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Abstract

I study a single-agent sequential search problem as in Weitzman [14].

Contrary to Weitzman, conditional on stopping, the agent may take any

uninspected box without first inspecting its contents. This introduces a

new trade-off. By taking a box without inspection, the agent saves on

its inspection costs. However, by inspecting it, he may discover that its

contents are lower than he anticipated. I identify sufficient conditions on

the parameters of the environment under which I characterize the optimal

policy. Both the order in which boxes are inspected and the stopping rule

may differ from that in Weitzman’s model. Moreover, I provide additional

results that partially characterize the optimal policy when these conditions

fail.
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Juuso Välimäki for useful discussions. I also benefited immensely from the thoughtful feedback
of the Editor, Xavier Vives, an Associate Editor, and two anonymous referees. All errors are, of
course, my own.
†Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena,

CA, 91125. (e-mail: ldoval@caltech.edu)

mailto:ldoval@caltech.edu
Ginny Wiehardt
This is a preprint version of the article. The final version may be found at https://doi.org/10.1016/j.jet.2018.01.005



Contents

1 Introduction 1

1.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Model 6

2.1 Sampling Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 One-box problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Preliminary results for N ą 1 11

4 Optimal Policy: Order and Stopping 14

4.1 Sufficient conditions under which Weitzman’s policy is optimal . . . 15

4.2 Binary prizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Conclusions 26

A Proofs 26

A.1 Proofs of Propositions 1, 2, and 3 . . . . . . . . . . . . . . . . . . . 27

A.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A.3 Proof of Proposition 4 and Corollary 1 . . . . . . . . . . . . . . . . 31

A.4 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.5 Statement and proof of Theorem 2 . . . . . . . . . . . . . . . . . . 35

A.6 Boxes for which xR ď xB are never inspected in the optimal policy . 49

B Indexability 53

C Examples 56

C.1 Cutoffs don’t determine the optimal policy if N ě 2 . . . . . . . . . 56

C.2 Example footnote 3 in Section 1 . . . . . . . . . . . . . . . . . . . . 56



1 Introduction

Weitzman’s [14] model is used to study situations that fit the following frame-

work: an agent has N boxes, each of which contains an unknown prize; he can

sequentially search for prizes at a cost, and search is with recall (see Olszewski

and Weber [10] and the references therein). Weitzman characterizes the optimal

search rule, which is defined by an order in which boxes are inspected, and a stop-

ping rule: boxes are assigned reservation values; they are inspected in descending

order of their reservation values, and search stops when the maximum sampled

prize is greater than the maximum reservation value amongst uninspected boxes.

An assumption in Weitzman [14] is that the agent cannot take a box without first

inspecting its contents. This assumption, which underlies the simplicity of the

optimal search rule, limits the scope of the model. I address Weitzman’s search

problem without this assumption. While Weitzman’s result can be understood as

an application of Gittins’ index for bandit problems, in my model, index policies

are not optimal (see Appendix B). Nevertheless, I find sufficient conditions on the

parameters of the environment (the prize distributions and inspection costs) under

which the optimal policy can be fully characterized.

Before discussing the results in detail, and to illustrate the difficulties at hand,

consider the following example in which Weitzman’s assumption is unnatural (Sec-

tion 5 discusses two other applications). Suppose that the agent is a student who

has to choose from among the schools to which he has been admitted or not attend

school. He derives a utility of z from the latter option. The student has the option

of attending the visit day at each institution to determine how suitable a match

the school is. This requires effort and time, which are costly to him. I interpret

each school as a box, how good a match the school is as the prize in the box,

attending the visit day as inspecting a box, and the effort and time invested as the

box’s inspection cost. Weitzman’s assumption implies that the student can only

choose from schools at which he has attended the visit day.

I now use the example to show how the optimal policy changes in the absence

of Weitzman’s assumption. Assume that there are three schools, A, B, and C.

Below, I denote the value of attending school i P tA,B,Cu by xi. Each school’s

distribution over prizes is given in Table 1, based on an example by Postl [12]:
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A Prize 1 2 5
Probability 0.25 0.50 0.25

Inspection cost
0.25

Reservation value
4

B Prize 0 3
Probability 0.50 0.50

Inspection cost
0.25

Reservation value
2.5

C Prize 0 1.5 10
Probability 2{3 17{60 0.05

Inspection cost
0.25

Reservation value
5

Table 1: Prize distribution, inspection costs, and reservation values for each school2

In what follows, I consider three subproblems: the student has admission only

to school A (Problem 1), to A and B (Problem 2), or to all schools (Problem 3).

Problem 1. The student chooses between attending school A and not attending

school. In Weitzman’s model, if z ě 4, it is optimal not to attend school, while if

z ă 4, it is optimal to visit school A and then choose the best alternative. Note

that when z ă 1, he knows that attending school A is his best alternative, but

to do so, he must first visit it. When he can choose to attend school A without

first visiting it, the optimal policy coincides with Weitzman’s except that, when

z ď 2, he chooses to attend school A without first visiting it. When z P p1, 2s, the

student chooses A despite the possibility that xA “ 1: in this case, information

about A is useful only when xA “ 1, and its expected benefit (a payoff increase of
1
4
pz ´ 1q) is smaller than its cost (1

4
). �

When the student can accept admission without attending the visit day, he stops

search more often than under the optimal policy in Weitzman’s model. This is

intuitive: conditional on stopping, he has more options available, meaning that

stopping has become more valuable. One might conjecture that, in general, this is

the only difference between the optimal policies in the two models. Problems 2 and

3 show that this is not the case: by making stopping more valuable, the option to

take a box without inspection changes the value of inspecting the different boxes;

this, in turn, may make the optimal order different from that in Weitzman’s model.

Problem 2. The student now has admission to A and B. Assume that z “ 0.

In Weitzman’s model, the optimal policy is as follows. School A is visited first; if

xA “ 5, search stops; while if xA P t1, 2u, then school B is visited, and the student

2Table 1 aIso displays each school’s reservation value. I define the reservation value in Section
2.2 (see equation (RV)). However, the reader need not know this to be able to follow the example.
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chooses the best school. Had school B been visited first, school A would always be

visited next: when xB “ 0, this is immediate; when xB “ 3, this follows because

the gain from visiting A, 1
4
p5´ 3q, is larger than the visit cost. Whether he visits

A or B first, the student always chooses the best school; however, by visiting A

first, he saves on the cost of visiting B when xA “ 5.

The option to attend a school without attending its visit day changes the optimal

policy because visiting school B first becomes more attractive: after determining

that xB “ 0, the student can save on the inspection costs of school A (since

xA ą 0).3 Indeed, in the optimal policy, school B is visited first; if the prize is

xB “ 0, then search stops, and school A is selected without inspection, while if the

prize is xB “ 3, the student visits school A and chooses the best school. Had school

A been visited first, the optimal continuation coincides with that in Weitzman’s

policy because school B is too risky to accept without first visiting it. �

When the student can accept admission without first visiting a school, there

are (potentially) two countervailing effects that, in this example, favor school B.

On the one hand, the solution to Weitzman’s problem suggests that, when both

schools are visited, it is better to visit A first. Hence, when xB “ 3, and the

student visits school A next, he ‘regrets’ having visited B first. On the other

hand, when xB “ 0, he is glad that he did not visit A first; in this case, the

information obtained by visiting A is not useful. In a more general example, it

could be difficult to determine how these two effects (the cost of first inspecting a

“dominated” school, B, and the benefit of retaining the option to accept without

visiting a “dominating” one, A) compare.

Problem 2 shows that the option to take a box without inspection may make it

optimal to inspect boxes in a different order than that in Weitzman [14]. One may

conjecture that, as in [14], there is a way to order the boxes at the outset such

that, as long as it is optimal to search, the highest uninspected box according to

this order is inspected next. Problem 3 shows that such an order may not exist:

the order in which schools are visited may depend on what is learned on the first

visit.

Problem 3. Assume now that the student has admission to all schools and z “ 0.

3The example is stark for expositional purposes. For an example in which the same effect
obtains and school A is not ex ante better than school B, see Appendix C.2.
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In Weitzman’s model, school C is visited first, then A, and then B. However, in

the model considered here, the optimal policy is as follows. School C is visited

first. If xC “ 10, search stops. If xC “ 1.5, schools are visited in Weitzman’s order:

in this case, acquiring the information from both A and B is valuable, and as in

Weitzman’s model, starting with A saves on visiting B when xA “ 5. However,

if xC “ 0, the optimal policy is as in Problem 2: when xC “ 0, the problem is

identical to Problem 2, and hence, visiting B first is optimal. Thus, the order in

which schools are visited may depend on what the student has learned. �

1.1 Summary of results

Problems 1-3 show that, when the agent has the option to take a box without

inspection, the optimal policy loses the simplicity of the optimal policy in Weitz-

man’s model. In particular, as shown in Problem 3, the order may be history

dependent. As a consequence, depending on the realized prizes, the optimal pol-

icy may dictate that the same box is sometimes inspected while sometimes taken

without inspection. This, in general, makes the problem intractable. Recall Prob-

lem 2: after visiting school B, depending on xB, school A is visited or accepted

without visiting. For general distributions, and with more boxes, it is unclear how

the two countervailing effects discussed compare.

Despite these difficulties, I identify sufficient conditions on the parameters of the

environment under which I characterize the optimal policy (see Theorems 1 and

2). Under these conditions, I show that the optimal policy satisfies the following

property: if a box is inspected with positive probability, then it is never taken

without inspection; similarly, if it is taken without inspection with positive prob-

ability, then it is never inspected. This property is key to avoiding some of the

difficulties illustrated in the example. As discussed in Section 4, these conditions

have been used elsewhere in the search literature to enable the characterization of

optimal search policies in environments where, without these assumptions, such

characterization has proved elusive.

Theorem 1 shows that if a condition on the pairwise payoff comparison between

boxes holds, then Weitzman’s rule remains optimal. The condition holds, for exam-

ple, when boxes share the same inspection cost, and either (i) given any two boxes,
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the prize distribution of one box is obtained by a mean-preserving spread of the

prize distribution of the other (Proposition 4 and Corollary 1), or (ii) prizes normal-

ized by their means are drawn from the same symmetric distribution (Proposition

5). In contrast, Theorem 2 considers an interesting class of environments in which

the optimal policy does not coincide with Weitzman’s rule but nevertheless admits

a simple characterization. This class corresponds to the binary prizes environment

in Chade and Smith’s [3] simultaneous search model, in which boxes share the

same lower prize but may differ in both the high prize and success probabilities.

Indeed, while their model is well suited to analyze the decision of which schools to

apply to, mine can be used to determine how to sequentially acquire information

on the schools to which the agent has been admitted.

1.2 Related Literature

This section discusses the closest related literature. In the main text, I discuss pa-

pers that apply assumptions similar to those of Theorems 1 and 2 to other search

problems and applications of the one-box case of the problem considered here.

Postl [12] postulates this search problem explicitly within the context of a principal-

agent model. He focuses on the two-box-equal-inspection-costs version of this

search problem and discusses an analogue of Proposition 4 in this simplified set-

ting. Proposition 4 in my paper generalizes his result and shows that it is not

necessary to assume two boxes or that the boxes have equal costs.

Klabjan, Olszewski and Wolinsky [7] study a search for attributes model in

which, contrary to my setting, the agent’s utility function is given by the sum

of the prizes (attributes). As in my setting, the agent does not have to inspect

all attributes to keep the object: he can accept the object, taking the rest of the

attributes without inspection. Under sequential search, and with two boxes, the

authors characterize the optimal solution when attribute distributions are sym-

metric around 0. The rule coincides with inspecting attributes in decreasing order

of their reservation values (see Proposition 5 for a similar result in this setup).

While Weitzman’s model corresponds to a multi-armed bandit problem, the one

considered here corresponds to a stoppable superprocess (Glazebrook [5]). Su-

perprocesses generalize bandit processes, in that at any point in time, the agent
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chooses a Markov decision process to continue and the control to apply to it. Index

policies are, in general, not optimal for these families. Glazebrook [5] provides a

sufficient condition under which index policies are optimal, but he does not char-

acterize the optimal policy absent this condition. His condition is too stringent for

the problem considered here and trivializes it (see Appendix B). My results con-

tribute to this literature by providing instances in which, despite an index rule not

being necessarily optimal, the optimal policy can still be characterized. Recently,

Ke and Villas-Boas [6] apply Glazebrook’s stoppable superprocesses model to a

two-box-binary-prize environment where, unlike my setting, the agent can only

obtain multiple noisy signals about the contents of a box by inspecting it. As in

my setting, the agent can choose to take a box without fully learning its contents.

Their model retains many of the features of that considered here: (i) index policies

are optimal when the outside option is sufficiently high (see Proposition 1 for a

similar result in this setup) and (ii) the agent may prefer to first inspect boxes with

low indexes. However, they do not provide a full characterization of the optimal

policy in their setting.

This paper is organized as follows. Section 2 describes the model and solves

the one-box case. Section 3 derives three general properties of the optimal pol-

icy. These are central to the proofs of Theorems 1 and 2, which are introduced

in Section 4. The results in Sections 3 and 4 are stated informally to streamline

notation; the Appendix contains the formal statements. Section 5 concludes. All

proofs are in the Appendix; in particular, Appendix B shows that no index rule is

optimal. The online appendix describes the optimal policy in the two-box case.

2 Model

An agent has a set N “ t1, ..., Nu of boxes, each containing a prize, xi, distributed

according to distribution function, Fi, with mean µip”
ş

xidFipxiqq. Box i has in-

spection cost ki. Fi and ki are known; however, xi is not. Prizes are independently

distributed, and for all i P N ,
ş

|xi|dFipxiq ă `8. The agent has an initial outside

option, x0. Given a vector, z, I denote its highest coordinate by z. The agent

is risk neutral, and given a vector of realized prizes, z “ pz1, ..., znq, his utility

function is given by upzq “ z.
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2.1 Sampling Policy

The agent sequentially inspects boxes, and search is with recall. Given a set of

uninspected boxes, U , and a vector of realized sampled prizes, z, the agent decides

whether to stop or continue search; if he decides to continue search, he decides

which box to inspect next. Let ϕpU , zq P t0, 1u denote the decision to stop search

(ϕ “ 0) or to continue search (ϕ “ 1) at decision node pU , zq; if ϕpU , zq “ 1, let

σpU , zq P U denote the box that he inspects next. If ϕ “ 0, the agent chooses

between any prize in z and any uninspected box in U . If ϕ “ 1, he inspects box σ,

pays kσ, and observes its prize, xσ. Having observed xσ, the agent is now at decision

node pUztσu, z ˝ xσq, and selects ϕpUztσu, z ˝ xσq, and σpUztσu, z ˝ xσq, where for

a vector z “ pz1, ..., znq, z ˝ xσ “ pz1, ..., zn, xσq. Given a decision node pU , zq, the

strategy pϕ, σq, together with the distributions, tFiuiPU , determine a probability

distribution over continuation paths in the natural way, and the agent’s expected

payoff at that decision node, which I denote by V pU , zq. I use stars to denote the

optimal strategies and the payoff V when it results from using the optimal policy

in pU , zq.
At decision node pU , zq, the agent’s optimal strategy solves the following prob-

lem:

V ˚pU , zq “ maxtz,max
iPU

µi,max
iPU

´ki `

ż

V ˚pUztiu, z ˝ xiqdFipxiqu.

