
Constrained Information Design*

Laura Doval† Vasiliki Skreta‡

June 10, 2021

Abstract

We provide tools to analyze information design problems subject to con-
straints. We do so by showing that the techniques in Le Treust and Tomala
(2019) extend to the case of multiple inequality and equality constraints. This
showcases the power of the results in that paper to analyze problems of in-
formation design subject to constraints. We illustrate our results with appli-
cations to mechanism design with limited commitment (Doval and Skreta,
2020) and persuasion of a privately informed receiver (Kolotilin et al., 2017).

*This research is supported by grants from the National Science Foundation (SES-1851744 and
SES-1851729). Vasiliki Skreta is grateful for generous financial support through the ERC consol-
idator grant 682417 “Frontiers in design.”

†Columbia University and CEPR. E-mail: laura.doval@columbia.edu
‡University of Texas at Austin, University College London, and CEPR. E-mail:

vskreta@gmail.com.

1

mailto:laura.doval@columbia.edu
mailto:vskreta@gmail.com


1 Introduction

We provide tools to solve constrained information design problems. These prob-
lems are becoming common: Since Kamenica and Gentzkow (2011) seminal paper
on Bayesian persuasion, the literature on information design has grown steadily.
A bulk of new work analyzes constrained information design problems, which can
be classified in three groups:

1. The information designer faces constraints additional to the Bayes’ plau-
sibility constraint in Kamenica and Gentzkow (2011), like in Boleslavsky
and Kim (2018) on persuasion and moral hazard, and Le Treust and Tomala
(2019) on information transmission with capacity constraints.

2. The information designer is designing a mechanism that satisfies incentive
and participation constraints, like in mechanism design with aftermarkets
(e.g., Calzolari and Pavan, 2006; Dworczak, 2020), in optimal monitoring in
moral hazard (e.g., Georgiadis and Szentes, 2020), and in mechanism design
with limited commitment (e.g., Doval and Skreta, 2020).

3. Mechanism design problems that do not involve information design and still
can be solved using information design tools, like in Dworczak et al. (2019).

A natural approach to tackle these constrained information design problems is
to set up a Lagrangian to incorporate the constraints into the objective function,
except for the Bayes’ plausibility constraint. If each constraint can be written as
the expectation over posteriors of some function, then the Lagrangian itself can
be written as an expectation over posteriors of some function given the Lagrange
multiplier. If there are N possible states of the world, one may be tempted to ap-
ply Carathéodory’s theorem (Rockafellar, 1970) and conclude from this that the
optimal information policy uses at most N posteriors. After all, the solution to the
problem would correspond to the concavification of the function whose expecta-
tion over posteriors determines the Lagrangian.

In an inspiring contribution, Le Treust and Tomala (2019) show that the above
reasoning is flawed when the information designer faces one inequality constraint.
At the heart of their result is the observation that the Lagrange multiplier is also
part of the solution to the optimization problem. Indeed, they show that the solu-
tion corresponds to concavifying a function of N + 1 variables: the first N corre-
spond to a belief and the last corresponds to the inequality constraint. It follows
then that the optimal policy may involve N + 1 posteriors. The authors also show
that the Lagrangian approach is valid for their problem.

2



Many information design problems involve multiple inequality and equality
constraints. For instance, in Doval and Skreta (2020), the designer designs both an
allocation rule and an information structure; both have to satisfy the agent’s par-
ticipation and incentive compatibility constraints. As another example, consider
the problem of persuading a privately informed receiver in Kolotilin et al. (2017):
the designer designs a menu of information structures, which has to satisfy the
agent’s incentive compatibility constraints. Finally, consider the problem of a de-
signer who designs a menu of offers for a privately informed agent, but is limited
in how much information the allocation can reveal because of privacy concerns,
as in Eilat et al. (2021).

We extend the results in Le Treust and Tomala (2019) to the case of multiple
equality and inequality constraints. Theorem 3.1 shows that the information de-
sign problem subject to constraints is equivalent to the solution of a standard, but
higher dimensional, Bayesian persuasion problem, where the dimensions repre-
sent the number of states together with the number of constraints. We use this to
derive an upper bound on the number of posteriors used in an optimal experiment
(Corollary 3.1): An optimal experiment induces at most N +K posteriors, where N
is the number of states and K the number of constraints. Corollary 3.2 then shows
that this upper bound can be refined whenever a constraint does not bind. We
also show that the Lagrangian approach is valid. Indeed, Proposition 3.1 shows
that there exists a Lagrange multiplier such that the solution to the constrained
information design problem follows from the concavification of the Lagrangian at
that multiplier. Example 3.1 illustrates how Proposition 3.1 can be used to solve
constrained information design problems, even without solving for the optimal
multiplier.

Section 4 shows how Theorem 3.1 can be leveraged to obtain useful results in
two important settings:

Section 4.1 considers the problem of mechanism design with limited commit-
ment. In this application, the set of states of the world corresponds to the agent’s
private information. Doval and Skreta (2020) show that it is without loss of gener-
ality to consider mechanisms in which the designer designs both an information
structure and an allocation. Furthermore, the mechanism must satisfy the agent’s
participation and incentive compatibility constraints. Theorem 3.1 implies that
it is without loss of generality to focus on mechanisms that induce information
structures with finite support and provides an upper bound on the number of pos-
teriors induced by the mechanism. Proposition 4.1 shows that when the agent’s
payoff satisfies a version of single-crossing for lotteries (Bester and Strausz (2007);
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Celik (2015); Kartik et al. (2017)) the upper bound implied by Theorem 3.1 can be
further reduced (Corollary 4.1). The assumption of transferable utility provides
another way in which this bound can be reduced: When the optimal mechanism
can be obtained by maximizing the virtual surplus, the information structure as-
sociated to the optimal mechanism uses at most as many posteriors as the number
of states of the world (Proposition 4.2).

Section 4.2 considers the problem of persuading a privately informed receiver
(Kolotilin et al. (2017); Guo and Shmaya (2019); Candogan and Strack (2021)).
Here the information designer designs a menu of information structures subject to
the incentive compatibility constraints of the agent. We show how the designer’s
problem can be separated into different problems, one for each type of the re-
ceiver.1 We use this decomposition and Theorem 3.1 to derive an upper bound on
the number of posteriors employed in an optimal experiment. Since we make no
assumption on the cardinality of the set of receiver actions, the bounds in Propo-
sition 4.4 are the most useful when the set of actions is larger than the set of types.

Related Literature: The paper builds and expands on the results in Le Treust and
Tomala (2019). Given the prevalence of constrained information design this simple
extension is bound to be useful to other researchers. Furthermore, we provide
novel applications where these results greatly simplify the analysis.

