games,” Tech. rep.,
Princeton University.

BATTAGLINI, M. (2005): “Long-term contracting with Markovian consumers,” Amer-
ican Economic Review, 95, 637–658.

BECCUTI, J. AND M. MÖLLER (2018): “Dynamic adverse selection with a patient
seller,” Journal of Economic Theory, 173, 95–117.

BEN-PORATH, E., E. DEKEL, AND B. L. LIPMAN (2019): “Mechanisms with evidence:
Commitment and robustness,” Econometrica, 87, 529–566.

BERTSEKAS, D. P. AND S. E. SHREVE (1978): “Stochastic optimal control, volume 139
of Mathematics in Science and Engineering,” .

BEST, J. AND D. QUIGLEY (2017): “Persuasion for the long run,” Working Paper.

BESTER, H. AND R. STRAUSZ (2001): “Contracting with imperfect commitment and
the revelation principle: the single agent case,” Econometrica, 69, 1077–1098.

——— (2007): “Contracting with imperfect commitment and noisy communica-
tion,” Journal of Economic Theory, 136, 236–259.

BISIN, A. AND A. A. RAMPINI (2006): “Markets as beneficial constraints on the gov-
ernment,” Journal of public Economics, 90, 601–629.

BULOW, J. I. (1982): “Durable-goods monopolists,” Journal of Political Economy, 90,
314–332.

BURGUET, R. AND J. SAKOVICS (1996): “Reserve prices without commitment,” Games
and Economic Behavior, 15, 149–164.

CAILLAUD, B. AND C. MEZZETTI (2004): “Equilibrium reserve prices in sequential
ascending auctions,” Journal of Economic Theory, 117, 78–95.

CORREIA-DA SILVA, J. (2020): “Optimal priority pricing by a durable goods monopo-
list,” Tech. rep.

CRAUEL, H. (2002): Random probability measures on Polish spaces, vol. 11, CRC
press.

DASGUPTA, P., P. HAMMOND, AND E. MASKIN (1979): “The implementation of so-
cial choice rules: Some general results on incentive compatibility,” The Review of
Economic Studies, 46, 185–216.

DEB, R. AND M. SAID (2015): “Dynamic screening with limited commitment,” Jour-
nal of Economic Theory, 159, 891–928.

DENICOLO, V. AND P. G. GARELLA (1999): “Rationing in a durable goods monopoly,”
The RAND Journal of Economics, 44–55.

30



DOVAL, L. AND V. SKRETA (2020a): “Optimal mechanism for the sale of a durable
good,” arXiv preprint arXiv:1904.07456.

——— (2020b): “Simple proof of Theorem 1 in Doval and Skreta (2020),” Click here.

——— (2020c): “Supplement to “Mechanism Design with Limited Commitment",”
Click here.

ELY, J. C. (2017): “Beeps,” American Economic Review, 107, 31–53.

FARHI, E., C. SLEET, I. WERNING, AND S. YELTEKIN (2012): “Non-linear capital taxa-
tion without commitment,” Review of Economic Studies, 79, 1469–1493.

FARHI, E. AND I. WERNING (2013): “Insurance and taxation over the life cycle,” Re-
view of Economic Studies, 80, 596–635.

FIOCCO, R. AND R. STRAUSZ (2015): “Consumer standards as a strategic device to
mitigate ratchet effects in dynamic regulation,” Journal of Economics & Manage-
ment Strategy, 24, 550–569.

FUDENBERG, D. AND J. TIROLE (1991): “Perfect Bayesian equilibrium and sequential
equilibrium,” journal of Economic Theory, 53, 236–260.

GERARDI, D. AND L. MAESTRI (2020): “Dynamic contracting with limited commit-
ment and the ratchet effect,” Theoretical Economics, 15, 583–623.

GIBBARD, A. (1973): “Manipulation of voting schemes: a general result,” Economet-
rica, 587–601.

GILBERT, R. J. AND P. KLEMPERER (2000): “An equilibrium theory of rationing,” The
RAND Journal of Economics, 1–21.

GOLOSOV, M. AND L. IOVINO (2016): “Social Insurance, Information Revelation, and
Lack of Commitment,” Working Paper.

GUL, F., H. SONNENSCHEIN, AND R. WILSON (1986): “Foundations of dynamic
monopoly and the coase conjecture,” Journal of Economic Theory, 39, 155 – 190.

HART, O. D. AND J. TIROLE (1988): “Contract renegotiation and Coasian dynamics,”
The Review of Economic Studies, 55, 509–540.

HART, S., I. KREMER, AND M. PERRY (2017): “Evidence games: Truth and commit-
ment,” American Economic Review, 107, 690–713.

HIRIART, Y., D. MARTIMORT, AND J. POUYET (2011): “Weak enforcement of environ-
mental policies: a tale of limited commitment and limited fines,” Annals of Eco-
nomics and Statistics/Annales d’Économie et de Statistique, 25–42.

KALLENBERG, O. (2017): Random measures, theory and applications, Springer.

KAMENICA, E. AND M. GENTZKOW (2011): “Bayesian persuasion,” American Eco-
nomic Review, 101, 2590–2615.

31

https://www.dropbox.com/s/i07uphmmkfmmblx/rplc-finite.pdf?dl=0
https://www.dropbox.com/s/59v9kv1ep87vu0e/supplement-round-1.pdf?dl=0
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A COLLECTED DEFINITIONS AND NOTATION

Histories and strategies: We review in Appendix C how to endow the setM with a

measurable structure so that it is a standard Borel space (Aumann (1961)). In what

follows, we take this as given.

Denote by Mt the set ∪i∈It Mt i ∪{∅} and similarly let St denote the set ∪i∈It St i ∪{∅}.

Let Zt =M×{0,1}×St ×A and ZA,t =M×{0,1}×Mt ×St ×A. By construction, Zt and

ZA,t are standard Borel spaces.

Public histories through period t are H t = ×t−1
τ=0Zτ and private histories are Θ×H t

A =
Θ××t−1

τ=0ZA,τ. Note that the information sets of the principal can be described by

a measurable function ζP t ∶Θ×H t
A ↦ H t where ζP t is the projection of Θ×H t

A onto

×t−1
τ=0Zτ. Similarly, the information sets of the agent can be described by a measurable

function ζAt ∶Θ×H t
A↦Θ×H t

A where ζAt is simply the identity.

Induced distributions and payoffs: Fix a mechanism Mt . The strategy profile to-

gether with the mechanism define a transition probability from Θ×H t
A ×M to Mt ×

St × A as follows:

ρσA(M̃ × S̃ × Ã∣θ,ht
A,Mt) = ∫

M̃
βMt (S̃ × Ã∣m)rt(θ,ht

A,Mt)(dm),
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for all measurable subsets M̃ , S̃, Ã of Mt ,St , A.