2.2 One-box problem.

This section describes the optimal policy when N “ 1. Each box is now character-

ized by two cutoff values: the reservation value, as in Weitzman [14], and a new

value, which I denote the backup value. When N “ 1, the reservation value, the

backup value, and the initial outside option determine the optimal policy. Sections

3-4 show that both values play an important role in determining the optimal policy

when N ą 1.

Denote the agent’s box by i and its expected value by µi. Let z denote the

maximum sampled prize. In what follows, I consider separately the cases of z ě µi

and z ă µi.
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Consider first the case of z ě µi. If the agent stops, he chooses to take z. The

agent inspects box i if, and only if, the following holds:

z ď ´ki `

ż `8

´8

maxtxi, zudFipxiq ô ki ď

ż `8

z

pxi ´ zqdFipxiq. (1)

Define the box’s reservation value to be the number xRi such that

ki “

ż `8

xRi

pxi ´ x
R
i qdFipxiq, (RV)

i.e., xRi is the value of the outside option that leaves the agent indifferent between

inspecting box i and stopping and taking prize xRi . The agent inspects box i

whenever z ă xRi . Equation (RV) can be used to write the payoff from inspecting

box i when z ď xRi as follows:

´ki `

ż z

´8

zdFipxiq `

ż `8

z

xidFipxiq “

ż z

´8

zdFipxiq `

ż xRi

z

xidFipxiq `

ż `8

xRi

xRi dFipxiq.

This shows that the reservation value represents the highest prize that the agent

expects to obtain from inspecting box i, after internalizing inspection costs, as it

is as if the agent’s payoff from inspecting box i is bounded above by xRi .

Consider now the case of z ă µi. If the agent stops, he takes box i without

inspection. Therefore, the agent inspects box i if, and only if, the following holds:

µi ď ´ki `

ż `8

´8

maxtxi, zudFipxiq ô ki ď

ż z

´8

pz ´ xiqdFipxiq. (2)

By inspecting box i, the agent may discover that xi ă z and, hence, obtain a

payoff lower than µi, as z ă µi. (Contrast this to the expression on the left-hand

side of equation (1), where z is on both sides of the inequality.) It is precisely

the possibility of discovering that xi ă z that makes inspecting box i valuable:

by inspecting box i, the agent guarantees that he always concludes search having

chosen the best available alternative. However, inspecting box i is costly. Thus,

whether the agent takes box i without inspection depends on how the net benefit

of inspecting box i (the increase in payoff whenever xi ă z) compares with ki.
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Define the box’s backup value to be the number xBi such that

ki “

ż xBi

´8

pxBi ´ xiqdFipxiq, (BV)

i.e., xBi is the value of the outside option that leaves the agent indifferent between

inspecting box i and taking it without inspection. The agent inspects box i if

xBi ă z; otherwise, he takes it without inspection. Equation (BV) can be written

as follows:

µi “ ´ki `

ż xBi

´8

xBi dFipxiq `

ż `8

xBi

xidFipxiq. (3)

Using equation (RV) to replace ki in (3), equation (3) can be written as follows:

µi “

ż xBi

´8

xBi dFipxiq `

ż xRi

xBi

xidFipxiq `

ż `8

xRi

xRi dFipxiq. (4)

Equation (4) illustrates that xBi is the lowest prize the agent expects to obtain

from box i when he takes it without inspection, after internalizing that he did not

pay box i’s inspection cost. I refer to xBi as box i’s backup value because, when

the agent takes box i without inspection, it is as if his payoff is bounded below

by xBi .

Throughout, I make the following assumption, which is equivalent to requiring

that xBi ă µi ă xRi hold for all i P N :4

Assumption 1. p@i P N qki ă
şµi
´8
pµi ´ xiqdFipxiq.

5

To understand the above condition, suppose that z “ µi. In this case, informa-

tion about box i is valued the most; without information, the agent cannot discern

which alternative is best. Assumption 1 is equivalent to assuming that, in this

case, the benefit of inspecting box i exceeds its cost.

Remark 1. Appendix A.6 shows that if a box i P N violates Assumption 1, then

there exists an optimal policy in which it is never inspected.6 Therefore, in terms

4Appendix S.2 illustrates Assumption 1 by means of an example.
5Note that µi in the expression defining Assumption 1 is itself a function of Fi.
6When xBi “ µi “ xRi and µi “ z, the agent may be indifferent between inspecting box i and
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of the agent’s optimal policy, a decision node pU , zq is identical to a decision node

pUBăR, z1q, where UBăR “ ti P U : xBi ă xRi u, and z1 “ z ˝
Ś

iRUBăR µi. Since the

results in Sections 3 and 4 hold for any vector of sampled prizes, z, Assumption 1

is without loss of generality. The only caveat is that, at decision node pU , zq with

UzUBăR ‰ H, the agent may find it optimal to take box i P UzUBăR without

inspection, while at the corresponding decision node pUBăR, z1q, he would take z1.

When N “ 1, the optimal policy is determined by comparing the maximum

sampled prize, z, with the cutoffs, xBi , x
R
i . Proposition 0 below records this:

Proposition 0. Assume that N “ 1. Denote the agent’s box by i and his outside

option by z. The optimal policy, illustrated in Figure 1 below, is as follows:

1. If z ď xBi , the agent takes box i without inspection.

2. If xBi ă z ă xRi , the agent inspects box i and takes the larger prize between z

and the sampled prize, xi.

3. If xRi ď z, the agent does not inspect box i and takes his outside option.

xBi µi xRi

Stop search and take box i Inspect box i Stop search and take z

ki

z

şz

´8
pz ´ xiqdFi

ş`8

z
pxi ´ zqdFi

Figure 1: Optimal policy for N “ 1

taking z. In this knife-edge case, there is also an optimal policy in which he inspects box i.
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Figure 1 summarizes the discussion in Section 2.2: it provides a graphical de-

piction of the cutoff values and, hence, of the optimal policy as a function of z.

The x´axis represents the value of the outside option, z. The downward-sloping

dashed curve corresponds to the right-hand side of equation (1), the equation that

determines the reservation value. The upward-sloping dotted curve corresponds to

the right-hand side of equation (2), the equation that determines the backup value.

Note that they intersect at µi. It is possible to show that the lower envelope of these

two functions corresponds to the function Ipzq ”
ş

maxtxi, zudFi´maxtµi, zu (this

is the solid curve in Figure 1). Ipzq represents the agent’s net increase in payoff

when he inspects box i instead of taking his outside option, maxtµi, zu. That is,

Ipzq represents the value of information to the agent: whenever Ipzq ą ki, the

agent inspects box i; otherwise, he takes his outside option, maxtµi, zu.
7

It follows from Proposition 0 that the agent does not acquire information when

z is too high (above xRi ) or too low (below xBi ). This is intuitive: it is very unlikely

that the information that he acquires changes his choice (to keep z when it is high

or take the contents of box i when z is low), and since this information is costly,

he would rather not acquire it.

Results similar to Proposition 0 have appeared in the one-box-settings of Chade

and Kovrijnykh [2] and Krähmer and Strausz [8], in the two-box setting of Postl

[12], and in the attributes model of Klabjan, Olszewski and Wolinsky [7]. More-

over, the backup value plays a crucial role in the optimal mechanism of Ben-Porath,

Dekel and Lipman [1]. However, none of these papers provide a solution for the

search problem analyzed here.

3 Preliminary results for N ą 1

Section 3 presents three building blocks used for determining the optimal policy.

These are then used to prove the results in Section 4. Propositions 1 and 2 formalize

the claim that the backup value of box i represents the value of taking box i without

inspection, while Proposition 3 provides a necessary condition for Weitzman’s order

7Assumption 1 can also be read from Figure 1. First, since I is increasing for z ă µi

and decreasing for z ě µi, the equation ki “ Ipzq has at most two solutions. Second, Jensen’s
inequality implies that Ipzq ě 0. Hence, if ki « 0, then there are two solutions, which correspond
to the cutoff values, while for ki high enough, there is no solution.
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not to be optimal. Moreover, Propositions 1-3 help to simplify the taxonomy of

the problem: when the conditions in Section 4 do not hold, should one attempt to

find the solution by applying backward induction, the results in this section help

to narrow down the cases to be considered. This is illustrated in Section S.1 in the

online appendix, where I characterize the optimal policy when N “ 2. To state

the results, recall that U is the set of uninspected boxes and that µi “
ş

xdFi for

each i P U .

If, for all i P U , the maximum sampled prize, z, is greater than µi, from then

onward, the optimal sampling policy is given by applying Weitzman’s rule to the

boxes in U . Proposition 1 shows that, while sufficient, this is not necessary for

Weitzman’s rule to be optimal. Indeed, it states that whenever the maximum

sampled prize exceeds the highest backup value amongst the uninspected boxes,

the option of taking a box without inspection has no value to the agent. Hence,

Weitzman’s rule is optimal from that moment forward.

Proposition 1. Let pU , zq be a decision node such that, for all i P U , xBi ď z.

Then, Weitzman’s policy is optimal in all continuation histories.

Remark 2. The condition in Proposition 1 is not necessary for Weitzman’s policy

to be optimal. To see this, recall Problem 3. In that case, school A has the highest

backup value (xBA “ 2). However, when xC “ 1.5, Weitzman’s policy is optimal.

Suppose now that the agent is at a decision node pU , zq such that z ă maxiPU x
B
i .

Under Assumption 1, maxiPU x
B
i ă maxiPU µi. Thus, if the agent finds it optimal to

stop, he takes maxiPU µi.
8 In particular, if he has only one box, then by Proposition

0, it is optimal to take it without inspection. When there is more than one box left

to inspect, Proposition 2 below provides necessary conditions for the optimality of

stopping and taking a box without inspection.9

Proposition 2. Let pU , zq be a decision node such that, for some i P U , z ă xBi .

If it is optimal to stop and take box m P U without inspection, then for all j ‰ m,

8Suppose that Assumption 1 did not hold. Instead of being at decision node pU , zq with

z ă maxiPU x
B
i , suppose that the agent is at decision node pU 1, z1q such that U “ U 1BăR

, and

z “ z1 ˝ ˆiPU 1zU 1BăRµi, where U 1BăR

is as in Remark 1. Then, the discussion in the main text

implies that it cannot be optimal to stop and take a box in U 1zU 1BăR

without inspection.
9Remark 8 discusses the difficulties with obtaining a necessary and sufficient condition.
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(i) µm ě xRj , and

(ii) xBm ě maxtµj, zu.

Thus, box m has the highest mean, reservation, and backup values amongst boxes

in U .10

The intuition behind Proposition 2 follows from noting that the optimal stopping

policy trades-off decision accuracy and information acquisition costs. By contin-

uing search, the probability that the agent chooses the best alternative increases

(i.e., the accuracy of his decision improves), but this comes at the cost of inspect-

ing more boxes. Thus, if it is optimal to stop and take box m without inspection,

it has to be that the benefit of improved decision accuracy is smaller than its cost.

There are two ways in which the agent could improve the accuracy of his decision.

First, he could check whether a box j ‰ m has a prize larger than µm. Second, he

could check whether the prize inside box m, xm, is actually worse than his second-

best outside option at pU , zq, maxtmaxj‰m µj, zu (since µm ą maxtmaxj‰m µj, zu).

When condition (i) fails, the agent prefers to check whether one of the uninspected

boxes has a prize better than µm than to take box m without inspection, thus in-

creasing the probability of concluding search having chosen the best alternative.

Similarly, when condition (ii) fails, the agent prefers to inspect box m to rule out

that it is worse than his other outside options, thus increasing the probability of

concluding search having chosen the right outside option. Thus, if it is optimal to

stop and take box m without inspection, conditions (i) and (ii) need to hold.

Remark 3. The conditions in Proposition 2 are only necessary for the optimality

of stopping and taking a box without inspection. To see this, recall Problem 2:

the conditions in Proposition 2 hold, but it is optimal to continue search.

The next result, Proposition 3, shows that there are two reasons that the agent

may deviate from Weitzman’s order when selecting which box to inspect next.

Given a decision node pU , zq, denote by l the box with the maximum reservation

value and by j ‰ l the box that is inspected at pU , zq according to the optimal

policy. Then, the agent expects that after inspecting j, he might either (i) take

10By Assumption 1, m is the unique box in U with this property.
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box l without inspection in Uztju or (ii) continue to search in Uztju but deviate

yet again from Weitzman’s order.

To understand (i), consider Problem 2 in Section 1. There, the agent inspects

school B (box j) first, which is the one with the lowest reservation value. If, after

inspecting school B, the agent observes xB “ 0, then he accepts school A (box

l) without inspection. That is, the agent deviates from Weitzman’s order since

he assigns positive probability to accepting school A without inspection: had he

visited school A first, he would have lost the option to do so.

To see that (ii) may happen, consider the following example; Section 4.2 discusses

the intuition behind it. Let U “ t1, 2, 3u, let Xi “ t0, xiu be the set of prizes, and

let pi “ P pXi “ xiq. Assume that x1 “ 7, x2 “ 8, x3 “ 9, p1 “
3
4
, p2 “

1
2
, p3 “

2
7
,

ki “ 1, and z “ 0. It can be checked that xR1 ą xR2 ą xR3 , x
B
1 ą xB2 ą xB3 . It

follows from Theorem 2 in Section 4 that the optimal policy inspects box 2 first

and then box 3. Search stops when either xi is found or both boxes yield 0, in

which case, box 1 is taken without inspection. In this example, l “ 1, j “ 2, and

when Xj “ 0, the agent continues search (inspects box 3) but deviates once more

from Weitzman’s order (xR1 ą xR3 ), as in the last stage, box 1 is taken without

inspection.

Proposition 3. Let pU , zq be a decision node, l P U be the box with the highest

reservation value, and j P U be such that xRj ă xRl . If whenever maxtxj, zu ď xRl
it is optimal to inspect box l at decision node pUztju, z ˝ xjq, then it is not optimal

to inspect box j at pU , zq.

The intuition behind Proposition 3 is as follows. The only reason to inspect a

box other than that with the highest reservation value is to retain the option of

using the highest reservation value box as a backup. If the agent does not expect

to do this, but he expects to inspect at least one more box, it should then be the

highest reservation value box.

4 Optimal Policy: Order and Stopping

Section 4 presents sufficient conditions on the prize distributions and inspection

costs under which the optimal policy can be characterized. Under the sufficient
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conditions in Section 4.1, the optimal policy coincides with Weitzman’s for all but

the last box. The conditions are expressed in terms of the pairwise payoff compar-

ison between boxes; I also provide conditions on the primitives under which these

conditions hold. Section 4.2 considers the case in which boxes have binary prizes,

the lowest prize is common to all boxes, and boxes have equal inspection costs. In

this case, the optimal policy differs from Weitzman’s in two ways. First, the agent

may take a box without inspection, even before reaching the last box. Second, the

agent may inspect next a box other than that with the highest reservation value.

In this case, the continuation policy follows from applying Weitzman’s solution to

an alternative search problem in which the highest reservation value box is not

available for inspection, but instead, the initial outside option coincides with the

mean of the highest reservation value box. That is, the agent continues search as

if the highest reservation value box is his outside option.

