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Package Sizes for the Bottom of the Pyramid

Abstract

In parts of the world, single-serve packages account for significant sales of such
everyday products as bread, coffee, ketchup, cream and shampoo. These markets
are characterized by two conditions: low transactions costs for buyers and sell-
ers, and the presence of poor consumers who have unsteady income streams and
can afford to only buy what they immediately need. We examine if the latter
condition is necessary for a firm to make single-serve packages. We develop a
model for a firm selling a product with a finite usable life to consumers with
heterogeneous usage rates and reservation quantities, the latter being defined as
the minimum quantity per dollar a consumer must obtain to purchase a product.
We show that, even if there are no constraints on the income streams of buyers,
a seller can charge higher unit prices and also sell a larger quantity of a prod-
uct by making single-serve packages. The higher the unit cost of the product,
the more salient the effect of single-serve packages on unit price. Sales volume
simultaneously increases, provided the unit cost is not too low. A higher unit
price therefore need not be a poverty penalty imposed on poor buyers, but a
consequence of buyers being able to better match their purchases to their desired
consumption. Less waste is not only socially desirable, it also leads consumers to
pay higher unit prices and buy more of a product. These results are obtained if
the cost of a package increases at a constant or increasing rate with its size. Suf-
ficiently large economies of size can offset these advantages of smaller package for
the seller and can make it more profitable to offer larger than single-serve pack-
ages. A single-serve package permits the seller to discriminate among buyers with
different usage requirements, each consumer self-selecting to purchase quantities
that match, as closely as possible, his or her desired level of consumption.

Keywords: Bottom of the pyramid; package size; pricing; product design.
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1. Introduction

A rapidly evolving approach to encouraging consumption and choice

at the BOP (Bottom of the Pyramid) is to make unit packages that

are small and, therefore, affordable. The logic is obvious. The rich

use cash to inventory convenience. They can afford, for example,

to buy a large bottle of shampoo to avoid multiple trips to the store.

The poor have unpredictable income streams. Many subsist on daily

wages and have to use cash conservatively. They tend to make

purchases only when they have cash and buy only what they need

for that day. Single-serve packaging— be it shampoo, ketchup, tea

and coffee, or aspirin — is well suited to this population. A single-

serve revolution is sweeping through the BOP markets.

— C.K. Prahalad (2005)

As the above quote from Prahalad’s book Fortune at the Bottom of the Pyramid

suggests, package sizes can affect whether or not people buy a product and how

much they consume. The single-serve revolution to which Prahalad refers is in

some ways a return, albeit in more convenient and branded form, to the days when

products were sold without packaging — you went to the grocer who measured out

how much oil or flour you wanted; you could, in effect, make your own packages.

In parts of the world, single-serve packages account for a significant portion of

the volume sold for such everyday products as shampoo, salt, ketchup, cookies,

fruit-drink concentrate, coffee, spices, toothpaste, cosmetics, bread, cooking oil,

cream — the list is long and getting longer.
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BOP markets are characterized by two conditions that differ substantially from

those prevailing in developed markets. First, as Prahalad notes, some — but not

all — buyers purchase only what they need for the day. Second, the transactions

costs are lower for buyers and sellers than they are in more developed countries.

One reason is that buyers can often purchase from sellers located in close proxim-

ity to their homes. India, for example, has over 12 million retail outlets — one for

approximately every 90 persons — that currently account for annual sales of over

$200 billion per year.1 Many retail stores are open for long hours and offer such

services as telephone ordering, home delivery, and credit to buyers. Some firms,

such as Hindustan Levers, have deployed distribution networks that sell directly

to consumers in hard-to-reach markets in India; Avon is using 800,000 “Avon

Ladies” as distributors to reach the most remote regions in Brazil. The ordering

costs for buyers are typically low in these markets, and many consumers make

frequent, sometimes daily, purchases, even if they can afford to buy larger quan-

tities. For retailers, order-processing costs are also low, because labor is cheap

and deliveries to customers are often made by unskilled workers who walk or ride

a bicycle to make home deliveries. This is in contrast with developed countries

that have fewer, larger stores located at substantial distances from consumers,

and where high labor cost makes home delivery infeasible for retailers.2 For the

latter markets, inventorying convenience is important for consumers. Gerstner

and Hess (1987) reflect these costs in a model in which they show that differences

in package sizes and unit costs can be used to discriminate between high and low

1see http //www.tata.com/tata strategic/articles/20060925 retail.htm
2Interestingly, single-serve packages, sold in packs of multiple units, are become available in
developed markets like the USA, but for very different reasons than those considered here for
BOP markets. These reasons include variety seeking (e.g., for products like fruit yoghurts) and
limiting consumption (e.g., the 100-calorie packs of snacks developed in response to concerns
about obesity in the population).
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value segments that differ in their consumption rates: segmentation induces the

seller to offer multiple packages, and the larger packages can even have higher

unit prices.

If consumers can only afford to buy single-serve packages in BOP markets, then

of course there is no alternative for a firm — it has to make single-serve packages.

But is this condition necessary? Is it possible that, even in the absence of this

constraint, single-serve packages make sense in BOP markets, where ordering and

order-processing costs are not the central factors affecting consumer choices and

firm decisions — there are, after all, many consumers in these markets who can

afford to buy larger package sizes? More generally, what factors affect package-

size decisions in markets with low transactions costs for buyers and sellers? How

does the unit price depend on package sizes? And what is the social cost of making

packages that are larger than single-serve sizes? The answers to these questions

are important not just for small, local manufacturers and retailers. Multinational

companies like Unilever, Proctor & Gamble, and Nestlé, sell products worth

billions of dollars in developing countries, where buying and selling occurs in very

different conditions than in developed countries. We refer the reader to Prahalad

(2005) and Rangan, Quelch, Herrero and Barton (2007) for further discussion of

the differences between BOP and non-BOP markets.

We examine the above questions in a model that considers four factors affect-

ing package-size decisions by a firm: (1) the usable life of a product; (2) the

relationship between package size and package cost, which we allow to be lin-

ear, concave or convex; (3) the consumption rate, which we allow to differ across

consumers; and (4) the reservation quantity, which refers to the minimum usable

quantity per dollar required by a user to buy a package. The reservation quantity
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is a measure of willingness-to-pay (which in turn can be affected by income con-

straints), except that it considers the amount the consumer expects to consume

over the usable life of the product, not the quantity he or she purchases. We

allow customers to differ in their reservation quantities.

The key results from our analysis can be summarized as follows. A seller can

charge higher unit prices and also sell a larger quantity of a product by making

single-serve package sizes. The lower the unit cost of the product, the more salient

the effect of single-serve packages on unit price. Sales volume simultaneously

increases, provided the unit cost is not too low. The higher unit price in our

model is not a poverty penalty imposed on poor buyers, but a consequence of

buyers being able to better match purchases to their desired consumption. Less

waste is not only socially desirable, it also leads consumers to pay higher unit

prices and possibly buy more of a product. These results are obtained if the

cost of a package increases at a constant or increasing rate with its size, and

do not depend on the cash-flow constraints on BOP consumers. Sufficiently

large economies of size can offset these advantages of smaller package for the

seller and can make it more profitable to offer larger than single-serve packages.