Given σ = (σP ,σA) and (θ,ht
A) we can define transition probabilities from Θ×H t

A to

ZA,t as follows:

κσt (M̃×{0}×{∅}×{∅}×{a∗}∣θ,ht
A) = ∫{x∶σP t(ζP t(θ,ht

A),x)∈M̃}
(1−πt(θ,ht

A ,σP(ζP t(θ,ht
A), x)))λ(d x)

for any measurable subset M̃ ofM, and

κσt (M̃×{1}× M̃ × S̃ × Ã∣θ,ht
A)

= ∫{x∶σP t(ζP t(θ,ht
A),x)∈M̃}

ρσA(M̃ × S̃ × Ã∣θ,ht
A ,σP t(ζP t(θ,ht

A), x))πt(θ,ht
A ,σP t(ζP t(θ,ht

A), x))λ(d x)

on the measurable rectangles M̃× M̃ × S̃ × Ã ∈ BM⊗Mt⊗St⊗A.

Let µ0 denote the initial distribution on Θ. The Ionescu-Tulcea extension theorem

(Tulcea (1949)) guarantees the existence of a sequence of probability measures Pσ
t =

µ0⊗⊗t−1
τ=0κ

σ
τ defined on the product spaces (Θ×H t

A)T
t=0 and a probability measure

Pσ on (Θ×H T+1
A ,BΘ⊗⊗T

τ=0BZA,τ) so that for any measurable Θ̃×H̃ t
A ⊆Θ×H t

A, Pσ
t (Θ̃×

H̃ t
A) =Pσ(Θ̃× H̃ t

A ×∏
T
τ=t+1ZA,τ).

Then, the principal’s payoff, W (Pσ), is given by

∫
Θ×H T+1

A

W (projΘ×AT+1(θ,hT+1
A ))Pσ(d(θ,hT+1

A )) = ∫
Θ×AT+1

W (aT+1,θ)(Pσ ○proj−1
Θ×AT+1)(d(θ, aT+1)),

while the agent’s payoff when her type is θ, U(Pσ), is given by

∫
Θ×H T+1

A

U(projΘ×AT+1(θ,hT+1
A ))Pσ∣θ(d(θ,hT+1

A )) = ∫
Θ×H T+1

A

U(aT+1,θ)(Pσ∣θ ○proj−1
Θ×AT+1)(d(θ, aT+1)),

where Pσ∣θ is the induced probability over Θ×H T+1
A determined by drawing θ = θ

with probability one and drawing the terminal history using Pσ.

Fix a measurable strategy σ. Fix a period t , a belief pt ∈ ∆(Θ×H t
A(ht)) and mech-

anism Mt . Define the one-step ahead prediction equations on the measurable rect-

angles as follows:

ft(pt ,Mt)(Θ̃× H̃ t
A × z∅(Mt)) = ∫

Θ̃×H̃ t
A

(1−πt(θ,ht
A ,Mt))pt(d(θ,ht

A)), (A.1)

ft(pt ,Mt)(Θ̃× H̃ t
A ×Mt ×{1}× M̃ × S̃ × Ã) = ∫

Θ̃×H̃ t
A

ρσA(M̃ × S̃ × Ã∣θ,ht
A ,Mt)πt(θ,ht

A ,Mt)pt(d(θ,ht
A)).

The mapping ft ∶∆(Θ×H t
A)×M↦∆(Θ×H t

A×ZA,t) ≡∆(Θ×H t+1
A ) is Borel measurable.
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Let pt+1 ∈∆(Θ×H t+1
A ), with marginal pt+1H t+1 over H t+1, we can construct

∫
H̃ t+1

q(Θ̃× H̃ t+1
A ∣ht+1, p)pt+1H t+1(dht+1) = ∫

Θ̃×H̃ t+1
A

1[(θ,ht+1
A ) ∈ H ′]pt+1(d(θ,ht+1

A )),

on the measurable rectangles Θ̃× H̃ t+1
A ⊂Θ×H t+1

A , H̃ t+1 ⊂ H t+1. Note that as a func-

tion of (ht+1, p), q is measurable.

Fix a public history ht , a mechanism Mt , and a belief µt(ht) ∈∆(Θ×H t
A(ht)). Define

transition probabilities from Hτ×M toΘ×Hτ+1
A for τ ≥ t , recursively as follows:

νt(ht ,Mt) = ft(µt(ht),Mt),

ντ(hτ,Mτ) = fτ(q(hτ,ντ−1(hτ−1, ⋅)),Mτ).

Fix a belief p ∈ ∆(Θ×H t+1
A ). This, together with the kernels (κστ )τ≥t+1, induces a se-

quence of distributions P
σ∣p
τ = p⊗⊗τ

n=t+1κ
σ
n on the product spaces (Θ×Hτ

A)τ≥t+1 and

a measure Pσ∣p on (Θ×H T+1
A ,BΘ×H T

A
), by the Ionescu-Tulcea Theorem. Proposition

7.26, Lemma 7.28, and Corollary 7.29.1 in Bertsekas and Shreve (1978) imply that the

mappings p ↦ P
σ∣p
τ and p ↦ Pσ∣p are Borel measurable. The following lemma is a

consequence of Lemma 10.4 in Bertsekas and Shreve (1978):

Lemma A.1. For every Borel measurable strategy profile σ and Borel measurable sub-

set Θ̃× H̃τ
A ⊆Θ×Hτ

A

P
σ∣µt(ht)
τ (Θ̃× H̃τ

A ∣hτ,Mτ) = ντ(hτ,Mτ)(Θ̃× H̃τ
A) Pσ∣µt(ht)−almost everywhere.

Note that νt(ht ,Mt) = ft(µt(ht),Mt) defines a transition probability from H t ×M to

Θ×H t+1
A . Then, Pσ∣⋅○νt defines a transition probability from H t ×M to∆(Θ×H T+1

A ).

It follows from this that we can define a bounded measurable function from H t ×M
to R as follows:

W (σ,ν∣ht ,Mt) = ∫
Θ×H t+1

A

EPσ∣(θ,ht+1
A )[W (at , ⋅,θ)]νt(d(θ,ht+1

A )∣ht ,Mt).

Lemma A.1 implies that W (σ,ν∣ht ,Mt) represents the principal’s payoff conditional

on information set ht and having chosen Mt when his beliefs are given by µt(ht).

U(σ∣θ,ht
A,Mt) can be defined analogously.

With this we can formally define Perfect Bayesian equilibrium:
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Definition A.1. An assessment (σP ,σA,µ) is sequentially rational if for all t and pub-

lic histories ht ,

1. If Mt ∈ supp σP t(ht), W (σ,ν∣ht ,Mt) ≥W (σ,ν∣ht ,M′
t) for all M′

t ∈M,

2. For all Mt ∈M, U(σ∣θ,ht
A,Mt) ≥U(σP ,σ′A ∣θ,ht

A,Mt) for all θ ∈Θ,ht
A ∈ H t

A(ht),σ′A.

