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Abstract

We study games of incomplete information as both the information struc-
ture and the extensive form vary. An analyst may know the payoff-relevant
data but not the players’ private information, nor the extensive form that gov-
erns their play. Alternatively, a designer may be able to build a mechanism
from these ingredients. We characterize all outcomes that can arise in an equi-
librium of some extensive form with some information structure. We show
how to specialize our main concept to capture the additional restrictions im-
plied by extensive-form refinements.
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1 Introduction

To summarize the possible outcomes of a strategic interaction, after having spec-
ified the players’ actions and payoffs, an analyst makes assumptions about their
information and the extensive form that ties all of these elements together. Con-
ventional equilibrium concepts begin by fixing both and proceed to provide a set
of solutions for that fully specified game. We are interested instead in fixing only
the base game (the actions and payoffs) and summarizing all of the equilibrium
outcomes consistent with some specification of the information structure and ex-
tensive form. For example in applied modeling the analyst may be unable to ob-
serve these details and/or be agnostic about them. She may not like her solutions
to rely on any particular assumption.

We develop a framework based on variations of an umbrella solution concept
we term coordinated equilibrium which, for any given base game identifies the full
range of equilibrium outcomes associated with all such assumptions. We show
further how to impose restrictions on coordinated equilibria in order to capture
outcomes associated with stronger and stronger extensive-form refinements.

For complete-information environments, Aumann (1974) proposed the concept
of correlated equilibrium. The set of correlated equilibrium outcomes of a base
game characterizes the Nash equilibrium outcomes of all specifications satisfy-
ing two restrictions: the payoffs are common knowledge and the players move
simultaneously. Bergemann and Morris (2016) found the appropriate generaliza-
tion, Bayes’ correlated equilibrium, that does the same for games with incomplete
information. That is, across all specifications in which the restriction to simulta-
neous moves is maintained but the information structure concerning payoffs is
unrestricted, an outcome can arise as a Bayesian Nash Equilibrium if and only if
it belongs to the set of Bayes’ correlated equilibria of the base game.

Returning to the domain of complete-information environments, the path-breaking
work of Salcedo (2017) explores variations of the extensive form beyond simulta-
neous moves. Salcedo (2017) proposes the Interdependent Choice Equilibrium
(ICE) concept to delineate Nash equilibrium outcomes of complete-information
extensive-form elaborations of a given base game.

We consider both incomplete information and non-trivial extensive forms, bring-
ing forth new challenges as well as applications. Solution concepts for extensive-
form games span a range of refinements embodying various notions of sequential
rationality and consistency of beliefs. The gap between unrefined Nash equilib-
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rium and the strongest versions of perfection are particularly significant in the
presence of incomplete information; indeed, this is the domain in which most
of the theoretical discussion of refinements has taken place. We show how to
progressively specialize our baseline coordinated equilibrium concept in order
to characterize the equilibrium sets across a range of solution concepts including
Bayesian Nash Equilibrium, Perfect Bayesian Equilibrium and a strong refinement
of Sequential Equilibrium.

Our work opens the door to the study of the design of fully dynamic extensive-
form asymmetric information structures. As with all of the aforementioned solu-
tion concepts, an equivalent dual perspective identifies coordinated equilibrium
and its variations as the feasible set of outcomes that can be implemented by a
designer who, taking the base game as given, builds an extensive-form mecha-
nism to coordinate play toward some objective. For example, to raise funds for
a public project, a principal can decide on the sequence in which she approaches
investors as well as the information disclosed to each about the progress so far.
An agenda setter for a deliberative committee who structures the pattern of dis-
cussion and voting controls both the way in which preferences are aggregated and
the information about preferences that gets revealed along the way. A mediator
engaging in “shuttle diplomacy” chooses which parties to negotiate with first and
what details about past agreements to disclose in subsequent negotiations.

Finally, coordinated equilibrium is expressed as a family of linear incentive con-
straints derived completely from the base game. That is, like correlated equilib-
rium, Bayes’ correlated equilibrium and ICE, coordinated equilibria can be com-
puted as the solution to a linear program. We compute the solution sets for a
variety of illustrative examples.

Related Literature As in the literature on communication equilibria (e.g., Au-
mann (1974, 1987), Myerson (1982), Forges (1986), Myerson (1986)) we study a
solution concept, coordinated equilibrium, and the canonical device that imple-
ments it. The literature on information design, including Bayesian Persuasion
(Kamenica and Gentzkow (2011)), Bayes’ correlated equilibrium (Bergemann and
Morris (2016)) and sequential Bayes’ correlated equilibrium (Makris et al. (2018)),
takes a similar approach. These papers provide the appropriate extensions of
correlated equilibrium and sequential communication equilibrium to the case in
which the analyst is agnostic about the players’ information structure. de Oliveira
and Lamba (2019) apply similar ideas to a single-agent dynamic choice problem
to study rationalizable decision paths. All these papers take the extensive form as
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given and study equilibrium outcomes as the information structure varies.

Salcedo (2017) on the other hand takes as given a complete information base game
and considers the set of equilibria of extensive-form games consistent with it. We
discuss Salcedo (2017) in further detail in Section 7. Nishihara (1997) shows that
by designing the extensive form it is possible to achieve cooperation in the pris-
oners’ dilemma even if it is played only once. Gershkov and Szentes (2009) con-
sider communication protocols whose outcomes can be achieved as Bayes’ Nash
equilibria in a canonical extensive form. They do this in the context of a sequen-
tial information acquisition game, where players need to disclose the information
acquired to the social planner.1 In a similar vein, Kremer et al. (2014) use posi-
tion uncertainty to motivate agents to experiment with an alternative of unknown
value. More recently, Best and Quigley (2017) use the uncertainty over the exten-
sive form to motivate a sender who cannot commit to an information structure,
while Gallice and Monzon (2018) consider the benefits of using a sequential move
protocol to motivate agents to contribute to a public good. Finally, Peters (2015)
studies games of competing mechanisms from a similar perspective. To capture
competing mechanisms, the extensive forms in Peters (2015) allow players to de-
viate without being detected by their opponents.

Sutton (1991, 2001, 2003) discusses the consequences of the assumptions the ana-
lyst makes on game forms for predictions of interest to industrial organization. He
proposes what he calls the bounds approach (see Shaked and Sutton (1987)): instead
of making a point prediction based on a particular game, the analyst should strive
to make predictions that are robust to a range of model specifications. Our work
echoes the latter approach. Indeed, as the main example in Section 2 shows, an
analyst’s prediction in a standard quantity competition game are sensitive to the
assumptions she makes about the extensive form: while Cournot competition has
a unique correlated equilibrium, the set of coordinated equilibria is quite large.

Organization The rest of the paper is organized as follows. The next section
contains an informal overview of our results through a series of examples. In
Section 3 we introduce our basic coordinated equilibrium concept. Section 4 and
Section 5 show how to specialize the concept in order to characterize extensive-
form refinements from Perfect Bayesian Equilibrium in Section 5 and a strong
refinement of sequential equilibrium in Section 4. In Section 6 we present our
converse results. Further examples and proofs are in the Appendices.

1Bognar et al. (2015) also highlight the benefit of having agents move sequentially, as opposed
to simultaneously, in a voting game.
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2 Overview

This section is a high-level overview of the results in the paper and their rela-
tionship to the existing literature on information design. Readers wishing to go
straight to the formal developments may want to skip this section.

Setup A base game G is described by the set of players i ∈ {1, . . . , N}, each
player’s finite set of available actions Ai, a finite set of payoff-relevant states of
the world Θ, and each player’s payoff function ui : A×Θ → R where A = ∏i Ai
is the set of action profiles. In some applications we may also specify a (common)
prior probability distribution over states ρ ∈ ∆(Θ).

A base game with two players and two states of the world is depicted below in
Figure 1a. In this base game player 1 chooses from two actions U and D, player
2 chooses from three actions L, M, and R and there are two states of the world θ
and θ′.

L M R
U 2, 2 −1,−4 −1, 3
D 3, 0 0,−1 4,−1

θ

L M R
U 2, 2 −1, 3 −1,−4
D 3, 0 4,−1 0,−1

θ′

Figure (a) Base Game

(1, U)

(2, L)

U

L
M
R

(2, M)

D L
M
R

Figure (b) Example of a Plan

Figure 1: A base game and a plan

Plans, Obedience, Coordinated Equilibrium We develop a framework to de-
rive the set of equilibrium outcomes under various solution concepts. The basic
element of our framework is the concept of a plan. A plan is a tree that represents
a fully contingent path of action recommendations for the players. An example
of a plan is depicted in Figure 1b. In this plan player 1 moves first and is recom-
mended to play U. Player 2 is recommended to play L if 1 played U but to play
M if 1 instead played D.
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The set of all possible plans is P. The obedient path of a plan is the path that results
when all players play according to the plan. The obedient path in Figure 1b leads
to the action profile (U, L).

A coordinated equilibrium is a joint probability distribution π ∈ ∆(Θ × P) over
states and plans which is obedient: conditional on having selected from π a plan
whose obedient path calls on Player i to play action ai, the choice of ai in fact
maximizes i’s conditional expected payoff under the assumption that all other
players will also be obedient. To express these obedience constraints, let 〈ai〉 be the
subset of plans whose obedient path has i play action ai. We denote by ui(bi, p, θ)
the payoff to player i from (possibly dis-obediently) choosing bi within plan p
under the assumption that all other players are obedient. Then

∑
θ∈Θ

π(θ) ∑
p∈〈ai〉

π(p | θ) [ui(ai, p, θ)− ui(bi, p, θ)] ≥ 0 (1)

is the constraint that player i finds it in her interest to obediently select ai rather
than bi. If these obedience constraints hold for all players i and actions ai, bi, then
π is a coordinated equilibrium.

Specializing further, if we are also given a prior ρ for the base game we may add
the additional constraint that the coordinated equilibrium π be consistent with ρ,
i.e., the marginal of π on states agrees with ρ.

A basic result is that the outcome of a coordinated equilibrium, i.e. its induced joint
distribution over states and action profiles, is a (Bayesian) Nash equilibrium of an
appropriately chosen extensive-form game.2 Nash equilibrium is not a suitable
solution concept for extensive-form games, especially under incomplete informa-
tion, so instead our main results show how to specialize the definition of coordi-
nated equilibrium in order to characterize various extensive-form refinements.

Cournot We use the example of Cournot duopoly to illustrate. Suppose that
price is a function P (Q | θ) of total output Q = q1 + q2 (downward sloping) and
a demand shock θ ∈ Θ. There is a given probability distribution ρ(θ) over re-
alizations of the shock. The firms have constant marginal costs c > 0 and sup-
ply quantities qi (taken from some large finite set) to maximize expected prof-
its qi (P (Q | θ)− c). Let Q̄θ be the zero-profit industry output in state θ, i.e.

2Indeed if we restrict attention to complete-information games, where Θ is a singleton, the set
of coordinated equilibrium outcomes coincides with the set of ICE outcomes from Salcedo (2017).
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P
(
Q̄θ | θ

)
= c.

For any value of the demand shock θ, consider the plan in which firm 1 moves
first and produces zero output q1 = 0, firm 2 responds to q1 = 0 by producing the
monopoly output, call it q2 = QM,θ, and firm 2 responds to any other choice q̂1 of
firm 1 by flooding the market, i.e. q2 = max

{
Q̄θ − q̂1, 0

}
. In this plan, call it p(θ),

any choice of Firm 1 would earn zero profits and therefore Firm 1 is willing to be
obedient and produce zero. Along the obedient path Firm 2 earns the monopoly
profit, a best-response and therefore also obedient. Consider then the coordinated
equilibrium π whose marginal π(θ) agrees with ρ and for which π(p(θ) | θ) = 1
for every demand shock θ.

It is indeed a coordinated equilibrium. It assigns probability 1 to plans in which
Firm 1 optimally chooses q1 = 0 and Firm 2 plays a best-response. However it
fails to capture the requirements that would come from sequential rationality in
an extensive form. Indeed it is merely an elaborate version of the textbook entry
deterrence equilibrium used to illustrate the shortcomings of Nash equilibrium.
Firm 1 is obedient only because she anticipates that Firm 2 would impose zero
profits on herself in order to punish a deviation.