In the context of mechanism design with limited commitment, Bester and Strausz
(2007) provide analogues of Propositions 4.2 and 4.3, using tools of infinite dimen-
sional linear programming. While this allows them to conclude that mechanisms
in their paper use finitely many output messages, Bester and Strausz (2007) do
not provide a characterization of the set of output messages. Therefore, in order
to characterize an optimal mechanism, the analyst still has to identify the opti-
mal message space. Instead, we leverage the characterization in Doval and Skreta
(2020), which allows us to equate the message space of the mechanism to the set
of beliefs the designer holds about the agent’s type. We then use the results in
Section 3, which are based on the tools of convex analysis employed in the in-
formation design literature, to conclude that the principal’s optimal mechanism
employs finitely many posteriors.2

1Candogan and Strack (2021) make a similar observation in their problem.
2Salamanca (2021) studies communication equilibria in sender-receiver games. Salamanca

(2021) develops Lagrangian techniques to study the sender optimal communication equilibrium.
This allows him to derive an upper bound like the one in Corollary 3.1 in the context of his model.
As it will be clear from the analysis in Section 3, Lagrangian techniques limit the use of the stan-
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Since the first circulation of our draft (see, Doval and Skreta (2018)), there has
been renewed interest in providing tools to solve constrained (information) de-
sign problems. Dworczak and Kolotilin (2019) apply our results in their study
on duality in Bayesian persuasion. Kang (2020) provides a set of tools comple-
mentary to the one in this paper, by combining results in Bauer (1958) and Szapiel
(1975). Babichenko et al. (2020) derive the results in Section 3 using infinite dimen-
sional linear programming tools as Bester and Strausz (2007). They complement
the results in our paper by providing computational complexity results. Azrieli
(2021) illustrates the difference between unconstrained rational inattention prob-
lems and those subject to a capacity constraint.

2 Setting

Consider the following problem.3 Let Ω be a finite set of states, Ω = {ω1, . . . , ωN}.
Let f , g1, . . . , gr, gr+1, . . . , gK : ∆(Ω) 7→ R ∪ {−∞} be a tuple of functions defined
on ∆(Ω). For µ ∈ ∆(Ω) and γ1, . . . , γK ∈ R, consider

cavg1,...,gK f (µ, γ1, . . . , γK) := sup

∑
m

λm f (µm) :
∑m λmµm = µ,
∑m λmgl(µm) ≥ γl , l ∈ {1, . . . , r},
∑m λmgl(µm) = γl , l ∈ {r + 1, . . . , K}

 .

(OPT)

Le Treust and Tomala (2019) consider the above problem for r = 1 and no equality
constraints.

3 Main results
The main result of this section, Theorem 3.1 relates the solution to OPT to the
concavification of the function f g1,...,gK : ∆(Ω) × RK 7→ R ∪ {−∞} defined as
follows:

f g1,...,gK(µ, γ1, . . . , γK) =

{
f (µ) if γi ≤ gi(µ), i ∈ {1, . . . , r} ∧ γi = gi(µ), i ∈ {r + 1, . . . , K}
−∞ otherwise

.

dard toolkit in information design since the Lagrange multiplier is endogenous.
3To make the comparison with Le Treust and Tomala (2019) simple, we follow their notation

as much as possible. However, while they present their results for any convex set X, to make the
presentation closer to information design, we let X be the space of beliefs over the set of states Ω.
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Theorem 3.1. For each (µ, γ1, . . . , γK) ∈ ∆(Ω)×RK,

cavg1,...,gK f (µ, γ1, . . . , γK) = cav f g1,...,gK(µ, γ1, . . . , γK).

Proof. The function cav f g1,...,gK(µ, γ1, . . . , γK) is given by the following program:

sup ∑
m

λm f g1,...,gK(µm, γ1,m, . . . , γK,m)

s.t.
{

∑m λmµm = µ

∑m λmγl,m = γl, l ∈ {1, . . . , K} .

Take a family (λm, µm, γ1,m, . . . , γK,m) that is feasible for this program. Then, for
k ≤ r, we have ∑ λmgk(µm) ≥ ∑m λmγk,m = γk, and for k ∈ {r + 1, . . . , K}, we
have ∑m λmgk(µm) = ∑m λmγk,m = γk. Thus, (λm, µm, γ1,m, . . . , γK,m) is feasible
for cav g1,...,gK f (µ, γ1, . . . , γK). Thus, cavg1,...,gK f (µ, γ1, . . . , γK) ≥ cav f g1,...,gK(µ, γ1, . . . , γK).

On the other hand, let (λm, µm) such that ∑m λmµm = µ and ∑ λmgk(µm) ≥
γk, k ≤ r and ∑m λmgk(µm) = γk, k ∈ {r + 1, . . . , K}. For each k, let γk =
∑m λmgk(xm) and for each m, let γk,m = gk(µm) + γk − γk. Then, ∑m λmγk,m = γk.
Because γk ≥ γk (with equality for k ∈ {r + 1, . . . , K}), gk(µm) ≥ γk,m for k ∈
{1, . . . , r} and gk(µm) = γk,m for k ∈ {r + 1, . . . , K}. Thus, (λm, µm, γ1,m, . . . , γK,m)
is feasible for cav f g1,...,gK . Hence, cavg1,...,gK f (µ, γ1, . . . , γK) ≤ cav f g1,...,gK(µ, γ1, . . . , γK).

While Theorem 3.1 is written in terms of the solution to OPT, the proof actually
shows that the convex hull of the graph of f g1,...,gK coincides with the convex hull
of the graph of the function h = ( f , g1, . . . , gK) over the set

C = {µ ∈ ∆(Ω) : (∀i ≤ r)γi ≤ gi(µ) ∧ (∀i ∈ {r + 1, . . . , K})gi(µ) = γi}.

Indeed, for the case in which r = 1 and no equality constraints, Boleslavsky and
Kim (2018) use the convex hull of the graph of h to derive results in their model.

Theorem 3.1 together with Carathéodory’s theorem (see, e.g., Rockafellar (1970))
implies the following:

Corollary 3.1. The solution to problem (OPT) uses at most N + K posteriors.

Furthermore, we can relate the upper bound on the number of posteriors at an
optimal solution to the number of binding constraints:

Corollary 3.2. Suppose that in problem (OPT), only M < r inequality constraints bind.
Then the solution to problem (OPT) uses at most N + M + K− r posteriors.
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Proof. Suppose that in the solution to program cavg1,...,gK f (µ, γ1, . . . , γK), M ≤ r
constraints bind and r−M are slack. Then

cavg1,...,gK f (µ, γ1, . . . , γK) = cavgM,gr+1,...,gK f (µ, γM, γr+1, . . . , γK),

where γM is the projection of vector (γ1, . . . , γr) on the binding constraints and
gM is the projection of vector (g1, . . . , gr) on the set M. It follows from Theorem 3.1
that cavgM,gr+1,...,gK f (µ, γM, γr+1, . . . , γK) = cav f gM,gr+1,...,gK(µ, γM, . . . , γr+1, . . . , γK).
Thus the solution to (OPT) uses at most N + M + K− r beliefs.

3.1 Validating the Lagrangian approach

Proposition 3.1.

cavg1,...,gK f (µ, γ) = inf

{
cav

(
f +

K

∑
k=1

tkgk

)
(µ)−

K

∑
k=1

tkγk : t ∈ Rr
+ ×RK−r

}
(3.1)

The proof is in Appendix A.