Definition A.2. A system of beliefs satisfies Bayes’ rule where possible if for all t , all

public histories ht , all measurable subsets Θ̃, H̃ t
A of Θ, H t

A(ht),

µt+1(Θ̃× H̃ t
A × z∅(Mt)∣ht , z∅(Mt))∫

Θ×H t
A

(1−πt(θ,ht
A ,Mt))µt(d(θ,ht

A)∣ht)

= ∫
Θ̃×H̃ t

A

(1−πt(θ,ht
A ,Mt))µt(d(θ,ht

A)∣ht),

and for all measurable subsets Θ̃, H̃ t
A, M̃ , S̃, Ã of Θ, H t

A(ht), M Mt ,SMt , A,

∫
Θ×H t

A

∫
S̃×Ã

µt+1(Θ̃× H̃ t
A × M̃ × z(st ,at)(Mt)∣ht , z(st ,at)(Mt))ρσA

SMt ×A
(d(st , at)∣θ,ht

A)πt(θ,ht
A ,Mt)µt(d(θ,ht

A)∣ht)

= ∫
Θ̃×H̃ t

A

(∫
M̃
βMt (S̃ × Ã∣m)rt(θ,ht

A ,Mt)(dm))πt(θ,ht
A ,Mt)µt(d(θ,ht

A)∣ht).

Definition A.3. An assessment (σP ,σA,µ) is a Perfect Bayesian equilibrium if it is

sequentially rational and satisfies Bayes’ rule where possible.

If the system of beliefs satisfies Bayes’ rule where possible, then letting νt(ht ,Mt) =
ft(µt(⋅∣ht),Mt) and νt H t+1 denote the marginal of νt on H t+1, we have that

∫
H̃ t+1

µt+1(Θ̃× H̃ t+1
A ∣ht+1)νt H t+1(dht+1) = νt(ht ,Mt)(Θ̃× H̃ t+1

A ),

on the measurable rectangles Θ̃× H̃ t+1
A ∈ BΘ⊗H t+1

A
and H̃ t+1 ∈ BH t+1 . Working forward

through the one-step ahead prediction equations we have that q(hτ,ντ−1(hτ−1, ⋅)) =
µτ(hτ) for those histories in the support of Pσ∣µt(ht). Note the following:

W (σ,ν∣ht ,Mt) = ∫
Θ×H t+1

A

EPσ∣(θ,ht+1
A ) [W (at , ⋅,θ)]νt(d(θ,ht+1

A )∣ht ,Mt) (A.2)

=∫
Θ×H t

A

⎛
⎜
⎝

(1−πt(θ,ht
A ,Mt))EPσ∣(θ,ht

A ,z∅(Mt )) [W (at , a∗, ⋅,θ)]+πt(θ,ht
A ,Mt)

∫M Mt ×SMt ×A E
P
σ∣(θ,ht

A ,m,z(st ,at )(Mt ))[W (at , at , ⋅,θ)]ρσA(d(m, st , at)∣θ,ht
A ,Mt))

⎞
⎟
⎠
µt(d(θ,ht

A)∣ht)

= ∫{ht+1∈H t+1∶ht≺ht+1}∫Θ×H t+1
A

EPσ∣(θ,ht+1
A )

[W (at , ⋅,θ)]µt+1(d(θ,ht+1
A )∣νt ,ht+1)νt H t+1(dht+1∣ht ,Mt),

where ht ≺ ht+1 denotes that public history ht precedes ht+1.

Disintegration: The proofs in this appendix frequently make use of the notion of a
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disintegration. For any two measurable spaces, X and Y , and a Borel measure ν on

X ×Y , νX and νY denote the marginals of ν on Y and X , respectively. Given a product

space X ×Y , projY denotes the projection of X ×Y onto Y .

Given two Polish spaces, X and Y , and a joint measure ν on X ×Y , the (νX ,projY )-

disintegration of ν is the collection of measures on BX×Y , {ηx ∶ x ∈ X}, where

(i) ηx is concentrated on X = x, i.e. ηx({X ≠ x}) = 0 νX− almost everywhere,

and for each non negative measurable function f on BX×Y :

(ii) x↦∫Y f (x, y)ηx(d y) is measurable,

(iii) ∫X×Y f (x, y)ν(d(x, y)) = ∫X ∫Y f (x, y)ηx(d y)νX (d x).

Proposition 3.6 in Crauel (2002) ensures that {ηx ∶ x ∈ X} exists and is unique νX -

almost everywhere.

In what follows, we denote the principal’s beliefs conditional on ht and the agent par-

ticipating in mechanism Mt by µ+t (⋅∣ht) ∈∆(Θ×H t
A(ht)). That is, for any measurable

subset Θ̃× H̃ t
A ⊂Θ×H t

A(ht),

µ+t (Θ̃× H̃ t
A ∣ht ,Mt) = ∫

Θ̃×H̃ t
A

πt(θ,ht
A,Mt)µt(d(θ,ht

A)∣ht),

Note that when µ+t (Θ×H t
A(ht)∣ht ,Mt) ≠ 0, we can actually take it to be a probability

measure by normalizing it appropriately.

B PROOF OF THEOREM 1

The proof of Theorem 1 follows from the proof of Propositions B.1-B.4 below.

Proposition B.1. Fix a PBE assessment (σP ,σA,µ) of GM and a public history ht , and

a mechanism Mt ∈M. Then, there exists a continuation strategy σ′A such that:

1. For all public histories hτ that succeed ht , σ′Aτ(θ,hτ
A,Mτ) = σ′Aτ(θ,h

τ

A,Mτ) for

all hτ
A,h

τ

A ∈ Hτ
A(hτ),Mτ ∈M, for all θ ∈Θ,

2. For all public histories hτ that succeed ht , U(Mτ,σP ,σ′A ∣θ,hτ
A) =U(Mτ,σP ,σA ∣θ,hτ

A)
for all hτ

A ∈ Hτ
A(hτ),Mτ ∈M,θ ∈Θ,

3. There exists a belief system (µ′)T
t=0 such that (σP ,σ′A,µ′) is also a PBE, and

4. For all public histories hτ on the equilibrium path of (σP ,σA) starting at ht ,

W (Mτ,σP ,σ′A,µ′∣hτ) =W (Mτ,σP ,σA,µ∣hτ).
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Proof of Proposition B.1. Fix a public history ht , a mechanism Mt and suppose that

the set of agent types for which σAt(θ,ht
A,Mt) is not BΘ⊗H t -measurable has positive

measure under µt(⋅). Note that the continuation strategy of (θ,ht
A) is feasible for

(θ,h
t
A) and vice versa. Thus, conditional on participating of Mt , the agent at (θ,ht

A)
is not only indifferent between all the messages in the support of rt(θ,ht

A,Mt)(⋅),

but is also indifferent between all messages in the support of rt(θ,h
t
A,Mt)(⋅). There-

fore, the agent at (θ,ht
A) is indifferent between rt(θ,ht

A,Mt) and any randomization

between rt(θ,ht
A,Mt) and rt(θ,h

t
A,Mt). This indifference also holds taking into ac-

count the decision to participate. Moreover, this is true for any continuation public

history that is reached from ht for the same reasons. That is, for any τ ≥ t and hτ

that succeeds (ht ,Mt) and for any hτ
A,h

τ

A that succeed ht
A and h

t
A, respectively, the

agent of type θ is indifferent between her continuation strategy at (hτ
A,Mτ) and that

at (h
τ

A,Mτ). We now construct a new strategy for the agent which, by the above ar-

guments, is payoff equivalent to σA.