Sequential Rationality and Extensive-Form Refinements Therefore, in order
to capture outcomes that are consistent with sequential rationality, we refine the
coordinated equilibrium concept. In particular we consider coordinated equilibria
that use only certain subsets of plans. Consider a family B of non-empty action
subsets B1, . . . , BN and let PB be the subset of plans that only ever recommend
actions in some subset B.

We are interested in results of the following form: If a coordinated equilibrium π
assigns probability 1 to plans in PB then there exists an extensive form in which
its outcome can arise as an equilibrium satisfying solution concept Y.

For solution concepts Y requiring sequential rationality, such as Perfect Bayesian
Equilibrium or Sequential Equilibrium, we must restrict the set of plans, i.e., PB (
P. The idea is that some action choices cannot be made sequentially rational and
we want to restrict attention to plans that never make use of such actions.

Self-Contained Coordinated Equilibria We demonstrate one such result here.
Consider the set of actions C defined by the following iterative procedure. First,
we eliminate from consideration actions that can never be played in a coordinated
equilibrium. For each player i, let C1

i be the set of i’s actions that can arise with
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positive probability in some coordinated equilibrium. Next, let C2
i be the set of

actions that can arise with positive probability in some coordinated equilibrium
assigning probability 1 to plans in PC1

, i.e. those plans that only use actions that
survived the previous step of elimination. Continuing in this way we arrive at a
fixed point consisting of nonempty subsets of actions Ci for each player.

Consider a coordinated equilibrium that assigns probability 1 to plans in PC. It
only involves actions that can arise in coordinated equilibria involving actions
that can arise in coordinated equilibria . . . etc. For that reason, we call these self-
contained coordinated equilibria. We show in Theorem 2 that for every self-contained
coordinated equilibrium there is an extensive form with a sequential equilibrium
which yields (essentially) the same outcome.

We return to Cournot duopoly to illustrate. For any value of the demand shock θ
pick any quantity q1 ∈ [0, Q̄θ] and consider the following plan. Firm 1 produces q1.
If firm 1 is obedient firm 2 produces the best-response to q1, and if firm 1 produces
any quantity q̂1 6= q1 then firm 2 produces q2 = max

{
Q̄θ − q̂1, 0

}
. This plan,

together with the state θ is a degenerate coordinated equilibrium, i.e. the measure
assigning probability 1 to θ and the plan just described satisfies the obedience
constraints in Equation 1.

Thus, for firm 1 every quantity q1 ∈ [0, Q̄] where Q̄ = maxθ Q̄θ survives the first
round of elimination and likewise for firm 2. Any other quantity results in neg-
ative profits and therefore cannot be played in a coordinated equilibrium. Those
quantities are eliminated. It follows that C1

i = [0, Q̄].

Moreover the degenerate coordinated equilibrium plans only used actions that
themselves belong to [0, Q̄]. Therefore the elimination process reaches its fixed
point after the first step, Ci = [0, Q̄]. The self-contained coordinated equilibria
are those π assigning probability 1 to plans using these quantities. We show how
to construct an extensive-form game possessing a sequential equilibrium whose
outcome is arbitrarily close to that of any such π.

A Canonical Extensive Form For Cournot Duopoly Consider the following ex-
tensive form. Nature moves first and chooses an element of Θ × PC. Following
each possible move by Nature (θ, p), we complete the tree by appending the tree
from p. Finally, for each player i and action ai we construct an information set
which joins all of the nodes at which, in the plan to which the node belongs, i is
called upon to play ai.
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Nature’s choice probabilities are given by the following mixture. With probabil-
ity (1− ε) Nature’s choice is a draw from the target self-contained coordinated
equilibrium distribution π. The remaining probability ε > 0 is spread uniformly
over the degenerate coordinated equilibria. Note that this distribution, call it ψ
is a mixture of coordinated equilibria and is therefore itself a coordinated equilib-
rium, due to the linearity of the obedience constraints.

This extensive form can be interpreted as a random, contingent recommendation
system. Each information set for player i is associated with a quantity qi ∈ Ci and
we can interpret it as the event that player i has been recommended to produce
quantity qi. The strategy for player i in which she produces the recommended
quantity at each of her information sets is what we call the obedient strategy.

When both firms play their obedient strategies, then at firm i’s information set as-
sociated with quantity qi, firm i knows the following (and nothing more): Nature
selected a state and plan from the coordinated equilibrium ψ, and the selected
plan together with obedient play has led to a node where i is expected to play
qi. This information is exactly what is captured in the obedience constraint Equa-
tion 1 for coordinated equilibrium and therefore it is a sequential best-reply for
firm i to play her obedient strategy. The obedient strategy profile is therefore se-
quentially rational and results in an outcome that can be made arbitrarily close
(by taking ε to zero) to that of the target coordinated equilibrium π.

Self-Contained Coordinated Equilibria Satisfy All Refinements Indeed the obe-
dient strategy profile is a sequential equilibrium. To see why notice that every
information set arises with positive probability. This is because every quantity
in C occurs along the obedient path of one of the degenerate self-contained co-
ordinated equilibria receiving positive probability from Nature’s move. Because
there are no off-path information sets, sequential equilibrium imposes no restric-
tions beyond (on-path) sequential rationality. The same is true of all belief-based
refinements of sequential equilibrium (for example the Intuitive Criterion). We
conclude that (essentially)3 any self-contained coordinated equilibrium outcome
can arise in an extensive-form game under all conventional solution concepts.4

3The construction above assigned ε probability to arbitrary coordinated equilibria to ensure
that all information sets arise with positive probability. This is necessary only for boundary coor-
dinated equilibria, thus the “essential” qualifier.

4In the example of Cournot duopoly, we actually obtain that any individually rational and
feasible payoff can be sustained in a coordinated equilibrium. We have already argued that there
is a coordinated equilibrium where a firm obtains monopoly profits. Note that there is also a
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For example, here is a self-contained coordinated equilibrium in which the firms
perfectly “collude.” Fix any demand shock θ and consider the 50-50 lottery over
the following two plans. In the first plan firm 1 is recommended to produce half
of the monopoly output. If she is obedient then firm 2 is recommended to do the
same. If firm 1 produces any other output, firm 2 is recommended to flood the
market. The second plan is identical to the first but with the roles of the two firms
reversed.

In this lottery over plans the only recommendations that occur with positive prob-
ability are the recommendations to produce the collusive quantity. Let us check
the obedience constraint. If, e.g., firm 1 were to deviate to any quantity q1, she
will earn zero with probability 1/2 (in the first plan) and some positive profit Π
with the remaining probability (in the second plan.) But Π cannot be larger than
the monopoly profit and therefore the expected payoff from the deviation cannot
be larger than half of the monopoly profit. Since the latter is the expected payoff
from obedience, we see that the obedience constraint is satisfied. This is therefore
a coordinated equilibrium and it is self-contained because all of the recommended
quantities (the collusive quantities and the market-flooding quantities) belong to
C = [0, Q̄].

Perfect Bayesian Equilibrium Self-contained coordinated equilibrium outcomes
can be generated by extensive-form equilibria that do not rely on any specification
of out-of-equilibrium beliefs. In order to obtain that strong property, the set C it-
eratively removes from consideration actions that cannot be made sequentially
rational on the path of play. Nevertheless, in many games such actions can be
made sequentially rational off the path of play. Therefore, in order to character-
ize less stringent refinements such as Perfect Bayesian Equilibrium, we will need
to identify this larger set of actions, which we call D, and consider coordinated
equilibria using the larger set of plans PD.

We illustrate via the example in Figure 2:

coordinated equilibrium where each firm makes 0 profits. It is achieved by using the plan where

the first firm produces Qθ and the second firm best replies by producing 0. Noting that the set of
coordinated equilibrium payoffs is convex implies the claim.
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c3 d3
c2 0, 1, 1 0, 1, 0
d2 0, 0, 1 0, 0, 0

d1

c3 d3
c2 1, 1, 1 0, 1, 0
d2 0, 0, 1 −1, 0, 0

c1
c3 d3

c2 −2,−1,−1 −2, ∆,−2
d2 −2,−2, ∆ −2, 0, 0

X1

Figure 2: A complete information base game

This is a three-player base game with complete information. Player 1 chooses the
matrix while Players 2 and 3 choose the rows and columns respectively. In this
game the sets Ci are the singletons {ci}. In the language of Salcedo (2017) the ac-
tion X1 is absolutely dominated: the maximum payoff it can earn Player 1 is smaller
than the minimum payoff from d1. Absolutely dominated actions can never be
played with positive probability in a coordinated equilibrium. Indeed iterative
removal of absolutely dominated actions leads to the unique self-contained equi-
librium outcome (c1, c2, c3).

However, when ∆ ≤ 1 there exists a sequential equilibrium of a suitably chosen
extensive form in which Player 1 plays the action d1, supported by the threat that
a deviation to c1 would be punished by 2 and 3 playing (d2, d3).

An example of such an extensive-form is presented in Appendix A. Our main
result Theorem 3 ensures the existence of such an extensive-form and a Perfect
Bayesian Equilibrium by identifying sets of actions Di that survive an elimination
procedure that is weaker than the procedure that defines Ci. In the game of Fig-
ure 2, when ∆ ≤ 1 the sets Di include the actions di for each player. Theorem 3
establishes that for any coordinated equilibrium using only plans in PD, there is
an extensive-form with a Perfect Bayesian Equilibrium which yields the same out-
come.

The sets Di are constructed by identifying actions that can be rationalized follow-
ing deviations by one or more other players. For example in the game of Figure 2,
the profile (d2, d3) can arise in a restricted coordinated equilibrium in which we
check only the incentive constraints of players 2 and 3, taking as given that player
1 has “deviated” to X1. This fact ensures that d2 and d3 belong to D. Moreover, it
reveals how to specify beliefs at off-path information sets that are mutually con-
sistent among players, satisfy Bayes’ rule where possible, and which ensure the
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sequential rationality of off-path threats.

On the other hand, when ∆ > 1 the actions (d2, d3) can no longer be rationalized
in this way and they no longer belong to our set D. We discuss this case further in
Appendix A.

Sequential Information Design We have motivated our analysis by consider-
ing an external analyst who is agnostic about the extensive form and information
structure. Our results can also be applied to study the design of extensive-form
information structures to implement outcomes in a base game with incomplete
information. Our last example will emphasize this perspective.

Consider the base game from Figure 1, reproduced below in Figure 3a. For illus-
trative purposes we will assume a prior ρ which assigns equal probability to the
two states.

L M R
U 2, 2 −1,−4 −1, 3
D 3, 0 0,−1 4,−1

θ

L M R
U 2, 2 −1, 3 −1,−4
D 3, 0 4,−1 0,−1

θ′

Figure (a) Base Game

(3, 0)
Player1

(2, 2)

Player2

Figure (b) Payoffs

Figure 3: Self-Contained Coordinated Equilibrium

In Figure 3b, the set of all payoff profiles achievable in self-contained coordinated
equilibria is displayed in grey. That is, for every payoff pair in the interior of the
grey region it is possible to design an extensive-form information structure con-
sistent with the prior ρ such that the resulting game has a sequential equilibrium
achieving the target expected payoffs.

The mechanisms that implement this range of payoffs control the incentives of
the players by selectively hiding and revealing information to different players at
different points in time and after different contingencies. To illustrate the incentive
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power of sequential information design, the comparison with static information
design is instructive.

For example, we may consider all possible games of incomplete information ob-
tained from the base game by designing an interim, possibly asymmetric, infor-
mation structure but restricting the players to move simultaneously. Then the set
of all implementable outcomes is summarized by the concept of Bayes’ Correlated
Equilibrium (BCE) due to Bergemann and Morris (2016). In the example of Fig-
ure 3a there is only one Bayes’ Correlated Equilibrium outcome: the players play
the pure action profile (D, L).