Proposition 3.1 states that a multiplier t∗ exists such that the solution to OPT
corresponds to the concavification of the Lagrangian at t∗. An alternative appli-
cation of Proposition 3.1 is the following. As mentioned in Section 1, for each
t, the concavification of the Lagrangian can be achieved by considering convex
combinations of at most N posteriors. If one can show that, for each t, convex
combinations involving more points do not achieve the value of the concavified
Lagrangian, then one can conclude that the solutions for (OPT) involve at most N
posterior beliefs. Example 3.1 illustrates this point:

Example 3.1. Consider the following version of the prosecutor example in Kamenica and
Gentzkow (2011). Everything is as in Kamenica and Gentzkow (2011) except that the
judge has access to outside information. However, the judge has limited time, so that the
judge can either listen to the prosecution or their own source of information. We model
this as the prosecutor facing a constraint: the judge has to receive the payoff they can
achieve by using their own source of information.

Formally, let the set of states Ω = {0, 1} and let the set of actions for the judge be
A = {0, 1}. The payoffs are u(a, ω) = 1[a = ω] and v(a, ω) = 1[a = 1] for the judge
and the prosecutor, respectively. Let µ0 ∈ [0, 1] denote the prior probability that ω = ω1.
Assume that µ0 < 1/2.
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The judge has access to another experiment, τ J ∈ ∆∆Ω. Let a∗(µ) denote the judge’s
optimal action choice when the posterior belief is µ and v̂(µ) = ∑ω∈Ω µ(ω)v(a∗(µ), ω).
Then, the prosecutor’s optimal payoff follows from solving the following problem:

max
τ∈∆∆Ω:Eτµ=µ0

Eτ v̂(µ)

s.t.Eτ

[
∑

ω∈Ω
u(a∗(µ), ω)

]
≥ Eτ J

[
∑

ω∈Ω
u(a∗(µ), ω)

]
.

Since the prosecutor can design any experiment, the prosecutor can always replicate the
judge’s source of information. It is therefore without loss of generality to assume that the
judge uses the prosecutor’s experiment, while the prosecutor offers an experiment to the
judge that is at least as valuable to the judge as their own source of information.

Proposition 3.1 shows that there exists t∗ ≥ 0 such that the optimal experiment solves:

max
τ∈∆∆(Ω)

Eτ[v̂(µ) + t∗∑
ω

µ(ω)u(a∗(µ), ω)]

As we illustrate graphically, for all t ≥ 0, the concavification of the function v̂(µ) +
t ∑ω µ(ω)u(a∗(µ), ω) is attained by experiments that use exactly 2 posteriors. It then
follows that in this constrained Bayesian persuasion problem, there is no need for a third
posterior.

µ

v̂ + tû

t

t
2

1 + t
2

1
2

Figure (a) t ≤ 2

µ

v̂ + tû

t

1 + t
2

1
2

t
2

Figure (b) t > 2

Figure 1: The Lagrangian for t ≤ 2 (left) and t > 2 (right)
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4 Applications

4.1 Mechanism design with limited commitment

Section 4.1 showcases how Theorem 3.1 can be leveraged to inform the character-
ization of optimal mechanisms under limited commitment. To keep the presenta-
tion simple and to facilitate the comparison with other work in the literature, we
present the results in the context of a model based on Bester and Strausz (2007).

Consider the problem of a principal who interacts with a privately informed
agent, who knows the state of the world. Let µ0 ∈ ∆(Ω) denote the principal’s
prior belief about the state of the world. The interaction lasts for two periods,
t ∈ {1, 2}. In each period t, as a result of the interaction, an allocation yt ∈ Yt is
determined, where Yt is the set of allocations in period t. There is a correspon-
dence Y : Y1 ⇒ Y2 that describes the set of feasible period 2 allocations as a
function of the allocation in period 1. Let v(y1, y2, ω) and u(y1, y2, ω) denote the
principal and the agent’s payoff, respectively, when the allocation is (y1, y2) and
the state of the world is ω. We assume there exists an allocation (y∗1 , y∗2) such that
u(y∗1 , y∗2 , ω) = 0 for all ω ∈ Ω. This allocation plays the role of the outside option
in what follows.4

The interaction between the principal and the agent proceeds as follows:

In period 1, after the agent observes the state of the world, the principal offers
the agent a mechanism, M. A mechanism M consists of a set of input messages M,
a set of output messages S, and a device ϕ : M 7→ ∆(S× Y1), which associates to
each input message m ∈ M a distribution over output messages and allocations.

After observing the mechanism, the agent decides whether to accept or reject.
If she rejects the mechanism, an allocation (y∗1 , y∗2) ∈ Y1 × Y2 is implemented. If
instead she accepts the mechanism, she privately submits an input message to the
mechanism. This message determines the distribution ϕ(·|m) from which the out-

4Throughout, we make the following technical assumptions. First, the set of allocations Y1, Y2
are compact Polish spaces, we endow them with their Borel σ-algebra. Second, endowing product
sets with their product σ-algebra, we assume that the principal and the agent’s utility functions are
bounded measurable functions. We assume that the principal’s utility is continuous in y2 for each
(y1, ω). Third, the correspondenceY is measurable and for each y1 ∈ Y1, Y(y1) is compact. Fourth,
for a Polish space X, we let ∆(X) denote the set of Borel probability measures over X, endowed
with the weak∗ topology. Thus, ∆(X) is also Polish (Aliprantis and Border (2006)). Finally, for any
two measurable spaces X and Y , a mapping ζ : X 7→ ∆(Y) is a transition probability from X to Y if,
for any measurable C ⊆ Y, ζ(C|x) ≡ ζ(x)(C) is a measurable real valued function of x ∈ X.

9



put message and the allocation is drawn. In period 2, after observing the output
message and the allocation, the principal chooses an allocation y2 ∈ Y2.

Our objective is to characterize the optimal mechanism for the principal under
the solution concept of Perfect Bayesian equilibrium. In particular, the principal’s
choice of the allocation in period 2 must be sequentially rational. The allocation
y2 ∈ Y2 then captures in reduced form the principal’s limited commitment.

Theorem 1 in Doval and Skreta (2020) implies that the principal’s optimal Per-
fect Bayesian equilibrium can be characterized as the solution to a constrained
optimization program (see (P) below). Indeed, Theorem 1 in Doval and Skreta
(2020) implies that it is without loss of generality to consider mechanisms, M, such
that the following hold. First, the set of input and output messages are the set of
states and posterior beliefs, respectively, i.e., M = Ω and S = ∆(Ω). Second, the
device can be decomposed into two transition probabilities β : Θ 7→ ∆∆(Ω) and
α : ∆(Ω) 7→ ∆(Y1). Third, it is optimal for the agent to participate and truthfully
report the state of the world. Finally, when the mechanism outputs a belief µ, this
is the belief that would result from Bayes’ rule when the principal observes output
message µ, and the agent participates and truthfully reports her type. When β has
finite support, this is equivalent to requiring that

µ(ω) =
µ0(ω)β(µ|ω)

∑ω′∈Ω µ0(ω′)β(µ|ω′) .

For each y1 ∈ Y1, let

y2(y1, µ) ∈ Υ2(y1, µ) ≡ arg max
y2∈Y(y1)

∑
ω∈Ω

µ(ω)v(y1, y2, ω),

denote a solution to the principal’s problem in period 2 when his belief about the
state of the world is µ. Given the technical assumptions listed in footnote 4, the
above problem is well-defined. In a slight abuse of notation, let Υ2 denote the set
of all selections from the principal’s best response correspondence Υ2(·, ·).
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We can write the principal’s problem as follows:5

max
β:Θ 7→∆∆(Ω),α:∆(Ω) 7→∆(Y1),y2∈Υ2

∑
ω∈Ω

µ0(ω)Eβ(·|ω)

[
Eα(·|µ) [v(y1, y2(y1, µ), ω)]

]
(P)

s.t.