The reason these results are interesting is that it is not a priori obvious if a

seller should charge high or low unit prices, or make small or large packages —

it is, for example, possible that the firm might make higher profit by making

larger packages for only those buyers with high consumption rates, or low price

sensitivity, or both. We note that the higher profits and unit prices are in the

present instance not due to any form of price discrimination among buyers, which

typically require usage levels to be related to consumer price sensitivity or the

availability of different competing alternatives (Wilson 1992). Our model makes
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no comparable assumption: the seller makes only a single product and sells it at

a common price to all buyers. Still, a single-serve package size allows quantity

discrimination among buyers, each of whom can match purchases to consumption

by selecting the appropriate number of single-serve packages. This self selection

helps a seller to discriminate among users with varying levels of product use, and

enables it to extract higher profits, reduce waste, and charge higher unit prices.

The problem we examine reflects BOP markets in substantial ways, but is by

no means a complete representation. It is restricted to the consideration of a

single seller offering one package size to all consumers; it ignores the availability

of the same product from different, proximate retailers, a factor that has an effect

on both customer behavior and the pricing and package size decisions made by

a firm; and it does not consider costs of storage and handling for the supply

chain, or the terms of trade that determine retailer behavior. Still, the simple

problem we consider is non-trivial, and captures the effects of some important

factors affecting product-size decisions that, to our knowledge, have not been

previously examined, separately or together, in the literature. Indeed, there is

little analytical work of which we are aware that deals with package size decisions,

besides the aforementioned paper by Gerstner and Hess (1987).

Organization of the paper. Section 2 describes the consumer model. Section

3 introduces heterogeneity in usage rates and reservation quantities across con-

sumers, and obtains the demand function. Section 4 characterizes the optimal

package size and price for the firm when package cost increases linearly with pack-

age size. Section 5 analyzes some key characteristics of the demand and profit,

the quantity wasted by consumers and the demand not fulfilled by the firm when

it offers its optimal product size; it also examines the sensitivity of the optimal
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solution to the parameters of the problem. Section 6 examines nonlinear cost

functions, and obtain a sufficient condition under which it is optimal for the firm

to produce larger than single-serve packages. Section 7 discusses the implications

and concludes the paper.

2. Consumer model

The size of a single serving is in itself somewhat arbitrary, because different

consumers can use different quantities on a single usage occasion. For this reason,

and for analytical simplicity, we develop our analysis in terms of the units in

which a product is commonly sold, such as grams or milliliters. Our objective is

to determine how many units s of the product the seller should sell in a single

package. We interpret a solution to imply “single-serve packaging” if the optimal

solution for the firm is to make the package size s as small as possible.

Consider a buyer who uses a product at an average rate of θ units per unit

time, say per day. We assume for simplicity that the desired consumption rate

for a user is constant over time and independent of the package size. The actual

number of units purchased is endogenous in our model, and so the quantity

consumed by a buyer depends in our model on the unit price and package size.

If a consumer buys one package of size s, then he can use the product for at

most s/θ days, provided the product is still of usable quality for this duration

of time; otherwise, he will only obtain partial use of the product. How long a

product will remain usable after purchase depends on several factors. Examples

of such factors are the time a package has remained on a store shelf, the inherent

rate of product deterioration, and the storage conditions both before and after

the consumer purchases the product. We summarize the effect of these factors

in our model by assuming that the time until the product becomes unusable
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has an expected value of T days after purchase. For brevity, we refer to T as

the expiration time, with the implicit understanding it refers to an expected

value, and that it captures more than the expected value of the time between

the purchase date and the expiry date stamped on a product. We assume that

consumers have common expectations about the expiration time, a simplifying

assumption because in reality different consumers can have different expectations

about the time until a product becomes unusable.

The rate at which a product deteriorates determines the usable life of a product

and the various costs of making, storing and transporting the packaged product.

For many products, the rate of deterioration is determined by its intrinsic (of-

ten chemical) properties, by the storage conditions, and by the way in which it

is handled at different points in the supply chain. Most foods and drugs dete-

riorate due to microbial growth, and because changes in chemical composition

affect their quality, taste or efficacy. Products also deteriorate due to handling

during transportation and in storage. Better packaging materials and methods

can improve the usable life of a product, decrease the costs of inventory handling

and product spoilage, and reduce product returns by consumers. The effect, in

turn, is to allow for larger packages to be produced and sold by firms.

The present paper describes a model in which package size decisions are affected

by the following four factors: (1) the expected life of the product; (2) the variable

cost associated with packages of different sizes; (3) the rates at which consumers

use the product; and (4) the reservation quantities of users. We allow differences

in the consumption rates and reservation quantities by assuming heterogeneity

distributions for each of these variables. For parametric analysis, we assume

these variables to be uniformly distributed across customers. When considering
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cost, we first examine the case in which the variable cost for the firm increases

linearly with package size. Later, we consider nonlinear costs. We do not consider

transactions costs because as noted above, these factors are less important in BOP

markets than they are in developed countries. We allow package and unit prices

to affect purchase quantities and consumption, albeit for reasons that differ from

those suggested in the literature. Folkes, Martin and Gupta (1993), Ailawadi and

Neslin (1998) and Chandon and Wansink (2002) find that stockpiling increases

consumption, the last of these reporting that stockpiling can increase product

salience and trigger consumption incidence among high-convenience products.3

In the present model, higher consumption occurs when a consumer finds it worth

buying and consuming an additional unit of a product that he or she may not be

able to fully use before it goes bad. The maximum possible increase in product

use is thus equal to one package of the product.

Let q(T ) denote the quantity of the product a consumer uses in time T. A

consumer who buys i ≥ 1 packages expects to use at least i − 1 packages, and

some or all of the i-th package. That is,

q(T ) = (i− 1)s+ f, where 0 < f ≤ s.

Observe that f = 0 is not possible because it implies that the consumer needs

to buy only i− 1 packages; and f = s implies that the consumer might possibly

have forgone consumption of part of an (i + 1)st package. Thus, if 0 < f < s,

3On the other hand Ailawadi, Lehmann and Neslin (2001) report that deals and coupons,
which affect purchase incidence and quantity, surprisingly have little impact on category usage
by consumers. Bell, Iyer and Padmanabhan (2002) develop and test a model of price compe-
tition between firms in response to the stockpiling and subsequent consumption dynamics of
consumers.
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then the usage rate for a consumer is given by

θ =
q(T )

T
=

(i− 1)s+ f

T
.

However, if f = s, then the usage rate for the consumer is at least q(T )/T = is/T ;

and it is smaller than (i + 1)s/T, because the consumer might have forgone

consumption of some part of an additional (i+ 1)st package of the product he or

she did not buy. Thus,

(i− 1)s < θT < (i+ 1)s.

Let p denote the price for a package of size s. Then the consumer obtains full

use of each of i− 1 packages, and consumes a quantity s/p for each dollar spent

on buying these packages. However, if the consumer only uses a fraction of the

i-th package, then the effective quantity per dollar he or she obtains is r = f/p,

where 0 < f ≤ s. That is, 0 ≤ r ≤ s/p, where the upper bound on r corresponds

to a situation in which a consumer expects to use the entire product q(T ) = s.