To see why note that the action U is ex post strictly dominated by D. Thus, re-
gardless of the information structure, Player 1 must play D with probability 1 in
any Bayesian Nash Equilibrium. Given this, the unique best-reply for Player 2,
independent of the state, is to play L.

Without the flexibility afforded by the extensive form, information design has no
power in this example. Similarly, designing the extensive form without also de-
signing the information structure leads to the same conclusion. Salcedo (2017)
was the first to study this problem and he introduced the solution concept of In-
terdependent Choice Equilibrium (ICE) to summarize the set of Nash equilibria
of complete-information extensive-form games.

In the example there is only one ICE outcome, again the pure profile (D, L). The
reasons are different because, as Salcedo (2017) observed, although U is strictly
dominated, in an extensive-form mechanism Player 1 may be incentivized to play
U if he expects that a deviation would be punished by Player 2.5

But when the two states have equal probability, both M and R earn player 2 a
negative expected payoff regardless of the action of player 1. Player 2 earns at
least 0 from L and therefore regardless of the extensive form, Player 2 must play
L and therefore Player 1 must play D.

Implementing an outcome such as (U, L) requires designing the information struc-
ture within the extensive form. Our results not only delineate the implementable
outcomes but also show how to construct these extensive-forms. Intuitively, in the
example information must be disclosed to player 2 in a way that is contingent on
the behavior of player 1. When player 1 plays the recommended action U, player
2 should be kept uninformed about θ so that she is dissuaded from playing M and

5Indeed Salcedo (2017) shows that for certain specifications of the payoffs in the Prisoner’s
Dilemma there are ICE outcomes in which both players cooperate. See also Nishihara (1997).
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R. But when player 1 deviates to D, some information must be disclosed to player
2 in order for her punishment to be tailored to the state (L in state θ and R in state
θ′.) Making these punishments incentive-compatible for Player 2 requires further
obfuscation. Below is an example of an extensive-form game and a self-contained
equilibrium in which (U, L) is played. The analysis is in Appendix A.

N

1 1

(θ, U, L)

2

2

(θ′, U, L)

(θ′, U, L)

2

(θ, U, R)

θ′
1
2

θ
1
2

ε 1− ε 1− ε ε

U U

L
M

D U

L
MU D

R R

L L

D D

Figure 4: A sequential equilibrium

Converses So far we have described our results in terms of sufficient conditions.
For example, in order to guarantee that an outcome can arise from a self-contained
equilibrium of an extensive-form game it is sufficient that there is a self-contained
coordinated equilibrium with the same outcome. These results are proven by con-
struction. We use a simple extensive form in which along every path each player
i has exactly one opportunity to move and at that opportunity she chooses from
her set of actions Ai. The game in Figure 4 is one such extensive form.

However, we may go a step further and consider abstract extensive forms analo-
gous to indirect mechanisms in mechanism design. In an abstract extensive form
players may move multiple times along a path and moves are not necessarily
equated with directly choosing actions. Instead we simply associate each terminal

14



node with an action profile. The players “choose” an action profile by following
the path that leads to an associated terminal node. The question arises whether a
larger set of outcomes than those we identify can arise as equilibria of the broader
class of abstract extensive forms.

Our goal is to establish exact converses of our results, i.e. coordinated equilibrium
as a necessary condition. We prove converses under two sets of restrictions on
extensive forms. These restrictions slightly generalize the class of extensive-form
mechanisms first introduced by Salcedo (2017). First, we impose three properties
that preserve the autonomy of the players and the non-cooperative nature of the
game. Every tuple consisting of a state of the world and action profile must be
associated with at least one terminal node. That is, the extensive-form must not
restrict the set of feasible outcomes. When a player (implicitly) chooses an action
ai by following some path, she must know that her action will be ai. That is, there
cannot be an information set bundling that path with one leading to a different
action bi. Finally, player i cannot “delegate” the choice from her action set Ai to
another player j. That is, a move by player j in the extensive-form cannot reduce
the set of actions in Ai that i can feasibly choose through subsequent moves.

The simple extensive forms we use to prove our sufficient conditions satisfy all of
the above properties and therefore the sufficient conditions apply when we allow
for this broader class of abstract extensive forms. To establish necessity we impose
one further and more substantive restriction (and one that is also satisfied by our
simple extensive forms). Players cannot make partial commitments: at any stage
of the extensive-form the set of actions that player i can “choose” via subsequent
moves is either a singleton (i.e., she has already made her choice) or the entire set
Ai.

In many environments it would be quite natural to suppose that players can
choose their actions by a progressive sequence of partial choices. For example,
when contributing to a public good it may be possible to make an initial non-
refundable contribution and maintain the option of making additional contribu-
tions later, perhaps contingent on the contributions of others. And indeed such
possibilities will expand the set of equilibrium outcomes, as can be seen from the
work of Renou (2009), Bade et al. (2009), and more recently Dutta and Ishii (2016),
who specifically study the power of partial commitments.
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3 Coordinated Equilibrium

We consider base games of incomplete information defined as follows. There are
N players, each player i chooses an action from the finite set Ai. Payoffs ui(a, θ)
depend on action profiles a and the state of the world θ, an element of the finite
set Θ. In some cases we might also fix a common prior ρ over Θ.

The basic unit of our analysis is a plan.

Definition 1. A plan is a tree where each node belongs to a player i and is labeled with an
action ai ∈ Ai. At every node belonging to i there is exactly one branch for every action
in Ai and every path through the tree passes through exactly one node for each player.

We let P be the set of all plans. A plan can be thought of as a contingent sequence
of recommendations to the players. We interpret a node labeled ai as player i being
called upon to act and being recommended to play action ai. Every plan has an
obedient path, the path that results from always following the branch associated
with the recommended action. We define the subset of plans 〈ai〉 ⊂ P to be the set
of all plans whose obedient path has player i play the action ai.

Similarly, we can consider the path that results from a possible deviation by player
i to an action bi. Consider following the obedient path until we reach the node be-
longing to i, then following the branch associated with bi. After that we continue
following the recommended branches for the subsequent players.6 This will re-
sult in a unique action profile, and for a given state of the world θ, this yields a
payoff to player i which we denote by ui(bi, p, θ).

Definition 2. A coordinated equilibrium is a distribution π ∈ ∆(Θ× P) such that for
each player i the obedience constraints hold i.e.

∑
θ∈Θ,p∈〈ai〉

π(θ, p) [ui(ai, p, θ)− ui(bi, p, θ)] ≥ 0 (2)

for all ai, bi ∈ Ai.

In some applications the analyst may fix a common prior ρ over states. A coordi-
nated equilibrium π is consistent with ρ if the marginal of π on Θ coincides with

6Note that bi may be the action recommended to player i, in which case we are simply following
the obedient path again.
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ρ. When we associate each plan with the action profile that results from its obe-
dient path, a coordinated equilibrium induces a distribution α ∈ ∆(Θ× A) over
states and action profiles. We call α a coordinated equilibrium outcome.

Imagine that player i knows that a state and a plan will be drawn from the dis-
tribution π, and she receives the recommendation to play ai. She learns that a
plan from the set 〈ai〉 has been selected, and she learns nothing else. If she as-
sumes that all players (if any) who have previously moved have followed their
recommendations, and all players who will subsequently move will follow their
recommendations, then the left-hand side of Equation 2 is proportional to the con-
ditional expected payoff gain from being obedient herself. If the inequality holds
then player i will obey the recommendation to play ai.

Indeed we can directly translate this intuition into the construction of an extensive-
form game in which “obedience” is a Bayesian Nash Equilibrium and yields the
same outcome. The root node belongs to Nature. Nature has exactly one branch
associated with each element of Θ× P. Nature’s choice probabilities are given by
π. We then complete the construction of the game tree by appending after every
one of Nature’s branches (θ, p), the “continuation” tree given by the plan p. Fi-
nally, we build information sets. For every player i and action ai ∈ Ai there is a
single information set containing every node belonging to i labeled with action ai.

Refer to this extensive-form game with imperfect and incomplete information as
Γ(π). It is easy to see that the information sets in Γ(π) model exactly the inference
underlying the obedience constraint. At her information set associated with action
ai, player i knows (nothing more than) that Nature has selected a plan whose
obedient path eventually recommends ai to player i.

For a given base game G we refer to the class of extensive forms Γ(π), as π varies,
as the canonical extensive form(s) for G. The obedient strategy for player i is the
strategy for Γ(π) which, at each information set, selects the recommended action.
By virtue of the obedience constraints in Equation 2, if π is a coordinated equilib-
rium7, then the obedient strategy profile is a Bayesian Nash Equilibrium of Γ(π).

Theorem 1. If π is a coordinated equilibrium with outcome α then the obedient strategy
profile is a Bayesian Nash Equilibrium of Γ(π) and yields outcome α.

7In some applications, the analyst may fix a prior ρ over states, and confine attention to games
with common prior ρ. Then Theorem 1 implies that the outcomes of coordinated equilibria consis-
tent with ρ are generated by Bayesian Nash equilibria of Γ(π) where π has marginal distribution
over Θ equal to ρ. The same observation applies to each of the refinements we consider below.
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Theorem 1 extends the result of Salcedo (2017) to incomplete information envi-
ronments.8

4 Self-Contained and Sequential Equilibrium

The obedience constraint in Equation 2 is vacuous for actions ai that never arise
along the obedient path of any plan p in the support of a coordinated equilibrium.
Nevertheless, such actions may very well arise following a deviation from p by
some other player. This is the sense in which coordinated equilibrium captures
Nash equilibrium, but not sequentially rational outcomes of extensive forms. In-
deed any π assigning probability 1 to the entry deterrence plan in the Cournot
example from Section 2 is a (degenerate) coordinated equilibrium.

In this section we consider the opposite extreme: the strongest belief-based refine-
ment of extensive-form equilibrium. To introduce it, recall that in an extensive-
form game an information set h is on the path of play of a strategy profile σ if
some node in h is reached with positive probability when play follows σ. An in-
formation set h is reachable given a strategy profile σ if there is some strategy σ′i for
i such that h is on the path of play of (σ′i , σ−i).

Refinements of Bayesian Nash Equilibrium are based on scrutinizing the beliefs
at information sets that are reachable but not on the path of play. An equilibrium
survives all refinements when there are no such information sets.

Definition 3. Consider a finite extensive-form game with perfect recall. A Bayesian Nash
Equilibrium σ is self-contained if for each player i every information set that is reachable
by i given σ−i is on the path of play.

Proposition 1. A self-contained Bayesian Nash Equilibrium is a sequential equilibrium
strategy profile.

We derive a refinement of coordinated equilibrium that identifies outcomes of a
base game that could arise as self-contained Bayesian Nash equilibria of some
extensive form. It is based on restricting the set of plans under consideration.
Intuitively we want to rule out plans that use actions which cannot be played
along the equilibrium path of some equilibrium of some extensive form. In fact

8Theorem 1 is reminiscent of the result in Myerson (1982) which ties correlated equilibrium to
the Nash equilibrium of the base game when the players communicate with a mediator.
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we also want to avoid using actions which can be played but only under the threat
of actions which are ruled out by the previous consideration. Indeed we want to
iteratively remove such actions from the available plans.

It turns out that coordinated equilibrium itself provides the criterion for elimi-
nation. For each player i let C1

i be the set of actions ai such that there exists a
coordinated equilibrium outcome α ∈ ∆(Θ × A) assigning positive probability
to ai. Next for each k > 1, consider the set of plans PCk−1

such that all actions
recommended to any player j, on or off the obedient path, belong to Ck−1

j .

We inductively define Ck
i to be the set of actions ai such that there exists a co-

ordinated equilibrium π ∈ ∆(Θ × PCk−1
) assigning positive probability to some

plan with ai on its obedient path. Since the set of actions is finite, this elimination
procedure terminates at a fixed point. We use Ci to refer to the set of actions that
survive9 for player i, and PC the surviving set of plans.

Definition 4. A coordinated equilibrium is self-contained if it assigns probability 1 to
plans in PC.