The principal’s belief together with the agent’s participation strategy induce a mea-

surable map from H t ×M to ∆(Θ×{0,1}) given by

Pπ(Θ̃×{1}∣ht ,Mt) = ∫
Θ̃×H t

A

πt(θ,ht
A,Mt)µt(d(θ,ht

A)∣ht),

with marginalµtΘ(⋅∣ht) over the set of types. The disintegration theorem implies that

we can write:

Pπ(Θ̃×{1}∣ht ,Mt) = ∫
Θ̃
π′t(θ,ht ,Mt)({1})µtΘ(dθ∣ht),

where, in a slight abuse of notation, {π′t(θ, ⋅)({1}) ∶ θ ∈ Θ} is the (µtΘ,proj{0,1})-

disintegration of Pπ(⋅∣ht ,Mt).

Similarly, if ∫Θ×H t
A(ht)πt(θ,ht

A,Mt)µt(d(θ,ht
A)∣ht) > 0, the principal’s belief together

with the agent’s reporting strategy induce a measurable map from H t ×M to ∆(Θ×
M Mt ) given by

Pr (Θ̃× M̃ ∣ht ,Mt) = ∫
Θ̃×H t

A

rt(θ,ht
A,Mt)(M̃)µ+t (d(θ,ht

A)∣ht ,Mt),

with marginal µ+tΘ(⋅∣ht ,Mt) over the set of types. The disintegration theorem implies

that we can write

Pr (Θ̃× M̃ ∣ht ,Mt) = ∫
Θ̃

r ′t(θ,ht ,Mt)(M̃)µ+tΘ(dθ∣ht ,Mt),
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where {r ′t(θ,ht ,Mt) ∶ θ ∈Θ} is the (µ+tΘ,projM Mt )-disintegration ofPr (⋅∣ht ,Mt). Since

π′t ,r ′t are (Θ×H t ×M)- measurable, they are a fortiori (Θ×H t
A ×M)-measurable.

We can similarly redefine π′τ,r ′τ for τ ≥ t +1. Indeed, we have

Pπ(Θ̃×{1}∣hτ,Mτ) = ∫
Θ̃×Hτ

A

πτ(θ,hτA ,Mτ)µτ(d(θ,ht
A)∣hτ) = ∫

Θ̃
π′τ(θ,hτ,Mτ)({1})µτΘ(dθ∣hτ),

and, whenever ∫Θ×Hτ
A
πτ(θ,hτ

A,Mτ)µτ(d(θ,hτ
A)∣hτ) > 0, define:36

Pr (Θ̃× M̃ ∣hτ,Mτ) = ∫
Θ̃×Hτ

A

rτ(θ,hτA ,Mτ)(M̃)µ+τ (d(θ,hτA)∣hτ,Mτ) = ∫
Θ̃

r ′τ(θ,hτ,Mτ)(M̃)µ+τΘ(dθ∣hτ,Mτ).

Note that the disintegration theorem automatically implies that the above equations

determine well-defined strategies for the agent.

Given the new strategies, the one-step ahead equations (see Equation A.1) become:

f ′τ(µ′τ,Mτ)(Θ̃× H̃τ
A × z∅(Mτ)) = ∫

Θ̃×H̃τ
A

(1−π′τ(θ,hτA ,Mτ))µ′τ(d(θ,hτA)∣hτ),

f ′τ(µ′τ,Mτ)(Θ̃×H ′
A ×Mτ×{1}× M̃ × S̃ × Ã) = ∫

Θ̃×H̃τ
A

ρσ
′
A(M̃ × S̃ × Ã∣θ,hτA ,Mτ)π′τ(θ,hτA ,Mτ)µ′τ(d(θ,hτA)∣hτ).

We now use these equations inductively to show that under the new strategies the

distribution over Θ×H T+1 induced by Pσ∣⋅ ○µt(⋅∣ht) is preserved.37 Suppose that we

have shown that for t ≤ τ′ ≤ τ, µ′
τ′(⋅×Hτ′

A (hτ′)∣hτ′) coincides withµτ′(⋅×Hτ′
A (hτ′)∣hτ′)

for Pσ∣⋅○µt(⋅∣ht) almost all hτ′ . We now show that this holds for τ+1. To see this, first

note that for all measurable subset Θ̃ ofΘ, we have

µ′+τ (Θ̃×Hτ
A(hτ)∣hτ,Mt) = ∫

Θ̃×Hτ
A(hτ)

π′τ(θ,hτA ,Mτ)µ′τ(d(θ,hτA)∣hτ) = ∫
Θ̃
π′τ(θ,hτA ,Mτ)µ′τΘ(dθ∣hτ)

= ∫
Θ̃
π′τ(θ,hτA ,Mτ)µτΘ(dθ∣hτ) = ∫

Θ̃×Hτ
A(hτ)

πτ(θ,hτA ,Mτ)µτ(d(θ,hτA)∣hτ) =µ+τ (Θ̃×Hτ
A(hτ)∣hτ,Mτ),

(B.1)

where the second equality follows from Fubini’s theorem andπ′t beingBH t -measurable

and the third from the inductive hypothesis. This automatically implies that

ν′τ(µτ(⋅∣hτ),Mτ)(Θ̃×Hτ
A(hτ)× z∅(Mτ)) = ντ(µτ(⋅∣hτ),Mτ)(Θ̃×Hτ

A(hτ)× z∅(Mτ)),

36The definition of (πτ,rτ) for θ not in the support of the principal’s beliefs is irrelevant.
37While we change the agent’s strategy at all histories which succeed (ht ,Mt), Bayes’ rule where

possible ties the beliefs at ht and the beliefs at hτ only at those histories hτ that are on the path of the
(agent’s) strategy. This is why when we check that the principal’s beliefs over Θ have not changed we
do so along the path of the strategy profile starting at ht . This is enough to check that we have not
changed the principal’s (continuation) payoffs.
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and hence the updated belief µτ+1(⋅ ×Hτ
A(hτ)∣hτ,Mτ, z∅(Mτ)) remains unchanged

if the event that the mechanism was rejected has positive probability in the original

strategy profile. Moreover, for any measurable subset Θ̃ ofΘ, and for any measurable

subset M̃ of M Mτ we have

∫
Θ̃×Hτ

A(hτ)
r ′τ(θ,hτA ,Mτ)(M̃)µ′+τ (d(θ,hτA)∣hτ,Mτ) = ∫

Θ̃
r ′τ(θ,hτA ,Mτ)(M̃)µ′+τΘ(dθ∣hτ,Mτ)