The larger the value of r, the more attractive a product is for a consumer. The

seller can increase the value of r by lowering the price p. Decreasing the package

size s can have a direct effect on the value of r; it can also have an indirect effect

if a firm reduces the price p for a smaller package. The quantity 1/r = p/q(T ) is

the price per unit of the part of the i-th package used by a consumer. Although

it is in some ways conceptually more appealing to develop the model in terms of

1/r, the effective quantity per dollar makes analysis simpler. For this reason, we

will use it in the following discussion. For brevity, we refer to r as the effective

usage in the following discussion, with the implicit understanding that it refers

to the last package consumed by a user.
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Let R denote the minimum value of the effective usage a consumer demands

before buying the i-th package, and implicitly, each of the other i − 1 packages,

for which he or she obtains at least as much effective usage (= s/p) than the i-th

package. That is, the consumer buys the i packages only if

r = f/p > R.

We call R the reservation quantity for the consumer. The following Lemma gives

the condition under which a consumer buys i packages.

Lemma 1. Suppose a product has size s and is sold at price p. A consumer

with a reservation quantity R, who expects the product to expire after T units of

time, will buy i packages of the product only if: (i) the package size is s ≥ pR;

and (ii) the consumer’s usage rate is

θ ≥ pR + (i− 1)s

T
.

Proofs of Lemma 1 and all subsequent lemmas and theorems appear in the Ap-

pendix.

We use the lower bounds in Lemma 1 to determine how consumers with dif-

ferent usage rates and reservation quantities decide how many packages to buy.

The conditions on s and θ in Lemma 1 can be combined to obtain the following

lower bound on the usage rate for the consumer to buy i packages of the product:

θ >
(i− 1)s+ pR

T
≥ ipR

T
.
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However, the bound θ > ipR/T is quite weak because pR < f ≤ s and a consumer

who highly values the product (i.e., for whom R is large) might only consumer a

small quantity f of the i-th package he or she buys.

3. Usage rates, reservation quantities and the demand for

packages

The preceding section considers the purchase decision for a single consumer:

how many, if any, packages to buy, given the usage rate θ and the reservation

quantity R. We now consider how consumers differ in their usage rates and reser-

vation quantities. We obtain the demand for a product as a function of the

package size s and the price p. Later, we examine how the choice of an optimal

package size, and its price, is affected by the consumer heterogeneity in usage

rates and reservation quantities.

Let A1 denote the minimum usage rate, and A2 the maximum usage rate,

across consumers, where A2 > A1 ≥ 0. Let f(θ), θ ∈ [A1, A2], denote the den-

sity function, and F (θ) the cumulative density function (distribution function),

characterizing the heterogeneity in consumer usage rates. Let n denote the max-

imum possible number of packages purchased, for use over time T, by a consumer

with the largest possible usage rate, A2. Then n = dA2T/se. For example, if

s > A2T/2, then n < d2e = 2, or equivalently n = 1. The following lemma

generalizes these considerations.

Lemma 2. If the size s of a package is A2T/(n + 1) < s ≤ A2T/n, then no

consumer purchases more than n packages of the product.
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Let Di(s, p) denote the expected number of customers who buy at least i packages

of a product of size s at price p, for all i = 1, . . . , n. By definition,

D1(s, p) > D2(s, p) > · · · > Dn(s, p),

and the number of consumers who buy exactly i packages is given by

di(s, p) = Di(s, p)−Di+1(s, p), for all i = 1, . . . , n− 1, and

di(s, p) = Di(s, p), for i = n.

The following lemma gives an expression for D(s, p), the total demand for pack-

ages.

Lemma 3.

D(s, p) =
n∑
i=1

Di(s, p).

Let Di(s, p|R) and di(s, p|R) denote the number of consumers with reservation

quantity R who buy at least i packages, and exactly i packages, respectively,

when each package has size s and price p. From Lemma 1, a consumer with a

given value of the reservation quantity R purchases at least i packages if his/her

usage rate θ satisfies the condition

θ ≥ pR + (i− 1)s

T
.

It follows that Di(s, p|R), the number of consumers who buy at least i packages,

each of size s, is

Di(s, p|R) =

∫ A2

[pR+s(i−1)]/T

f(θ)dθ.
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The number of consumers who buy exactly i packages is

di(s, p|R) = Di(s, p|R)−Di+1(s, p|R) =

∫ [pR+si]/T

[pR+s(i−1)]/T

f(θ)dθ, for all i = 1, . . . , n.

Thus, following Lemma 3, the total demand, given R, is

D(s, p|R) =
n∑
i=1

Di(s, p|R) =
n∑
i=1

∫ A2

[pR+s(i−1)]/T

f(θ)dθ.

Observe that the total demand, as well as the demand for any number i of

packages, (i) decreases with the price of the package, and with the package size,

(ii) increases as the time T that it remains usable increases, and (iii) is larger

among consumers with a lower reservation quantity R.

We now consider the heterogeneity in the value of R, the minimum quantity

per dollar a consumer seeks before buying his/her last unit of the product. Let B1

denote the minimum value of the reservation quantity R, and B2 the maximum

value of the reservation quantity across consumers, B2 > B1 > 0. Let g(R), R ∈

[B1, B2], denote the density function characterizing heterogeneity in consumer

reservation quantities. Let G(R) denote the cumulative density function for R.

We assume for simplicity that the distributions f(θ) and g(R) are independent.

Theorem 1. The demand for exactly i packages of size s, when each package

is sold at price p, is given by

di(s, p) =

∫ min{B2, s/p}

B1

{
F

(
pR + si

T

)
−F
(
pR + s(i− 1)

T

)}
g(R)dR, for all i = 1, . . . , n−1;

and

di(s, p) = Di(s, p) =

∫ min{B2, s/p}

B1

[ ∫ A2

[pR+s(n−1)]/T

f(θ)dθ

]
g(R)dR, if i = n.
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The total demand for packages is

D(s, p) =
n∑
i=1

[ ∫ min{B2, s/p}

B1

{
1− F

(
pR + s(i− 1)

T

)}
g(R)dR

]
.

Observe that if s/p ≤ B2, then only those consumers for whom R ∈ [B1, s/p] will

buy the product. If, on the other hand, B2 ≤ s/p, then all consumers, over the

entire range R ∈ [B1, B2], will buy the product. Thus, s/p = B2 characterizes

the maximum demand for the product: if s/p < B2, the demand is smaller, but if

s/p > B2, it cannot be any larger, because by definition there are no consumers

who have a higher valuation than B2. We therefore consider only the case where

s/p < B2.

Let Q(s, p) denote the total quantity (i.e., units) purchased by buyers. Then

Q(s, p) = s ·D(s, p),

where D(s, p) is given by Theorem 1.

4. Optimal package size and price

Let c(s) denote the variable cost of producing a product of size s. This cost

includes the cost of producing the product, the cost of its packaging, and any

unit inventory holding, breakage/damage and insurance costs.

Lemma 4. The maximum package size offered by a seller is bounded by the

condition

s ≤ min

{
pB2,

A2T

n

}
.
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The above Lemma imposes a constraint on the optimal package size and price,

which is obtained by solving the following profit-maximization problem, denoted

P :

max
s,p

π = (p−c(s))D(s, p) = (p−c(s))
n∑
i=1

[ ∫ s/p

B1

{
1−F

(
pR + s(i− 1)

T

)}
g(R)dR

]
.

subject to : s ≤ min

{
pB2,

A2T

n

}
.

Lemma 5. If α > 1/B1, then the seller should not make the product.

Lemma 5 says that the firm will not make the product if the unit cost is higher

than the price per unit that the least price sensitive consumer is willing to pay.