Note that, since C is a fixed point, for every ai ∈ Ci there exists a self-contained
coordinated equilibrium whose outcome assigns positive probability to ai. Say
that two outcomes α, α′ are within ε distance if |α′(θ, a) − α(θ, a)| ≤ ε for every
pair (θ, a). In the following result we consider canonical extensive forms in which
Nature selects from the subset Θ× PC, we call these ΓC(π).

Theorem 2. For any self-contained coordinated equilibrium outcome α and for any ε >
0, there is a (canonical) extensive-form with a self-contained Bayesian Nash equilibrium
whose outcome is within ε distance of α.

Proof. Let π be a self-contained coordinated equilibrium with outcome α. For all
i, for all ai ∈ Ci there is a self-contained coordinated equilibrium, call it πai whose
outcome assigns positive probability to ai. In particular, πai assigns positive prob-
ability to a plan with ai on its obedient path. Let M be the sum of the cardinality
of the sets Ci for i = 1, . . . , N. Consider the following mixture for any ε ∈ (0, 1) :

ψ(θ, p) = (1− ε)π(θ, p) +
ε

M

N

∑
i=1

∑
ai∈Ai

πai(θ, p)

9This set is non-empty and includes all actions that can be played with positive probability in
a Bayes’ correlated equilibrium of the base game.
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Since the obedience constraints are satisfied for each of the πai individually, they
are satisfied for ψ. Moreover ψ assigns probability 1 to plans in PC. Thus ψ is a
self-contained coordinated equilibrium. Let α′ be its outcome.

For any action profile a, let 〈a〉 be the set of plans whose path yields action profile
a. Then α(θ, a) = ∑Θ×〈a〉 π(θ, p) and α′(θ, a) = ∑Θ×〈a〉 ψ(θ, p). By construction for
any (a, θ) we have

(1− ε)α(θ, a) ≤ α′(θ, a) ≤ (1− ε)α(θ, a) + ε

and thus |α′(θ, a)− α(θ, a)| ≤ ε.

By Theorem 1 the obedient strategy profile is a Bayesian Nash Equilibrium of
ΓC(ψ) and yields the same outcome as ψ. By construction, for every ai ∈ Ci the
mixture ψ assigns at least probability ε/M > 0 to a plan in which ai is on the
obedient path. Thus, all of the (reachable) information sets are on the path and the
obedient strategy profile is a self-contained Bayesian Nash equilibrium of Γ(ψ).

Its outcome is the same as that of ψ and we have shown that the latter is within ε
distance of π.

It should be clear from the proof that the outcomes of all interior self-contained
coordinated equilibria can be exactly realized by a self-contained Bayesian Nash
equilibrium. The approximation is needed only for boundary points.

In cases in which we are given a prior ρ, we can further specialize Theorem 2. In
Doval and Ely (2019) we show that, as long as ρ has full support, the ψ used in
the proof can be chosen to be consistent with ρ so that the resulting self-contained
Bayesian Nash Equilibrium outcome exactly coincides with α in its marginal over
states and differs by ε only in terms of the distribution of action profiles.

5 Perfect Bayesian Equilibrium

From the point of view of a planner, who designs the game and information struc-
ture to implement some solution, it may make sense to stop at self-contained co-
ordinated equilibrium. The solutions obtained will not rely on any assumption
about how beliefs at off-path information sets are formed. However, for an ex-
ternal analyst studying a game outside of her control, and who is agnostic about
the extensive form, self-contained coordinated equilibrium is too restrictive. We
next study the weaker solution concept of Perfect Bayesian Equilibrium, allowing

20



for off-path information sets but requiring that off-path beliefs satisfy Bayes’ rule
where possible.

We begin with the definition of Perfect Bayesian Equilibrium. In a finite extensive-
form game with perfect recall let Σi denote the set of pure strategies for player i.
Nature is denoted i = 0, and analogously to the players a pure strategy for Nature
specifies a move at each chance node. The set of pure strategy profiles (including
a strategy for Nature) is Σ, and the set of pure strategy profiles of the opponents
of i (including Nature) is Σ−i.

A behavioral strategy for player i is a rule βi which specifies for each information set
hi belonging to player i, a probability distribution βi(· | hi) over the moves Mi(hi)
available at hi. A system of beliefs ν specifies a probability distribution ν(· | hi) over
the nodes within each information set hi. An assessment is a pair (β, ν) where β is
a profile of behavioral strategies and ν is a system of beliefs.

Bayes’ rule where possible is the condition that the updating of beliefs should be
consistent with the strategy profile even at information sets that are off the path.
We adopt a strong version of this concept which employs conditional probability
systems (see, e.g., Myerson (1986); Battigalli (1996); Watson (2017)).

A conditional probability system over Σ is a collection of probability measures
µ(· | S) ∈ ∆Σ, one for each non-empty subset S of strategy profiles satisfying the
following two conditions:

1. µ(S | S) = 1 for all S ⊂ Σ,

2. For all A ⊂ B ⊂ C ⊂ Σ, the chain rule of conditional probabilities holds

µ(A | C) = µ(A | B) · µ(B | C).

Given any information set hi belonging to player i we can identify the subset of
strategy profiles σ−i for the opponents of i such that hi is reachable when σ−i is
played. We will conserve notation and use hi to refer both to the information
set in the extensive form and the associated set of strategy profiles. Note that by
perfect recall, every strategy profile in hi ⊂ Σ−i can reach one and only one node
within the information set hi.

Similarly, to any node y, we can associate the set of pure strategy profiles on whose
path lies y. We will use y to refer both to the node in the extensive form and to the
set of strategy profiles that reach it.
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By Kuhn’s Theorem, each profile of behavioral strategies can be associated with a
unique equivalent probability distribution over pure strategy profiles. Similarly,
for each node y, a profile of behavioral strategies β defines a unique equivalent
conditional probability distribution βΣ(y) ∈ ∆Σ over pure strategy profiles. Let-
ting≺ denote the predecessor relation for nodes y in the extensive form, the prob-
ability assigned to profile σ is

βΣ(y) [σ] = ∏
{h:(@y′∈h):y′≺y}

β(σ(h) | h)

if σ ∈ y and zero otherwise.

The chain rule in item 2 for conditional probability systems is the formal statement
of Bayes’ rule “where possible”. Whenever µ(B | C) > 0 we may divide by it and
obtain Bayes’ formula for µ(A | B). Otherwise Bayes’ rule is not possible. This is
our motivation for the following definition.10

Definition 5. An assessment (β, ν) satisfies Bayes’ rule where possible if there is a con-
ditional probability system µ such that for each information set hi and node y,

1. µ(y | hi) = ν(y | hi) and

2. If µ(y | hi) > 0 then µ(· | y) = βΣ(y).

A conditional probability system satisfies Bayes’ rule where possible, by defini-
tion. The first condition above says that µ yields the same beliefs at information
sets as the system of beliefs ν, therefore ν satisfies Bayes’ rule where possible. The
second condition says that the “transition” probabilities used to apply Bayes’ rule
(where possible) are the correct ones, namely the transition probabilities from the
behavioral strategy profile β.

For any profile of behavioral strategies β and any node y belonging to player i, let
Υ(β | y) denote player i’s expected continuation payoff beginning from y when
the players follow β.

Definition 6. An assessment (β, ν) is sequentially rational if for all players i, for every
information set hi

∑
y∈hi

ν(y | hi)
[
Υ(β | y)− Υ(β′i, β−i | y)

]
≥ 0

10Throughout, when we consider cylinder sets like hi ⊂ Σ−i, the conditional probability µ(· | hi)
will be understood to mean µ(· | Σi × hi). Likewise if C ⊂ Σ−i then µ(C | A) means µ(Σi ×C | A).
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for all behavioral strategies β′i .

Definition 7. A Perfect Bayesian Equilibrium is an assessment that is sequentially ra-
tional and satisfies Bayes’ rule where possible.

Deviant Coordinated Equilibrium For the concepts of Bayesian Nash and Self-
Contained equilbrium we used coordinated equilibria to identify actions that can
be rationalized on the path of play of an extensive form. In order to identify addi-
tional actions that can also be played off-path we will need an extended concept
which we call Deviant Coordinated Equilibrium. A deviant plan is a pair q = (p, x)
where p is a plan and x is a node of p. The interpretation of a deviant plan (p, x)
is that p was the plan, but possibly due to a sequence of deviations from the path
of the plan we have arrived at node x. The path of a deviant plan (p, x) consists of
all the nodes reached by obedient play in p starting from x. In particular, x itself is
on the path of (p, x) but none of its predecessors are. Also, if x is the initial node
of p then the path of the deviant plan (p, x) is just the obedient path of p itself. Let
Q be the set of all deviant plans and for any family of subsets B, let QB be the set
of all deviant plans (p, x) that only recommend actions in B, i.e. p ∈ PB.

Let 〈ai〉 be the set of all deviant plans q such that the action ai is recommended
to player i at some node on its path. For any deviant plan q and state θ, if there
is a node belonging to i on the path of q=(p, x), then we write ui(ai, q, θ) for the
payoff to i from the action profile that results when, starting from x, all players
are obedient except possibly player i who chooses action ai.

Definition 8. A deviant coordinated equilibrium relative to a family of action subsets
B = (B1, . . . , BN) is a probability π ∈ ∆(Θ × Q) such that for each i, the obedience
constraints

∑
θ∈Θ,q∈〈ai〉

π(θ, q) [ui(ai, q, θ)− ui(bi, q, θ)] ≥ 0 (3)

hold for all actions ai /∈ Bi and for all bi ∈ Ai.

Notice that in a deviant coordinated equilibrium the obedience constraint for an
action ai does not include plans in which ai precedes the deviant node (such plans
will not belong to 〈ai〉). Thus, a deviant coordinated equilibrium takes as given
any deviations and checks incentives only after the deviations have occurred.
A deviant coordinated equilibrium relative to B also ignores the obedience con-
straints for the pre-specified set of actions Bi. The role of the family B will be
clear when we use Definition 8 in the iterative procedure below. Finally notice
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that any coordinated equilibrium is a deviant coordinated equilibrium relative to
any family B, by simply specifying that the deviant node in each plan is the initial
node.

We will use deviant coordinated equilibrium to define an iterative procedure lead-
ing to a family of action subsets D = (D1, . . . , DN) which we will then prove rep-
resents all of the actions that can be played on or off the path of a Perfect Bayesian
Equilibrium.

The procedure is a nested iterative application of two operators. The first operator
removes actions that (we will show) cannot be played on the equilibrium path.
Let J be a given family of non-empty action sets, J1, . . . , JN. Let Ci(J) be the set of
actions for player i that can be played with positive probability in a coordinated
equilibrium π ∈ ∆(Θ× PJ) and C(J) be the family C1(J), . . . CN(J).

Notice that if we were to iteratively apply the operator C, the sequence C (A),
C (C (A)) . . . would be precisely the decreasing sequence of non-empty subsets
C1, C2 . . . terminating at the set of self-contained action sets C. To obtain instead
the set of actions that can be played in a Perfect Bayesian equilibrium we will first
add some of the removed actions back to the set C (A) before applying C again.

Adding back actions that cannot be played on the equilibrium path but can be
played off the equilibrium path is the key to constructing the set D. Just as the
removal of actions involves iteratively applying the coordinated equilibrium con-
cept, to determine which actions should be restored we will iteratively apply de-
viant coordinated equilibrium.

Define D1,1
i to be the the set of actions for i that are on the path of a deviant coor-

dinated equilibrium π ∈ ∆(Θ× PA) relative to C (A).

Continuing in this fashion we define for each k ≥ 2, the sets D1,k
i to be the set

of actions for i that are on the path of a deviant coordinated equilibrium π ∈
∆(Θ×QA) relative to D1,k−1.