= ∫
Θ̃

r ′τ(θ,hτA ,Mτ)(M̃)µ+τΘ(dθ∣hτ,Mτ) = ∫
Θ̃×Hτ

A(hτ)
rτ(θ,hτA ,Mτ)(M̃)µ+τ (d(θ,hτA)∣hτ,Mτ),

where the first equality uses Fubini’s theorem, the second equality uses Equation B.1,

and the third equality uses the definition of r ′t(⋅). This implies that

f ′τ(µ′τ(⋅∣hτ),Mτ)(Θ̃×Hτ
A(hτ)×Mτ×{1}×M Mτ × S̃ × Ã) = fτ(µτ(⋅∣hτ),Mτ)(Θ̃×Hτ

A(hτ)×Mτ×{1}×M Mτ × S̃ × Ã),

on the measurable rectangles Θ̃×M Mτ× S̃× Ã ∈ BΘ⊗Mτ×Sτ×A. Thus, the (marginal) up-

dated beliefs {µ′τ+1(⋅×Hτ
A(hτ)×Mτ×M Mτ×⋅∣hτ,Mt , z) ∶ z ∈Zτ} coincide with {µt+1(⋅×

H t
A(ht)×Mt ×M Mt × ⋅∣ht ,Mt , z) ∶ z ∈ Zτ}, Pσ∣µt(ht)- almost surely. It follows that the

principal’s payoff remains the same (see Equation A.2).

Remark B.1. Note that the PBE assessment one obtains from Proposition B.1 satisfies

that Pσ′(projΘ×AT+1Θ×H T+1
A ) =Pσ(projΘ×AT+1Θ×H T+1

A ). It follows that the set of PBE

outcomes of the mechanism-selection game is the same as the set of PBE outcomes of

the mechanism-selection game when the agent’s strategy only depends on her payoff

relevant type and the public history.

The outcome-equivalent PBE assessment one obtains from Proposition B.1 satis-

fies the following property. On the equilibrium path, the principal’s beliefs over the

agent’s payoff-relevant type, θ ∈ Θ, do not depend on her payoff-irrelevant history,

ht
A. However, at a public history ht reached after a deviation by the agent, the re-

quirements of PBE do not rule out that the principal’s updated beliefs depend non-

trivially on both θ and ht
A. It follows from Proposition B.1 that without loss of gener-

ality, we can assume that when the principal observes a deviation by the agent, his

updated beliefs do not depend on ht
A. The proof is available upon request.

Given a mechanism Mt , let

(SMt × A)+ = ⋃
m∈M Mt

supp βMt (⋅∣m). (B.2)

The set (SMt × A)∖(SMt × A)+ has zero probability regardless of the agent’s strategy.

Hence, if we remove from the tree those paths that are consistent with mechanism
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Mt and (s, a) ∉ (SMt × A)+, this does not change the set of equilibrium outcomes.

Hereafter, these histories are removed from the tree.

Fix a PBE assessment of GM and a mechanism Mt and define a measure on M Mt ×
SMt × A as follows:

Rht ,Mt (M̃ × S̃ × Ã) = ∫
Θ×H t

A(ht)∫M̃
β(S̃ × Ã∣m)rt(θ,ht

A ,Mt)(dm)πt(θ,ht
A ,Mt)µt(d(θ,ht

A)∣ht).

(B.3)

Proposition B.2. Fix a PBE assessment (σP ,σA,µ) of GM that satisfies Proposition B.1.

Then, there exists an outcome-equivalent PBE assessment (σ′P ,σ′A,µ′) such that for all

public histories ht , for all mechanisms Mt on the path of the equilibrium strategy at

ht such that the agent participates with positive probability, M Mt = Θ, (SMt × A)+ is

the support of Rht ,Mt (Θ× ⋅). Moreover, the agent truthfully reports her type.

Proof of Proposition B.2. Fix a PBE assessment (σP ,σA,µ) of GM that satisfies Propo-

sition B.1, a history ht , and a mechanism Mt on the support of the principal’s strat-

egy at ht , such that the agent participates with positive probability. Let Θ+ denote

the support of µ+t (⋅∣ht ,Mt). By definition,Θ+ is closed.

Define a new mechanism Mt as follows. Let (M Mt ,SMt ) = (Θ,SMt ) (Recall that Θ is a

feasible set of input messages.) Define the transition probability from Θ+ to SMt × A

by specifying its values on the measurable rectangles, S̃ × Ã ∈ BSMt⊗A,

βMt (S̃ × Ã∣θ) = ∫
M Mt

βMt (S̃ × Ã∣m)rt(θ,ht
A,Mt)(dm).

By composition of measurable functions and since rt does not depend on ht
A, this

defines a measurable mapping from Θ+ to ∆(SMt × A). Note that this modification

does not alter the principal’s beliefs about the agent’s type conditional on observing

(st , at) ∈ (SMt × A)+.

For θ ∉Θ+, let

Q∗(θ) = arg max
q∈∆(Θ+)∫Θ+

[∫
SMt ×A

EP
σ∣(θ,ht

A ,⋅,z(st ,at )(Mt )) [U(at , at , ⋅,θ)]βMt (d(st , at)∣θ̃)]q(d θ̃),

where the payoff on the right-hand side of the above expression corresponds to the

payoff from reporting (possibly at random) a type in Θ+, and then conditional on

(st , at), play proceeding as in the original strategy profile. The objective is contin-
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uous in q38 and ∆(Θ+) is compact since Θ+ is compact (Theorem 15.11 in Alipran-

tis and Border (2013)). Then, the maximization is well-defined. Theorem 18.19 in

Aliprantis and Border (2013) implies that there exists a measurable selector q∗(θ) ∈
Q∗(θ). Use this to define βMt (⋅∣θ) for θ ∉ Θ+ on the measurable rectangles S̃ × Ã of

SMt × A as follows:

βMt (S̃ × Ã∣θ) = ∫
Θ+
βMt (S̃ × Ã∣θ̃)q∗(θ)(d θ̃).

Note that this defines βMt as a transition probability fromΘ to SMt × A.39

Modify the principal’s strategy so that he offers Mt instead of Mt . Modify the con-

tinuation strategies so that for any public history that succeeds (ht ,Mt) play follows

what would have transpired if instead Mt had been played. Set r ′t(θ,ht
A,Mt) = δθ.