 (∀ω ∈ Ω) Eβ(·|ω)

[
Eα(·|µ) [u(y1, y2(y1, µ), ω)]

]
≥ 0

(∀ω ∈ Ω)(∀ω′ 6= ω) Eβ(·|ω)

[
Eα(·|µ) [u(y1, y2(y1, µ), ω)]

]
≥ Eβ(·|ω′)

[
Eα(·|µ) [u(y1, y2(y1, µ), ω)]

]
Furthermore, the transition probability β must satisfy that for all measurable sub-
sets Ũ of ∆(Ω) and all subsets Ω̃ of Ω,

∑
ω′∈Ω̃

β(Ũ|ω′)µ0(ω
′) = ∑

ω∈Ω

∫
µ(Ω̃)β(dµ|ω)µ0(ω)

To show how Theorem 3.1 can inform the solution to P we first show how to write
the principal’s optimization problem as one in which he chooses a Bayes’ plausible
distribution over posteriors and an allocation rule α : ∆(Ω) 7→ ∆(Y1). For any
measurable subset Ũ of ∆(Ω), and for any subset Ω̃ of Ω, let P ∈ ∆(Ω× ∆(Ω))
denote the following measure:

P(Ω̃× Ũ) = ∑
ω∈Ω̃

β(Ũ|ω)µ0(ω).

The disintegration theorem (see Crauel (2002)) implies that there exists τ ∈ ∆∆(Ω)
such that

P(Ω̃× Ũ) =
∫

Ω̃

(
∑

ω∈Ω̃

µ(ω)

)
τ(dµ).

It follows that for all ω ∈ Ω and all measurable subsets Ũ of ∆(Ω), we have

β(Ũ|ω)µ0(ω) =
∫

Ω̃
µ(ω)τ(dµ).

5Bester and Strausz (2007) analyze a version of the problem (P) with the following differences.
First, instead of letting the set of output messages be the set of beliefs, they leave the set S un-
specified. Therefore, they only analyze the principal’s optimal mechanism within those that use
signals in S. Second, because the set S is unspecified, their program has an additional constraint:
the choice of y2 has to be optimal given the realization of s and the period-1 allocation. Finally,
they do not allow for randomized allocations. Doval and Skreta (2020) show that this may be with
loss of generality (Strausz (2003) also shows the importance of allowing for randomization for the
standard version of the revelation principle to hold).
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Therefore, we can write the agent’s payoff when the state of the world is ω and
she reports ω′ as follows:

Eβ(·|ω′)

[
Eα(·|µ) [u(y1, y2(y1, µ), ω)]

]
= Eτ

[
Eα(·|µ)

[
µ(ω′)

µ0(ω′)
u(y1, y2(y1, µ), ω)

]]
.

It follows that the principal’s problem can be written similar to the problem in
OPT:

max
τ∈∆∆(Ω),α:∆(Ω) 7→∆(Y1),y2∈Υ2

Eτ

[
Eα(·|µ)

[
∑

ω∈Ω
µ(ω)v(y1, y2(y1, µ), ω)

]]
(4.1)

s.t.


Eτ[µ] = µ0

(∀ω ∈ Ω) Eτ(·)

[
Eα(·|µ)

[
µ(ω)
µ0(ω)

u(y1, y2(y1, µ), ω)
]]
≥ 0

(∀ω ∈ Ω)(∀ω′ 6= ω) Eτ(·)

[
Eα(·|µ)

[(
µ(ω)
µ0(ω)

− µ(ω′)
µ0(ω′)

)
u(y1, y2(y1, µ), ω)

]]
≥ 0

Observation 1. Corollary 3.1 implies that it is without loss of generality to focus on
mechanisms where for each ω ∈ Ω, the support of the communication device is finite.6

When the principal has full commitment, the revelation principle implies that it
is without loss of generality to focus on finite mechanisms, where one associates
with each type a (possibly randomized) allocation. Observation 1 affords a similar
simplification for the case of limited commitment, by ensuring that we associate
to each agent type an experiment with finite support.

The resulting program in Equation 4.1 allows us to highlight the connection
between mechanism design with limited commitment and the literature on infor-
mation design. After all, the designer can be thought of as a sender who designs
an information structure for a receiver, who happens to be his period-2 self. How-
ever, there are differences. In our setting, the period-1 principal (the sender in Ka-
menica and Gentzkow (2011)) also takes an action for each posterior he induces.
In addition, the first-period principal cannot implement any Bayes’ plausible dis-
tribution over posteriors, but only those that satisfy the incentive compatibility
and participation constraints of the agent.

In what follows, we focus on the case in which the agent’s preferences satisfy
a version of increasing differences, which takes into account that the agent faces
lotteries over allocations. To introduce the condition, assume that the states are
ordered from low to high, ω1 < · · · < ωN.

6The formal argument follows the same lines as the proof of Corollary 4.1, so we omit it.
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Definition 4.1. [Bester and Strausz (2007); Celik (2015); Kartik et al. (2017)] The fam-
ily {u(·, ω) : ω ∈ Ω} satisfies monotonic expectational differences if for any two
distributions P, Q ∈ ∆(Y1 ×Y2),

∫
u(·, ωi)d(P−Q) is monotone in i.

Kartik et al. (2017) show that u satisfies monotonic expectational differences if,
and only if, it takes the form, u(y1, y2, ωi) = b(ωi)h1(y1, y2) + h2(y1, y2) + c(ωi),
where h1, h2 are finitely integrable and b is monotonic. Without loss of generality,
assume that b is weakly increasing, so that ω1 is the agent’s “lowest type.”7

Like increasing differences in mechanism design with commitment, monotonic
expectational differences imply that the solutions to P coincide with the solutions
to a much simpler program, which imposes only a subset of the incentive compat-
ibility constraints:

Proposition 4.1. If {u(·, ω) : ω ∈ Ω} satisfies monotonic expectational differences,
then to characterize the solution to P , it suffices to guarantee that the following hold:

1. The agent’s participation constraint when the state is ω1,

2. Adjacent incentive compatibility constraints are satisfied.

See Appendix B for a proof. We then obtain the following corollary:

Corollary 4.1. Any solution to (P) utilizes at most 3N − 1 posteriors.

Transferable utility: Transferable utility is a common assumption in mechanism
design. In what follows, we show how this assumption further simplifies the char-
acterization of an optimal mechanism by reducing in some instances the number
of posteriors that the mechanism employs. Therefore, we make the following as-
sumptions in the remainder of this section. First, the set of period 1 allocations
is given by Y1 = Y′1 ×R+, where the second coordinate denotes a payment from
the agent to the principal. We denote an element of Y1 by y1 = (y′1, p). Second,
we assume that Y((y′1, p)) = Y(y′1). Finally, we assume that the agent and the
principal’s payoffs can be written as follows:

v(y1, y2, ω) = ṽ(y′1, y2, ω) + p
u(y1, y2, ω) = ũ(y′1, y2, ω)− p.