This is an increasing sequence of sets because the set of obedience constraints is
shrinking (see Lemma 1 below). The sequence therefore terminates and we will
call the terminal family D1,∞. The remainder of the procedure continues in the
same way, nesting the iterative addition of actions within the iterative application
of C. Formally we set D0,∞ = A and for each l ≥ 1, k ≥ 1 we define the families
Dl,k as follows

• Dl,0
i = Ci

(
Dl−1,∞) .
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• Dl,k
i is the set of actions for i that are on the path of a deviant coordinated

equilibrium π ∈ ∆(Θ× PDl−1,∞) relative to Dl,k−1,

• Dl,∞ =
⋃

k Dl,k,

We will illustrate the workings of the procedure using the three player complete-
information game depicted in Figure 5a. Player 1 chooses the matrix while players
2 and 3 choose the rows and columns respectively. Iterative removal of absolutely
dominated actions yields the unique profile (d1, d2, d3). That is, repeated applica-
tion of the operator C would eliminate X, c2, and c3. However, as we will show
the set D includes in addition the actions c2 and c3 as the c2 will be restored by the
inner nest and as a result c3 will never be removed.

c3 d3
c2 −1,−1, 1 −1, 1, 0
d2 −1,−1, 1 −1, 2, 0

X

c3 d3
c2 1, 0, 0 1, 0,−5
d2 1, 3, 0 1, 3, 3

d1
Figure (a) Base Game

(1, c1)

c1

(2, c2)

(3, d3)
d3

c3

(3, c3)

d3

c3

X
c2

d2

Figure (b) Deviant Plan

Figure 5: Illustrating the Set D

Let us trace through the nested iterative procedure to derive the set D for this
game. First, the action X is absolutely dominated and will not be included in
D1,0 = C(A). In fact X is the only action that can be removed in the first step and
therefore D1,0 = [{X} , A2, A3]. Next we apply the inner nest to possibly restore
removed actions. Given that X is absolutely dominated it cannot be incentivized
even after a deviation by another player and hence X will not be added back. Thus
D1,∞ = D1,0.

We then apply the outer operator C to D1,∞ = [{X} , A2, A3] to obtain D2,0. Within
this smaller set of actions, the action c2 is absolutely dominated and thus removed.
This is the only action that can be removed so we have D2,0 = [{X} , {d2} , A3]. At
this stage the inner nest considers deviant coordinated equilibria relative to the set
D2,0. The plans in these involve some sequence of possible deviations (for which
incentive constraints are not checked) followed by obedient play where we check
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the incentives only of those actions not belonging to D2,0. Figure 5b is a degenerate
(applying probability 1 to a single plan) deviant coordinated equilibrium of this
form.

Notice that player 2 obeys the recommendation to play c2 because it leads to the
profile (X, c2, d3) earning a payoff of 1. The alternative action d2 would be met
with the response c3 and a payoff of −1. Thus 2 is obedient and the path of this
deviant coordinated equilibrium passes through the recommendation that player
3 play d3. It is not optimal for player 3 to obey this recommendation because
given the preceding choices of players 1 and 2, the best-response for 3 is the action
c3. However, d3 belongs to the set D2,0 and therefore this incentive constraint
is ignored and the plan above is a (degenerate) deviant coordinated equilibrium
relative to D2,0. Since c2 is on its path we have D2,1 = [{X} , A2, A3].

Finally, since D2,1 is identical to D1,1 the remainder of the procedure will simply
repeat previous steps and thus D2,∞ = D1,∞ = D∞,∞ = D.

The following lemma establishes that this procedure has a well-defined terminal
family.

Lemma 1. For each l ≥ 1, k ≥ 0,

1. Dl,k ⊂ Dl,k+1,

2. ∅ 6= Dl,∞ ⊂ Dl−1,∞

Thus, we define D =
⋂

l Dl,∞. We are going to show that the outcomes of coor-
dinated equilibria that use plans in PD can arise as Perfect Bayesian equilibria.
Actions outside the set D cannot be made sequentially rational even off the path.
Therefore an obedient strategy profile cannot be part of a Perfect Bayesian Equi-
librium of a canonical extensive form in which Nature’s moves include the choice
of plans that recommend such actions. In the following result we consider canon-
ical extensive forms in which Nature selects from the subset Θ× PD, we call these
ΓD(π).

Theorem 3. If π is a coordinated equilibrium which assigns probability 1 to plans in
PDand has outcome α, then the obedient strategy profile is a Perfect Bayesian Equilibrium
of ΓD(π) and yields outcome α.

The proof of Theorem 3 is in Appendix B. The idea is to use deviant coordinated
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equilibria to build a conditional probability system over strategy profiles.11 A
conditional probability system can be thought of as a lexicographic hierarchy of
probability measures. At the top level we assign probability 1 to the obedient
(i.e. equilibrium) strategy profile. All information sets in ΓD(π) corresponding to
action recommendations with positive probability under α will be on the path and
beliefs at such information sets are derived from Bayes’ rule. Progressively lower
level probability measures are built from the deviant coordinated equilibria that
rationalize the remaining actions in D.

6 Converses

The protocol through which players jointly determine the outcome of a game may
be less simple and direct than the canonical extensive forms used in our sufficient
conditions. At the most abstract level, an extensive form is an arbitrary finite
game tree each of whose terminal nodes is associated with an outcome, i.e., a
tuple consisting of a state of the world and action profile in the base game.

Limits on the set of outcomes that can arise in equilibria will depend on the class of
abstract extensive forms admitted. We consider a class of extensive forms which
satisfy two categories of restrictions. Restrictions in the first category are meant
to impose the decentralized and autonomous nature of non-cooperative play. To
introduce them we will need some notation for a finite extensive-form game.

First, we use the terminology of moves for the branches in the extensive form to
distinguish from actions in the base game. The players make (sequences of) moves
in the extensive form to determine the profile of actions in the base game. Let Z be
the set of terminal nodes. The outcome function γ : Z → Θ× A assigns an outcome
to each terminal node.

To represent the incomplete information from the base game, we have Nature
move at the initial node and select an element of Θ. Formally, if y is any non-
initial node, then γΘ(z) = γΘ(z′) for any two terminal nodes z and z′ that follow
y, where γΘ is the projection of γ on Θ.

11Theorem 3 is reminiscent of Theorem 2 in Myerson (1986), where he shows that the set of
communication equilibria which do not recommend codominated actions coincides with the set of
sequential communication equilibria. Indeed, the set D in our construction plays a similar role
to the set of actions that are not codominated in Myerson (1986). See also Sugaya and Wolitzky
(2017).
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If y is a non-terminal node, then for each player i we define γi(y) to be the set of
i’s actions in the base game which are available at node y. In particular ai ∈ γi(y)
if and only if there is a terminal node z succeeding y such that i’s action in the
profile γ(z) is ai.

Next, say that player i’s action is determined at a node y if γi(y) is a singleton.
Say that a move m determines action ai at node y′ if (i) player i’s action is not
determined at y′, and (ii) γi(y) = {ai} at the node y immediately following the
move m starting from y′.

First, we require that every outcome in the base game is associated with at least
one terminal node of the extensive form, i.e. γ is onto. Second, player i should
know her own action. If m is a move for i at a node y that determines action ai, then
m determines the same action ai at all nodes in the information set containing y.
Thirdly, there should be no delegation: player i cannot delegate her choice of action
to another player j. If i’s action is not determined at a node y at which j moves,
then i’s action remains undetermined after any of j’s moves at y.

The preceding conditions we view as natural restrictions preserving non-cooperative
play. We impose a final condition, which we view as a more substantive restric-
tion. We assume there are no partial commitments: if a player’s action is undeter-
mined at a node y, then all of her actions remain available, i.e.γi(y) = Ai.12

We call any finite extensive form with perfect recall that satisfies all of these con-
ditions admissible.

Definition 9. Fix a base game. A finite extensive form with perfect recall is admissible if
it satisfies know-your-own-action, no-delegation, and no-partial-commitments and if γ is
onto.

We establish converses of our three main results within the class of admissible
extensive forms.13

Theorem 4. Let Γ be an admissible extensive form for a given base game.

12No partial commitments is a vacuous restriction for games with only two actions. Moreover,
note that no delegation together with no partial commitments implies that a player cannot affect
via her moves what actions in the base game another player can choose.

13In Doval and Ely (2019) we show examples in which each of the admissibility conditions are
violated and equilibrium outcomes exist outside of the set of coordinated equilibria.
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1. If Γ has a Bayesian Nash Equilibrium whose outcome is α then α is a coordinated
equilibrium outcome.

2. If Γ has a self-contained equilibrium whose outcome is α then α is a self-contained
coordinated equilibrium outcome.

3. If Γ has a Perfect Bayesian Equilibrium whose outcome is α then α is the outcome of
a coordinated equilibrium assigning probability 1 to PD.

We conclude by observing that the combination of Theorem 4 and for example
Theorem 3 implies that ΓD is in a certain sense the canonical extensive form for the
solution concept of Perfect Bayesian Equilibrium.

Corollary 1. For any base game, an outcome can result from a Perfect Bayesian Equilib-
rium of an admissible extensive form if and only if it can arise from an obedient Perfect
Bayesian Equilibrium of ΓD.

7 Relation to Salcedo (2017)

In this section we discuss the relation between our coordinated equilibrium con-
cept and the path-breaking work of Salcedo (2017). We build upon Salcedo (2017)
by considering incomplete information and by focusing on a range of refinements.

Salcedo (2017) studied complete information games and was the first to propose
a solution concept, ICE, based on linear obedience constraints to capture the set
of Nash equilibria of extensive-form games derived from a complete-information
base game. Salcedo (2017) also obtained a converse result, proposing restrictions
on the class of complete-information extensive forms whose Nash equilibria yield
ICE outcomes.

Our Theorem 1 generalizes the basic result in Salcedo (2017) to incomplete infor-
mation environments. As we demonstrate in Figure 3, incomplete information,
together with the design of the extensive adds as an incentive device the partial
and selective disclosure of information through the course of play. Our class of ad-
missible extensive forms also generalize and slightly broaden the class identified
by Salcedo (2017).

A major focus of our work is understanding how variations of the coordinated
equilibrium concept can capture various extensive-form refinements. Salcedo
(2017) also considers a refinement of Nash equilibrium. In particular, for 2 player
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games Salcedo (2017) specializes the ICE concept to capture a novel extensive-
form refinement based on player-specific trembles. Building on this work we
consider general n-player games with incomplete information and study how to
modify the coordinated equilibrium concept to capture Perfect Bayesian equilib-
rium and also self-contained equilibrium.

8 Conclusion and Further Directions

We have presented methods to summarize equilibrium outcome distributions of
games of incomplete information as both the information structure and the exten-
sive form vary.

We see several avenues worth exploring and left for future work. In empirical
work, similar to Syrgkanis et al. (2017), Magnolfi and Roncoroni (2017) and Berge-
mann et al. (2019), who use Bayes’correlated equilibrium to make inferences about
structural parameters in auctions, our concepts could be used as a framework for
inference that is robust to extensive-form information structures. For instance,
starting from the work of Bresnahan and Reiss (1991), industrial organization
models of entry make assumptions about the order of moves (see Ciliberto and
Tamer (2009) and Grieco (2014)) that could be dispensed with under our frame-
work.

A second goal would be to characterize additional solution concepts. We have
characterized self-contained Bayesian Nash equilibrium, a strict refinement of se-
quential equilibrium. Obtaining an exact characterization of sequential equilib-
rium outcomes remains an open problem.

Our characterization is based on the view that the specified action sets summa-
rize completely the range of strategic choices made in the extensive form. This is
formalized by our admissibility conditions. In some settings however it is natural
to suppose that players can reach their final choices in stages, for example a firm
may progressively increase its output along the path of play. This would repre-
sent a departure from the no-partial-commitments condition. We conjecture that a
variation of coordinated equilibrium could summarize the outcomes in that larger
set of extensive forms.

Finally, an analyst may have prior knowledge of some partial structure of the
extensive form. For example, in an entry game she may impose the restriction that
firms first make entry decisions and then make output choices after commonly
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observing the identity of entrants. The timing and information structure within
those separate stages, however may vary. Deriving the restrictions on equilibrium
outcomes that would be implied by such prior knowledge is another interesting
direction.
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A Examples

A.1 The game in Figure 4

In the game in Figure 4 Nature first chooses the state (each with probability 1/2)
and then selects one of two possible payoff-irrelevant signals with probabilities
1 − ε and ε, where 0 < ε ≤ 2/5. Then the two players select their actions se-
quentially with Player 1 choosing first. The arrows in the figure represent the
equilibrium strategy profile.