To further characterize the solution to the seller’s problem, we require the speci-

fication of cost function c(s) and the heterogeneity distributions f(θ) and g(R).

We turn to this analysis next. For simplicity, we assume that f(θ) and g(R) are

uniform distributions over [A1, A2] and [B1, B2], respectively. That is,

f(θ) =
1

A2 − A1,
F (θ) =

θ − A1

A2 − A1

, for all θ ∈ [A1, A2];

and

g(R) =
1

B2 −B1,
G(R) =

R−B1

B2 −B1

, for all R ∈ [B1, B2].

We assume in this section that the variable cost increases linearly with package

size: c(s) = αs, α > 0. We show that in this case it is optimal for the firm to make

single-serve packages. In section 6, we consider nonlinear costs, observe that it

remains optimal for the firm to make single-serve packages if c(s) is a convex
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function of package size, s, and examine conditions under which larger package

sizes are optimal for a concave cost function.

We begin by substituting θ =
(
pR + s(i− 1)

)
/T and

F (θ) = F

(
pR + s(i− 1)

T

)
=
pR + s(i− 1)− A1T

(A2 − A1)T

into the expressions for D(s, p) and d(s, p) in Theorem 1. This substitution

gives the following expression for the number of buyers who purchase exactly i

packages:

di(s, p) =

∫ s/p

B1

{
pR + si− A1T

(A2 − A1)T
− pR + s(i− 1)− A1T

(A2 − A1)T

}
1

B2 −B1

dR.

The total demand for packages is thus given by

D(s, p) =
n∑
i=1

[ ∫ s/p

B1

{
1− pR + s(i− 1)− A1T

(A2 − A1)T

}
1

B2 −B1

dR

]
.

If B1 ≤ s/p ≤ B2, then only those consumers for whom R ∈ [B1, s/p] consider

the product worth buying. Thus, the number of buyers di(s, p) who purchase

exactly i packages each is given by

di(s, p) =

∫ s/p

B1

s

(A2 − A1)T

1

B2 −B1

dR =

(
s
p
−B1

B2 −B1

)(
s

(A2 − A1)T

)
, i = 1, . . . , n,

and the total demand D(s, p) for packages of size s, each sold at a price p, is

D(s, p) =
∑n

i=1

[ ∫ s/p
B1

{
1− pR+s(i−1)−A1T

(A2−A1)T

}
1

B2−B1
dR

]

=

(
s
p
−B1

B2−B1

)(
1

1−A1
A2

− pB1+sn
2(A2−A1)T

)
n.
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The total quantity purchased by the consumers is Q = sD(s, p). Thus, given s

and p, the demand D for packages and Q for quantity, increases with T, the usable

life of a product; A1, the minimum usage rate across consumers; and A1/A2, the

ratio of the lowest to the highest usage rates. On the other hand, both D and

Q decrease with increases in A2 − A1, the difference between the highest and

lowest usage rates; B1, the lowest reservation quantity across consumers; and

B2 − B1, the difference between the largest and smallest reservation quantity

across consumers.

We now use the above expression for demand to prove the following theorem

concerning the optimal package size and price for the seller.

Theorem 2. If α ≤ 1/B1, the seller should, for any given value of n ≥ 1, make

packages of size

s∗ =
1− k
n

A2T,

and for each package should charge a price of

p∗ =
k

B1

A2T,

where

k =
1√

(n+ 1)( n
B1α

+ 1)
.

Note that 0 < k < 1/(n + 1), where the upper bound of 1/(n + 1) corresponds

to α = 1/B1. As B1α becomes smaller, k becomes larger, and the seller both

charges a higher price and makes a smaller package, implying sharply increasing

unit prices for products with lower unit cost and/or lower reservation quantity
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for the least price sensitive consumer. As k approaches its upper bound, s∗

approaches the value A2T/(n + 1); and as k approaches zero, s∗ approaches

A2T/n. Thus, the value of k determines the optimal package size in the relevant

range s ∈ (A2T/(n+ 1), A2T/n). The optimal price for a package increases with

the value of k, and lies between 0 < p∗ < A2T/B1(n + 1). Both the optimal

package size and the optimal price increase with the usable life T of the product,

and with the maximum usage rate A2 across consumers; and both decrease with

increasing values of n and the minimum reservation quantity B1. As T is finite for

any product, the ratio T/n decreases with n for all products; i.e., as n increases,

the package size become smaller for all products, although products with longer

shelf life should have larger package sizes. Observe also that as the unit cost α

increases, the optimal package size s∗ becomes smaller and the optimal price p∗

becomes larger. Thus, the unit price p∗/s∗ increases with unit cost. Note that

the optimal package size and the price are not affected by the minimum usage

rate A1 or the maximum reservation quantity B2, or by the range A2 − A1 or

B2 −B1 for the heterogeneity in usage rates reservation quantities.

Theorem 2 implies

s∗ ≥ A2T

n+ 1
, p∗ ≤ A2T

B1(n+ 1)
.

Recall from the formulation of the seller’s problem that s ≤ A2T/n is an upper

bound on s. Thus,

A2T

n+ 1
≤ s∗ ≤ A2T

n
.

The gap between the upper- and lower bounds on s∗ becomes smaller as the value

of n increases. For large values of n, n ≈ n+ 1, and so s∗ ≈ A2T/n. That is, the

optimal package size is chosen so that ns∗ equals exactly the quantity consumed
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over time T by a customer with the highest possible consumption rate, A2. Thus,

as n becomes larger, the optimal package size becomes independent of the unit

cost α, the minimum usage rate A1, and the reservation quantities B1 and B2 (or

equivalently, the dollars per consumed unit users are willing to pay). As s ≤ pB2,

we have

s∗

B2

≤ p∗ ≤ A2T

B1(n+ 1)
.

As s∗ ≥ A2T/(n+ 1), we have

z

B2

≤ p∗ ≤ z

B1

,

where z = A2T/(n+ 1) is a decreasing function of n. Thus, as the heterogeneity

in reservation quantity decreases, the above range for the optimal price becomes

smaller. If B2 = B1 = B, the optimal price converges to p∗ = A2T/B(n+ 1), and

is independent of the unit cost, α, and the minimum usage rate, A1.

We now examine the relation between the value of n and the optimal profit for

the firm. Substituting the expressions for s∗, p∗ and D∗ into the profit equation

for the seller gives

π∗ = π(s∗, p∗) =
A2

2T
(√

n+B1α−
√
B1α(n+ 1)

)2

2(A2 − A1)(B2 −B1)n
.

which can be written as

π∗ =
A2

2T

2(A2 − A1)(B2 −B1)

(
1 +

(
1 +

2

n

)
αB1 − 2

√
αB1

(
1 +

B1α

n

)(
1 +

1

n

))
.

The optimal profit increases with n, with the usable life T of the product, and

with the maximum usage rate A2 across consumers; it decreases with the unit cost

α, with the minimum reservation quantity B1, and with the ranges A2 −A1 and
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B2−B1 over which the heterogeneity in usage rates and reservation quantities is

described. As the value of n increases, the right hand side of the above expression

for π∗ approaches from below the value

π∗max = lim
n→∞

π∗n =
A2

2(1−
√
B1α)2T

2(A2 − A1)(B2 −B1)
.