7Moreover, we assume that h1(y∗1 , y∗2) = min(y1,y2):y2∈Y(y1)
h1(y1, y2). This allows us to con-

clude that whenever the lowest type, ω1 participates of the mechanism, then all types participate
of the mechanism.
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Transferable utility implies that focusing on mechanisms that do not randomize
on transfers is without loss of generality. Hereafter, we replace p with its expecta-
tion under the mechanism when the posterior is µ, p(µ).

The following result follows from Proposition 4.1:

Corollary 4.2. Suppose that the family {u(·, ω) : ω ∈ Ω} satisfies monotonic expecta-
tional differences and utility is transferable. Then, the participation constraint is binding
for ω1.

Under the assumptions of monotonic expectational differences and transferable
utility, we could further simplify P by showing that downward-looking incentive
constraints always bind at the optimum. This then justifies the study of the so-
called relaxed program:

max
τ∈∆∆(Ω),α:∆(Ω) 7→∆(Y′1×R),y2∈Υ2

Eτ

[
Eα(·|µ)

[
∑

ω∈Ω
µ(ω)ṽ(y′1, y2(y′1, µ), ω) + p(µ)

]]
(R)

s.t.


Eτ[µ] = µ0

Eτ

[
Eα(·|µ)

[
µ(ω1)
µ0(ω1)

(ũ(y′1, y2(y′1, µ), ω)− p(µ))
]]

= 0

(∀i ∈ {2, . . . , N}) Eτ

[
Eα(·|µ)

[(
µ(ωi)
µ0(ωi)

− µ(ωi−1)
µ0(ωi−1)

)
(ũ(y′1, y2(y′1, µ), ωi)− p(µ))

]]
= 0

which is obtained by dropping the monotonicity constraints:8

Eτ

[
Eα(·|µ)

[(
µ(ωi)

µ0(ωi)
− µ(ωi−1)

µ0(ωi−1)

) (
ũ(y′1, y2(y′1, µ), ωi)− ũ(y′1, y2(y′1, µ), ωi−1)

)]]
≥ 0,

(M)

for each i ∈ {2, . . . , N}. In mechanism design with commitment, it suffices to
check that the solution to the relaxed program satisfies the monotonicity con-
straints, (M), to show it is the solution to (P) (see the discussion in footnote 8).

However, in mechanism design with limited commitment, the solution to the
relaxed program is not necessarily a solution to (P) even if it satisfies the mono-
tonicity constraints, when the type space is finite and there are three or more types.
Whereas in the relaxed program the binding downward-looking incentive con-
straints together with ω1’s participation constraint impose N restrictions on the

8The constraints in equation (M) are obtained from combining the restriction that ωi does
not want to report ωi−1 and ωi−1 does not want to report ωi. Under Definition 4.1, the bind-
ing downward-looking incentive constraints together with the monotonicity constraints imply the
local constraints in Proposition 4.1.
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transfers {p(µ) : µ ∈ ∆(Ω)}, the solution to the relaxed program might use less
than N posteriors. Therefore, finding transfers p(µ) that satisfy all constraints
may not possible.9 Alternatively, not all downward-looking constraints may bind
in the optimal mechanism.

Fortunately, the above is not an issue when there are two types or a continuum
of types. In both cases, it is possible to show that downward looking constraints
bind (see Doval and Skreta (2020)). Because most of the literature focuses on one
of these cases, and because the relaxed program provides a useful benchmark, the
rest of this section studies its properties.

We can use the binding constraints to substitute the transfers out of the princi-
pal’s program and obtain the following:

Proposition 4.2. The solution to the relaxed program uses at most N posteriors.

Then, if the solution to the relaxed program satisfies the monotonicity con-
straints and it is possible to find transfers (p(µ)) that satisfy the downward look-
ing binding incentive constraints, we have found a solution to the principal’s
problem, (P). The proof of Proposition 4.2 is in Appendix B. It follows from
two observations. First, once we substitute the transfers out of the principal’s
payoff, we are left with an expression that only depends on the distribution over
posteriors induced by the mechanism and the portion of the allocation rule that
corresponds to Y′1. Second, since we are ignoring the monotonicity constraints,
one can solve for the optimal α by pointwise maximization. We are then left with
a function that depends only on the distribution over posterior beliefs, that is,
a standard Bayesian persuasion problem. The proof of Proposition 4.2 also sug-
gests how the principal chooses y2 when he is indifferent: ties are broken in favor
of maximizing the virtual surplus.

In many instances, however, the solution to (R) will fail to satisfy the mono-
tonicity constraints, (M). As we show next, adding as many posteriors as binding
monotonicity constraints at the optimum may be necessary:

Proposition 4.3. Consider the program obtained by adding the monotonicity constraints
(M) to the relaxed program (R). The solution to the new program uses at most N + K
posteriors, where K is the number of binding constraints at the optimum.

The proof of Proposition 4.3 follows immediately from Corollary 3.1 and Corol-

9This is never an issue in mechanism design with commitment: Without loss of generality, we
can always have one transfer for each type.
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lary 3.2.

4.2 Persuasion of a privately informed receiver

Consider an information designer who controls the release of information about
a state of the world ω ∈ Ω and faces a privately informed agent. Let Θ denote a
finite set of agent types and let qθ denote the probability that the agent is of type
θ. Let M = |Θ|. As in Section 4.1, let µ0 denote the prior belief over Ω. We assume
that the state of the world ω and the agent’s type θ are independently distributed.

While the designer controls the release of information about the state of the
world, the agent is the one who ultimately takes actions. That is, after observ-
ing the information released by the designer, the agent selects an action a from a
compact set A. Let u(a, θ, ω) and v(a, θ, ω) denote the agent and the designer’s
payoffs, respectively, when the agent takes action a, the agent’s type is θ, and the
state of the world is ω. We assume that both functions are continuous in a for each
(θ, ω) ∈ Θ×Ω.

For each θ ∈ Θ, let

a∗(µ, θ) ∈ arg max
a∈A

∑
ω∈Ω

µ(ω)u(a, θ, ω)

denote the agent’s optimal action choice when her type is θ and her belief about
ω is given by µ. Let

U(µ, θ) = ∑
ω∈Ω

µ(ω)u(a∗(µ, θ), θ, ω),

denote the agent’s optimal payoff when her type is θ and her belief about ω is
given by µ. Whenever it is necessary, we assume that the agent breaks ties in
favor of the designer.

The information designer designs a menu of experiments τ : Θ 7→ ∆(∆(Ω)) to
solve:10

max
τ:Θ 7→∆∆(Ω)

∑
θ∈Θ

qθ ∑
µ∈∆(Ω)

τ(µ, θ) ∑
ω∈Ω

µ(ω)v(a∗(µ, θ), θ, ω) (4.2)

s.t.
{

(∀θ ∈ Θ)Eτ(θ,·)[µ] = µ0
Eτ(θ,·)[U(µ, θ)] ≥ Eτ(θ′,·)[U(µ, θ)]

.