At the information set where Player 2 plays R, she does so because Bayes’ rule
assigns probability 1 to the node at which the state is θ and Player 1 has played
U. Similarly at the information set where Player 2 plays M, she does so because
Bayes’ rule assigns probability 1 to the node at which the state is θ′ and Player 1
has played U. At the non-singleton information set where Player 2 plays L she is
uncertain of the state, assigning probability 1/2 to each state. With such beliefs
her expected payoff from either M or R would be 3/2, smaller than the 2 she
earns. At her singleton information set she knows that Player 1 has played D and
she plays her unique best-response L.

At both of his information sets, Player 1 anticipates the very likely outcome (U, L)
earning a payoff of 2. He expects that a deviation to D would induce a different
response from Player 2 depending on which node has been reached in the infor-
mation set. In expectation Player 1’s payoff from the deviation would be 5ε ≤ 2.

All non-singleton information sets arise with positive probability. Therefore the
strategy profile, which we have just shown to be sequentially rational, is a sequen-
tial equilibrium. Indeed because there are no off-path beliefs to be determined,
this profile would survive all conventional refinements.

Finally note that as ε approaches zero, the probability of the outcome (U, L) ap-
proaches 1.

A.2 The Game in Figure 2

Consider the extensive form below in Figure 6 where q = 1/2. The blue branches
indicate the pure strategies of the players. Following the move d1, Players 2 and
3 will play their best-responses (c2, c3), we have truncated that portion of the tree
to reduce clutter.

The strategy profile is a Perfect Bayesian Equilibrium when paired with the fol-
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lowing system of beliefs. At Player 2’s information set, she assigns probabilities
(0, q, 1− q) to nodes e, f , and g, and at Player 3’s information set he assigns prob-
abilities (0, q, 1− q) to nodes ε, φ, and γ.

1 0, 1, 1

N γ

e

lε

0
1
0

1
1
1

−1
0
0

0
0
1

f

φ

−2
0
0

−2
−2
∆

−2
∆
−2

−2
−1
−1

g

−2
0
0

−2
∆
−2

−2
−2
∆

−2
−1
−1

2

3

d1

X1

c1

1− q

q d3 c3

d2 c2

d2c2

d3c3 d3c3

d2 c2 d2 c2

d3 c3 d3 c3

Figure 6: The game from Figure 2

This system of beliefs satisfies Bayes’ rule where possible, given the strategy pro-
file and Nature’s move probabilities (q, 1− q): conditional on reaching Nature’s
move, the conditional probabilities of arriving at nodes f and g are q and 1− q
respectively. Similarly for φ and γ.

The choice of d1, earning a payoff of 0, is sequentially rational for Player 1 because
a deviation to c1 would earn −1 and a deviation to X1 would earn −2.

Consider now Player 2. Conditional on her non-singleton information set, and
given the beliefs specified above, her expected payoff from the equilibrium action
d2 is 0, while the action c2 would yield −q + ∆(1 − q) ≤ 1 − 2q, since ∆ ≤ 1.
Similarly, Player 3 earns 0 at her non-singleton information set but her expected
payoff from deviating would be ∆q− (1− q) ≤ 1− 2q. Since q = 1/2, sequential
rationality is satisfied for both players.
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We have therefore exhibited a Perfect Bayesian Equilibrium in which Player 1
plays d1 with probability 1.

We can also use this example to illustrate our necessary conditions. Recall that
when ∆ > 1 the action d1 is excluded from the set D. It follows then from our
converse result Theorem 4 that there is no Perfect Bayesian equilibrium in which
d1 can be played. Let us now show that the strategy profile exhibited in Figure 6
is no longer a Perfect Bayesian equilibrium when ∆ > 1.

In order for the strategy profile to be sequentially rational, a necessary condition is
that the choice of d2 maximize the expected payoff of Player 2 at her information
set. Let (ν(e), ν( f ), ν(g)) be the probabilities assigned to nodes e, f , and g. At
that information set the action d2 earns Player 2 a payoff of 0 and it is therefore
sequentially rational iff

ν(e) · 1 + ν( f ) · (−1) + ν(g) · ∆ ≤ 0.

This inequality holds only if
ν( f )
ν(g)

≥ ∆

By the analogous calculation, at Player 3’s information set the action d3 is sequen-
tially rational iff

ν(ε) · 1 + ν(φ) · ∆ + ν(γ) · (−1) ≤ 0
and only if

ν(γ)

ν(φ)
≥ ∆.

In a Perfect Bayesian Equilibrium the system of beliefs satisfies Bayes’ rule where
possible. This places restrictions on the beliefs at the information sets of Players
2 and 3. In particular, given the probabilities of Nature’s moves, (q, 1− q), and
given the pure strategies of the players, we must have

ν( f )
ν(g)

=
q

1− q
and

ν(γ)

ν(φ)
=

1− q
q

and thus
∆ ≤ q

1− q
≤ 1

∆
is a necessary condition for the profile to be a Perfect Bayesian Equilibrium. When
∆ > 1 there is no q that can satisfy this condition. Indeed there is no Perfect
Bayesian Equilibrium of this or any admissible extensive form in which Player 3
plays d3.
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B Proof of Theorem 3

Preliminaries Suppose σ−i ∈ hi, and σi is any pure strategy for player i. There
is a unique node y within h that is reachable given σ−i, and the profile (σi, σ−i)
results in a unique terminal node beginning from y. We define Ui(σ | hi) to be
player i’s payoff at that terminal node. Given a conditional probability system µ,
we then write

Ui(σi, µ | hi) = ∑
σ̃−i∈Σ−i

µ(σ̃−i | hi) ·Ui(σi, σ̃−i | hi).

The following lemma is a characterization of sequential rationality in terms of
pure strategies and conditional probability systems. Its proof is a simple re-arranging
of definitions.

Lemma 2. If an assessment (β, ν) satisfies Bayes’ rule where possible with conditional
probability system µ then (β, ν) is sequentially rational if and only if for every information
set hi and σi such that µ(σi | Σ) > 0,

Ui(σi, µ | hi) ≥ Ui(σ
′
i , µ | hi),

for all σ′i .

Next we present the proof of Lemma 1.

Proof of Lemma 1. We show that Dl,k ⊂ Dl,k+1 by induction on k for fixed l. Let k =

0. To see that Dl,0 ⊂ Dl,1, note that a coordinated equilibrium π ∈ ∆(Θ× PDl−1,∞
)

is a deviant coordinated equilibrium π ∈ ∆(Θ× PDl−1,∞
) relative to Dl,0. Having

established that Dl,k′ ⊂ Dl,k′+1 for all 0 ≤ k′ < k, we show that Dl,k ⊂ Dl,k+1.
To see this, note that Dl,k−1 ⊂ Dl,k implies that a deviant coordinated equilibrium
π ∈ ∆(Θ × PDl−1,∞

) relative to Dl,k−1 is a deviant coordinated equilibrium π ∈
∆(Θ× PDl−1,∞

) relative to Dl,k.

We show that Dl,∞ ⊂ Dl−1,∞ for all l ≥ 1 by induction on l. For l = 1, we have
that D1,∞ ⊂ D0,∞ ≡ (A1, . . . , AN), by definition. Assume then that we have estab-
lished that Dl′,∞ ⊂ Dl′−1,∞ for 1 ≤ l′ < l. To show that Dl,∞ ⊂ Dl−1,∞, first note
that Dl,0 ⊂ Dl−1,0 since Dl−1,∞ ⊂ Dl−2,∞ implies that any coordinated equilib-
rium π ∈ ∆(Θ× PDl−1,∞

) is a coordinated equilibrium π ∈ ∆(Θ× PDl−2,∞
). Induc-

tively, it follows that Dl,k+1 ⊂ Dl−1,k+1. After all, any deviant coordinated equi-
librium p ∈ ∆(Θ × PDl−1,∞

) relative to Dl,k is a deviant coordinated equilibrium
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p ∈ ∆(Θ × PDl−2,∞
) relative to Dl−1,k since Dl,k ⊂ Dl−1,k, and PDl−1,∞ ⊂ PDl−2,∞

because Dl−1,∞ ⊂ Dl−2,∞.

Since Dl,∞ = ∪kDl,k and ∪kDl,k ⊂ ∪kDl−1,k, it follows that Dl,∞ ⊂ Dl−1,∞.

Before proceeding with the proof of Theorem 3, we provide one last piece of no-
tation that is useful for the construction. For l ≥ 1, k ≥ 1, let Ql,k denote the set of
deviant plans (p, x) such that p ∈ PDl−1,∞

and such that the recommended action
at each node preceding xbelong to Dl,k. Since the labels of the nodes leading to
the deviant node are payoff irrelevant, Dl,k+1

i coincides with the set of actions for i
that are on the path of a deviant coordinated equilibrium π ∈ ∆(Θ×Ql,k) relative
to Dl,k. In what follows, when we define deviant coordinated equilibrium we do
so using the sets Ql,k as opposed to the whole set PDl−1,∞

.

Proof of Theorem 3. The bulk of the proof is the construction of a conditional prob-
ability system µ which we then translate into a system of beliefs which, when
coupled with the obedient strategy profile, forms a Perfect Bayesian Equilibrium
assessment.

Consider the canonical extensive form ΓD(π), where Nature’s mixed/behavioral
strategy is the given coordinated equilibrium π. Let σ∗−0 denote the obedient strat-
egy profile of the players (excluding Nature) in ΓD(π). Because σ∗−0 is a pure strat-
egy profile and because Nature moves only at the beginning in ΓD, the probability
distribution βΣ(y) is degenerate for any non-initial node y of ΓD. It assigns proba-
bility 1 to the strategy profile which leads to y and is elsewhere obedient. Call this
strategy profile σ∗|y.

To begin with we set µ(· | Σ) =
(
π, σ∗−0

)
. That is, the unconditional probability

distribution µ(· | Σ) over pure strategy profiles assigns probability 1 to the players
choosing σ∗−0 and has a marginal distribution over Nature’s pure strategies that
coincides with π. Let F0 be the support of µ(· | Σ).

To define µ(· | Σ \ F0) we follow the inductive procedure that defined D. Let
E1

i be the set of actions for i that have positive probability in the outcome of the
coordinated equilibrium π. By the fixed-point property of D, we have E1

i ⊂ D∞,1
i .

Define inductively Rk to be the set of deviant plans (p, x) such that p ∈ PD and
such that the recommended action at each node preceding x belongs to Ek. Then
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Ek+1
i is the set of ai on the path of some deviant coordinated equilibrium relative

to Ek which assigns probability 1 to Rk.

Since E1 ⊂ D∞,1 it follows that Ek ⊂ D∞,k. Furthermore D∞,1 ⊂ E2 because any
coordinated equilibrium is a deviant coordinated equilibrium. Similarly D∞,k ⊂
Ek+1. The sandwiching D∞,k ⊂ Ek+1 ⊂ D∞,k+1 implies a common fixed point:
E∞ = D∞,∞ = D.

For each player i, for each ai ∈ Ek
i there is a deviant coordinated equilibrium

πai ∈ ∆(Θ× Rk−1) relative to Ek−1 with ai on its path. Define

ψk =
1
|Ek| ∑

i∈N,ai∈Ek
i

πai

By the linearity of the obedience constraints, the mixture ψk ∈ ∆(Θ× Rk−1) is a
deviant coordinated equilibrium relative to Ek−1. Moreover

ai ∈ Ek
i if and only if ψk(〈ai〉) > 0. (4)

We will translate ψk into a probability µ̃k over strategy profiles by translating de-
viant plans into pure strategy profiles. Let q = (p, x) be a deviant plan and θ a
state. Construct the associated strategy profile φ(θ, q) = (σ0, σ1, . . . , σN) as fol-
lows. Nature’s pure strategy σ0 is (θ, p). The pure strategy σi for player i is obe-
dient at all nodes that do not strictly precede x in ΓD. If y strictly precedes (i.e. is
on the path to) x then σi(y) = bi where bi is the branch from y along the path to x.
Note that φ(θ, q) = σ∗|y for any y that does not strictly precede x.