Let π∗1 denote the profit π∗ when n = 1. Figure 1 plots the “profit ratio” r = π∗/π∗1

as a function of n and B1α. Observe that the smaller the value of B1α, the smaller

the value of rmax = π∗max/π
∗
1, the ratio of the profits when n =∞ and n = 1. Put

another way, a seller has less reason to make a smaller package size if the unit

cost α is small, and if even the least price-sensitive buyers are still quite price

sensitive (i.e., have a lower value of B1). We also observe that, for each value of

B1α, the value of r initially increases rapidly with n, but then levels off quickly to

its asymptotic value. For example, when αB1 = 0.01, the profit ratio r is within

1% of the maximum for n = 10; and when αB1 = 0.99, the profit ratio is about

2% of the maximum for n = 30. Thus, in practice, n = 30 is large enough for a

seller to obtain about the maximum possible profit; and in most cases, n = 10 is

likely to be large enough. The optimal package size s∗ for a suitably large value

of n will correspond to a single-serve package in most instances (recall that n is

defined as the number of units of a package purchased over for consumption over

time T by a consumer with the highest possible usage rate, A2.

To summarize, if package cost increases linearly with package size, then the

firm’s profits increase with n and the firm should make single-serve packages.

This conclusion also follows if the package cost is a convex function of package

size; i.e., when the production costs increases in an increasing rate with product
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size. However, this is not the case when the cost function is concave. We examine

this case later in section 6.

5. Characteristics of the optimal solution

Unit price. Theorem 2 implies the following expression for the cost per unit of

the product:

p∗

s∗
=

1

B1

(
A2T

s∗
− n

)
=

1

B1

(√
(n+ 1)( n

B1α
+ 1)− 1

) ≤ 1

B1

,

where the last inequality follows from the condition B1α ≤ 1. The above expres-

sion implies that the smaller the optimal package size s∗, and the larger the value

of n, the higher the price per unit that should be charged by a profit-maximizing

firm. Figure 2 shows the relationship between p∗/s∗ and s∗. Observe that the rate

at which the unit price decreases with s∗ becomes smaller as s∗ becomes larger.

This conclusion is consistent with the empirical observation that in BOP markets,

where consumers pay higher unit prices for single serve packages. However, it is

not a poverty premium that is charged to exploit poor consumers because they

can only afford to buy single-serve packages — we obtain this result in the present

model without imposing any constraints on income streams. This of course does

not mean that such a premium is not charged; it only means that the preva-

lence of higher unit prices for smaller packages is not by itself an indication that

firms are exploiting the poor. We note that the lower unit prices in the present

instance cannot in be viewed as mirroring quantity discounts for larger package

sizes (Clements 2006), because there is only one package size, and thus no rea-

son for the seller to offer a discount in our model. Instead, the reason is that
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additional unit sales from reducing the unit price is large enough to compensate

for the reduction in unit margin for all units sold as well as the loss in sales due

fewer consumers buying a larger package size.

Number of packages and units. The demand for the number of packages associated

with the optimal package size s∗ and price p∗ is given by the expression

D∗ = D(s∗, p∗) =
A2B1

2(A2 − A1)(B2 −B1)

(√
(n+ 1)

( n

B1α
+ 1
)
− (n+ 1)

)
.

As B1α < 1, the term under the square root is always greater than n + 1. And

as B1α increases, so does n/B1α and D∗. Note that D∗ also increases with n,

because the package size s∗ becomes smaller as n becomes larger. The total

quantity Q∗ = s∗nD
∗ purchased by consumers is

Q∗ =
A2

2B1T

2(A2 − A1)(B2 −B1)

(
1− 1√

(n+ 1)( n
B1α

+ 1)

)(√(
1 +

1

n

)( 1

B1α
+

1

n

)
−
(

1 +
1

n

))
.

The value of Q∗ increases with n, and approaches the limiting value

Q∗max = lim
n→∞

Q∗ =
A2

2B1T

2(A2 − A1)(B2 −B1)

(
1√
B1α

− 1

)
.

Note that Q∗max > 0 because B1α < 1, and that a larger value of B1α implies

a smaller value of Q∗max. A change in the value of B1α has a disproportionately

large effect on the value of Q∗max. For example, if the value of B1α decreases from

x to x2, then Q∗max increases by a factor of

1√
x2
− 1

1√
x
− 1

=
1√
x

+ 1.
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Thus if a seller can decrease the unit cost so that the value of B1α drops from

0.5 to 0.25, then the quantity purchased by consumers for arbitrarily large n

increases by a factor of 3.

Let Q∗1 denote the quantity purchased when n = 1. Figure 3 shows how the

ratio Q∗/Q∗1 changes with n ≥ 1 for different values of 0 < B1α < 1. We see

that if B1α < 0.1, the value of Q∗/Q∗1 decreases with n; and if B1α > 0.1 the

value of Q∗/Q∗1 increases with n. That is, if the unit cost is less than a tenth

of the reservation quantity B1 of the least price sensitive customer, then the

total quantity Q∗ purchased by consumers decreases as n increases; otherwise, it

increases with n. The reason is that as B1 approaches zero, s/p also approaches

zero, but at a faster rate than B1. This reduces the demand to zero. Thus, if

the unit cost α and the minimum reservation quantity B1 is sufficiently low,

consumers will purchase a smaller quantity Q∗ and, as discussed above, pay a

higher unit price, for smaller package sizes. Otherwise, consumers will both

purchase a larger amount in the aggregate, and pay a higher unit price for smaller

package sizes. This is an important reason for firms to offer small package sizes

in BOP markets.

Product waste and unfulfilled demand. From the consumer’s perspective, the

product size problem shares certain aspects of inventory problems. For example,

some users may not be able to buy as much as they can consume, and other may

buy in excess and waste a part of the product because it is no longer usable.

This is a type of inefficiency introduced by quantity bundling. Its effect is that

consumers can possibly pay more, and sellers earn less profit, than they might

in the absence of the inefficiency. We use the term “consumer waste” to refer

to the total quantity bought but not used by consumers; and we use the term
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“unfulfilled demand” to refer to the lost sales to consumers who buy less than they

can consume. Figure 4 graphically illustrates the difference between consumer

waste and unfulfilled demand. Consider a consumer with consumption rate θ and

reservation quantity R. If θT ≤ is, then the consumer will buy i packages only if

p∗R + (i− 1)s∗ ≤ θT ≤ is, or equivalently, if their usage rate is bounded by

p∗R + (i− 1)s∗

T
≤ θ ≤ is

T
.

Such a consumer will waste a quantity w = is∗ − θT. As only those customers

for whom s∗/p∗ > R buy i units of the product, the total quantity wasted across

consumers is given by the expression

W =
n∑
i=1

∫ s∗/p∗

B1

∫ is∗
T

p∗R+(i−1)s∗
T

(
is∗ − θT

)
f(θ)dθg(R)dR.

For uniform distributions over θ ∈ [A1, A2] and R ∈ [B1, B2], the above expression

simplifies to

W =
(s∗ −B1p

∗)3n

6(A2 − A1)(B2 −B1)p∗T
.

Substituting for p∗ and s∗ from Theorem 2 gives the following expression for

consumer waste:

W =
A2

2T
(√

B1α(n+ 1)(n+B1α)−B1α(n+ 1)
)3

6(A2 − A1)(B2 −B1)B1α2n2(n+ 1)(n+B1α)
.

The value of W goes to zero as n becomes arbitrarily large, because each customer

can then purchase exactly the amount he or she can consume in time T.