4.1 Sufficient conditions under which Weitzman’s policy is optimal

To state the conditions of Theorem 1, for any boxes i, j P N such that xRj ď xRi ,

consider the following alternative search problem. The agent only has boxes i, j

and no initial outside option. Then, his options are (i) inspect box i first and

apply the optimal policy in Proposition 0 to box j, (ii) inspect box j first and

apply the optimal policy in Proposition 0 to box i, and (iii) take box i without

inspection. Note that, by Proposition 2, it is never optimal to take box j without

inspection. Let Πij denote the payoff of (i) and Πji the payoff of (ii).11 Theorem

1 requires that, in this alternative problem, it is always optimal to inspect box i

first. That is, for any i, j such that xRj ď xRi , Πij ě maxtµi,Πjiu. Propositions 4

and 5 and Corollary 1 provide conditions on the model’s primitives under which

the conditions in Theorem 1 hold.

Theorem 1. Let N “ t1, ..., Nu be a set of boxes labelled such that xR1 ą ... ą xRN .

Assume that if i ă j, then Πij ě maxtΠji, µiu. The optimal policy is as follows:

Order If a box is to be inspected next, it should be the box with the highest reser-

11Πij is the payoff from inspecting box i first, and (i) if xi ě xRj , stop and take xi, (ii) if

xi P px
B
j , x

R
j q, inspect box j, and take maxtxi, xju, (iii) if xi ď xBj , stop and take µj .

15



vation value.

Stopping

1. If there is more than one box remaining, stop only if the maximum sampled

prize is higher than the highest reservation value amongst uninspected boxes,

and take the maximum sampled prize.

2. If only one box remains, stop if the maximum sampled prize is higher than

xR or lower than xB. In the first case, take the maximum sampled prize;

otherwise, take the remaining box without inspection.

That the conditions in Theorem 1 are sufficient for the optimality of Weitzman’s

order and stopping policy for all but the last box follows from Propositions 2 and 3.

With two boxes left to inspect, the conditions in Theorem 1 can be used to show

that the box with the highest reservation value is to be inspected first whenever

the maximum sampled prize is below its reservation value.12 Suppose now that

there are more than two boxes left to be inspected and that the maximum sampled

prize, z, is less than the highest reservation value amongst uninspected boxes, xR1 .

By Proposition 2, box 1 is the only candidate to be taken without inspection.

However, since Π12 ě µ1, and Π12 is a lower bound for the payoff of continuing

search with box 1, then it cannot be optimal to take box 1 without inspection. To

see that box 1 should be inspected next, note that, according to the optimal policy,

if a box j ‰ 1 is inspected, then box 1 is inspected whenever maxtxj, zu ď xR1 . By

Proposition 3, this contradicts that inspecting box j is optimal.

The observation that, when there are two or more boxes left to inspect, the agent

only uses the highest reservation value box for inspection, and not to take without

inspection, is key to obtaining the optimality of Weitzman’s order. It allows us

to compare boxes 1 and j ‰ 1 solely on the basis of how desirable they are to

inspect. Without this, when inspecting a box j ‰ 1, depending on the realization

of xj, the agent may sometimes inspect box 1 and sometimes either take it without

inspection or inspect a box j1 ‰ 1. When one compares this to inspecting box 1,

there are two (possibly) countervailing effects. On the one hand, box 1 is better

12The proof shows that, for any vector of previously sampled prizes, z, Πij provides a lower
bound to the payoff from inspecting box i first and applying the optimal policy to box j.
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for inspection than box j, and thus, whenever box 1 is inspected after inspecting

j, the agent could have improved his payoff by reversing the order. On the other

hand, the remaining boxes after inspecting box 1 may not be as desirable to take

without inspection as box 1 is. Hence, by inspecting box j first, the agent guar-

antees that his payoff never falls below xB1 , whereas by inspecting box 1 first, he

is exposed to a lower lower bound on his payoff. Without additional structure on

the payoffs, it is not easy to discern how these effects compare, especially since

they may depend very finely on the details of the optimal policy for the remaining

boxes.

Propositions 4 and 5 and Corollary 1 provide conditions under which the as-

sumptions in Theorem 1 hold. Proposition 4 requires that, given any two boxes

i, j, xRj ď xRi if, and only if, xBi ď xBj .13 Proposition 4 holds if, for example,

given any two boxes, the prize distribution of one box is obtained by a mean-

preserving spread of the prize distribution of the other, and all boxes share the

same inspection cost (see Corollary 1). Proposition 5 considers the case in which

prizes normalized by their mean are distributed according to the same symmetric

distribution, and boxes share the same inspection cost.

Similar conditions have been used before in search models where, without these

assumptions, the full characterization of the optimal policy has proved elusive.

The same assumptions as in Corollary 1 are used by Vishwanath [13] to obtain

the reservation value rule in her parallel search model and in the working paper

version of Chade and Smith [3] to extend their binary-prize simultaneous search

model to one with a continuum of possible prizes. Similarly, Klabjan, Olszewski,

and Wolinksy [7] consider two boxes with symmetric distributions. The results

here, then, show that the usefulness of these conditions also extends to this envi-

ronment.

Proposition 4. Let N “ t1, ..., Nu be a set of boxes, and assume that whenever

i ă j, then rxBj , x
R
j s Ď rx

B
i , x

R
i s. Then, for all i, j P N such that i ă j, Πij ´Πji ą

0, and the optimal policy is as in Theorem 1.

13Postl [12] discusses an analogue of Proposition 4 in a two-boxes-equal-inspection-costs setup.
I show that the restriction to two boxes or equal inspection costs is not necessary and provide
conditions on the primitives of the model under which Proposition 4 holds.
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To see why Theorem 1 holds under the conditions in Proposition 4, note the

following. First, since the box with the highest reservation value is always the

box with the lowest backup value, Proposition 2 implies that, when there is more

than one box left to be inspected, it is never optimal to stop and take a box

without inspection. Second, from the proof of Theorem 1, it follows that when

rxBj , x
R
j s Ă rx

B
i , x

R
i s, Πij ě Πji. Intuitively, since the box with the highest xR is

the box with the lowest xB, by inspecting the highest reservation value box, the

agent never forgoes taking without inspection a good backup.

Corollary 1 shows conditions on the primitives such that the ordering of the

cutoffs is that in Proposition 4.

Corollary 1. Assume that tFiuiPN is such that if i ă j, then Fi is a mean-

preserving spread of Fj. Moreover, assume that @i P N ki “ k. Then, p@i, j P

N q, i ă j implies that rxBj , x
R
j s Ď rx

B
i , x

R
i s.

Corollary 1 has a simple interpretation. On the one hand, boxes with higher

dispersion are better for inspection since the agent can get better draws; on the

other hand, these boxes are not good backups since they can also contain worse

draws.

Remark 4. Figure 1 helps visualize Corollary 1. Note that the downward-sloping

curve in Figure 1,
ş`8

z
px ´ zqdFipxq, can be written as

ş

maxtx ´ z, 0udFipxq.

Hence,
ş`8

z
px´ zqdFipxq is the expectation of a convex function of x with respect

to Fi. Thus, if Fi is a mean-preserving spread of Fj,
ş

maxtx ´ z, 0udFipxq is

everywhere above
ş

maxtx´z, 0udFjpxq. If boxes i and j have the same inspection

cost, it follows that xRi ą xRj . The same holds for the backup value by noting that
şz

´8
pz ´ xqdFipxq “

ş

maxtz ´ x, 0udFipxq, which is also convex. It follows that if

Fi is a mean-preserving spread of Fj and ki “ kj, then rxBj , x
R
j s Ď rx

B
i , x

R
i s.

Remark 5. It is worth noting that something weaker than mean-preserving spreads

is sufficient for Proposition 4 to hold when all boxes share the same inspection cost.

Indeed, it suffices that if i ă j, then, for all convex functions with non-negative

range φ : R ÞÑ R`,
ş

φpxqdFjpxq ď
ş

φpxqdFipxq.
14

Proposition 5. Let N “ t1, ..., Nu be a set of boxes. Assume that Xi´µi „ F p¨q,

14Mean-preserving spreads, or the convex-order as it is defined in Ganuza and Penalva [4] and
Li and Shi [9], requires the condition to hold for all convex functions.
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where F is symmetric around 0 and admits density function f . Assume further

that ki “ k. Label boxes such that µ1 ě ... ě µN .15 Then, the following hold:

1. For all i, j P N such that i ă j, Πij ´ Πji “ 0.

2. If µi ď xRj , or xBi ď µj, then the optimal policy is as in Theorem 1.

Proposition 5 follows because when boxes have symmetric distributions and equal

inspection costs, the (unconditional) expected value of the prizes above the reserva-

tion value in each box coincides with the negative of the (unconditional) expected

value of the prizes below the backup value in each box. Suppose that the agent

has two boxes, t1, 2u. Since µ1 ą µ2, then under the conditions of Proposition

5, xR1 ą xR2 and xB1 ą xB2 . When the agent compares the benefits and the costs

of starting with box 1, he compares the upper tails of boxes 1 and 2 with their

lower tails: box 1 has a fatter upper tail and hence is better for search; box 2 has

a fatter lower tail, and hence, box 1 is better to take without inspection. Given

the above property, the costs and benefits exactly offset one another when z ă xB2 ,

and hence, box 2 is taken without inspection after starting with box 1 (recall that

the difference Π12 ´ Π21 is calculated at z ď minxBi ). When z ą xB2 , the benefit

outweighs the cost because, in that case, z is a better buffer than the lower tail

of box 2, as captured by xB2 , when the prizes in both boxes are too low.16 By

Proposition 2, item 2 in Proposition 5 implies that Πij “ Πji ě µi. Hence, the

optimal policy follows from Theorem 1.

4.2 Binary prizes

This section considers the optimal policy for the case in which, for all i P N ,

Xi “ ty, xiu, where y ă xi and pi “ P pXi “ xiq and ki “ k. Boxes are assumed

to satisfy these assumptions for the remainder of Section 4. This prize structure

coincides with that in Chade and Smith [3].17

15Recall that µi “
ş

xidFipxiq, i.e., Fi determines µi. In this case, Fipxiq “ F pxi ´ µiq, and

the assumptions on F imply that µi “
ş`8

´8
xidF pxi ´ µiq.

16Recall that, as discussed above, Π12 is a lower bound, for all z, of the payoff from inspecting
box 1 first.

17However, the cost structure is not as general as in their setting, as they allow for any convex
function that depends on the size of the set of boxes opened.
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The simplified payoff structure allows me to characterize the optimal policy even

when the conditions of Theorem 1 fail. Theorem 2 shows that the optimal policy

in this case may differ from that in Weitzman’s model in two ways. First, the

agent may stop and take a box without inspection even before reaching the last

box. Second, the agent may next inspect a box other than the highest reservation

value box. When this is the case, the continuation policy follows from applying

Weitzman’s solution to an alternative search problem where the highest reservation

value box is not available for inspection, but instead, the initial outside option

coincides with the mean of the highest reservation value box. That is, the agent

continues search as if the highest reservation value box is his outside option.

However, the optimal policy cannot be computed solely from the comparison of

the boxes’ backup and reservation values. In particular, the decisions of whether to

stop and take a box without inspection and of whether to deviate from Weitzman’s

order depend on the continuation values, which must be computed. This is an

inevitable consequence of the problem’s lack of indexability (see Appendix B).

Despite this, the analysis in this section is of interest for at least two reasons.

First, the simplified payoff structure allows us to isolate cleanly a force behind

deviations from Weitzman’s order: the trade-off between concluding search sooner

and concluding search after having chosen the box with the highest x. This is

accomplished by identifying which boxes the agent inspects, when he does not

follow Weitzman’s order. Second, since the continuation values can be written

solely in terms of the boxes’ backup and reservation values, computing the optimal

policy for N boxes requires computing at most 4N numbers, which is a substantial

improvement over solving the problem by backward induction.

To simplify the exposition, and highlight separately the new ingredients of the

optimal policy, I now consider three special cases. I defer the general statement

and proof of Theorem 2 to Appendix A.5:

- Case 1 solves the two-box case, i.e., N “ t1, 2u, and calculates Π12,Π21. This

is sufficient to derive the conditions on the parameters under which Theorem

1 holds and Weitzman’s policy is optimal for all, except the last box.

- Case 2 introduces conditions under which the agent inspects boxes following

Weitzman’s order; however, he may stop and take a box without inspection
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before reaching the last box. In this case, the continuation values only de-

termine the decision of when to stop and take a box without inspection, not

the order in which the boxes are inspected.

- Case 3 introduces conditions under which the agent may deviate from Weitz-

man’s order; however, he does not take a box without inspection before

reaching the last box. In this case, the continuation values only determine

the decision of when to deviate from Weitzman’s order, not the stopping

rule.

Case 1 Let N “ t1, 2u, with xR1 ą xR2 . The payoff from inspecting box 1 first

and applying the optimal policy in Proposition 0 to box 2, Π12, is given by the

following:

Π12 “ ´k ` p1x1 ` p1´ p1qµ2.

After inspecting box 1, search stops. When box 1 has a prize of x1, search stops

because x1 ą xR1 ą xR2 . When box 1 has a prize of y, search stops because, by

taking box 2 without inspection, the agent is guaranteed to find a prize of at least

y, while he saves on the inspection costs of box 2. Similarly, Π21 is given by the

following:

Π21 “ ´k ` p2 maxtx2,´k ` p1 maxtx1, x2u ` p1´ p1qx2u ` p1´ p2qµ1.

It is easy to see that when x2 ă xR1 , Π12 ą Π21: when he inspects box 1 first, search

stops immediately, while it continues with positive probability when he inspects

box 2 first. Consider now the case in which x2 ě xR1 . Then, the difference Π12´Π21

is given by the following:

Π12 ´ Π21 “ p1p2px
R
1 ´ x

R
2 q ` p1´ p1qp1´ p2qpx

B
2 ´ x

B
1 q “ p1p2px1 ´ x2q. (5)

Hence, if it is optimal to inspect at least one box, the agent first inspects the box

with the highest xi. Under both inspection orders, search stops after inspecting

the first box. However, by first inspecting the box with the highest xi, the agent

guarantees that he always concludes search having chosen the best available alter-
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native. Contrast this to the optimal policy in Weitzman’s model, where the agent

always finds it optimal to first inspect box 1. When x2 ą x1, x
R
1 ą xR2 implies that

p1 ą p2. Thus, in Weitzman’s model, by inspecting box 1 first, the agent saves on

inspection costs since search stops more often than when he inspects box 2 first.

Suppose that x2 ą x1, meaning that, when search is optimal, the agent would

deviate from Weitzman’s order. Then, the agent inspects box 2 if, and only if,

Π21 ą µ1 ô xR2 ą µ1.

When x2 ě xR1 , the payoff, Π21, is the same as the payoff an agent who has box 2,

and an outside option of µ1 would obtain by inspecting box 2. It follows that box

2 is worth inspecting if its reservation value is higher than the outside option.

Remark 6. Theorem 2 shows that, when the agent deviates from Weitzman’s

order, he only inspects boxes with higher xi than the highest reservation value

box. These are stretch boxes: they have very high xis but low expected payoffs.18

By inspecting them first, the agent avoids discarding them when they indeed have

a higher prize than the highest reservation value box.

Finally, assume that x1 ě x2. Then, Π12 ě Π21. Moreover, the agent inspects

box 1 if, and only if,

Π12 ą µ1 ô µ2 ą xB1 .

Note that Π12 is the same as the payoff an agent who has box 1, and an outside

option of µ2 would obtain by inspecting box 1. It follows from Proposition 0 that

box 1 is worth inspecting if its backup value is less than the outside option.