In particular, φ(θ, q) replicates the path of q. To elaborate, let 〈i, ai〉 denote the
information set in ΓD at which player i is recommended ai. A node labeled (i, ai)
is on the path of q only if φ(θ, q) reaches the information set 〈i, ai〉 and is obedient
thereafter. We record here one implication of this that will be used later. Suppose
σ̃ = φ(θ, q) and σ̃−i ∈ 〈i, ai〉. Consider the payoff to i from playing ai in state θ
when the plan is q, i.e. ui(ai, q, θ). This payoff is the same as Ui(σ̃ | 〈i, ai〉). Indeed,
since σ̃i is obedient at and after 〈i, ai〉, this payoff is also the same as Ui(σ

∗
i , σ̃−i |

〈i, ai〉).

Now for any σ ∈ Σ, set
µ̃k(σ) = ψk(φ−1(σ)).

From Equation 4 we have

ai ∈ Ek
i if and only if µ̃k(〈i, ai〉) > 0. (5)
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Finally inductively define14

µ(· | Σ \ Fk−1) = µ̃k(· | Σ \ Fk−1)

and
Fk = Fk−1

⋃
supp µ(· | Σ \ Fk−1).

for each k = 1, . . . , k̄, where k̄ is defined by E∞ = Ek̄ 6= Ek̄−1. From Equation 5 we
have

If ai ∈ Ek
i \ Ek−1

i then 〈i, ai〉 ⊂ Σ \ Fk−1 and µ(〈i, ai〉 | Σ \ Fk−1) > 0. (6)

Let F = Fk̄. If F 6= Σ then extend µ by defining µ(· | Σ \ F) arbitrarily.15

Now we verify the conditions for Perfect Bayesian Equilibrium. We define the
system of beliefs ν as follows. For each information set 〈i, ai〉 and node y ∈ 〈i, ai〉 ,
set ν(y | 〈i, ai〉) = µ(y | 〈i, ai〉). By construction the first condition in the definition
of Bayes’ rule where possible is satisfied.

For the second condition consider any node y and information set 〈i, ai〉 of ΓD

such that µ(y | 〈i, ai〉) > 0. It is enough to show that µ(σ∗|y | y) = 1.

Let k be such that ai belongs to Ek
i but not Ek−1

i . Then by Equation 6, 〈i, ai〉 ⊂ Σ \
Fk−1 and µ(〈i, ai〉 | Σ \ Fk−1) > 0. Suppose σ is such that µ(σ | y) > 0. Then by the
chain rule, µ(σ | Σ \ Fk−1) = µ(σ | y) · µ(y | 〈i, ai〉) · µ(〈i, ai〉 | Σ \ Fk−1) and since
all of the factors on the right-hand side are positive we have µ(σ | Σ \ Fk−1) > 0,
in particular µ̃k(σ) > 0. By construction of µ̃k this means that σ = φ(θ, q) for
some deviant plan q = (p, x) where q ∈ Rk−1. By the definition of φ, we have
σ = σ∗|y for all nodes y′ that do not strictly precede x. But since q ∈ Rk−1, the
only nodes that can strictly precede x are those that recommend actions in Ek−1.
Since ai /∈ Ek−1, the node y does not strictly precede x and hence σ = σ∗|y and we
have proven that µ(σ∗|y | y) = 1.

14The right-hand side is the conventional conditional probability, i.e. µ̃k(σ|Σ \ Fk−1) =
µ̃k(σ)/µ̃k(Σ \ Fk−1).

15In Doval and Ely (2019), we show that given a conditional probability system, µ, on a set,
X1. and a measure over a set X2 such that X1 ∩ X2 = ∅, one can construct a new conditional
probability system, µ̃ on X1 ∪ X2, that coincides with µ on 2X1 \ {∅}.
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We finally turn to sequential rationality. Consider any information set 〈i, ai〉 such
that ai ∈ Di. By definition

Ui(σ
∗
i , µ | 〈i, ai〉) = ∑

σ̃−i∈Σ−i

µ(σ̃−i | 〈i, ai〉) ·Ui(σ
∗
i , σ̃−i | 〈i, ai〉).

Let k be such that ai belongs to Ek
i but not Ek−1

i . Then by Equation 6, 〈i, ai〉 ⊂
Σ \ Fk−1 so that

µ(σ̃−i | 〈i, ai〉) = µ(σ̃−i | 〈i, ai〉 ∩ Σ \ Fk−1)

and by the chain rule µ(σ̃−i | Σ \ Fk−1) = µ(σ̃−i | 〈i, ai〉 ∩ Σ \ Fk−1) · µ(〈i, ai〉 | Σ \
Fk−1). Since ai ∈ Ek

i \ Ek−1
i , by Equation 6 it follows that µ(〈i, ai〉 | Σ \ Fk−1) > 0,

hence

µ(σ̃−i | 〈i, ai〉) =
µ(σ̃−i | Σ \ Fk−1)

µ(〈i, ai〉 | Σ \ Fk−1)
.

We can therefore write

Ui(σ
∗
i , µ | 〈i, ai〉) =

1
µ(〈i, ai〉 | Σ \ Fk−1) ∑

σ̃−i∈〈i,ai〉
µ(σ̃−i | Σ \ Fk−1) ·Ui(σ

∗
i , σ̃−i | 〈i, ai〉)

=
1

µ̃k(〈i, ai〉 | Σ \ Fk−1) ∑
σ̃−i∈〈i,ai〉

µ̃k(σ̃−i | Σ \ Fk−1) ·Ui(σ
∗
i , σ̃−i | 〈i, ai〉)

=
1

µ̃k(〈i, ai〉 | Σ \ Fk−1) ∑
σ̃−i∈〈i,ai〉

µ̃k(σ̃−i)

µ̃k(Σ \ Fk−1)
·Ui(σ

∗
i , σ̃−i | 〈i, ai〉)

=
1

µ̃k(〈i, ai〉) ∑
σ̃−i∈〈i,ai〉

µ̃k(σ̃−i) ·Ui(σ
∗
i , σ̃−i | 〈i, ai〉)

=
1

µ̃k(〈i, ai〉) ∑
σ̃−i∈〈i,ai〉

∑
σ̃i∈Σi

µ̃k(σ̃) ·Ui(σ
∗
i , σ̃−i | 〈i, ai〉)

=
1

ψk(〈ai〉) ∑
(θ,q):q∈〈ai〉

ψk(θ, q) · ui(ai, q, θ)

And similarly, if σ′i were an alternative strategy for player i which plays bi at in-
formation set 〈i, ai〉, then the same derivation leads to

Ui(σ
′
i , µ | 〈i, ai〉) =

1
ψk(〈ai〉) ∑

(θ,q):q∈〈ai〉
ψk(θ, q) · ui(bi, q, θ)
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and since ψk is a deviant coordinated equilibrium relative to Ek−1 and ai /∈ Ek−1
i

the obedience constraint holds and implies that

Ui(σ
∗
i , µ | 〈i, ai〉) ≥ Ui(σ

′
i , µ | 〈i, ai〉)

i.e., by Lemma 2 sequential rationality is satisfied.

C Proof of Theorem 4

We will prove item 3 of the Theorem, the other two parts are similar (but simpler).
We present the proof for the case of pure-strategy Perfect Bayesian equilibria of
simple extensive forms. These are admissible extensive forms in which Nature
moves only once and at the beginning of the game. We show in Doval and Ely
(2019) that any Perfect Bayesian Equilibrium of any admissible extensive form
is outcome equivalent to a pure-strategy equilibrium of a simple extensive form.
The idea is that any mixing by the players can be replicated by random moves by
Nature at the beginning of the game.

Extensive form notation: We denote finite extensive forms with perfect recall
by Γ with nodes V. We use y to denote generic nodes of the tree. The precedence
relation in the tree is denoted by≺. The subset Z ⊂ V denotes the terminal nodes,
with typical element z.

The outcome function γ : Z 7→ A×Θ associates each terminal node to an outcome
of the base game. We assume that γ is onto. For a non-terminal node, y, we let
γ(y) = ∪z∈Z:y≺zγ(z), denote the set of outcomes consistent with terminal nodes
that can be reached from y. For any y ∈ V, we let γΘ(y), γA(y), and γi(y) denote
the projection of γ(y) on Θ, A, and Ai, respectively.

The initial node of the extensive form belongs to nature, who selects the state
according to the prior distribution, ρ. Thus, we assume that γΘ(y) is a singleton
if y is not the initial node.

Finally, we denote by Hi player i’s information partition, that is, a partition of the
set of nodes, y, such that player i moves at node y. We denote by hi, h′i generic
elements of Hi and we let M(hi) denote the set of moves available to player i at hi.

Preliminaries Throughout we fix an admissible extensive form Γ, and a pure
strategy Perfect Bayesian Equilibrium which we refer to by its pure strategy pro-
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file σ∗ and its associated conditional probability system µ. We construct the fol-
lowing subsets of strategy profiles. First

F1 = supp µ(· | Σ),

and inductively define Fk
= ∪k−1

l=1 Fl and

Fk = supp µ(· | Σ \ Fk
).

Define Ek = γA(Fk) and Ek
= γA(Fk

) to be the set of action profiles that are
reached by strategies in Fk and Fk respectively. Let B =

⋃∞
k=1 Ek.

The following lemma is the main idea of the proof.

Lemma 3. For each k there exists a map φk : Fk → Θ× Q such that σ̃ and φk(σ̃) have
the same outcome16 and the measure π ∈ ∆(Θ×Q) defined by

π(θ, q) = µ(φ−1
k (θ, q) | Σ \ Fk

). (7)

is a deviant coordinated equilibrium relative to Ek assigning probability 1 to plans in PB

whose recommended action prior to the deviant node belongs to Ek.

Theorem 4 is proven by a repeated application of Lemma 3

Proof of Theorem 4. First note that in Lemma 3 for the case of k = 1, we have Ek
=

∅, and therefore π is a coordinated equilibrium. The distribution over terminal
nodes implied by µ(| Σ) coincides with that of the outcome of π. In item 2 of
Definition 5, taking y to be the initial node, we see that this equals the outcome of
the equilibrium strategy profile. All that remains to prove the Theorem is to show
that B ⊂ D.

Set D0,∞ = A, we will show inductively that B ⊂ Dl,∞ for all l, hence B ⊂ D. By
definition, B ⊂ A, hence the inductive hypothesis holds for l = 0.

Assume now that B ⊂ Dl,∞; we show that B ⊂ Dl+1,∞. Lemma 3 provides a
coordinated equilibrium π ∈ ∆(Θ× PB) ⊂ ∆(Θ× PDl,∞

) in which the actions that
occur with positive probability are E1 = γA(F1). Thus E1 = E2 ⊂ Dl+1,1.

16The outcome of a strategy σ̃ is the outcome associated with the terminal node reached by σ̃. In
a slight abuse of notation, we sometimes denote it by γ(σ̃).
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Assume now Ek ⊂ Dl+1,k−1 for k ≥ 2. We show next that Ek+1 ⊂ Dl+1,k. This will
conclude the proof because B = ∪kEk ⊂ ∪kDl+1,k = Dl+1,∞.

Lemma 3 for k provides a deviant coordinated equilibrium π ∈ ∆(Θ × PB) ⊂
∆(Θ × PDl,∞

) relative to Ek ⊂ Dl+1,k−1 such that all the actions recommended
along the path to the deviant nodes belong to Ek ⊂ Dl+1,k−1 and the set of actions
played along the path equaling γA(Fk) = Ek. Thus Ek ⊂ Dl+1,k, and Ek+1

=

Ek ∪ Ek ⊂ Dl+1,k−1 ∪ Dl+1,k = Dl+1,k.