Next, if θT > is∗, then the unfulfilled demand for the customer is c = θT − is∗,

where

is∗

T
≤ θ ≤ p∗R + is∗

T
.
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Integrating over values of R and the summing over the units bought by customers

gives the total unfulfilled demand across customers:

C =
n∑
i=1

∫ s∗/p∗

B1

∫ p∗R+is∗
T

is∗
T

(
θT − is∗

)
f(θ)dθg(R)dR.

For uniform distributions θ ∼ U [A1, A2] and R ∼ U [B1, B2], the above expression

simplifies to

C =

[
(s∗)3 − (B1p

∗)3

6(A2 − A1)(B2 −B1)p∗T

]
n.

Substituting the values of s∗ and p∗ from Theorem 2 into the above expression

for C gives

C =

A2
2T

[(√
B1α(n+ 1)(n+B1α)−B1α

)3

− (B1αn)3

]
6n2(A2 − A1)(B2 −B1)B1α2(n+ 1)(n+B1α)

.

The value of C goes to zero as n becomes arbitrarily large. Thus, single-serve

packages reduce consumer waste — each customer can purchase exactly the

amount he or she can consume. Also,

W

C
=

(s∗ −B1p
∗)3

(s∗)3 − (B1p∗)3
< 1.

Thus, the amount wasted by customers is always less than the unfulfilled demand

across customers. This is one reason the firm reduces package sizes: it stands to

gain more in additional sales (from non-buyers, and from those consuming less

than they can) than it stands to lose because some consumers buy more than

they can use. The other reason for the firm selling smaller package sizes is that

it can also charge higher unit prices, because consumers can more exactly match

their purchases with their needs, and thus are willing to pay more per package

when it has a smaller size.
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6. Nonlinear cost functions

The above analysis considers costs that increase linearly with package size.

The minimum package size result we obtain under this assumption is readily

seen to extend for convex cost functions, where package costs increase at an

increasing rate with package size. The reason is straightforward — if it is optimal

to minimize package sizes for linear costs, then it must also be optimal to do so for

convex costs, because reducing the package size leads to additional cost economies

(and thus increasingly higher margins), without having any effect on the demand

for the product.

The situation differs for concave cost functions, which allow economies of size,

so that larger package sizes have a lower unit cost; i.e., c(s)/s is smaller for a

package with a larger size, s. For example, the volume of a package is a cubic

function of its linear dimensions, whereas the surface area of a package is a

quadratic function of its linear dimensions. Thus, the cost of packaging materials

increases at a decreasing rate with the volume of a package. Larger packages may

also require lesser handling and transportation costs, although it is difficult to

generalize about this in all situations.

It is possible to obtain in specific instances explicit solutions for cost function

reflecting cost economies in package sizes. We have, for example, obtained the

results for a piecewise linear cost function that allows unit cost to become lower

beyond a threshold package size. However, the solutions can become far too

complicated to provide any meaningful insight.4 We therefore consider the general

conditions under which a concave cost function can create an incentive for a seller

to make larger package sizes than under a linear cost function. In particular, we

4A Mathematica notebook with the solution for the piecewise linear cost function is available
from the authors; it is far too complex to be reported in the paper.
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obtain sufficient conditions under which the profit obtained by selling packages of

size s∗ ∈ [A2T/(n+1), A2T/n] exceeds the profit from selling an arbitrarily small

product. The actual value of s∗ of course depends on the actual cost function,

and can be numerically calculated for a given problem and cost specification.

Consider a specific, finite value of n ≥ 1. Figure 5 plots the package size versus

the package cost. The optimal package size for a linear cost function c = αs,

is indicated in the figure by the point labeled s∗ on the horizontal axis, where

A2T/(n + 1) ≤ s∗ ≤ A2T/n. Let π∗ ≡ π∗(s∗, p∗) denote the associated profit.

Consider a concave cost function, c̃ ≡ c̃(s), which lies everywhere below the cost

function c = αs; i.e., 0 < dc̃(s)/ds < α, d2c̃(s)/ds2 < 0, for all s > 0. We assume

that

lim
s→0

dc̃(s)

ds
= α,

so that c = αs corresponds to a linear cost function that minimally dominates

c̃. Let sA and pA denote the optimal package size and price for the cost function

c̃(s), and let πA ≡ πA(sA, pA) denote the associated profit. Consider the linear

cost function ĉ = α̂s, which goes through the origin and intersects the concave

cost function c̃(s) at the point s = A2T/(n+ 1). Let

αmax =
1

B1n

[
2 + 2B1α− 4

√
B1α + n(2 +B1α− 2

√
B1α)

− 2

√
(n+ 1)

{
(1− 4

√
B1α) +B1α(6 +B1α− 4

√
B1α) + n(1 +B1α− 2

√
B1α)

}]

The following theorem gives a sufficient condition under which a seller’s profit

increases as n decreases and s∗ increases.
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Theorem 3. Let n = n∗ denote a value of n for which a linear cost function

ĉ = α̂s satisfies α̂ < αmax. Then the seller earns a higher profit by making a

package of size s ∈ (A2T/(n+ 1), A2T/n) than by making a single-serve package.

Each value of n specifies a range s ∈ (A2T/(n+ 1), A2T/n) for the package size.

As n decreases, the package size increases. Theorem 3 gives a sufficient condition

for which the seller earns a higher profit by making bigger packages than single-

serve packages. Figure 6 shows how the largest possible value of α̂ for which the

above condition is satisfied changes with n and α. Observe that as n∗ increases,

α̂ approaches α, which implies that a small reduction in costs (αmax/α) is needed

to satisfy the condition for larger than single-serve package sizes. Moreover, when

the cost is high (e.g. 0.9) the firm needs to incur in a small cost reduction (less

than 5%) in order to satisfy that condition. In contrast, when the cost is small

(e.g. 0.1) a higher proportionate cost reduction is needed to satisfy the condition

of Theorem 3.

Recall that a consumer purchases a package if s/p > R, or equivalently if

p < s/R. Consider in addition the constraint p ≤ pmax, reflecting the cash flow

constraint on a buyer in a BOP market who cannot afford to pay more than a

price pmax. Then the condition for such a buyer to purchase a package is p <

min{pmax, s/R}. If the constraint p ≤ pmax is binding, then s/R ≤ pmax, and so

s ≤ Rpmax for a consumer with reservation quantity R to buy the product. This

creates an incentive for the firm to make smaller package sizes when there are

many buyers for whom R and/or pmax is small, even if there are cost economies

for the seller from making larger package sizes.
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7. Conclusion

A product can be characterized by such attributes as its price, quality, brand

name and package size (Guadagni and Little 1983). Among these, package size

has perhaps received the least attention in the analytical marketing literature.

Prahalad (2005) observes that single-serve packages are creating a revolution in

BOP markets because these enable the poor to buy products that they could

not otherwise afford. We examine in this paper how in these markets package

sizes can affect unit prices, consumption and waste by users, and sales and profits

earned by a seller. BOP markets are characterized by unsteady income streams

for some buyers and small transactions costs for buyers and sellers. Our analysis

suggests that the latter factor alone can be sufficient for a firm to offer single-serve

packages, unless there are significant economies of size for the seller. Consistent

with Prahalad’s observation, single-serve packages can increase the number of

consumers who buy a product, increase total consumption, decrease product

waste, and lead to higher profits for a seller, in part because of higher unit

prices. However, these higher unit prices do not have to be a poverty penalty

to buyers who do not have the income stream to buy and store larger packages.