It follows from the preceding discussion that if whenever xRi ě xRj , one has that

both xi ě xj and µj ě xBi , then Πij ě maxtΠji, µiu. Theorem 1 then implies that

the optimal policy coincides with Weitzman’s for all but the last box. Proposition

6 summarizes this:

Proposition 6. Fix a set N “ t1, ..., Nu of boxes that satisfy the assumptions of

Section 4.2. Assume further that if xRi ą xRj , then xi ě xj and µj ě xBi . Then,

18This nomenclature is from Chade and Smith [3]
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the optimal policy is as in Theorem 1.

In what follows, I consider cases in which the conditions of Proposition 6 do not

hold, and hence, it is not possible to guarantee that Weitzman’s policy is optimal.

Case 2 Assume now that the set N of boxes is labelled in decreasing order of

the xis and their reservation values, i.e., x1 ě ... ě xN and xR1 ą ... ą xRN , and

the initial outside option, x0, coincides with y. In contrast to Proposition 6, I no

longer assume that µj ě xBi for i ă j. Thus, when i, j are the only two boxes that

the agent has, it may be optimal for him to take box i without inspection.

In this case, it is optimal to inspect boxes according to Weitzman’s order. This

is intuitive: the only reason to inspect boxes with lower xis first is that the agent

may save on inspection costs; however, this cannot be the case since, by construc-

tion, these are the boxes with lower reservation values.

However, it may be optimal for the agent to stop and take a box without in-

spection before reaching the last box. To see this, consider the extreme case in

which there is a box n such that xBn ě xRn`1. Under this assumption, when the

agent reaches box n, he should take box n without inspection: by definition, he

can never obtain more than xRn`1 from boxes tn` 1, ..., Nu (recall equations (RV)

and (4)), while by taking box n without inspection, his payoff can never be less

than xBn . However, when xBn ă xRn`1, the decision of whether to inspect box n

or take it without inspection is less obvious: by taking box n without inspection,

he saves on the inspection costs of box n. However, he also forgoes continuing to

search boxes n` 1, ..., N , which he may regret if box n has a prize of y.

To determine whether the agent stops and takes box n without inspection, it

is necessary to calculate the payoff that the agent obtains by continuing search.

Since Weitzman’s order is optimal, the agent compares the value of taking box

n without inspection to the value of inspecting box n and proceeding optimally.

That is, he compares µn to ´k ` pnxn ` p1´ pnqvn, where vn is the payoff of the

optimal policy at decision node ptn` 1, ..., Nu, yq. Note that

µn “ µn ´ k ` k “ pnpxn ´
k

pn
q ` p1´ pnqpy `

k

1´ pn
q “ pnx

R
n ` p1´ pnqx

B
n ,

´k ` pnxn ` p1´ pnqvn “ pnpxn ´
k

pn
q ` p1´ pnqvn “ pnx

R
n ` p1´ pnqvn,
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where the above equalities are obtained by applying the definition of the backup

and reservation values. The agent can always guarantee that he obtains the reser-

vation value of box n either by taking it without inspection or by inspecting it (re-

call equations (RV) and (4)). However, by inspecting box n, he obtains the value

of the option of continuing to search optimally at decision node ptn` 1, ..., Nu, yq

when the prize inside box n is y. Depending on how this compares to the backup

value, the agent decides to inspect box n or to take it without inspection.

Exploiting that the agent inspects boxes in decreasing order of their reservation

values, it is possible to construct inductively the values vn, from N to 1, as follows:

vN “ xBN , (6)

vn “ maxtxBn , pn`1x
R
n`1 ` p1´ pn`1qvn`1u.

Let n˚ “ minti P N : vi “ xBi u. Proposition 7 states the optimal policy in Case 2:

Proposition 7. Fix a set N “ t1, ..., Nu of boxes that satisfy the assumptions

of Section 4.2. Assume further that if xRi ą xRj , then xi ě xj. The optimal

policy is as follows. Boxes t1, ..., n˚ ´ 1u are inspected in decreasing order of their

reservation values. Search stops the first time that prize xi, i ď n˚ ´ 1, is found

or when all inspected boxes yield a prize of y. In the latter case, box n˚ is taken

without inspection.

Case 3 Finally, assume that the set N of boxes is labelled in increasing order of

the xis and decreasing order of their reservation values, i.e., xN ą ... ą x1 and

xR1 ą ... ą xRN ; moreover, assume that xRN ą µ1. By construction, it follows that

µ1 ą ... ą µN . I continue to assume that x0 coincides with y.

The above assumptions imply that, when the agent has more than one box left

to be inspected, it is never optimal to take a box without inspection. By con-

struction, the smallest of the reservation values is larger than the maximum mean

value, which is in contradiction with item (i) in Proposition 2.

However, as in the two-box case, it may be optimal to deviate from Weitzman’s

order. By inspecting boxes in decreasing order of their reservation values, the

agent concludes search sooner: boxes with higher reservation values have higher

success probabilities, and search stops after observing xi. However, this comes at
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the cost that an uninspected box may have a higher xi.

If at some point the agent inspects a box other than the highest reservation

value box, it is never optimal to subsequently inspect the highest reservation value

box. The formal argument follows from applying Proposition 3; I focus here on

the intuition instead. As mentioned in Case 1, if two boxes, 1 and 2, are such that

x2 ą x1 and xR1 ą xR2 , then p1 ą p2. Thus, inspecting boxes in decreasing order

of their reservation value saves inspection costs: search stops when a prize of xi

is found, and this is more likely for box 1 than box 2. Thus, if the agent expects

that he will subsequently inspect the highest reservation value box, he should do

so immediately. In other words, if it were not for the possibility of saving on the

inspection costs of the highest reservation value box, the agent would not find it

profitable to inspect first boxes with lower reservation values.

Since the agent never inspects the highest reservation value box after he devi-

ates from Weitzman’s order, it is as if the mean value of the highest reservation

value box is his new outside option. Since he never takes a box without inspection

before reaching the last box, it follows that the optimal policy has him inspect

the remaining boxes in decreasing order of their reservation values; he takes the

highest reservation value box without inspection if all of them have a prize of y.

As in Case 2, one needs to compute the continuation values to determine when

the agent deviates from Weitzman’s order. As long as he has inspected the boxes in

decreasing order of their reservation values, the agent compares the payoff from in-

specting box n next and continuing to search optimally or box n`1 and continuing

to search optimally. In the latter case, he obtains the payoff from following Weitz-

man’s rule when the set of boxes is tn`1, ..., Nu and the outside option is µn, which

I denote by W ptn, n`1, ..., Nuq. I show in Appendix A.5 that W ptn, n`1, ..., Nuq

can be written solely in terms of txRn`1, ..., x
R
Nu and txRn , x

B
n u.

Proposition 8 below summarizes the optimal policy in Case 3. To do so, given a

set N of boxes, define recursively from N ´ 1 to 1:19

vN´1 “ µN , (7)

vn “ maxtpn`1x
R
n`1 ` p1´ pn`1qvn`1,W ptn` 1, ..., Nuqu.

19By assumption, the agent always inspects box N before N ´ 1.
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Define n˚ “ minti ď N ´ 1 : pix
R
i `p1´ piqvi ă W pti, ..., Nuqu; the following then

holds:

Proposition 8. Fix a set of boxes N “ t1, ..., Nu such that xN ą ... ą x1 ą xR1 ą

... ą xRN ą µ1. The optimal policy is as follows. Boxes t1, ..., n˚ ´ 1, n˚ ` 1, ..., Nu

are inspected in decreasing order of the reservation values. Search stops the first

time that prize xi, i ‰ n˚ is found or all inspected boxes yield a prize of y. In the

latter case, box n˚ is taken without inspection.

5 Conclusions

I consider a modified version of Weitzman’s model; namely, conditional on stop-

ping, the agent may take any uninspected box without first inspecting its contents.

I identify sufficient conditions under which the optimal policy can be fully charac-

terized. These conditions have been used elsewhere in the search literature to en-

able the characterization of optimal search policies in environments where, without

these assumptions, such characterization has proved elusive. I also provide prop-

erties of the optimal policy that must hold across all environments (Propositions

1-3) and illustrate in Section S.1 how they can be used to reduce the taxonomy of

the problem when the sufficient conditions identified in Section 4 do not hold.

Identifying conditions under which the optimal policy admits a simple charac-

terization is useful for applications. Section 1 discusses one application of interest.

Two other applications of particular interest where the results could be applied to

are (i) the choice amongst technologies with which to produce a good when the

agent can invest in pre-project planning to determine the true production cost but

has the option to produce without making this investment (Krähmer and Strausz

[8] consider a one-technology version of this problem) and (ii) the allocation of a

good to one of several agents when the principal can determine which agent would

generate the highest payoff from obtaining the good but can allocate it without

further investigation, as in Ben-Porath, Dekel and Lipman [1].

A Proofs

In what follows, I use | ¨ | to denote the cardinality of a set.

26



A.1 Proofs of Propositions 1, 2, and 3

Proposition 1. Let pU , zq be a decision node such that, for all i P U , xBi ď z.

Then Weitzman’s policy is optimal in all continuation histories.

Proof. The proof is by induction on U “ |U |. Let P pUq denote the following

predicate:

P(U): p@Uq : p|U | “ Uq, p@zq : pz ě maxiPU x
B
i q, the order and stopping policy

indicated in Proposition 1 is optimal.

Step 1: P p1q “ 1 This follows from Proposition 0.

Step 2: P pUq “ 1 ñ P pU ` 1q “ 1 .

Let U ` 1 “ |U |, and let z be as in the statement of Proposition 1. Let l P

arg maxiPU x
R
i . First, I show that the stopping rule is optimal. I consider two

cases:

z ě xRl : Note that if box i is inspected, by the inductive hypothesis, search

stops (since maxtz, xiu ě xR1 ). Thus, the payoff from inspecting box i is ´ki `
ş

maxtxi, zudFipxiq ă z. The last inequality follows from equation (RV).

z ă xRl : If maxtz,maxiPU µiu ‰ µl, then, by equation (RV), inspecting box l

and stopping dominates stopping and obtaining payoff maxtz,maxiPU µiu, since

maxtz,maxiPU µiu ă xRl . If maxtz,maxiPU µiu “ µl, since z ě xBl , then

maxtz,maxiPUztlu µiu ě xBl , and hence, by equation (BV), inspecting box l and

stopping dominates stopping and taking box l without inspection.

Finally, when z ă xRl , I need to show that inspecting box l first is optimal. Let

j P Uztlu be any other box. Note that xRj ă xRl . Consider the following two

policies:

P.J Inspect box j first. There are now U boxes left to be inspected, stop, or

continue search according to the rule described in Proposition 1.

P.L Inspect box l first. If xRl ď xl, stop. Otherwise, inspect box j, and stop, or

continue search according to the rule described in Proposition 1.
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The payoff from policies P.J and P.L can be written as:

P.J “ ´kj `

ż `8

xRl

xjdFj `

ż xRl

´8

p´kl `

ż `8

xRl

xldFl `

ż xRl

´8

V ˚pUztl, ju, z ˝ xj ˝ xlqdFlqdFj

P.L “ ´kl `

ż `8

xRl

xldFl `

ż xRl

´8

p´kj `

ż `8

xRl

xjdFj `

ż xRl

´8

V ˚pUztl, ju, z ˝ xj ˝ xlqdFlqdFj.

The difference in payoffs between both policies is given by:

P.L´ P.J “ p1´ Fjpx
R
l qqr

ż `8

xRl

xldFl ´ kls ´ p1´ Flpx
R
l qqr

ż `8

xRl

xjdFj ´ kjs

“ p1´ Flpx
R
l qqp1´ Fjpx

R
l qqpx

R
l ´ x

R
j q `

ż xRl

xRj

pxj ´ x
R
j qdFj ě 0,

where the second equality follows from equation (RV) for boxes l, and j respec-

tively. Thus, inspecting box l dominates inspecting any other box j P Uztlu. This

completes the proof.

Proposition 2. Let pU , zq be a decision node such that, for some i P U , z ă xBi .

If it is optimal to stop and take box m P U without inspection, then for all j ‰ m:

(i) µm ě xRj ,

(ii) xBm ě maxtµj, zu.

Thus, box m has the highest mean, reservation and backup values amongst boxes

in U .

Proof. Suppose the agent is at decision node pU , zq and he finds it optimal to take

box m without inspection. Let j ‰ m. Suppose first that xRj ą µm. The definition

of xRj would then imply that the agent prefers to inspect box j over stopping and

taking µm, a contradiction. Similarly, if maxtz, µju ą xBm, then the definition of

xBm would imply that the agent prefers to inspect box m, with maxtµj, zu as an

outside option, over stopping and taking µm.

Notice that since (i) holds for all j ‰ m, then it follows from Assumption 1 that

xRm ą µm ě maxj‰m x
R
j and µm ą xBm ě maxj‰m µj ą maxj‰m x

B
j . Then, m has

the highest mean, reservation, and backup value amongst all boxes in U .
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Proposition 3. Let pU , zq denote the set of boxes, and the vector of realized

prizes. Assume that σ˚pU , zq “ j, where xRj ă maxiPU x
R
i ” xRl . Then, it cannot

be the case that for all xj such that maxtxj, zu ď xRl , ϕ˚pUztju, z ˝ xjq “ 1 and

σ˚pUztju, z ˝ xjq “ l.

Proof. Suppose σ˚pU , zq “ tju and the optimal continuation policy dictates in-

specting box l whenever maxtxj, zu ď xRl . The following policy improves on this,

as shown by the proof of Proposition 1: inspect box l first. Whenever xRl ă xl,

stop. Otherwise, open box j and then proceed by using the prescribed policy when

U “ Uztl, ju.

A.2 Proof of Theorem 1

Theorem 1. Let U denote a set of uninspected boxes, and let z denote the vector

of previously sampled prizes. Assume boxes are labelled so that xR1 ą ... ą xR
|U |.

Assume that p@i, j P Uq such that i ă j, then Πij ´ Πji ě 0, and Πij ě µi. The

following is the optimal policy:

Order: σ˚pU , zq “ arg minti : i P Uu.

Stopping:

1. If |U | ą 1, then ϕ˚pU , zq “ 0 if, and only if, z ě maxiPU x
R
i .

2. Otherwise, if |U | “ 1, then ϕ˚pU , zq “ 0 if, and only if, z ě maxiPU x
R
i or

z ď maxiPU x
B
i .

Proof. The proof is by induction on U “ |U |. Let P pUq denote the following

predicate:

P(U): p@zqp@Uq : |U | “ U , and U satisfies the assumptions of Theorem 1, the

order and stopping rules in Theorem 1 are optimal.

Proposition 0 shows that P p1q “ 1. I now establish that P p2q “ 1, and then prove

the inductive step.

Step 1: P p2q “ 1
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Recall boxes are labelled so that xR1 ą xR2 . I show the optimality of the stopping

rule first. Consider the following cases:

z ě xR1 : Note that if box i is inspected, by the inductive hypothesis, search

stops (since maxtz, xiu ě xRj ). Moreover, the payoff from inspecting box i is

´ki `
ş

maxtz, xiudFipxiq ď z, where the inequality follows from equation (RV).

Therefore, when xR1 ď z, it is optimal to stop search.

z ă xR1 : It can never be optimal to stop and take z since, by equation (RV),

´k1 `
ş

maxtz, x1udF1px1q ą z. Moreover, Π12 ě maxtΠ21, µ1u implies that it

can never be optimal to stop and take box 1 without inspection. This proves the

optimality of the stopping rule.

Finally, it remains to show that inspecting box 1 first is optimal whenever z ă xR1 .