For θ ∈ Θ+, it is a best response to set π′t(θ,ht
A,Mt) = πt(θ,ht

A,Mt). Types not in Θ+
may not find it optimal to participate in the mechanism; recompute their participa-

tion strategies accordingly. Finally, use Equation A.1 equations to modify the belief

system. It is immediate to check that the new assessment is also a PBE.

To finalize the proof, we need to show that the distribution Rht ,Mt
∈ ∆(M Mt ×SMt ×

A) ∈ ∆(Θ×SMt × A) satisfies that the support of Rht ,Mt
(Θ× ⋅) is (SMt × A)+. Clearly,

supp Rht ,Mt
(Θ+ × ⋅) ⊆ (SMt × A)+. Suppose the inclusion is strict and let (s0, a0) ∈

(SMt ×A)+∖supp Rht ,Mt
(Θ+×⋅). Then, there exists an open neighborhood of (s0, a0),

N0 such that Rht ,Mt
(Θ×N0) = 0. We claim that supp Rht ,Mt

(⋅ × SMt × A) ≠ Θ+. To-

wards a contradiction, assume that supp Rht ,Mt
(⋅ × SMt × A) = Θ+. Then, for all θ ∈

Θ+ there exists an open neighborhood θ ∈ Vθ such that Rht ,Mt
(Vθ × SMt × A) > 0.

Then, ∫Θ+βMt (N0∣θ)µ+t (dθ∣ht ,Mt) = 0 implies thatβMt (N0∣θ) = 0 for all θ ∈Θ+. Thus,

(s0, a0) ∉ (SMt × A)+, a contradiction.

Two corollaries follow from Proposition B.2. First, from now on, we can focus on PBE

assessments (σP ,σA,µ) that satisfy Proposition B.1 and where the principal offers

mechanisms with input messages equal to the set of types and the agent truthfully

reports her type conditional on participating. Second, if the agent participates in the

mechanism offered by the principal, the principal is never surprised by the tuples

(st , at) that come out of the mechanism. This, instead, means that if the agent par-

38The term in brackets is bounded above by the payoff the agent of type θ obtains in equilibrium.
The results in Serfozo (1982) imply then continuity of the objective in q .

39To see this, fix a measurable subset C of∆(SMt ×A) and let B denote a measurable subset of [0,1].

Then, the set {θ ∈Θ ∶βMt (C ∣θ) ∈B} = {θ ∈Θ+ ∶βMt (C ∣θ) ∈B}∪{θ ∈Θ∖Θ+ ∶βMt (C ∣θ) ∈B}. Each set is
in BΘ by construction and therefore their union is in BΘ.
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ticipates in the mechanism with positive probability, then beliefs,

µt+1(⋅, z(st ,at)(Mt)∣ht , z(st ,at)(Mt)), are determined via Bayes’ rule where possible.

The following two propositions require lifting a PBE assessment, (σP ,σA,µ), from

GM to one in the auxiliary game. Each proposition finds an outcome-equivalent

PBE assessment, (σ′P ,σ′A,µ′), of the auxiliary game with certain properties.

Proposition B.3. Fix a PBE assessment (σP ,σA,µ) of GM that satisfies the properties

listed in Propositions B.1-B.2. Then, there exists an outcome-equivalent PBE assess-

ment of the auxiliary game, (σ′P ,σ′A,µ′) such that for all ht , and Mt in the support

of σP t(ht) such that the agent participates with positive probability, the following

holds. First, Mt is a canonical mechanism. Second, the agent truthfully reports her

type. Third, the principal’s updated beliefs coincide with the output message.

Proof of Proposition B.3. Let (σP ,σA,µ) be as in the statement of Proposition B.3. In

a slight abuse of notation, lift (σP ,σA,µ) so that it is a PBE assessment in the auxiliary

game. Let ht be a public history and let Mt denote a mechanism on the path of the

equilibrium strategy starting at ht . LetΘ+ denote the support of µ+t (⋅∣ht ,Mt).

The kernel νt(ht ,Mt) defines a joint probability onΘ×SMt × A via

νt(ht ,Mt)(Θ̃× S̃ × Ã) = ∫
Θ̃
βMt (S̃ × Ã∣θ)µ+tΘ(dθ∣ht ,Mt),

while the updated beliefs satisfy

νt(ht ,Mt)(Θ̃× S̃ × Ã) = ∫
S̃×Ã

µt+1(Θ̃×H t+1
A (ht , z(st ,at)(Mt))∣ht , z(st ,at)(Mt))νtSMt ×A(ht ,Mt)(d(st , at)).

Recall that we can write the principal’s payoff as follows (Equation A.2):

∫
Θ×SMt ×A

EP
σ∣(θ,ht

A ,z(st ,at )(Mt )) [W (at , at , ⋅,θ)]βMt (d(st , at)∣θ)µ+tΘ(dθ∣ht ,Mt)

= ∫
SMt ×A

∫
Θ
EP

σ∣(θ,ht
A ,z(st ,at )(Mt )) [W (at , at , ⋅,θ)]µt+1Θ(dθ∣ht , z(st ,at)(Mt))νtSMt ×A(d(st , at)∣ht ,Mt).

By Kuratowski’s theorem, there exists a bijection ω ∶ SMt ↦ [0,1] (see Parthasarathy

(2005)). Define the measurable functionW ∶ A×∆(Θ)×[0,1]↦R as follows:

W(µ,ω(st), at) = ∫
Θ
EP

σ∣(θ,ht
A ,z(st ,at )(Mt )) [W (at , at , ⋅,θ)]µ(dθ).

We allowW to explicitly depend on st since continuation payoffs may depend on st

beyond its impact on beliefs. Define the measurable map T ∶ SMt ×A↦∆(Θ)×[0,1]×
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A, so that T (st , at) = (µt+1(⋅∣ht , z(st ,at)(Mt)),ω(st), at). Define a measure over Θ×
∆(Θ)×[0,1]× A by specifying it on the measurable rectangles:

P(Θ̃×Ũ × Ω̃× Ã) = νt(ht ,Mt)(Θ̃×T −1(Ũ × Ω̃× Ã)), (B.4)

where we denote by Ω̃ an element of B[0,1] anticipating that this part of the output

message will become the public randomization device. Note that we can write:

∫
SMt ×A

W(µ(ht , z(st ,at)(Mt)),ω(st), at)νtSMt ×A(d(st , at)∣ht ,Mt) (B.5)

=∫
SMt ×A

W(T (st , at))νtSMt ×A(d(st , at)∣ht ,Mt) = ∫
T (SMt ×A)

W(µ,ω, at)νtSMt ×A ○T −1(d(µ,ω, at))

= ∫
∆(Θ)×[0,1]×A

W(µ,ω, at)P∆(Θ)×[0,1]×A(d(µ,ω, at)).