Some consumers purchase less, others stop buying, when the unit price increases.

Other consumers enter the market, and still others buy more because they waste

less. The latter increase is sufficiently large, even at higher unit prices, for the

seller to have an incentive to make single-serve packages. Customer awareness of

unit prices plays no role in the present analysis.

Nonlinear pricing is one method by which a seller can discriminate among buy-

ers, charge them different prices, and earn higher profit (see, e.g., Wilson 1992).

There is no such opportunity in our model, because the seller only makes a single
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product and sells it at a common price. Unlike quantity discounts, which enable

price discrimination if high-usage consumers have higher price elastiticities, our

model makes no comparable assumption; instead, the reservation quantity (R) is

independent of the consumption rate. Still, a single-serve package allows a form

of discrimination among buyers, each of whom can match purchases by selecting

the appropriate number of packages for consumption. This self selection helps a

seller to discriminate among users with varying levels of product use, and enables

it to extract higher profits.

The parametric results in this paper are obtained assuming that the usage rates,

and the reservation quantities, have uniform distributions across consumers. It

is possible that there are disproportionately more consumers in BOP markets

who have lower usage rates and higher reservation quantities (i.e., who seek to

consume more units per dollar if they buy a product). We expect that these

conditions are likely to make the rationale for smaller package sizes even more

compelling. The key requirement for the results is that transactions costs be

small, a condition that is more likely to be met in BOP markets where retail

stores and located close to consumers and open for long hours, phone ordering is

common, and labor is cheap, allowing free delivery to homes.

Consumer cash-flow constraints can become a significant incentive for package-

size reductions in BOP markets, even when the seller’s marginal cost decreases

with package size. An alternative is for the seller to reduce package prices, but

this is feasible only up to a point and can eventually lead to serious erosion in

profit. Still, if only a small fraction of consumers have cash flow constraints, and

if these constraints are not too severe, a seller might prefer a small price cut to

stimulate demand. But if a large fraction of a market faces these constraints,
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then the seller will tend to favor smaller package sizes to draw more buyers into

the market, even if there are cost economies from making larger package sizes.

The present analysis considers two important features of BOP markets: low

transactions costs and cash-flow constraints on consumer purchases. Future re-

search might benefit from the consideration of competition among manufacturers

and retailers, and the availability of multiple package sizes to buyers. Competition

is likely to create both downward pressure on prices and greater differentiation

in package sizes, with firms choosing to target different segments of the market.

Retail competition can lead to lower prices for all package sizes, although it is not

clear if these will be disproportionately large for smaller package sizes, thereby

making larger package sizes more profitable for a seller. As one might expect,

multiple package sizes are likely to counter unit price increases for smaller pack-

ages (Granger and Billson 1972). Examining these issues, in both theoretical and

empirical contexts, can be useful for future research.
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Appendix: Proofs of Lemmas and Theorems

Lemma 1 Suppose a product has size s and is sold at price p. A consumer with

a reservation quantity R, who expects the product to expire after time T , will

buy i packages of the product only if: (i) the package size is s ≥ pR; and (ii) the
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consumer’s usage rate is

θ ≥ pR + (i− 1)s

T
.

Proof. As the consumer uses f ≤ s units of the i-th package, we have

s/p ≥ f/p > R,

which implies s > pR. Next, a consumer who buys i packages must consumer

i− 1 packages, each of size s, and f ≤ s units from the i-th package. Thus, the

usage rate for the consumer is

θ =
f + (i− 1)s

T
.

Now r = f/p > R implies f > pR, and so

θ =
f + (i− 1)s

T
>
pR + (i− 1)s

T
.

�

Lemma 2 If the size s of a package is A2T/(n + 1) < s ≤ A2T/n, then no

consumer purchases more than n packages of the product.

Proof. As θ ∈ [A1, A2], the maximum quantity a consumer can use in time T

before the product is no longer usable is A2T. Thus, the maximum number of

packages of size s that a consumer can use is n = dA2T/se. Now

A2T

n+ 1
< s ≤ A2T

n
,



34

and so the maximum number i of packages a consumer can use is

dne ≤ i < dn+ 1e,

which is equivalent to i = n. �

Lemma 3

D(s, p) =
n∑
i=1

Di(s, p).

Proof. The total number of packages purchased by consumers is thus given by

D(s, p) = 1 · d1(s, p) + 2 · d2(s, p) + · · ·+ n · dn(s, p),

which can be written as

D(s, p) = 1 · [D1(s, p)−D2(s, p)] + 2 · [D2(s, p)−D3(s, p)] + . . .

+ (n− 1) · [Dn−1(s, p)−Dn(s, p)] + n ·Dn(s, p)

or equivalently

D(s, p) = D1(s, p) + · · ·+Dn(s, p).

�

Theorem 1 The demand for exactly i packages of size s, when each package is

sold at price p, is given by

di(s, p) =

∫ min{B2, s/p}

B1

{
F

(
pR + si

T

)
−F
(
pR + s(i− 1)

T

)}
g(R)dR, for all i = 1, . . . , n−1;
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and di(s, p) = Di(s, p) =

∫ min{B2, s/p}

B1

[ ∫ A2

[pR+s(n−1)]/T

f(θ)dθ

]
g(R)dR, i = n.

The total demand for packages is

D(s, p) =
n∑
i=1

[ ∫ min{B2, s/p}

B1

{
1− F

(
pR + s(i− 1)

T

)}
g(R)dR

]
.

Proof. Suppose s/p < B2. Then there are consumers for whom r ∈ {s/p,B2}.

None of these consumers will buy the product, because they demand at least r

units per dollar, whereas the maximum they can obtain is s/p units per dollar.

It follows that only those consumers buy the product for whom B1 ≤ R ≤ s/p.

Thus,

Di(s, p) =

∫ s/p

B1

[ ∫ A2

[pR+s(i−1)]/T

f(θ)dθ

]
g(R)dR, i = 1, . . . , n− 1.

Substituting ∫ A2

[pR+s(i−1)]/T

f(θ)dθ = 1− F
(
pR + s(i− 1)

T

)
gives

Di(s, p) =

∫ s/p

B1

[
1− F

(
pR + s(i− 1)

T

)]
g(R)dR.

It follows that, for all i = 1, . . . , n− 1,

di(s, p) = Di(s, p)−Di+1(s, p) =

∫ s/p

B1

{
F

(
pR + si

T

)
−F
(
pR + s(i− 1)

T

)}
g(R)dR,

and

di(s, p) = Di(s, p) =

∫ s/p

B1

[ ∫ A2

[pR+s(n−1)]/T

f(θ)dθ

]
g(R)dR, for i = n.
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Finally, Lemma 3 implies

D(s, p) =
n∑
i=1

Di(s, p) =
n∑
i=1

[ ∫ s/p

B1

{
1− F

(
pR + s(i− 1)

T

)}
g(R)dR

]
.

�

Lemma 4 The maximum package size offered by a seller is bounded by the

condition

s ≤ min

{
pB2,

A2T

n

}
.

Proof. As s/p = B2 characterizes the condition for the maximum demand for

the product, and as a smaller package package size has a lower total cost c(s),

a seller will maximize profit by restricting the package size to at most s = pB2.