If z ě maxiPU x
B
i , then this follows from Proposition 1. Hence, from now on,

assume that z ă maxiPU x
B
i . The payoff from inspecting box 2 first is:

Π˚2 “ ´k2 `

ż `8

xR1

x2dF2 `

ż xR1

´8

maxtz ˝ x2, µ1,´k1 `

ż

maxtx1, x2, zudF1udF2,

whereas the payoff from inspecting box 1, and proceeding optimally is given by:

Π˚1 “ ´k1 `

ż `8

xR2

x1dF1` `

ż xR2

´8

maxtz ˝ x1, µ2,´k2 `

ż

maxtx1, x2, zudF2udF1.

Consider the following cases. First, suppose that xB2 “ maxiPU x
B
i . Similar steps

as in Section S.3 show that,

Π˚1 ´ Π˚2 “

ż `8

xR2

ż `8

xR2

pmintx1, x2, x
R
1 u ´ x

R
2 qdF2dF1 `

ż z˝xB1

´8

ż z˝xB1

´8

pxB2 ´ z ˝ x
B
1 qdF2dF1,

which is positive. Hence, let’s assume that xB1 “ maxiPU x
B
i . Note that, then,

Π˚1 ě ´k1 `

ż `8

xR2

x1dF1 `

ż xR2

xB2

p´k2 `

ż

maxtx1, x2, zudF2qdF1 `

ż xB2

´8

µ2dF1 ” Π12,

and Π˚2 “ Π21. Then, Π˚1 ´ Π˚2 ě Π12 ´ Π˚2 “ Π12 ´ Π21 ě 0.

This completes the proof that P p2q “ 1.
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Step 2: P pUq “ 1 ñ P pU ` 1q “ 1.

Assume P pUq is true. Fix U as in P pU ` 1q. Note that, by assumption, box 1 is

the box with the highest reservation value.

The optimality of the stopping rule follows from the exact same steps in the proof

of P p2q “ 1. It remains to show that inspecting box 1 first is optimal whenever

z ă xR1 . This follows from Proposition 3. Suppose that box j ‰ 1 is inspected

first. By the inductive hypothesis, since |Uztju| ě 2, then box 1 is inspected

whenever maxtxj, zu ă xR1 . Proposition 3 establishes that, then, inspecting box 1

first dominates inspecting first box j ‰ 1.

A.3 Proof of Proposition 4 and Corollary 1

Proposition 4. Fix a set N “ t1, ..., nu of boxes. Assume that boxes can be

labelled so that rxBi , x
R
i s forms a monotone decreasing sequence in the set inclusion

order. Then, for all i, j P N , such that i ă j, Πij ě maxtΠji, µiu, and the optimal

policy is an in Theorem 1.

Proof. Proposition 2 implies that, for i ă j, maxtΠij,Πjiu ě µi. It remains to

show that Πij ě Πji. Section S.3 shows that:

Πij ´ Πji “

ż `8

xRj

ż `8

xRj

pmintxRi , xi, xju ´ x
R
j qdFjdFi

`

ż xBi

´8

ż xBi

´8

pmaxtxi, xj, x
B
j u ´ x

B
i qdFjdFi. (A.1)

Hence, rxBj , x
R
j s Ă rx

B
i , x

R
i s implies that Πij ě Πji.

Corollary 1. Assume tFiuiPN is such that if i ă i1, then Fi is a mean-preserving

spread of Fi1 . Moreover, assume @i P N ki “ k. Then, p@i, i1 P N q, i ă i1 implies

that rxBi1 , x
R
i1 s Ă rx

B
i , x

R
i s.

Proof. It suffices to show that if i ă i1, then rxBi1 , x
R
i1 s Ď rxBi , x

R
i s. To see this,
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rewrite equation (RV) for box i as:

k “

ż `8

xRi

px´ xRi qdFipxq “

ż `8

´8

maxtx´ xRi , 0udFipxq,

and, note that, if Fi is a mean-preserving spread of Fi1 , then:

k “

ż `8

´8

maxtx´ xRi , 0udFipxq ě

ż `8

´8

maxtx´ xRi , 0udFi1pxq.

Since
ş`8

xRi
px´xRi qdF pxq is decreasing in xRi , one concludes that xRi1 ď xRi . Likewise,

rewrite equation (BV) as:

k “

ż xBi

´8

pxBi ´ xqdFipxq “

ż `8

´8

maxtxBi ´ x, 0udFipxq.

Using the mean-preserving spread assumption again, one obtains that i ă i1 implies

that:

k “

ż `8

´8

maxtxBi ´ x, 0udFipxq ě

ż `8

´8

maxtxBi ´ x, 0udFi1pxq.

Since
şxBi
´8
pxBi ´ xqdF pxq is increasing in xBi , one concludes that xBi ď xBi1 .

It follows that rxBi1 , x
R
i1 s Ă rx

B
i , x

R
i s.

A.4 Proof of Proposition 5

I first establish a preliminary result on the cutoff values when the conditions in

Proposition 5 hold:

Lemma A.1 (Cutoffs are linear in means). Let x be a random variable such that

x „ F p¨ ´ µq, Erxs “ µ. Let k be the cost of inspecting the box with prizes

distributed according to F . Then, pDb, bq : xB “ µ´ b, xR “ µ` b.

Proof. I prove the statement for xR, the other one follows immediately. Recall
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that:

k “

ż `8

xR
px´ xRqdF px´ µq.

I guess and verify that xR “ µ` b, for some b ą 0,

k “

ż `8

µ`b

px´ µ´ bqdF px´ µq.

Let u “ x´ µ and perform a change of variables in the above expression:

k “

ż `8

b

pu´ bqdF puq. (A.2)

It remains to show that equation (A.2) has a solution. Assumption 1 implies that

if b “ 0, then k ă
ş`8

0
udF puq. On the other hand, as bÑ 8,

ş`8

b
pu´ bqdF puq Ñ

0 ă k. Hence, since gpbq “
ş`8

b
px´ bqdF is continuous and decreasing in b, there

exists b ą 0, such that the equality holds. This completes the proof.

Corollary A.1. Consider the same assumptions as before. If F is symmetric

around 0 then b “ b “ b ą 0

Proof. b ą 0 follows from the condition that xB ă µ ă xR. Now, recall the

definition of xB:

k “

ż xB

´8

pxB ´ xqdF px´ µq.

Replacing the assumptions made, one gets that the equation can be rewritten as:

k “

ż ´b

´8

p´b´ uqdF puq,

where I changed variables by defining u “ x´ µ. Also,

k “

ż `8

xR
px´ xRqdF px´ µq “

ż `8

b

pu´ bqdF puq.
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Now, symmetry of F implies that:

ż `8

b

udF puq “ ´

ż ´b

´8

udF puq.

Hence, p1´F pbqqEru|u ě bs “ ´F p´bqEru|u ď ´bs and ´p1´F pbqqb “ ´F p´bqb.

Hence, b “ b.

I am now ready to prove Proposition 5. It follows from equation (A.1) in Section

A.3 that:

Πij ´ Πji “

ż xBi

´8

ż xBi

´8

pmaxtxi, xj, x
B
j u ´ x

B
i qdFidFj `

ż `8

xRj

ż `8

xRj

pmintxi, xj, x
R
i u ´ x

R
j qdFidFj

“ p1´ Fipx
R
i qqp1´ Fjpx

R
i qqpx

R
i ´ x

R
j q `

ż xRi

xRj

ż `8

xi

pxi ´ x
R
j qdFjdFi

`

ż xRi

xRj

ż xi

xRj

pxj ´ x
R
j qdFjdFi ` p1´ Fipx

R
i qq

ż xRi

xRj

pxj ´ x
R
j qdFj

` Fipx
B
j qFjpx

B
j qpx

B
j ´ x

B
i q ` Fipx

B
j q

ż xBi

xBj

pxj ´ x
B
i qdFj

`

ż xBi

xBj

ż xBi

xi

pxj ´ x
B
i qdFjdFi `

ż xBi

xBj

ż xi

´8

pxi ´ x
B
i qdFjdFi.

Perform the following change of variables. Let u “ xi ´ µi, û “ xj ´ µj, and write

a “ µi ´ µj ě 0. It follows that:

Gpaq “

ż b

b´a

ż `8

u`a

pu` a´ bqdF pûqdF puq `

ż b

b´a

ż u`a

b

pû´ bqdF pûqdF puq

` F p´bq

ż b`a

b

pû´ bqdF pûq ` F p´b´ aq

ż ´b`a

´b

pû` b´ aqdF pûq

`

ż ´b

´b´a

ż ´b`a

u`a

pû` b´ aqdF pûqdF puq `

ż ´b

´b´a

ż u`a

´8

pu` bqdF pûqdF puq.

Note that Gp0q “ 0. I show that p@aqG1p0q “ 0, G2paq “ 0. All of these together
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imply that Gpaq ” 0.

G1paq “ ´r

ż b

b´a

F p´b´ aqdF puq `

ż ´b

´b´a

pF p´b` aq ´ F pu` aqqdF puq

´

ż b

b´a

F p´u´ aqdF puqs.

Note that G1p0q “ 0. Moreover,

G2paq “ F p´b´ aqfpb´ aq ´

ż b

b´a

fp´b´ aqdF puq ` pF p´b´ aq ´ F p´bqqfp´b´ aq

`

ż ´b

´b´a

pfp´b` aq ´ fpu` aqqdF puq ´ F p´bqfpb´ aq `

ż b

b´a

fp´u´ aqdF puq “ 0,

where I used that fpxq “ fp´xq, F p´xq “ 1´F pxq several times to cancel terms.

This shows that Gpaq ” 0.

A.5 Statement and proof of Theorem 2

I state and prove Theorem 2 which characterizes the optimal policy for the binary

prizes environment of Section 4.2. Recall that I am assuming that for all i P N ,

Xi “ ty, xiu, where y ă xi and pi “ P pXi “ xiq, and ki “ k.

In order to state the theorem, two additional pieces of notation are needed. First,

given a set U of boxes labelled in decreasing order of their reservation values, UD
is used to denote the set of boxes the agent inspects when he deviates from Weitz-

man’s order when boxes U are his uninspected boxes. The set UD is constructed

inductively as follows. Starting with i “ 2,UD “ H and moving through i “ |U |,
if xi ď x1 or xRi ď µ1, set UD “ UD and i “ |U | ` 1; otherwise, set UD “ UD Y tiu
and i “ i` 1. UD collects the set of consecutive boxes in U that have xi ą x1 and

µ1 ď xRi . As discussed in Section 4.2, these are the only boxes the agent would

inspect, if he deviated from Weitzman’s order when his set of boxes is U . Second,
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given U and the corresponding UD, define:

W pUDq “

$

’

&

’

%

|UD|`1
ř

j“2

j´1
ś

i“2

p1´ piqpjx
R
j `

ś

iPUD

p1´ piqpp1x
R
1 ` p1´ p1qx

B
1 q if UD ‰ H

´8 otherwise

.

Under the assumptions of Theorem 2, W pUDq represents the value of continuing

search by not following Weitzman’s order in U . It corresponds to the value in

Weitzman’s problem of inspecting boxes in UD, when the outside option is µ1.

Theorem 2. Fix a set N “ t1, ..., Nu of boxes. Assume that boxes have binary

prizes, Xi “ ty, xiu, where xi ą y, and pi “ P pXi “ xiq. Assume further that

ki “ k for all i P N . Label boxes so that xR1 ą ... ą xRN . Define inductively from

N to 1:

vN “ maxtx0, x
B
Nu,

vn “ maxtxBn , pn`1 maxtxRn`1, x0u ` p1´ pn`1qvn`1,W ptn` 1, ..., NuDqu.

The following is the optimal policy. For n ě 1, say boxes t1, ..., n ´ 1u have been

inspected, and let z denote the maximum sampled prize.

Order: If a box is to be inspected next, the agent inspects box n if

pnx
R
n ` p1´ pnqvn ě W ptn, ..., NuDq, (A.3)

and box n` 1 otherwise. The latter can happen only if xBn “ maxiěn x
B
i , and

z ă xBn .

Stopping: Search stops if z ě xRn (in which case he takes z), or z ď xBn “

maxiěn x
B
i , tn, ..., NuD “ H, and xBn “ vn (in which case he takes box n

without inspection.).

For n ě 1, if W ptn, ..., NuDq ą pnx
R
n ` p1 ´ pnqvn, the agent continues search by

applying Weitzman’s rule to boxes in tn, ..., NuD, with outside option µn. That is,

he inspects boxes in tn, ..., NuD in decreasing order of their reservation values, and

search stops the first time he finds a prize xi, or when he has inspected all boxes

in tn, ..., NuD, in which case he takes box n without inspection.
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The proof of Theorem 2 is divided in three parts. First, I prove Lemmas A.1

and A.2. Second, I use the lemmas to show a modified version of Theorem 2. The

third step constructs the indices tvnu, and completes the proof of Theorem 2. In

what follows, a decision node pU 1, z1q is said to be consistent with pU , zq, if U 1 Ă U ,

and z1 “ z ˝ z̃, for some z̃ P
Ś

jPUzU 1 Xj.

Suppose that at decision node pU , zq it is optimal to inspect box i P U next.

Lemma A.1 shows that, when prize xi obtains, it is never optimal to stop, and

take a box without inspection in the continuation. It follows that, conditional on

it being optimal to inspect box i, then Weitzman’s order is optimal conditional on

obtaining prize xi.

Lemma A.1. Let pU , zq be a decision node, where U satisfies the conditions in

Section 4.2. If σ˚pU , zq “ i P U , and ϕ˚pU , zq “ 1, then the following hold:

1. Conditional on stopping after Xi “ xi, the agent stops and takes xi with

positive probability.

2. For any decision node pU 1, z1q consistent with pUztσ˚pU , zqu, z ˝xσ˚pU ,zqq, and

reached with positive probability, if ϕ˚pU 1, z1q “ 0, then V ˚pU 1, z1q “ z1.

Proof. The proof is by induction on U “ |U |. Let P pUq denote the following

predicate:

P(U): p@zqp@Uq : |U | “ U , and U is as in Theorem 2, Lemma A.1 holds.

P(1)=1: This is immediate. Item 2 holds by construction. Moreover, the agent

only inspects the remaining box if he plans on taking the highest prize, in

case he gets it.

P(U)=1ñP(U+1)=1:

Assume P pUq is true. Fix U as in P pU ` 1q, and let 1 ” σ˚pU , zq. Note that

in order for this to be the case, it has to be that x1 ą z - otherwise, inspecting

σ˚pU , zq would be dominated. Moreover, note that any box i that is inspected

after decision node pUzt1u, z ˝ x1q has to satisfy xi ą x1.

It clearly has to be the case that 1. is true; otherwise, the agent could improve

his payoff by skipping inspecting box 1. Let pU 1, z1q, with U 1 Ă pUzt1uq, and
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z1 “ z ˝ x1 ˝ z̃ for some z̃ P
Ś

jPUzpU 1Yt1uqty, xju be the decision node at which

V ˚pU 1, z1q “ x1. Note, by the previous observation, that if U 1 is a strict subset of

Uzt1u, then it has to be that z̃ “ y.