10As we show in Lemma C.1 in Appendix C, standard arguments imply that it is without loss
of generality to focus on experiments where the set of signals is the space of beliefs over Ω.
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That is, the designer chooses an experiment to maximize his payoff subject to
two constraints. First, for each type θ ∈ Θ, the experiment must induce a Bayes’
plausible distribution over posteriors. Second, each type θ ∈ Θ must prefer their
experiment over the one offered to types θ′ other than θ.

Proposition 4.4 illustrates how Theorem 3.1 can be used to simplify the solution
to the problem in Equation 4.2:

Proposition 4.4. The designer’s optimal payoff can be found from the solution to

max
{uθ}θ∈Θ

max
{τ:Θ 7→∆(∆(Ω)):Eτ(·,θ)[µ]=µ0}

∑
θ∈Θ

qθ ∑
µ∈∆(Ω)

τ(µ, θ) ∑
ω∈Ω

µ(ω)v(a∗(µ, θ), θ, ω)

(4.3)

s.t.
{

(∀θ ∈ Θ) Eτ(θ,·) [U(·, θ)] ≥ uθ

(∀θ ∈ Θ)(∀θ′ 6= θ) uθ′ ≥ Eτ(θ,·) [U(µ, θ′)]

It follows that for each θ, the experiment induces at most N + M posteriors.

The result in Proposition 4.4 affords two simplifications for the designer’s prob-
lem. First, while the incentive compatibility constraints in Equation 4.2 impose
conditions across the experiments for different types, the optimization problem in
Equation 4.3 decouples the problem of designing the experiment for θ from the
problem of designing the experiment for θ′. Second, Proposition 4.4 states that
each experiment uses at most N + M posteriors. This second simplification is use-
ful when the set of actions available to the agent is rich. Consider, for instance,
the case in which A = R and the agent’s payoff is u(a, θ, ω) = −(a− (ω + θ))2.
In this case, even if the space of actions is a continuum, Proposition 4.4 implies
that the designer can focus, without loss of generality, on experiments that induce
finitely many beliefs.
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A Proofs of Section 3

Proof of Proposition 3.1. The proof follows similar steps as in Le Treust and Tomala
(2019). Given a function h : Rd 7→ R, let h∗ denote its Fenchel conjugate. That is
h∗(t) = supx{xt− h(x)}. Thus, −cav(−h)(x) = (h∗)∗(x). Thus,

cavh(x) = inf
p

{
xp + sup

y
(h(y)− py)

}
. (A.1)

We now apply this to the function f g1,...,gK(µ, γ). Thus, letting pµ ∈ RN and pγ ∈
RK,

cav f g1,...,gK(µ, γ) = inf
pµ,pγ

{
pµµ + pγγ + sup

ν,η

(
f g1,...,gK(ν, η)− pµν− pγη

)}

= inf
pµ,pγ

{
pµµ + pγγ + sup

ν,η:(∀k≤r)gk(ν)≥ηk∧(∀k≥r+1)gk(ν)=ηk

(
f (ν, η)− pµν− pγη

)}
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If there exists k ∈ {1, . . . , r} such that pγ,k > 0, then letting ηk → −∞, the sup
is +∞. Therefore, we can restrict attention to pγ,k ≤ 0 for k ∈ {1, . . . , r}. Setting
tγ = −pγ we get,

cav f g1,...,gK(µ, γ) = inf
pµ,tγ

{
pµµ− tγγ + sup

ν,η:(∀k≤r)gk(ν)≥ηk∨(∀k≥r+1)gk(ν)=ηk

(
f (ν, η)− pµν + tγη

)}

= inf
pµ,pγ

{
pµµ− tγγ + sup

ν

(
f (ν, η)− pµν +

K

∑
k=1

tγ,kgk(ν)

)}

= inf
tγ∈Rr

+×RK−r

{
inf
pµ

[
pµµ + sup

ν

(
f (ν) +

K

∑
k=1

tγ,kgk(ν)− pµν

)]
− tγγ

}

= inf
tγ∈Rr

+×RK−r

{
cav( f +

K

∑
k=1

tγ,kg)(µ)− tγγ

}
,

where (i) the second line follows from noticing that ηk = gk(ν), whenever k > r,
while it is optimal to set ηk = gk(ν) whenever k ≤ r since tγ,k ≥ 0, (ii) the third line
is just a rewriting, and (iii) the fourth line follows from noting that the infimum
in the square brackets is the definition of the concavification of f + ∑ tγ,kgk (see
Equation A.1). The statement of Proposition 3.1 then follows.

B Proofs of Section 4.1
Proof of Proposition 4.1. Consider the following program:

max
β:Θ 7→∆∆(Ω),α:∆(Ω) 7→∆(Y1)

∑
ω∈Ω

µ0(ω)Eβ(·|θ)

[
Eα(·|µ) [v(y1, y2, ω)]

]
(A)

s.t.


Eβ(·|ω1)

[
Eα(·|µ) [u(y1, y2(y1, µ), ω1)]

]
≥ 0

(∀i ∈ {2, . . . , N})Eβ(·|ωi)

[
Eα(·|µ) [u(y1, y2(y1, µ), ωi)]

]
≥ Eβ(·|ωi−1)

[
Eα(·|µ) [u(y1, y2(y1, µ), ωi)]

]
(∀i ∈ {1, . . . , N − 1})Eβ(·|ωi)

[
Eα(·|µ) [u(y1, y2(y1, µ), ωi)]

]
≥ Eβ(·|ωi+1)

[
Eα(·|µ) [u(y1, y2(y1, µ), ωi)]

]
We show that the solution to (A) satisfies all the constraints of (P). To simplify
notation, in what follows, let

u(µ, ωi) = Eα(·|µ) [u(y1, y2(y1, µ), ωi)] .
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Note first that the solution to (A) satisfies that for all i ≥ 2,

Eβ(·|ωi) [u(µ, ωi)] ≥ Eβ(·|ωi−1) [u(µ, ωi)]

Eβ(·|ωi−1) [u(µ, ωi−1)] ≥ Eβ(·|ωi) [u(µ, ωi−1)] ,

so that for all i ≥ 2, we have

Eβ(·|ωi)−β(·|ωi−1) [u(µ, ωi)− u(µ, ωi−1)] ≥ 0. (B.1)

We note two implications of Equation B.1. First, monotonic expectational differ-
ences together with equation Equation B.1 implies that if k < i, then it cannot be
the case that

Eβ(·|ωk)−β(·|ωk−1)
[u(µ, ωi)− u(µ, ωk)] < 0.

Hence, we must have Eβ(·|ωk)−β(·|ωk−1)
u(µ, ωi) ≥ Eβ(·|ωk)−β(·|ωk−1)

u(µ, ωk), when
k < i. Second, if k > i, Equation B.1 evaluated at k together with monotonic expec-
tational differences implies that Eβ(·|ωk)−β(·|ωk−1)

u(µ, ωk) ≥ Eβ(·|ωk)−β(·|ωk−1)
u(µ, ωi).

We use these two implications in what follows.

To show that the statement of the proposition holds, consider i and j < i − 1.
The solution to (A) satisfies

Eβ(·|ωi)
[u(µ, ωi)] ≥ Eβ(·|ωi−1)

[u(µ, ωi)]

Eβ(·|ωi−1)
[u(µ, ωi−1)] ≥ Eβ(·|ωi−2)

[u(µ, ωi−1)]

. . .
Eβ(·|ωj+1)

[u(µ, ωj+1)] ≥ Eβ(·|ωj)
[u(µ, ωj+1)].