In the remainder of this section we will construct the mappings φk and prove
Lemma 3. The following lemma distills the essential property of an admissible
extensive form. It shows that as long as a player has not yet determined her action,
she has a continuation strategy which will guarantee that she plays any action bi
in the base game. The proof is mechanical and deferred to Appendix D.

Say that a node y is decisive for ai if player i’s action is not determined at y, but
i has a move mi at y which determines action ai. In that case we say that mi is
decisive for ai. If hi is the information set that contains y, then by the property of
know-your-own-action, mi is decisive for ai at every node in hi, so we say that hi
is decisive for ai.

Lemma 4. For any decisive information set hi belonging to i, for any action bi ∈ Ai there
is a strategy σi ∈ Σi such that for all σ−i ∈ hi the path of the profile (σi, σ−i) passes
through hi and leads to an outcome in which player i plays bi.

Proof of Lemma 3. Let σ ∈ Fk, and (a, θ) = γ(σ). We will construct a deviant plan
q = (p, x) having the same outcome and incentives and we will define φ(σ) =
(θ, q).

We begin by building a single path which will be the obedient path of q. For each
individual action aj in the profile a let y1, . . . , yN be the corresponding decisive
nodes that are on the path of σ, arranged in their order along the path.We let ι(j)
be the permutation of 1, . . . , N that denotes the player who moves at node yj. (So
in particular the node yj is a decisive node for action aι(j).)

Construct a path in plan p consisting of N + 1 consecutive nodes where the jth
node along the path has ι(j) moving, and the N + 1st node is terminal. The branch
that connects the jth node to the j + 1st node is labeled with the action aι(j) in the
profile a. )
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The deviant node x will be one of the nodes along this path. Let hj be the informa-
tion set that contains yj. Pick the j such that yj is the earliest decisive node along
the path of σ such that hj ⊂ Σ \ Fk. We set x to be the jth node along the path just
constructed. If there is no such decisive node along the path of σ we set x to be
the terminal node of the path just constructed.

The recommended actions along the path are defined differently for nodes before
and after x. For j′ ≥ j the action recommended at the j′th node is aι(j′). For j′ < j

choose any action from Ek as a recommendation at the j′th node. Thus, the path
we have constructed is the obedient path.

Next we build the paths that fork from the obedient path. Consider j′ ≥ j, write
i = ι(j′) and consider any action bi different from the recommended action at
the j′th node. Lemma 4 provides a strategy σ′i such that the profile (σ′i , σ−i) passes
through hj′ and leads to an outcome in which the action profile is (bi, z−i) for some
z−i ∈ A−i. Add the branch labeled bi leading from the j′th node and append the
obedient continuation path that leads to the action profile (bi, z−i).

Complete the remainder of plan p arbitrarily. We now establish properties of the
resulting mapping φk : Fk → Θ×Q. First, by construction if (θ, q) ∈ φk(Fk) then q
belongs to PB and all of the action recommendations preceding the deviant node
belong to Ek.

Next say that a decisive information set hi for an action ai is σ∗-decisive if at in-
formation set hi, player i’s equilibrium pure strategy σ∗i selects the move that de-
termines action ai. Denote by (i, ai) the family of all information sets that are σ∗-
decisive for ai. And define 〈i, ai〉 to be the set of all pure-strategy profiles leading
to information sets in (i, ai):

〈i, ai〉 = {σ ∈ Σ : There exist y, hi such that σ ∈ y ∈ hi ∈ (i, ai)}

We will now demonstrate that if ai ∈ Ek
i \ Ek

i then

φ−1
k ({(θ, q) : q ∈ 〈ai〉}) = 〈i, ai〉 . (8)

First, if hi is a decisive information set for ai, then we claim µ(hi | Fk′) = 0 for all
k′ < k. If not, then let k′ be the smallest for which µ(hi | Fk′) > 0. There exists σ ∈
hi such that µ(σ | Fk′) > 0 and by the chain rule µ(σ | hi) · µ(hi | Fk′) = µ(σ | Fk′)
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implying also µ(σ | hi) > 0. By the definition of Bayes’ rule where possible this

requires σ(hi) = σ∗(hi) and thus ai ∈ γi(Fk′), i.e. ai ∈ Ek′
i , a contradiction.

To show Equation 8, let σ ∈ Fk with φ(σ) = (θ, q) ∈ 〈ai〉. Then the obedient path
of q has a node at which player i is recommended to play ai. Since ai /∈ Ek this
node weakly succeeds the deviant node of q. That means that the path of σ has
a decisive node y for ai at which σ selects the move that determines ai. All that
remains to show σ ∈ 〈i, ai〉 is that σ∗(y) = ai. Letting hi be the information set
that contains y we have that hi is a decisive information set for ai and therefore
µ(hi | Fk′) = 0 for all k′ < k. Thus hi ⊂ Σ \ Fk and by the chain rule

µ(y | Σ \ Fk
) = µ

(
y | hi ∩ [Σ \ Fk

]
)
· µ
(

hi ∩ [Σ \ Fk
] | Σ \ Fk

)
= µ(y | hi) · µ(hi | Σ \ Fk

).

Since µ(hi | Σ \ Fk
) ≥ µ(y | Σ \ Fk

) ≥ µ(σ | Σ \ Fk
) > 0 this implies µ(y | hi) > 0

and by the definition of Bayes’ rule where possible we conclude ai = σ(y) =
σ∗(y).

We conclude the proof by showing that the measure π ∈ ∆(Θ×Q) defined by

π(θ, q) = µ(φ−1
k (θ, q) | Σ \ Fk

).

is a deviant coordinated equilibrium relative to Ek.

Sequential rationality implies that for any information set hi, and alternative strat-
egy σ′i

Ui(σ
∗
i , µ | hi) ≥ Ui(σ

′
i , µ | hi).

Pick ai /∈ Ek, consider any alternative action bi and let σ′i be the strategy which is
identical to σ∗i except that at every information set that is decisive for ai, it follows
the continuation (provided by Lemma 4) which determines bi. Then

∑
hi∈(i,ai)

µ(hi | Σ \ Fk
)
[
Ui(σ

∗
i , µ | hi)−Ui(σ

′
i , µ | hi)

]
≥ 0

∑
hi∈(i,ai)

µ(hi | Σ \ Fk
) ∑

σ−i∈hi

µ(σ−i | hi)
[
Ui(σ

∗
i , σ−i | hi)−Ui(σ

′
i , σ−i | hi)

]
≥ 0

∑
hi∈(i,ai)

µ(hi | Σ \ Fk
) ∑

σ−i∈hi

∑
σi∈Σi

µ(σ | hi)
[
Ui(σ

∗
i , σ−i | hi)−Ui(σ

′
i , σ−i | hi)

]
≥ 0
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The next step uses the fact that µ(σ | hi) > 0 only if σ ∈ y for some y ∈ hi.

∑
hi∈(i,ai)

µ(hi | Σ \ Fk
) ∑

y∈hi

∑
σ∈y

µ(σ | hi)
[
Ui(σ

∗
i , σ−i | hi)−Ui(σ

′
i , σ−i | hi)

]
≥ 0

∑
hi∈(i,ai)

∑
y∈hi

∑
σ∈y

µ(σ | Σ \ Fk
)
[
Ui(σ

∗
i , σ−i | hi)−Ui(σ

′
i , σ−i | hi)

]
≥ 0

∑
σ∈〈i,ai〉

µ(σ | Σ \ Fk
)
[
Ui(σ

∗
i , σ−i | hi)−Ui(σ

′
i , σ−i | hi)

]
≥ 0

∑
(θ,q)∈Θ×〈ai〉

µ(φ−1
k (θ, q) | Σ \ Fk

)
[
Ui(σ

∗
i , σ−i | hi)−Ui(σ

′
i , σ−i | hi)

]
≥ 0

The next step uses Equation 8.

∑
(θ,q)∈Θ×〈ai〉

µ(φ−1
k (θ, q) | Σ \ Fk

) [ui(ai, q, θ)− ui(bi, q, θ)] ≥ 0

∑
θ∈Θ,q∈〈ai〉

π(θ, q) [ui(ai, q, θ)− ui(bi, q, θ)] ≥ 0.

D Proof of Lemma 4

Since |γi(y)| > 1, no partial commitments implies that γi(y) = Ai. Letting (y, m)
denote the node that follows after taking move m at y, we obtain that a′i ∈ γi(y) =
∪m∈M(y)γi(y, m), where M(y) denotes the set of moves available at node y. Thus,
there exists m∗ ∈ M(y) such that a′i ∈ γi(y, m∗).17 We claim that γi(y, m∗) = Ai.
Clearly, |γi(y, m∗)| > 1. Let y denote the longest length node y′ that succeeds
(y, m∗) and such that |γi(y′)| > 1. No delegation implies that y ∈ h ∈ Hi. No
partial commitments implies that γi(y) = Ai. Then, Ai = γi(y) ⊆ γi(y, m∗).

17Note that m∗ does not depend on y. First, no delegation, know your action, and no partial
commitments implies that since γi(y) = Ai, then for all nodes y′ ∈ h(y), γi(y′) = Ai, where h(y)
denotes the information set to which y belongs. Since ai ∈ γi(y′) = ∪m∈M(y)γi(y′, m), then there
exists my′ such that ai ∈ γi(y′, my′). Suppose that ai /∈ γi(y, my′). Hence, |γi(y, my′)| = 1 by
no partial commitments. But then, know your action implies that γi(y, my′) = γi(y′, my′), which
implies that ai /∈ γi(y′, my′); a contradiction.
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Let H≺i denote the information sets of player i that succeed h after taking move
m∗. Note that H≺i can be partitioned into the following sets:

1. Information sets that are decisive for a′i,

2. Information sets h′ such that player i has still not chosen his action in the
base game (i.e., γi(h′) = Ai), but they are not decisive for a′i, and

3. Information sets such that player i has already chosen his action in the base
game, that is, there exists ãi such that {ãi} = γi(h′).

Denote these sets of information sets by H≺,D
i (a′i), H≺,ND

i , and H≺i (ãi), respec-
tively. We make the following observations:

1. For all h′′ ∈ H≺i (ãi), there exists h′ ∈ H≺,ND
i ∪ H≺,D

i (a′i) such that h ≺ h′ ≺
h′′.

2. H≺,D
i (a′i) 6= ∅. This follows from noting that the set {y′ : (y, m∗) ≺ y′ and γi(y′) =
{a′i}} is non-empty and no delegation.

3. If h′ ∈ H≺,ND
i , then there exists h′′ ∈ H≺,D

i (a′i) such that h′ ≺ h′′. Perfect
recall implies there exists a move, mh′,h′′ , in M(h′) that satisfies that for all
y′′ ∈ h′′, there exists y′ ∈ h′ such that (y′, mh′,h′′) � y′′. Since h′′ ∈ H≺,ND

i ,
then γi(y′, mh′,h′′) = Ai for all y′′ ∈ h′′.

Let σi be such that σi(hi) = m∗, σi(h′) = mh′,h′′ , h′ ∈ H≺,ND
i , h′′ ∈ H≺,D

i (a′i) and
σi(h′) = mi(a′i), h′ ∈ H≺,D

i (a′i). Note that any such σi precludes reaching informa-
tion sets in H≺i (ãi) for ãi 6= a′i. At h′ ∈ H≺i (ãi), σi can be specified arbitrarily.

Let σ−i ∈ Σ−i(y) and consider (σi, σ−i)|Σ(y). Let z denote the terminal history
reached by the strategy starting from y and suppose that γi(z) 6= {a′i}. Since
γi(y) = Ai, the set {y′ : y′ ≺ z ∧ |γi(y′)| 6= 1} 6= ∅. Let y be the node of
longest length in that set. Then, no delegation implies that y ∈ h ∈ Hi. We claim
that h ∈ H≺,D

i (a′i). Clearly, h ∈ H≺,D
i (a′i). If h ∈ H≺,ND

i , then it cannot be that
|γi(y, σi(y))| = 1. Then, h ∈ H≺,D

i (a′i) and by definition γi(y, σi(y)) = {a′i}.
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