Towards a contradiction, suppose that there exists pU2, z2q a decision node con-

sistent with pUzt1u, z ˝ x1q such that V ˚pU2, z2q “ maxiPU2 µi, and such that

pU2, z2q is reached with positive probability. Denote by i2 P U2 the box with

the highest mean in U2. Moreover, µi2 ą x1. Also, note that i2 R U 1; that is, box

i2 has already been inspected at decision node pU 1, z1q.
Let pU3, z3q be the last decision node that both pU 1, z1q, and pU2, z2q are con-

sistent with. (That such a decision node exists follows from noting that both

pU 1, z1q and pU2, z2q are consistent with pUzt1u, z ˝ x1q.) Note that it has to be

that ϕ˚pU3, z3q “ 1, and σ˚pU3, z3q P U3zti2u. This holds because (i) pU 1, z1q,
and pU2, z2q are reached with positive probability under pσ˚, ϕ˚q, and (ii) box i2

remains uninspected at pU2, z2q.
Moreover, it has to be the case that pU 1, z1q is consistent with pU3ztσ˚pU3, z3qu, z3˝

yq, and pU2, z2q is consistent with pU3ztσ˚pU3, z3qu, z3˝xσ˚pU3,z3qq. The first part

follows from the observation that the agent can’t have obtained a prize better than

y whenever he stops, and takes x1. The second part follows from pU3, z3q being

the last decision node that both pU 1, z1q and pU2, z2q are consistent with.

Then, at pU3, z3q it is optimal to inspect box σ˚pU3, z3q, and |U3| ă U ` 1.

Hence, by the inductive hypothesis, the probability of stopping and taking a box

without inspection after pU3ztσ˚pU3, z3qu, z3 ˝ xσ˚pU3,z3qq is 0, which contradicts

that the agent reaches pU2, z2q with positive probability from pUzt1u, z˝x1q. There-

fore, P pU ` 1q “ 1.

Suppose that at decision node pU , zq it is optimal to inspect a box σ˚pU , zq ‰
arg maxiPU x

R
i . Lemma A.2 shows that if it is optimal to continue search after

observing prize xσ˚pU ,zq, then, after observing prize y, it is not optimal to stop and

take the highest reservation value box without inspection.

Lemma A.2. Let pU , zq be a decision node. Suppose that ϕ˚pU , zq “ 1, and

σ˚pU , zq ‰ arg maxiPU x
R
i “ l. Then, if ϕ˚pUztσ˚pU , zqu, z ˝ xσ˚pU ,zqq “ 1, it can’t

be the case that V ˚pUztσ˚pU , zqu, z ˝ yq “ µl.
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Proof. Towards a contradiction, suppose that the assumptions in the lemma hold,

and yet V ˚pUztσ˚pU , zqu, z ˝ yq “ µl. Then,

V ˚pU , zq “ ´k ` pσ˚pU ,zqp´k ` plxl ` p1´ plqV ˚pUztl, σ˚pU , zqu, z ˝ xσ˚pU ,zq ˝ yqq

` p1´ pσ˚pU ,zqqµl.

Note that the first term in brackets in the first line follows from Lemma A.1.

Consider the following policy, pσ̃, ϕ̃q. First, σ̃pU , zq “ l, and ϕ̃pUztlu, z ˝xlq “ 0.

For every node consistent with pUztlu, z˝yq, pU 1, z1q, such that V ˚pU 1zσ˚pU , zq, z1˝
xσ˚pU ,zqq ‰ xσ˚pU ,zq, let σ̃pU 1, z1q “ σ˚pU 1ztσ˚pU , zqu, z1 ˝ xσ˚pU ,zqq, and ϕ̃pU 1, z1q “
ϕ˚pU 1ztσ˚pU , zqu, z˝xσ˚pU ,zqq; otherwise, if V ˚pU 1ztσ˚pU , zqu, z1˝xσ˚pU ,zqq “ xσ˚pU ,zq,

let ϕ̃pU 1, z1q “ 0, and have the agent take box σ˚pU , zq without inspection.

Let Ṽ pUztlu, z˝yq denote the payoff of the above policy at decision node pUztlu, z˝
yq. Let p˚ denote the probability that the agent stops and takes xσ˚pU ,zq according

to policy pϕ˚, σ˚q starting from pUztσ˚pU , zq, lu, z ˝ xσ˚pU ,zq ˝ yq. Then, note that:

Ṽ pUztlu, z ˝ yq “ V ˚pUztl, σ˚pU , zqu, z ˝ xσ˚pU ,zq ˝ yq ´ p˚p1´ pσ˚pU ,zqqpxσ˚pU ,zq ´ yq.

Then,

Ṽ pU , zq ´ V ˚pU , zq ě kpσ˚pU ,zq ´ p1´ plqp1´ pσ˚pU ,zqqy

` p1´ plqp1´ pσ˚pU ,zqqpV
˚
pUztl, σ˚pU , zqu, z ˝ xσ˚pU ,zq ˝ yq ´ p˚pxσ˚pU ,zq ´ yqq

ě kpσ˚pU ,zq ` p1´ plqp1´ pσ˚pU ,zqqpV
˚
pUztl, σ˚pU , zqu, z ˝ xσ˚pU ,zq ˝ yq ´ xσ˚pU ,zqq ą 0,

where the second to last inequality follows from p˚ ď 1, and xσ˚pU ,zq ą y, and

the last inequality follows from noting that V ˚pUztl, σ˚pU , zqu, z ˝ xσ˚pU ,zq ˝ yq ě
xσ˚pU ,zq.

The above contradicts the policy being optimal. Hence, the statement in the

lemma holds.

For the second part of the proof, I show the following modified version of Theo-

rem 2:

Theorem A.1. Fix a set U “ t1, ..., Uu of boxes as in Theorem 2. Label boxes so
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that xR1 ą ... ą xRU . Then,

V ˚pU , zq “ maxtz, µ1, max
iPt1,2u

´k ` piV
˚
pUztiu, z ˝ xiq ` p1´ piqV ˚pUztiu, z ˝ yqu.

(A.4)

Moreover, the following hold:

1. If z ě xR1 , search stops, and the agent takes z,

2. If z P rmaxiPU , x
B
i , x

R
1 q, search continues applying Weitzman’s rule,

3. If z ă maxiPU x
B
i ,

(a) If xB1 ă maxiPU x
B
i , inspect box 1; otherwise,

(b) If xB1 “ maxiPU x
B
i ,

i. If UD “ H, inspect box 1 if xB1 ă V ˚pUzt1u, z ˝ yq, and take box 1

without inspection otherwise, and

ii. if UD ‰ H, inspect box 1 if

p1x
R
1 ` p1´ p1qV

˚
pUzt1u, z ˝ yq ě W pUDq,

and box 2 otherwise.

Before proving Theorem A.1, note that, by Proposition 2, it holds that:

V ˚pU , zq “ maxtz, µ1,max
iPU

´k ` piV
˚
pUztiu, z ˝ xiq ` p1´ piqV ˚pUztiu, z ˝ yqu,

(A.5)

since, for j ‰ 1, xR1 ą xRj ě µj implies that stopping and taking box j ‰ 1 without

inspection can never be optimal. Hence, in what follows, to prove that equation

(A.4) holds, it only remains to show that the max in the third argument on the

RHS of (A.5) can be taken only over i P t1, 2u.

Proof. The proof is by induction on U “ |U | ě 2. For U ě 2, let P pUq denote the

following statement:
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P(U): p@pU , zqq such that U is as in Section 4.2, and |U | “ U , Theorem A.1 holds.

I start by showing that P(2)=1.

P(2)=1:

Given the observation before the proof of Proposition A.1, equation (A.4) holds

trivially. Moreover, if z ě xR1 , then by the inductive hypothesis, the payoff from

inspecting box i and proceeding optimally is ´k ` pixi ` p1´ piqz ď z.

The rest of the proof follows from equations (5), and the discussion in Case 1 in

Section 4.2, by noting that when xR1 ą xR2 , and x2 ą x1, then xB1 ą xB2 . Therefore,

P p2q “ 1. I now prove the inductive step.

P(U)=1ñP(U+1)=1 Suppose that P pUq is true. Let pU , zq be as in P pU ` 1q.

I start by showing that if z ě xR1 , then search stops. By the inductive hypothesis,

the payoff of inspecting any box i with xi ą z is given by: ´k` pixi` p1´ piqz ď

z.Therefore, search stops, and item 1 holds. Moreover, in that case, equation (A.4)

holds because the max on the right hand side is achieved by taking z. From now

on, assume that z ď xR1 .

Proposition 1 implies item 2 holds. Moreover, in that case, (A.4) also holds

since the max on the right hand side is achieved by continuing search with box 1.

From now on, then, assume that z ă maxiPU x
B
i . Note that since z ă xR1 , then

V ˚pU , zq ą z.

In what follows, I show that equation (A.4) holds when z ă maxiPU x
B
i . Note

that if V ˚pU , zq “ µ1, then the result follows trivially. Hence, assume that:

V ˚pU , zq “ max
iPU

´k ` piV
˚
pUztiu, z ˝ xiq ` p1´ piqV ˚pUztiu, z ˝ yq,

and, towards a contradiction, assume that this max is not attained at i P t1, 2u.

Let j denote the maximizer in the above expression. Note that, for this to be the

case, it has to be that z ă xj. Since |Uztju| “ U , the inductive hypothesis implies
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V ˚pUztju, z ˝ xjq, V ˚pUztju, z ˝ yq can be written as:

V ˚pUztju, z ˝ xjq “ maxtxj, µ1, max
iPt1,2u

´k ` Ex̃iV ˚pUztj, iu, z ˝ xj ˝ x̃iqu,

V ˚pUztju, z ˝ yq “ maxtz ˝ y, µ1, max
iPt1,2u

´k ` Ex̃iV ˚pUzti, ju, z ˝ y ˝ x̃iqu.

Moreover, Lemma A.1 implies Weitzman’s rule is optimal after observing xj.

Hence,

V ˚pUztju, z ˝ xjq “ maxtxj,´k ` p1 maxtx1, xju ` p1´ p1qV
˚
pUzt1, ju, z ˝ xj ˝ yqu.

Finally, Lemma A.2 implies that if:

V ˚pUztju, z ˝ xjq “ ´k ` p1 maxtx1, xju ` p1´ p1qV
˚
pUzt1, ju, z ˝ xj ˝ yq,

then

V ˚pUztju, z ˝ yq ‰ µ1.

In what follows, I consider cases for V ˚pUztju, z ˝ xjq (indexed with upper case

roman numbers), and V ˚pUztju, z ˝ yq (indexed with lower case roman numbers).

I. V ˚pUztju, z ˝ xjq “ xj (i.e. xj ě xR1 ), and

(i) V ˚pUztju, z ˝ yq “ µ1. Note that this cannot be. That search with j is

optimal at pU , zq implies that µ1 ă xRj pă xR2 q. Hence, ´k`p2x2`p1´p2qµ1 ą µ1,

contradicting V ˚pUztju, z ˝ yq “ µ1.

(ii) V ˚pUztju, z ˝ yq “ ´k ` p1x1 ` p1´ p1qV ˚pUztj, 1u, z ˝ y ˝ yq. Proposition

3 implies that this is dominated by inspecting box 1 first.

(iii) V ˚pUztju, z ˝yq “ ´k`p2V ˚pUztj, 2u, z ˝y ˝x2q`p1´p2qV ˚pUztj, 2u, z ˝
y ˝yq. By the inductive hypothesis, this can only be the case if x2 ą x1, and hence

V ˚pUztj, 2u, z ˝ y ˝ x2q “ x2.
20 Note that xR2 ą xRj implies that this is dominated

by the policy that (i) inspects box 2 first, (ii) if the prize is x2, stops and takes x2,

(iii) if the prize is y, inspects box j, and proceeds optimally from there on.

II. V ˚pUztju, z ˝xjq “ ´k`p1x1`p1´p1qV ˚pUztj, 1u, z ˝xj ˝yq (i.e., xj ď xR1 q,

20It has to be that z ă x2 since it was optimal to inspect box 2.
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and

(i) V ˚pUztju, z ˝ yq “ ´k ` p1x1 ` p1 ´ p1qV
˚pUztj, 1u, z ˝ y ˝ yq. Proposition

3 implies that inspecting box j is dominated by inspecting box 1 first.

(ii) V ˚pUztju, z ˝ yq “ ´k ` p2x2 ` p1 ´ p2qV
˚pUztj, 2u, z ˝ y ˝ yq.21 By the

inductive hypothesis, it follows that:

V ˚pUztj, 2u, z ˝ y ˝ yq “
|pUzt2uqD|`2

ÿ

i“3

i´1
ź

l“3

p1´ plqp´k ` pixiq `
ź

lPpUzt2uqD

p1´ plqµ1

“

|pUzt2uqD|`2
ÿ

i“3

i´1
ź

l“3

p1´ plqpip´
k

pi
` xiq `

ź

lPpUzt2uqD

p1´ plqµ1

“

|pUzt2uqD|`2
ÿ

i“3

i´1
ź

l“3

p1´ plqpix
R
i `

ź

lPpUzt2uqD

p1´ plqµ1 ” W ppUzt2uqDq, (A.6)

whenever pUzt2uqD ‰ H, and

V ˚pUztj, 2u, z ˝ y ˝ yq “ µ1,

otherwise. To see this, note that |Uztju| “ U , and hence the inductive hypothesis

states that if it is optimal to inspect box 2 first, then the agent continues search by

applying Weitzman’s rule to boxes in pUzt2uqD “ pUzt2, juqD, with outside option

µ1. Equation (A.6) shows that this has value W ppUzt2uqDq. To show that, in case

(ii), inspecting j is suboptimal, consider the following policy, P.1: the agent

inspects box 1 first. If the prize is x1, he stops. If the prize is y, he inspects box j.

If the prize is xj, he follows the optimal policy from that point on; otherwise, he

inspects boxes in pUzt2uqD, and takes box 2 without inspection if all such boxes

21I applied the inductive hypothesis to calculate V ˚pUztj, 2u, z ˝ y ˝ x2q, since by P pUq the
agent can only switch, and inspect box 2 when x2 ą x1pą xR1 q.
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yield a prize of y (or, if pUzt2uqD “ H). The payoff from P.1 is:

P.1 “ ´k ` p1x1 ` p1´ p1qp´k ` pjV
˚
pUztj, 1u, z ˝ xj ˝ yqq

` p1´ p1qp1´ pjqrW ppUzt2uqDq `
ź

iPpUzt2uqD

p1´ piqpµ2 ´ µ1qs.

The difference P.1´ V ˚pU , zq is given by:

P.1´ V ˚pU , zq “ kp1 ` p1p1´ pjqx1p1´ p1´ p2q
ź

iPpUzt2uqD

p1´ piqq

´ p2p1´ pjqx2p1´ p1´ p1q
ź

iPpUzt2uqD

p1´ piqq ` p1´ pjqpp2 ´ p1q

|pUzt2uqD|`2
ÿ

i“3

i´1
ź

l“3

p1´ plqpix
R
i .

Using that
ř|pUzt2uqD|`2
i“3

śi´1
l“3p1´plqpi`

ś

iPpUzt2uqDp1´piq “ 1, I rewrite the above

as:

P.1´ V ˚pU , zq “ kp1 ` p1´ pjq
ź

iPpUzt2uqD

p1´ piqp1p2px1 ´ x2q

` p1´ pjq

|pUzt2uqD|`2
ÿ

i“3

i´1
ź

l“3

p1´ plqpipp1px
R
1 ´ x

R
i q ´ p2px

R
2 ´ x

R
i qq

“ p1´ pjq
ź

iPpUzt2uqD

p1´ piqp1p2px
R
1 ´ x

R
2 q ` kp2p1´ pjq

ź

iPpUzt2uqD

p1´ piq

` p1´ pjq

|pUzt2uqD|`2
ÿ

i“3

i´1
ź

l“3

p1´ plqpipp1px
R
1 ´ x

R
i q ´ p2px

R
2 ´ x

R
i qq

` kp1p1´ p1´ pjq
ź

iPpUzt2uqD

p1´ piqq.