Adding up, we obtain

i

∑
k=j+1

E(β(·|ωk)−β(·|ωk−1))
u(µ, ωk) ≥ 0. (B.2)

As discussed above, monotonic expectational differences together with equation
(B.1) implies the left-hand side is bounded above by

i

∑
k=j+1

E(β(·|ωk)−β(·|ωk−1))
[u(µ, ωi)] = Eβ(·|ωi)−β(·|ωj) [u(µ, ωi)] . (B.3)
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Equations (B.2) and (B.3) imply

Eβ(·|ωi)
[u(µ, ωi)− th] ≥ Eβ(·|ωj)

[u(µ, ωi)].

Therefore, the constraint that i does not report j < i− 1 holds.

Similarly, consider i and j > i + 1. The solution to (A) satisfies

Eβ(·|ωi)
[u(µ, ωi)] ≥ Eβ(·|ωi+1)

[u(µ, ωi)]

Eβ(·|ωi+1)
[u(µ, ωi+1)] ≥ Eβ(·|ωi+2)

[u(µ, ωi+1)]

. . .
Eβ(·|ωj−1)

[u(µ, ωj−1)] ≥ Eβ(·|ωj)
[u(µ, ωj−1)].

Adding up, we obtain

j−1

∑
k=i

E(β(·|ωk)−β(·|ωk+1))
u(µ, ωk) ≥ 0. (B.4)

As discussed above, monotonic expectational differences together with equation
(B.1) imply that the left-hand side is bounded above by

j−1

∑
k=i

E(β(·|ωk)−β(·|ωk+1))
u(µ, ωi) = E(β(·|ωi)−β(·|ωj))

u(µ, ωi). (B.5)

Equation (B.5) follows because equation (B.1) implies E(β(·|ωk)−β(·|ωk+1))
u(µ, ωk) is

decreasing in k.

Equations (B.4) and (B.5) imply

Eβ(·|ωi)
[u(µ, ωi)] ≥ Eβ(·|ωj)

[u(µ, ωi)].

Therefore, the incentive constraint that i does not report j, j > i + 1 holds.

Finally, because we have all incentive compatibility constraints, it follows that,
when ui satisfies Definition 4.1, the participation constraints for i ≥ 2 are implied
by the participation constraint for i = 1. To see this, note the following. First,
because all incentive compatibility constraints are satisfied, we have that for all
i ≥ 2,

Eβ(·|ωi)
[u(µ, ωi)] ≥ Eβ(·|ω1)

[u(µ, ωi)]. (B.6)
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We can write the right-hand side of equation (B.6) as

Eβ(·|ω1)
[u(µ, ω1) + u(µ, ωi)− u(µ, ω1)]. (B.7)

Now, since the family {u(·, ω) : ω ∈ Ω} satisfies monotonic expectational differ-
ences, we have that

u(µ, ωi)− u(µ, ω1) = (b(ωi)− b(ω1))Eα(·|µ)[h1(y1, y2(y1, µ))] + c(ωi)− c(ω1).

Moreover, recall from footnote 7, that we assume that u(y∗1 , y∗2 , ωi) = 0 for all
i ∈ {1, . . . , N}. Hence, we can rewrite the above as:

u(µ, ωi)− u(µ, ω1) = (b(ωi)− b(ω1))Eα(·|µ)[h1(y1, y2(y1, µ))] + c(ωi)− c(ω1)

= (b(ωi)− b(ω1))(Eα(·|µ)[h1(y1, y2(y1, µ))]− h1(y∗1 , y∗2)) ≥ 0

since b(·) is increasing in ωi and h1 is minimized at (y∗1 , y∗2) by the assumption in
footnote 7.

Proof of Corollary 4.1. Proposition 4.1 implies that under monotonic expectational
differences, it is enough to consider the solution to A. Writing it in terms of the
distribution of posteriors it induces, we obtain:

max
α:∆(Ω) 7→∆(Y1),y2∈Υ2

max
τ∈∆∆(Ω):Eτµ=µ0

Eτ

[
Eα(·|µ)

[
∑

ω∈Ω
µ(ω)v(y1, y2(y1, µ), ω)

]]
(A′)

s.t.


Eτ(·)

[
Eα(·|µ)

[
µ(ω)
µ0(ω)

u(y1, y2(y1, µ), ω1)
]]
≥ 0

(∀i ∈ {2, . . . , N})Eτ(·)

[
Eα(·|µ)

[(
µ(ωi)
µ0(ωi)

− µ(ωi−1)
µ0(ωi−1)

)
u(y1, y2(y1, µ), ωi)

]]
≥ 0

(∀i ∈ {1, . . . , N − 1})Eτ(·)

[
Eα(·|µ)

[(
µ(ωi)
µ0(ωi)

− µ(ωi+1)
µ0(ωi+1)

)
u(y1, y2(y1, µ), ωi)

]]
≥ 0

Fix α : ∆(Ω) 7→ ∆(Y1) and a selection y2 ∈ Υ2, and consider the program:

max
τ∈∆∆(Ω):Eτµ=µ0

Eτ

[
Eα(·|µ)

[
∑

ω∈Ω
µ(ω)v(y1, y2(y1, µ), ω)

]]
(A′α)

s.t.


Eτ(·)

[
Eα(·|µ)

[
µ(ω)
µ0(ω)

u(y1, y2(y1, µ), ω1)
]]
≥ 0

(∀i ∈ {2, . . . , N})Eτ(·)

[
Eα(·|µ)

[(
µ(ωi)
µ0(ωi)

− µ(ωi−1)
µ0(ωi−1)

)
u(y1, y2(y1, µ), ωi)

]]
≥ 0

(∀i ∈ {1, . . . , N − 1})Eτ(·)

[
Eα(·|µ)

[(
µ(ωi)
µ0(ωi)

− µ(ωi+1)
µ0(ωi+1)

)
u(y1, y2(y1, µ), ωi)

]]
≥ 0

23



Note that there might be allocations α for which there is no τ that satisfies the
incentive compatibility and/or participation constraints. To address this issue, let
Cα denote the policies τ that satisfy the constraints in (A′α). Let f 0

α (τ) denote

Eτ

[
Eα(·|µ)

[
∑

ω∈Ω
µ(ω)v(y1, y2(y1, µ), ω)

]]
,

and let

fα(τ) =

{
f 0
α (τ) if τ ∈ Cα

−∞ otherwise .

In what follows, fα(τ) is the objective function under consideration. Note that
letting,

gi(µ) =

(
µ(ωi)

µ0(ωi)
− µ(ωi+1)

µ0(ωi+1)

)
u(µ, ωi), i ∈ {1, . . . , N − 1}

gN−2+i(µ) =

(
µ(ωi)

µ0(ωi)
− µ(ωi−1)

µ0(ωi−1)

)
u(µ, ωi), i ∈ {2, . . . , N}

g2N−1(µ) =
µ(ω1)

µ0(ω1)
u(µ, ω1),

we can write A′α as a special case of OPT, with r = 2N − 2. Corollary 3.1 implies
that any finite solution to A′α uses at most 3N − 1 beliefs.