Let {η(µ,ω,a) ∶ (µ,ω, a) ∈ ∆(Θ)× [0,1] × A} denote the (P∆(Θ)×[0,1]×A,projΘ) disinte-

gration of P. We have that on the measurable rectangles,

∫
Ũ×Ω̃×Ã

η(µ,ω,a)(Θ̃)P∆(Θ)×[0,1]×A(d(µ,ω, a)) =P(Θ̃×Ũ × Ω̃× Ã) = νt(ht ,Mt)(Θ̃×T −1(Ũ × Ω̃× Ã))

= ∫
T−1(Ũ×Ω̃×Ã)

T∆(Θ)(st , at)(Θ̃)νtSMt ×A(d(st , at)∣ht ,Mt) = ∫
Ũ×Ω̃×Ã

µ(Θ̃)P∆(Θ)×[0,1]×A(d(µ,ω, a)),

where T∆(Θ) is the first coordinate of T . It follows from Proposition 3.6 in Crauel

(2002) that η(µ,ω,a) =µ P∆(Θ)×[0,1]×A-almost everywhere. Intuitively this is just saying

that “when the output message is (µ,ω)", the principal updates his beliefs to µ.

Now, let {ηµ ∶µ ∈∆(Θ)} denote the (P∆(Θ),projΘ×[0,1]×A)-disintegration ofP. For any

measurable subset Ũ of ∆(Θ), we have that on the measurable rectangles Θ̃× Ω̃× Ã

ofΘ×[0,1]× A,

∫
Ũ
ηµ(Θ̃× Ã× Ω̃)dP∆(Θ) =P(Θ̃×Ũ × Ã× Ω̃) = ∫

Ũ×Ã×Ω̃
µ(Θ̃)dP∆(Θ)×A×Ω = (B.6)

∫
Ũ×A×Ω

1[(a,ω) ∈ Ã× Ω̃]µ(Θ̃)dP∆(Θ)×A×Ω =∫
Ũ
∫

A×Ω
µ(Θ̃)1[(a,ω) ∈ Ã× Ω̃]ηµ(d(a,ω))dP∆(Θ)

=∫
Ũ
µ(Θ̃)∫

A×Ω
1[(a,ω) ∈ Ã× Ω̃]ηµ(d(a,ω))dP∆(Θ) =∫

Ũ
µ(Θ̃)ηµ(Ã× Ω̃)dP∆(Θ),

where the first and second equalities follow from the disintegration property, the

third equality is a rewriting of the integral, the fourth uses the (P∆(Θ),πA×Ω)-disintegration

of P∆(Θ)×A×Ω, {ηµ ∶ µ ∈ ∆(Θ)}, and the fifth equality uses that “conditional on µ",

µ(Θ̃) is constant. It follows from this thatΘá (A,Ω)∣∆(Θ).

Now, let {βθ ∶ θ ∈Θ} denote the (PΘ,proj∆(Θ)×Ω×A)-disintegration ofP. Theorem 1.25

in Kallenberg (2017) implies that there exist two transition probabilities p ∶Θ↦∆(Θ),
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q ∶Θ×∆(Θ)↦ [0,1]× A such that β = p⊗q and hence,

∫
Θ̃
βθ(Ũ × Ω̃× Ã)PΘ(dθ) = ∫

Θ̃
(∫

Ũ
q(θ,µ)(Ω̃× Ã)pθ(dµ))PΘ(dθ).

Equation B.6 and Theorem 1.27 in Kallenberg (2017) imply that q(θ,µ) = ηµ P∆(Θ)-

almost everywhere, so that we can write40

∫
Θ̃
βθ(Ũ × Ω̃× Ã)PΘ(dθ) = ∫

Θ̃
(∫

Ũ
ηµ(Ω̃× Ã)pθ(dµ))PΘ(dθ).

Theorem 1.25 in Kallenberg (2017) implies that we can write ηµ as the composition

of two transition probabilities,α from∆(Θ) to A and γ from∆(Θ)×A to [0,1], so that

∫
Θ̃
βθ(Ũ × Ω̃× Ã)PΘ(dθ) = ∫

Θ̃
(∫

Ũ
(∫

Ã
γ(µ,a)(Ω̃)αµ(d a))pθ(dµ))PΘ(dθ).

Finally, note that

∫
Θ̃
βθ(Ũ × Ω̃× Ã)PΘ(dθ) = νt(ht ,Mt)(Θ̃×T −1(Ũ × Ω̃× Ã)) = ∫

Θ̃
βMt (T −1(Ũ × Ω̃× Ã)∣θ)PΘ(dθ).

(B.7)

Let M′
t be such that (M M′

t ,SM′
t ) = (Θ,∆(Θ)) and for θ ∈ Θ+, define βM′

t (⋅∣θ) as the

composition of the transition probabilities p fromΘ to ∆(Θ) and α from ∆(Θ) to A.

Continuation strategies are modified so that when the outcome of the mechanism

is (µ, at), we draw ω ∈ [0,1] according to γ(µ,at) and we play the continuation corre-

sponding to (ht , z(st ,at)(Mt)) where T (st , at) = (µ, at ,ω).41 That is,

(σ′P ,σ′A)∣(ht ,z(µ,at )(M′
t),ω,⋅) = (σP ,σA)∣(ht ,zT−1(µ,at ,ω)(Mt),⋅).

With the continuation strategies at hand, for types not inΘ+, use the same argument

as in the proof of Proposition B.2 to extend βM′
t to all of Θ. This completes the spec-

40To facilitate checking the application of Theorem 1.27 in Kallenberg (2017) to our setting, we
now use his notation. For any sets Y , X , and Z , and joint measure ν on Y × X × Z , let ηY X ∣Z
denote the (νZ ,projY ×X )− disintegration of ν. Then Equation B.6 shows that ηΘA[0,1]∣∆(Θ) =
ηΘ∣∆(Θ)⊗ηA[0,1]∣∆(Θ),P∆(Θ)-almost everywhere. By Theorem 1.25 in Kallenberg (2017), ηΘA[0,1]∣∆(Θ) =
ηΘ∣∆(Θ)⊗ηA[0,1] ∣Θ∣∆(Θ), which means that ηA[0,1] ∣Θ∣∆(Θ) = ηA[0,1]∣∆(Θ) P∆(Θ)-almost everywhere. The-
orem 1.27 in Kallenberg (2017) shows that ηA[0,1] ∣∆(Θ)∣Θ = ηA[0,1] ∣Θ∣∆(Θ) PΘ∆(Θ)- almost everywhere.
Together with the observation that η∆(Θ)A[0,1]∣Θ = η∆(Θ)∣ΘηA[0,1]∣∆(Θ)∣Θ, completes the claim.