Notice that x2 ą x1, and xR1 ą xR2 implies that p1 ą p2; likewise, for any box

i P pUzt2uqD, p1 ą pi. Moreover, xR1 ą xR2 ą xRi for any box i P pUzt2uqD. Hence,

|pUzt2uqD|`2
ÿ

i“3

i´1
ź

l“3

p1´ plqpipp1px
R
1 ´ x

R
i q ´ p2px

R
2 ´ x

R
i qq ě

|pUzt2uqD|`2
ÿ

i“3

i´1
ź

l“3

p1´ plqpipp1 ´ p2qpx
R
2 ´ x

R
i q

ą 0.
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Hence, P.1´V ˚pU , zq ą 0. This contradicts that inspecting box j first is optimal.

This concludes the proof that equation (A.4) must hold.

To prove 3a and 3(b)i, I now show that if either xB1 ‰ maxiPU x
B
i (so that the

condition in 3a holds), or x2 ď x1 (so that UD “ H), then inspecting box 1 first

dominates inspecting box 2 first. Once I do this, Proposition 2, then, implies

that 3a holds; in that case, box 1 does not have the highest backup value, and

hence, it can’t be optimal to stop, and take it without inspection. Suppose first

that x2 ď x1. Denote by P.2 the payoff from inspecting box 2 first. Apply the

inductive hypothesis to conclude that:

P.2 “ ´k ` p2pmaxtx2,´k ` p1x1 ` p1´ p1qV
˚
pUzt1, 2u, z ˝ x2 ˝ yquq

` p1´ p2qV
˚
pUzt2u, z ˝ yq.

Assume first that x2 ă xR1 . Then, by the inductive hypothesis, the max in the first

line of the above expression is achieved at ´k`p1x1`p1´p1qV
˚pUzt1, 2u, z˝x2˝yq.

Notice that, by repeating the same steps as in item II. above with box 2 taking

the place of box j, inspecting box 1 first dominates inspecting box 2 first.

Then, assume xR1 ď x2 ď x1. Then,

P.2 “ ´k ` p2x2 ` p1´ p2qV
˚
pUzt2u, z ˝ yq.

Consider the following cases for V ˚pUzt2u, z ˝ yq, labelled in upper case letters:

A. pUzt2uqD ‰ H, and V ˚pUzt2u, z ˝ yq equals:

|pUzt2uqD|`2
ÿ

i“3

i´1
ź

l“3

p1´ plqpix
R
i `

ź

iPpUzt2uqD

p1´ piqµ1.

In that case, consider the policy, P.1 which inspects box 1 first, then boxes in

pUzt2uqD, and if all contain a prize of y, takes box 2 without inspection. The
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difference P.1´P.2 is given by:

P.1´P.2 “ p1p2px1 ´ x2q
ź

iPpUzt2uqD

p1´ piq

`

|pUzt2uqD|`2
ÿ

i“3

i´1
ź

l“3

p1´ plqpipp1px
R
1 ´ x

R
i q ´ p2px

R
2 ´ x

R
i qq.

Notice that p1 ą pi, and p2 ą pi for all i P pUzt2uqD. If p1 ą p2, by using that

xR1 ´ x
R
i ą xR2 ´ x

R
i , it follows that P.1´P.2 ą 0. Otherwise, note the following.

First,

pipp1px
R
1 ´ x

R
i q ´ p2px

R
2 ´ x

R
i qq “ pip1px1 ´ xiq ` pip2pxi ´ x2q ` kpp1 ´ p2q.

Second,

p1pipx1 ´ xiq ą kppi ´ p1q “ ´kpp1 ´ piq ą ´x2p2p1´ p2qpp1 ´ piq

“ ´p2x2pp1 ´ piq ` p
2
2x2pp1 ´ piq

“ ´p2x2pp1 ´ piq ` p
2
2x2pp1 ´ piq ` pp2 ´ p1qx2p2p1´ p2q

´ pp2 ´ p1qp2p1´ p2qx2 ą p2pipx2 ´ xiq ` kpp2 ´ p1q,

where the first inequality follows from xR1 ą xR2 , the second inequality follows from

xR2 ą xB2 ñ p2p1 ´ p2qx2 ą k, and the last inequality follows from p2pp1 ´ piq ą

pp2 ´ p1qp1´ p2q, p2p1´ p2qx2 ą k, and xi ą p2x2.

Hence, P.1´P.2 ą 0, and this contradicts inspecting box 2 being optimal.

B. V ˚pUzt2u, z ˝ yq “ µ1. Consider the policy P.1 that inspects box 1 first, if

the prize is x1 it stops, and if the prize is y, it takes box 2 without inspection. In

that case:

P.1´P.2 “ p1p2px1 ´ x2q ě 0.

Hence, inspecting box 2 first cannot be optimal.

C. V ˚pUzt2u, z ˝ yq “ ´k` p1x1`p1´ p1qV ˚pUzt2, 1u, z ˝ y ˝ yq. By Proposition

3 in the paper, this is dominated by inspecting box 1 first, and then following the

optimal policy in the continuation.
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Finally, assume that x2 ą x1, and xB1 ă maxiPU x
B
i . Note that x2 ą x1, and

xR1 ą xR2 implies p1 ą p2, and hence xB1 ą xB2 . Hence, maxiPU x
B
i ą xB2 . Moreover,

note that for any i P UD, the same holds. By the inductive hypothesis, the payoff

of inspecting box 2 first is given by:

P.2 “ ´k ` p2x2 ` p1´ p2qp´k ` p1x1 ` p1´ p1qV
˚
pUzt1, 2u, z ˝ y ˝ yq.

To see this, note that x2 ą x1 ą xR1 , and hence the agent stops when he obtains

prize x2. Moreover, box 1 is not the highest backup value box in Uzt2u, and hence,

by the inductive hypothesis, it is inspected next. Proposition 3 implies that the

payoff from inspecting box 1 first dominates P.2. This also proves item 3a.

To finish the proof of item 3(b)i,22 note that when UD “ H, it can’t be optimal

to inspect box 2 next. Hence, search stops if:

´k ` p1x1 ` p1´ p1qV
˚
pUzt1u, z ˝ yq ď µ1 ô V ˚pUzt1u, z ˝ yq ď xB1 .

Finally, to show 3(b)ii, note that if UD ‰ H, then inspecting i P UD, and stopping

and taking box 1 without inspection if x̃i “ y, dominates taking box 1 without

inspection. Hence, it cannot be the case that V ˚pU , zq “ µ1. Moreover, as in

equation (A.6), the value of continuing search with box 2 is W pUDq, whereas the

value of continuing search with box 1 is:

´k ` p1x1 ` p1´ p1qV
˚
pUzt1u, z ˝ yq “ p1x

R
1 ` p1´ p1qV

˚
pUzt1u, z ˝ yq.

The comparison between these two values yields that item 3(b)ii holds.

The final step follows from the proof of the following claim:

Claim A.1 (Stopping rule for Theorem 2). Fix a set U “ t1, ..., Uu of boxes as

22I already showed that if x2 ď x1, then it is better to continue search with box 1. Suppose
that x2 ą x1, and µ1 ą xR2 . Then, applying the inductive hypothesis the payoff from inspecting
box 2 first is: ´k ` p2x2 ` p1´ p2qmaxtµ1,´k ` p1x1 ` p1´ p1qV

˚pUzt1, 2u, z ˝ y ˝ yqu. If the
second max is achieved at µ1, since xR2 ď µ1, this is dominated by µ1; otherwise, Proposition 3
implies the payoff from inspecting box 1 first dominates.
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in Theorem 2, and let z denote the initial outside option. Then, for n ď U ´ 1,

V ˚pUzt1, ..., nu, z ˝ y ˝ ... ˝ y
looomooon

n

q “ maxtW ppUzt1, ..., nuqDq, pn`1 maxtz ˝ y, xRn`1u ` p1´ pn`1qvn`1u,

vU “ maxtz ˝ y, xBUu.

Proof. I prove it for n “ U ´ 1, and then extend it inductively for n ă U ´ 1.

Suppose that n “ U ´ 1. I need to show that:

V ˚pUzt1, ..., U ´ 1u, z ˝ y ˝ ... ˝ y
looomooon

U´1

q “ pU maxtz ˝ y, xRUu ` p1´ pUqmaxtz ˝ y, xBUu,

since pUzt1, ..., U ´ 1uqD “ H. Consider the following cases:

I. If z ˝ y ě xRU , then, by Theorem A.1, box U is not inspected. Hence,

V ˚pUzt1, ..., U ´ 1u, z ˝ y ˝ ... ˝ yq “ z ˝ y.

II. If z ˝ y P pxBU , x
R
Uq, then by Theorem A.1, box U is inspected, and the agent

keeps the best prize between what is in box U and z ˝ y. Then, V ˚pUzt1, ..., U ´
1u, z ˝ y ˝ ... ˝ yq “ ´k ` pUxU ` p1´ pUqz ˝ y “ pUx

R
U ` p1´ pUqz ˝ y.

III. If z ˝ y ď xBU , then the agent takes box U without inspection. Hence,

V ˚pUzt1, ..., U ´ 1u, z ˝ y ˝ ... ˝ yq “ µU “ ´k ` k ` pUxU ` p1 ´ pUqy “ pUx
R
U `

p1´ pUqx
B
U .

This completes the proof for n “ U´1. Suppose the claim is true for all n1 ą n. I

show that: V ˚pUzt1, ..., nu, z˝y ˝ ... ˝ y
looomooon

n

q “ maxtW ppUzt1, ..., nuqDq, pn`1 maxtz ˝ y, xRn`1u`

p1´ pn`1qvn`1u. Consider the following cases:

I. If z ˝ y ą xRn`1, then by Theorem A.1, box n ` 1 is not inspected, and

hence V ˚pUzt1, ..., nu, z ˝ y ˝ ... ˝ yq “ z ˝ y. Note that since z ˝ y ą xRn`1 “

maxiPUzt1...nu x
R
i , then z ˝ y ą W ppUzt1, ..., nuqDq, and for n1 ą n, vn1 “ z ˝ y.

II.If z ˝ y P pmaxiPUzt1,...,nu x
B
i , x

R
n`1q, or z ˝ y ă maxiPUzt1,...,nu x

B
i ‰ xBn`1, then

by Theorem A.1, box n` 1 is inspected, and hence:

V ˚pUzt1, ..., nu, z ˝ y... ˝ yq “ ´k ` pn`1xn`1 ` p1´ pn`1qvn`1
“ pn`1x

R
n`1 ` p1´ pn`1qvn`1.
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III. If z ˝ y ă xBn`1 ” maxiPUzt1,...,nu x
B
i , consider the following cases:

(i) pUzt1, ..., nuqD ‰ H, and pn`1x
R
n`1 ` p1 ´ pn`1qvn`1 ě W ppUzt1, ..., nuqDq,

then by Theorem A.1, box n`1 is inspected, and one obtains the desired expression

for V ˚pUzt1, ..., nu, z ˝ y ˝ ... ˝ yq.
(ii) pUzt1, ..., nuqD ‰ H, and pn`1x

R
n`1 ` p1´ pn`1qvn`1 ă W ppUzt1, ..., nuqDq.

By Theorem A.1, boxes in pUzt1, ..., nuqD are inspected according to Weitzman’s

order, with outside option µn`1. As shown, this has value W ppUzt1, ..., nuqDq, and

hence V ˚pUzt1, ..., nu, z ˝ y... ˝ yq “ W ppUzt1, ..., nuqDq.
(iii) pUzt1, ..., nuqD “ H, and vn`1 ą xBn`1, then box n ` 1 is inspected, and

the desired expression obtains.

(iv) Finally, suppose that pUzt1, ..., nuqD “ H, and vn`1 “ xBn`1. Then, box

n ` 1 is taken without inspection, and V ˚pUzt1, ..., nu, z ˝ y ˝ ... ˝ yq “ µn`1 “

pn`1x
R
n`1 ` p1´ pn`1qx

B
n`1 “ pn`1 maxtxRn`1, z ˝ yu ` p1´ pn`1qvn`1.

The three steps complete the proof.

A.6 Boxes for which xR ď xB are never inspected in the optimal policy

This last subsection shows that, if there are boxes i P N such that xRi ď xBi , then,

without loss of generality, box i is never inspected in the optimal policy. Therefore,

for any such box i P N , it is either taken without inspection upon stopping search,

or it is never used in the optimal policy. Moreover, note that only one such box can

be taken without inspection conditional on stopping search. Then, by redefining

x0 to be whatever is best between the agent’s initial outside option and the best of

the boxes for which xRi ď xBi , the analysis in the paper carries through by focusing

on the boxes for which xBi ă xRi .

Given a set of boxes U , define:

UBăR “ ti P U : xBi ă xRi u,

URďB “ ti P U : xRi ď xBi u.

Given a decision node pU , zq, I denote by pU 1, z1q,U 1 Ă U , z1 “ z ˝ zUzU 1 a generic

decision node in which boxes in UzU 1 have been inspected, and prizes zUzU 1 have

been sampled.
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Proposition A.1. Let U be the set of boxes, and let z be a vector of realized

prizes. Assume that URďB ‰ H. Then, there exists an optimal policy tϕ˚, σ˚u

such that p@pU 1, z1q : U 1 Ď U ^ z1 “ z ˝ z̃UzU 1qrϕ
˚pU 1, z1q “ 1 ñ σ˚pU 1, z1q R U 1RďBs.

Proof. The proof is by double induction in the cardinality of U and URďB. Since

URďB Ă U , then |URďB| ď |U |. Induction is in U “ |U |, and n, where |URďB| “
maxtU, nu. Let P pU, nq denote the following predicate:

P(U,n): p@zqp@Uq : |U | “ U , URďB ‰ H, |URďB| “ maxtn, Uu, the optimal

policy satisfies the property in Proposition A.1.

I first show that P p1, 1q “ 1, and then that if P pU 1, n1q “ 1 holds for U 1 ď U , and

n1 ď n, not both with equality, then P pU, nq “ 1 holds.

P(1,1)=1:

Let U “ tiu and let z denote the vector of already realized prizes. Since U “ n “ 1,

then URďB “ tiu. I show that: ´ki `
ş

maxtxi, zudFi ď maxtµi, zu. Suppose that

z ě µi. Then, since i P URďB, xRi ď µi ď z. Then,

´ki `

ż

maxtxi, zudFi ´ z “ ´ki `

ż

z

pxi ´ zqdFipxiq ď 0,

since z ď xRi (recall the derivation of equation (RV)), with equality only if z “ xRi .

Now, suppose that µi ą z. Then, xBi ě µi ą z, and it follows from (BV) that:

´ki `

ż

maxtxi, zudFi ´ µi “ ´ki `

ż z

´8

pz ´ xiqdFipxiq ă 0.

P(U,n)=1:

Assume now that p@U 1 ď Uqp@n1 ď nq, not both with equality, P pU 1, n1q “ 1. I

show that P pU, nq “ 1. Let U be the set of boxes, |U | “ U , and let z denote the

vector of already sampled prizes. Let URďB Ă U , |URďB| “ maxtU, nu. I use i to

denote a box in URďB, and j to denote a box in UzURďB, whenever the latter is

not empty.