Proof of Corollary 4.2. Towards a contradiction, suppose the participation constraint
of ω1 is not binding. Then, let ε = Eβ(·|ω1)

[
Eα(·|µ)[ũ(y′1, y2(·), ω1)]

]
. Consider a

mechanism that increases all transfers, p(µ)+ ε. All incentive constraints continue
to be satisfied, the participation constraint for ω1 binds, and revenue increases,
contradicting that the solution was optimal.

Proof of Proposition 4.2. Given a selection y2(y′1, µ) from the principal’s best response
correspondence in period 2 when his belief is µ, let

u(y′1, y2(y′1, µ), ωi) = ũ(y′1, y2(y′1, µ), ωi)

−
1−∑n≤i µ0(ωn)

µ0(ωi)
(ũ(y′1, y2(y′1, µ), ωi)− ũ(y′1, y2(y′1, µ), ωi−1))
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Then, replacing the constraints in (R) in the principal’s objective function, we
obtain the following expression:

Eτ[Eα(·|µ) ∑
ω∈Ω

µ(ω)
(
ṽ(y′1, y2(y′1, µ), ωi) + u(y′1, y2(y′1, µ), ωi)

)
︸ ︷︷ ︸

v̌(α,y2,µ)

]

Therefore, we can write (R) as

max
τ,α,y2

Eτ [v̌(α, y2, µ)] , (B.8)

where the distribution over posteriors must satisfy the Bayes’ plausibility con-
straint and y2 ∈ Υ2. That is, the solution to the relaxed problem is obtained by
maximizing a version of the virtual surplus, represented by v̌, and then choosing
a distribution over posteriors that averages out to the prior. The following remark
is in order:

Remark 1 (Tie-breaking in favor of the principal). So far we have remained silent
about how y2(y′1, µ) is chosen, beyond the restriction that y2(·) ∈ Υ2(·). We can use the
function ṽ(y′1, y2(y′1, µ), ωi)+ u(y′1, y2(y′1, µ), ωi) to determine how to break the possible
ties in Υ2(·) and make the principal’s objective function upper-semicontinuous. In fact, if
y2, y′2 ∈ Υ2(y′1, µ), then in the relaxed program, y2 is selected as long as

∑
ω∈Ω

µ(ω)
[
ṽ(y′1, y2, ωi) + u(y′1, y2, ωi)

]
≥ ∑

ω∈Ω
µ(ω)

[
ṽ(y′1, y′2, ωi) + u(y′1, y′2, ωi)

]
.

In other words, ties are broken in favor of the virtual surplus.

We now illustrate how to solve the program in Equation B.8. Towards this, fix
the selection y∗2 as in Remark 1. Because the program is separable in the alloca-
tion α across posteriors µ, the solution can be obtained in two steps. First, for
each posterior µ, we maximize v̌(·, y∗2 , µ) with respect to α. Denote the value of
this problem v̂(µ). Second, we choose τ to maximize the expectation of v̂(·) sub-
ject to the constraint that τ is Bayes’ plausible. A straightforward application of
Carathéodory’s theorem implies that the solution to (R) involves at most N pos-
teriors.
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C Proofs of Section 4.2

A menu of experiments consists of a finite11 set of signals S and a collection of
distributions {πθ : Ω 7→ ∆(S) : θ ∈ Θ}. Under experiment πθ, when the agent
observes signal s ∈ S, the agent updates her belief about the state of the world as
follows:

µs(ω) =
µ0(ω)πθ(s|ω)

∑ω′∈Ω πθ(s|ω)µ0(ω′)
≡ µ0(ω)πθ(s|ω)

Prπ,θ(s)
.

A menu of experiments is incentive compatible if the following holds for all θ ∈ Θ
and θ′ 6= θ:

∑
µ∈∆(Ω)

∑
{s∈S:µs=µ}

Prπ,θ(s)U(µ, θ) ≥ ∑
µ∈∆(Ω)

∑
{s∈S:µs=µ}

Prπ,θ′(s)U(µ, θ) (C.1)

Lemma C.1. It is without loss of generality to focus on experiments such that S = ∆(Ω).

Proof. The statement follows from Equation C.1. To see this, let 〈{πθ}θ∈Θ, S〉 de-
note an experiment. Consider the following experiment, 〈{π′θ}θ∈Θ, ∆(Ω)〉

π′θ(µ|ω) = ∑
{s∈S:µs=µ}

πθ(s|ω). (C.2)

Note that

Prπ′,θ(µ) = ∑
ω∈Ω

µ0(ω)π′θ(µ|θ) = ∑
ω∈Ω

µ0(ω) ∑
{s∈S:µs=µ}

πθ(s|ω) = ∑
{s∈S:µs=µ}

Prπ,θ(s).

Thus, 〈{π′θ}θ∈Θ, ∆(Ω)〉 yields the same payoff to the designer and the agent. Fur-
thermore, it is incentive compatible.

Proof of Proposition 4.4. The proof proceeds in two steps. We first argue that the
solution to the problems in Equations 4.2 and 4.3 are the same. We then apply
Theorem 3.1 to the problem in Equation 4.3 to argue for the upper bound in the
number of posteriors induced in an optimal experiment.

To see that the solutions to both problems are the same, consider the following
argument. Let τ∗ denote a solution to Equation 4.2. For each θ ∈ Θ, let

u∗θ = Eτ∗(θ,·)[U(µ, θ)].

11Proposition 4.4 implies this is without loss of generality.
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Then, it is immediate to check that (τ∗, (u∗θ)θ∈Θ) solves the problem in Equa-
tion 4.3.

Let (τ∗, (u∗θ)θ∈Θ) denote a solution to the problem in Equation 4.3. Note that
without loss of generality we can take

u∗θ = Eτ∗(θ,·)[U(µ, θ)].

Note that for each θ this relaxes the incentive compatibility constraint for θ′ 6= θ
and it does not affect the first constraint for θ’s experiment. It then follows that τ∗

solves the problem in Equation 4.2.

Consider now the problem in Equation 4.3. Fix {uθ}θ∈Θ. Note that the problem
of finding an optimal τ : Θ 7→ ∆∆(Ω) given {uθ}θ∈Θ is separable across θ ∈ Θ.
That is, given {uθ}θ∈Θ, it is enough to solve M optimization problems:

max
{τ(θ,·)∈∆∆(Ω):Eτ(θ,·)[µ]=µ0}

Eτ(θ,·) [V(µ, θ)] (C.3)

s.t.
{

(∀θ ∈ Θ) Eτ(θ,·) [U(·, θ)] ≥ uθ

(∀θ ∈ Θ)(∀θ′ 6= θ) uθ′ ≥ Eτ(θ,·) [U(µ, θ′)]
,

where V(µ, θ) = ∑ω∈Ω µ(ω)v(a∗(µ, θ), θ, ω). For each θ, the problem in Equa-
tion C.3 is a special case of the problem in OPT. Corollary 3.1 implies that there
exists a solution that uses at most N + M posteriors.

27


	Introduction
	Setting
	Main results
	Validating the Lagrangian approach

	Applications
	Mechanism design with limited commitment
	Persuasion of a privately informed receiver

	Proofs of Section 3
	Proofs of Section 4.1
	Proofs of Section 4.2