41At the risk of introducing more notation, one could use the probability integral transform and
make the distribution on [0,1] be the uniform distribution. Now, the probability integral transform
requires that the distribution ofωbe continuous. This can always be guaranteed by applying the result
in Lehmann et al. (1988), which shows that for any (real-valued) random variable X one can always
construct an information-equivalent random variable X ∗ the distribution of which is continuous.
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ification of M′
t . Equation B.7 implies that the agent receives the same payoff when

her type is in Θ+ by truthfully reporting. If θ ∉Θ+, the agent’s payoff from participat-

ing in the mechanism may be lower, so that we recompute the participation strategy

accordingly. Equation B.5 implies that the principal receives the same payoff under

Mt and under M′
t . It follows that the new profile is also a PBE.

Proposition B.4. Fix a PBE assessment (σP ,σA,µ) in GM that satisfies B.1-B.2. Then,

there is an outcome-equivalent PBE assessment (σ′P ,σ′A,µ′) of the auxiliary game that

satisfies Proposition B.3 and such that the following holds. For every t ≥ 0, for every

public history ht and mechanism Mt in the support of σP t(ht), πt(θ,ht
A,Mt) = 1 for

all types in the support of µt(⋅×H t
A ∣ht).

Proof of Proposition B.4. Let (σP ,σA,µ) denote a PBE assessment of GM that satis-

fies Propositions B.1- B.2. In a slight abuse of notation, let (σP ,σA,µ) denote the

outcome-equivalent PBE of the auxiliary game as in Proposition B.3. Fix a public

history ht and a mechanism Mt on the path of σP t at ht such that

∫
Θ×H t

A(ht)
πt(θ,ht

A,Mt)µt(d(θ,ht
A)∣ht) < 1.

This implies that the belief µt+1(⋅∣ht , z∅(Mt)) ≡ µ∅ is defined via Bayes’ rule using

the equilibrium strategy profile. LetΘ+ denote the support of µt(⋅×H t
A ∣ht).

If Mt is rejected with probability one, then modify the principal’s strategy so that

instead of offering Mt , he offers M′
t such that for all θ ∈ Θ βM′

t (⋅∣θ) = δ(µ∅,a∗), where

δ⋅ denotes the Dirac measure. Modify the continuation strategies so that

(σ′P ,σ′A)∣(ht ,z(µ∅,a∗)(M′
t)) = (σP ,σA)∣(ht ,z∅(Mt)).

Modify the agent’s strategy so that π′t(θ,ht
A,M′

t) = 1,r ′t(θ,ht
A,M′

t) = δθ whenever θ is

inΘ+; otherwise, leave the agent’s strategy unchanged.

Suppose now that the mechanism is accepted with positive probability, so that both

µ∅ andµ+t (⋅∣ht ,Mt) are determined via Bayes’ rule from the equilibrium strategy pro-

file. By Proposition B.3, it is without loss of generality to assume that (M Mt ,SMt ) =
(Θ,∆(Θ)). Define a new mechanism M′

t as follows. Let (M M′
t ,SM′

t ) = (M Mt ,SMt ) and

define the transition probability βM′
t fromΘ+ to ∆(Θ)× A on the measurable rectan-

gles as follows

βM′
t (Ũ × Ã∣θ) =πt(θ,ht

A ,Mt)βMt (S̃ × Ã∣θ)+(1−πt(θ,ht
A ,Mt))1[µ∅ ∈ Ũ , a∗ ∈ Ã].
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Define a joint probability overΘ×{0,1}×∆(Θ)× A as follows:

P(Θ̃×{0}×Ũ × Ã) =1[µ∅ ∈ Ũ , a∗ ∈ Ã]∫
Θ̃
(1−πt(θ,ht

A,Mt))µt(d(θ,ht
A)∣ht),

P(Θ̃×{1}×Ũ × Ã) = ∫
Θ̃
βMt (Ũ × Ã∣θ)πt(θ,ht

A,Mt)µt(d(θ,ht
A)∣ht).

The disintegration theorem implies that we can write for n ∈ {0,1}

P(Θ̃×{n}×Ũ × Ã) = ∫
Ũ×Ã

η(µ,at)(Θ̃×{n})P∆(Θ)×A(d(µ, at)).

Let q = η(µ∅,a∗)(Θ×{0}). Modify the continuation strategy so that for ω ∈ [0, q)42

(σ′P ,σ′A)∣(ht ,zµ∅,a∗(M′
t),ω) = (σP ,σA)∣(ht ,z∅(Mt),ωq ),

while for ω ∈ (q,1],

(σ′P ,σ′A)∣(ht ,z(µ∅,a∗)(M′
t),ω) = (σP ,σA)∣(ht ,z(µ∅,a∗)(Mt),ω−q

1−q ).

Modify the agent’s strategy so that for types inΘ+, r ′t(θ,ht
A,M′

t) = δθ andπ′t(θ,ht
A,M′

t) =
1. For types not inΘ+, extend βM′

t to all ofΘ as we did in the proof of Proposition B.2.

Set r ′t(θ,ht
A,M′

t) = δθ. Their payoff from participating may be lower, so recompute

their participation strategy accordingly. It is straightforward to check that the new

assessment is also a Perfect Bayesian equilibrium.

Propositions B.1-B.4 imply that for any equilibrium assessment, (σP ,σA,µ), of the

mechanism-selection game GM, there exists an equilibrium assessment, (σ′P ,σ′A,µ′),

of the auxiliary game that satisfies that for all periods t and public histories ht ,(i) the

principal offers canonical mechanisms, (ii) the agent’s strategy satisfies the proper-

ties listed in Theorem 1, and (iii) the beliefs employed by the mechanism coincide

with the principal’s equilibrium beliefs. Moreover, (σ′P ,σ′A,µ′) implements the same

distribution over outcomesΘ× AT+1 as (σP ,σA,µ) does.

Remark 1 implies that we can lift (σ′P ,σ′A,µ′) to an outcome-equivalent assessment

of the canonical game, (σ̃P , σ̃A, µ̃). Furthermore, the construction highlights that

whatever the principal can achieve starting at any public history ht with mecha-

nisms inM, he can also alternatively achieve with canonical mechanisms. Thus, it

follows that for any PBE outcome γ ∈∆(Θ× AT+1) of the canonical game, there is an

42The notation assumes that the public randomization device is drawn U[0,1]. This is without loss
because of the probability integral transform (see the proof of Proposition B.3).
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outcome-equivalent assessment (σP ,σA,µ) of the mechanism-selection game. We

do not include the proof of this construction since it readily follows from the above.

We do note that in the mechanism-selection game the public randomization device

in the canonical game must be subsumed in the mechanism. That this is feasible

follows from Kuratowski’s theorem since SMt and ∆(Θ)×[0,1] have the same cardi-

nality.
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