I make two remarks. First, notice that if a box j P UzURďB is inspected, then

one moves to decision node pU 1, z ˝ xjq, where U 1 “ Uztju,U 1RďB “ URďB, and
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|U 1| “ U ´ 1, and |U 1RďB| “ n (note that if there was j P UzURďB, then it

can’t be the case that |URďB| “ U). Since, by the inductive step, I know that

P pU ´ 1, nq “ 1, then there is an optimal policy in which boxes in URďB are

not inspected in any continuation history. Second, if a box i P URďB were to be

inspected, then one moves to continuation history pU 1, z ˝ xiq, where U 1 “ Uztiu,
U 1RďB “ URďBztiu, and |U 1| “ U ´ 1, |U 1RďB| “ maxtU ´ 1, n´ 1u. Since, by the

inductive step, I know that P pU ´ 1, n ´ 1q “ 1, then there is an optimal policy

in which boxes in U 1RďB are not inspected in any continuation history. The first

remark implies that to prove P pU, nq “ 1 it remains to show that it is optimal not

to inspect a box in URďB at decision node pU , zq. The second remark will be used

when computing the payoff of inspecting a box in i P URďB.

Given the above, I want to show that:

max

"

z, max
iPURďB

µi, max
jPUBăR

µj, max
jPUBăR

t´kj `

ż

V ˚pUztju, z ˝ xjqdFju
*

ě max
iPURďB

t´ki `

ż

V ˚pUztiu, z ˝ xiqdFiu, (A.7)

where the LHS of the above expression denotes the payoff the agent can get by

either stopping, and getting maxtz,maxiPURďB µi,maxjPUBăR µju, or continuing

search by inspecting a box in UBăR; the RHS denotes the payoff of inspecting

a box in URďB. The stars in V denote that the agent follows the optimal policy

in the continuation histories, and the two remarks above apply, by the inductive

step, to those histories. Note that I can write, for any box i P URďB:

´ ki `

ż

V ˚pUztiu, z ˝ xiqdFi

“ ´ki `

ż

max

#

xi, z,maxi1PURďBztiu µi1 ,maxjPUBăR µj,

maxjPUBăRt´kj `
ş

V ˚pUzti, ju, z ˝ xi ˝ xjqdFju

+

dFi

“ ´ki `

ż

max

#

xi,max

#

z,maxi1PURďBztiu µi1 ,maxjPUBăR µj,

maxjPUBăRt´kj `
ş

V ˚pUzti, ju, z ˝ xi ˝ xjqdFju

++

dFi
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“

ż `8

xRi

xRi `max

#

0,max

#

z,maxi1PURďBztiu µi1 ,maxjPUBăR µj,

maxjPUBăRt´kj `
ş

V ˚pUzti, ju, z ˝ xi ˝ xjqdFju

+

´ xi

+

dFi

`

ż xRi

´8

max

#

xi,max

#

z,maxi1PURďBztiu µi1 ,maxjPUBăR µj,

maxjPUBăRt´kj `
ş

V ˚pUzti, ju, z ˝ xi ˝ xjqdFju

++

dFi,

where the first equality is by definition of the set of actions available to the agent,

and I use the second remark above; the second equality is just a rearrangement of

terms, and the third equality follows from using (RV) for box i.

Notice that the second term in the first integrand:

max

#

0,max

#

z,maxi1PURďBztiu µi1 ,maxjPUBăR µj,

maxjPUBăRt´kj `
ş

V ˚pUzti, ju, z ˝ xi ˝ xjqdFju

+

´ xi

+

,

is decreasing in xi: the slope of ´xi is ´1, and the slope of the term in the maxt¨u

as a function of xi is at most one (it would be 1 only if xi is better than any of

the terms in the maxt¨u for all xi P rx
R
i ,`8s). Thus, it follows that:

ż `8

xRi

xRi `max

#

0,max

#

z,maxi1PURďBztiu µi1 ,maxjPUBăR µj,

maxjPUBăRt´kj `
ş

V ˚pUzti, ju, z ˝ xi ˝ xjqdFju

+

´ xi

+

dFi

ď

ż `8

xRi

max

#

xRi ,max

#

z,maxi1PURďBztiu µi1 ,maxjPUBăR µj,

maxjPUBăRt´kj `
ş

V ˚pUzti, ju, z ˝ xRi ˝ xjqdFju

++

dFi.

Also,

ż xRi

´8

max

#

xi,max

#

z,maxi1PURďBztiu µi1 ,maxjPUBăR µj,

maxjPUBăRt´kj `
ş

V ˚pUzti, ju, z ˝ xi ˝ xjqdFju

++

dFi

ď

ż xRi

´8

max

#

xRi ,max

#

z,maxi1PURďBztiu µi1 ,maxjPUBăR µj,

maxjPUBăRt´kj `
ş

V ˚pUzti, ju, z ˝ xRi ˝ xjqdFju

++

dFi,

since the integrand is increasing in xi. Putting all of this together, I conclude that
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for all i P URďB, the following holds:

´ ki `

ż

V ˚pUztiu, z ˝ xiqdFi

“ ´ki `

ż

max

#

xi, z,maxi1PURďBztiu µi1 ,maxjPUBăR µj,

maxjPUBăRt´kj `
ş

V ˚pUzti, ju, z ˝ xi ˝ xjqdFju

+

dFi

ď max

#

xRi , z,maxi1PURďBztiu µi1 ,maxjPUBăR µj,

maxjPUBăRt´kj `
ş

V ˚pUzti, ju, z ˝ xRi ˝ xjqdFju

+

.

But, then one concludes that, for all i P URďB:

max

"

z, max
iPURďB

µi, max
jPUBăR

µj, max
jPUBăR

t´kj `

ż

V ˚pUztju, z ˝ xjqdFju
*

ě max

#

xRi , z,maxi1PURďBztiu µi1 ,maxjPUBăR µj,

maxjPUBăRt´kj `
ş

V ˚pUzti, ju, z ˝ xRi ˝ xjqdFju

+

ě ´ki `

ż

V ˚pUztiu, z ˝ xiqdFi,

where the first inequality follows from xRi ă µi for i P URďB, and the fact that

taking box i without inspection and getting µi is always an option in the optimal

policy in the first line, while not in the second. Moreover, note that for i P URăB,

the first inequality is strict.

Since the above holds for each i P URďB, it follows that (A.7) holds, and, thus,

P pU, nq “ 1

B Indexability

I discuss formally why, unlike Weitzman’s, the optimal policy in my model is not

an index policy. To do so, I define the notion of an index, and an index rule. I

then show that, under Assumption 1, no index rule is optimal even when N “ 1.

I finish the section with two remarks for the case of N ą 1, which follow from the

suboptimality of index rules. To keep the presentation simple, I assume that Xi,

box i’s set of possible prize realizations, is finite.

Formally, each box can be used to define a Markov decision process, with pa-

rameters as follows. Let δ P r0, 1s denote the discount factor. The set of states is
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Si “ tHuYXi, where tHu represents that box i is uninspected, and xi that prize

xi P Xi has been realized. The set of controls is Ai “ t0, 1u, where ai “ 0 cor-

responds to taking box i without inspection. Transition probabilities are given

by: P psi “ xi|si “ H, ai “ 1q “ fipxiq, P psi “ xi|si “ H, ai “ 0q “ 0,

P psi “ xi|si “ x1i, aiq “ 1rx1i “ xis. That is, if the agent inspects box i, it

transitions to state xi with probability fipxiq; it does not transition when it is

taken without inspection. Moreover, for all xi P Xi, state xi is absorbing . Finally,

payoffs are given by (i) vpH, 0q “ p1´ δqµi, (ii) vpH, 1q “ ´ki, vpxi, 1q “ p1´ δqxi,

and (iii) vpxi, 0q “ K, for some K ă mintxi : xi P Xiu. That is, (i) taking a

box without inspection yields a payoff of µi, (ii) when the agent inspects the box,

he pays its inspection cost, and when he returns to the box, he receives xi, and

(iii) when the agent inspects the box, he can’t take it without inspection, so I

assign a low payoff to ai “ 0 when the box is inspected. The agent maximizes his

discounted expected sum of payoffs.

An index for box i is a function that depends on the state of box i; I denote it

νi : Si ÞÑ R. An index policy for a set of boxes N is a policy that at each state

chooses the box with the highest index.

In the environment under consideration, a slightly different definition of an in-

dex policy is needed. One needs to know both which box to choose next, and also

whether to inspect it, or take it without inspection. Let νi,ai : Si ÞÑ R denote the

index for box i for action ai. An index policy chooses at each state the box with

the highest maxtν¨,0, ν¨,1u, and applies to it the action with the highest index.

Assume now that N “ 1, and the box is uninspected. Let z denote the outside

option. Suppose that xB1 ă xR1 . If an index policy is optimal, then two things

must be true. First, for z ď xB1 , ν0,1pHq ě ν1,1pHq should hold, since box 1 should

be taken without inspection. Second, for z P pxB1 , x
R
1 q, ν1,1pHq ě ν0,1pHq, since

box 1 should be inspected. Hence, it follows that ν0,1pHq “ ν1,1pHq. Then, an

index policy would imply that the agent is indifferent between inspecting box 1,

and taking it without inspection, but this is not always the case. When the box is

uninspected, what action is optimal depends on z (recall Proposition 0), but, by

definition, the index cannot condition on this information.

Interestingly, when xR1 ă xB1 , an index does exist, since for any z, should the

box be chosen, it can only be optimal to take it without inspection. To see this,
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define ν0,1 “ µ, and ν1,1 ă µ. Also, since z can be interpreted as a box with

zero inspection cost, and probability 1 of yielding a prize of z, one can define

ν1,z “ ν0,z “ z. In this case, the index policy is optimal. In fact, Glazebrook

[5] shows that a sufficient condition for a stoppable superprocess23 to be solvable

by an index policy is that the optimal action with which to continue with box 1

does not depend on the value of z, i.e., that xR1 ă xB1 . However, if this holds for

all boxes, the optimal policy is trivial: search finishes immediately, and the agent

takes maxtz,maxiPN µiu.

Remark 7. When N “ 1, the reservation and backup values, and the initial

outside option, are enough to determine the optimal policy. However, the proof

that no index rule is optimal when N “ 1 suggests why the cutoffs are not enough

to determine the optimal policy when N ą 1.24 The reason why more than the

cutoff values matter to determine the optimal policy is that they don’t necessarily

determine the full “value” of a box. By the previous discussion, the value of a

box depends on whether the box will be inspected, or taken without inspection.

To see this, consider Problem 2 in Section 1. If only school A is available, it is

optimal to accept school A without inspection. Now add school B, and note that

it is worse than school A both to inspect and to take without inspection.25 One

would then expect that the optimal policy remains the same when adding school

B. However, this is not the case, because what dominates taking school A without

inspection is inspecting school B and then choosing, given xB, whatever is best

between inspecting or taking school A without inspection. Thus, the boxes’ cutoffs

alone are not enough to determine the optimal policy.

Remark 8. A second difference between Weitzman’s model and the one consid-

ered here is that, contrary to the stopping rule in Weitzman, stopping and taking a

box without inspection is not a one-step look ahead rule. More precisely, in Weitz-

man’s model stopping is optimal at decision node pU , zq if, and only if, for every

i P U , it is optimal to stop at ptiu, zq. Clearly, if it is optimal to stop at pU , zq,
the agent should not find it optimal to inspect any box i P U , i.e., stopping being

23The Markov decision process defined above is a special case of a stoppable superprocess.
Superprocesses are instances of restless bandits, which are shown to be PSPACE-hard in [11].

24Section C.1 shows that two sets of boxes can share the same cutoffs, and yet have different
optimal policies.

25Equations (RV)-(BV) can be used to show that xRA ą xRB ą xBA ą xBB .
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optimal at ptiu, zq is a necessary condition for stopping to be optimal at pU , zq. In

Weitzman’s model, it is also sufficient. However, in this search problem, it could

be that for all i P U , stopping and taking a box without inspection is optimal at

ptiu, zq, and yet this is not the optimal policy at pU , zq. To see this, consider again

Problem 2. Using equation (BV), it follows that z “ 0 ă miniPtA,Bu x
B
i . However,

the optimal policy has the student visit school B first. This follows from the same

observation as in Remark 7: what dominates taking either school without inspec-

tion is the possibility of, after visiting school B, choosing optimally whether to use

school A as an option to inspect, or to take without inspection.

C Examples

C.1 Cutoffs don’t determine the optimal policy if N ě 2

Examples C.1 and C.2 demonstrate the claim made in Section B:

Example C.1. Suppose N “ t1, 2u, and X1 “ X2 “ t0, 2, 10u. Assume first that

P pX1 “ 2q “ P pX2 “ 2q “ 0.2, and P pX1 “ 10q “ 0.7, P pX2 “ 10q “ 0.5, so that

F1 ąFOSD F2. Assume that k1 “ k2 “ 1. It can be shown that xB1 “
14
3
ą xB2 “ 2.8,

and xR1 “
60
7
ą xR2 “ 8. Note that after inspecting box i, search always stops: the

agent takes the inspected box when xi “ 10, and takes box j without inspection

whenever xi ď 2. Since µ1 ă xR2 , inspecting box 2 first dominates taking box 1

without inspection; moreover, inspecting box 2 first dominates inspecting box 1

first since: 8.62 “ 0.7ˆ 10` 0.3ˆ µ2 ă 0.5ˆ 10` 0.5ˆ µ1 “ 8.7.

Example C.2. Modify the above example as follows. Box 1 is the same as before.

Instead, box 2 is such that X2 “ t0, 9u, P pX2 “ 9q “ 921
1250

, and k2 “
14
9

. It is

immediate to show that cutoffs are exactly the same as the ones above. However,

the optimal policy now inspects box 1 first; search stops if X1 “ 10, and the agent

gets X1 “ 10, while box 2 is taken without inspection when X1 ď 2.

C.2 Example footnote 3 in Section 1

Below, I present an example where, unlike Problem 2 in Section 1, the worst prize

in both boxes is the same, and where, like Problem 2, the agent inspects first the

56



box with the lowest reservation value.

Example C.3. Assume the agent has an outside option z “ 0. Table 2 describes

the prize distribution, and inspection costs of boxes A and B:

A Prize 0 1 5
Probability 0.10 0.80 0.10

Inspection cost
0.10

B Prize 0 0.5 4.3
Probability 0.2 0.55 0.25

Inspection cost
0.10

Table 2: Prize distribution for each box

It can be verified that xRA “ 4 ą xRB “ 3.9, xBA “ 1 ą xBB “
1
2
, and µ2 “ 1.35 ą

µ1 “ 1.3. Thus, in Weitzman’s model, the agent inspects box A first; if xA “ 5,

search stops, and, if xA ă 5, he inspects box B, and takes maxtxA, xBu.

In the model considered here, by Proposition 0, after inspecting box A, the agent

inspects box B only when xA “ 1; if xA “ 5, search stops and the agent takes

xA, and when xA “ 0 he takes box B without inspection. If, instead, he starts

with box B, box A is never inspected: if xB “ 4.3, search stops, and he takes xB,

while if xB P t0, 0.5u, he takes box A without inspection. That is, he takes box

A without inspection when xB ď
1
2

even if box A may contain a prize worse than
1
2
. This is because the agent assigns a high probability to xA “ 1; this is reflected

in box A’s backup value. The combined effect of saving on inspection costs when

box B has a low enough prize and the “certainty” of a not so low prize from box

A imply inspecting box B first is optimal.
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