Also, a consumer with usage rate θ can consume no more than θT units of the

product before it expires. Thus, if a consumer with the highest possible usage

rate, θ = A2, can consumer up to n packages of the product, then the maximum

package size the seller needs to offer is s = A2T/n. Otherwise, dc(s)/ds > 0

implies that the seller can make a larger profit by reducing the package size to

s = A2T/n without changing the price of the product. �

Lemma 5 If α > 1/B1, then the seller should not make the product.

Proof. Recall R ∈ [B1, B2], where R = B1 corresponds to the least price sensitive

customer in the market, who is willing to pay a unit price 1/B1 to buy the

product. Thus, if the unit selling price exceeds 1/B1, no customer will buy the
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product. But if α > 1/B1, the seller will make a loss at a unit price below 1/B1.

It follows that the seller will not make the product if α ≥ 1/B1. �

Theorem 2 If α ≤ 1/B1, the seller should, for any given value of n ≥ 1, sell

packages of size

s∗ =
A2T

n

(
1− 1√

(n+ 1)( n
B1α

+ 1)

)
units,

and for each package should charge a price of

p∗ =
A2T

B1

1√
(n+ 1)( n

B1α
+ 1)

.

Proof. The seller’s problem is to maximizes the profit over package size s and

price p:

Maximize π(p, s) = (p− αs)
n∑
i=1

[ ∫ s/p

B1

{
A2

A2 − A1

− pR + s(i− 1)

(A2 − A1)T

}
1

B2 −B1

dR

]

= (p− αs)

(
s
p
−B1

B2 −B1

)(
1

1− A1

A2

− pB1 + sn

2(A2 − A1)T

)
n

Subject to : s ≤ A2T

n
, s ≤ pB2.

To find the globally optimal solution to this problem, we identify and compare

all the feasible solutions that satisfy the first order conditions obtained from the
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Lagrangian:

L =
n(B1p− s)(B1p+ ns− 2A2T )(p− sα)

2(A2 − A1)(B2 −B1)pT
+ λ1

(
pB2 − s

)
+ λ2

(
A2T

n
− s
)
,

where λ1 ≥ 0, λ2 ≥ 0 are Lagrange multipliers. The first-order conditions are:

∂L

∂p
=
∂L

∂s
= λ1

∂L

∂λ1

= λ2
∂L

∂λ2

= 0,

where

∂L

∂p
=
B1np

2(2B1p+ (n− 1)s− 2A2T )− ns (B2
1p

2 + s(ns− 2A2T ))α

2(A2 − A1)(B2 −B1)p2T
+ λ1B2,

and

∂L

∂s
=
n (−B2

1αp
2 +B1((n− 1)p+ 2(−ns+ s+ A2T )α)p+ 2A2T (p− 2sα) + ns(3sα− 2p))

2(A2 − A1)(B2 −B1)pT

− (λ1 + λ2).

We examine each of the following four cases below: (1) λ1 > 0, λ2 > 0, (2)

λ1 = 0, λ2 > 0, (3) λ1 > 0, λ2 = 0, and (4) λ1 = λ2 = 0.

(1) λ1 > 0, λ2 > 0 : The shadow prices are

λ1 =
A2(−nαB3

2 +B1(n+ 1)B2 +B2
1(B2α− 2)

2(A2 − A1)(B2 −B1)B2
2

, λ2 =
A2B1(B2α− 1)

(A2 − A1)B2
2

.

From complementary slackness, we obtain

s =
A2T

n
, p =

A2T

nB2

.
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The corresponding profit is

π1 = A2
2T

(nB2 −B1)(1−B2α)

2nB2
2(A2 − A1)

.

Now λ2 ≥ 0 iff B2α ≥ 1, in which case π1 < 0, as is evident from the above

expression. It follows that there is no solution with non-negative profit.

(2) λ1 = 0, λ2 > 0 : We obtain s = A2T/n from complementary slackness.

Substituting for s and solving for p gives p = f(D1/2), where f(·) is an increasing

function of D, and

D = −nB1α(n3 + 3n2(1 +B1α) + (1 +B1α)3 + 3n(1 +B1α(B1α− 7))).

Now B1α > 0 implies

−(n3 + 3n2(1 +B1α) + (1 +B1α)3 + 3n(1 +B1α(B1α− 7))) < 0.

Thus, D < 0, p is not a real number, and there is no feasible solution.

(3) λ1 > 0, λ2 = 0 : As λ1 > 0, we obtain s = pB2 from the complementary

slackness condition. Substituting for s in terms of p and solving the equations

from the first-order condition gives

p =
A2T

B1 + nB2

s =
A2B2T

B1 + nB2

=
A2T
B1

B2
+ n

.

As B2 > B1, we have A2T/(n+ 1) < s < A2T/n, as desired. The total demand

D =
A2n

2(A2 − A1)
=

n

2(1− A1

A2
)
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is positive because A1 < A2. Also,

λ1 =
A2n(B2

1α−B2
2nα +B1(1 + n− 2B2α))

2(A2 − A1)(B2 −B1)(B1 +B2n)
.

The denominator of the above expression is always positive, and so λ1 > 0 requires

B2
1α−B2

2nα +B1(1 + n− 2B2α) > 0,

which is equivalent to the condition

α <
(n+ 1)B1

nB2
2 + 2B1B2 −B2

1

= β,

where B2 > B1 implies the right hand side of the above expression is always

positive. The total profit is

π3 =
A2

2nT (1−B2α)

2(A2 − A1)(B1 +B2n)
,

which is non-negative if B2α ≤ 1.

(4) λ1 = λ2 = 0 : We obtain the following four solutions:

(a) pa =
2A2T

B1(n+ 1)
, sa =

2A2T

n+ 1
, πa = 0;

(b) pb =
2αA2T

n+B1α
, sb =

2A2T

n+B1α
, πb = 0;

(c) pc = − A2Tα√
(n+ 1)B1α(n+B1α)

, sc =
A2T

n

(
1 +

B1α√
(n+ 1)B1α(n+B1α)

)
, πc < 0;

(d) pd =
A2Tα√

(n+ 1)B1α(n+B1α)
, sd =

A2T

n

(
1− B1α√

(n+ 1)B1α(n+B1α)

)
,

πd =
A2

2T
(√

n+B1α−
√
B1α(n+ 1)

)2

2(A2 − A1)(B2 −B1)n
.
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As only πd > 0, we consider the solution in case (d) alone. Let π4 ≡ πd. We

observe that the solution to case (d) satisfies A2T/(n+ 1) < s < A2T/n, because

B1α > 0 implies s < A2T/n, and B1α < 1 implies s > A2T/(n + 1). The

corresponding expression for the total demand is

D =
A2

√
(n+ 1)B1α(n+B1α)− (n+ 1)B1α

2α(A2 − A1)(B2 −B1)
.

We note that D > 0 because the denominator of the above expression is always

positive, and as B1α < 1, the numerator is also positive.

To summarize, only cases (3) and (4) have one feasible solution each. The

solution for case (4) places no constraint on α whereas the solution for case (3)

is obtained under the condition α < β. However, even under the latter condition,

the profit for the firm is higher in case (4) that it is in case (3). To see this, we

write the difference in the profits π4 and π3 as

∆π = π4 − π3 =
A2

2TM

2(A2 − A1)n
,

where

M =
(B2α− 1)n2

B1 +B2n
+

(√
B1(n+ 1)α−

√
n+B1α

)2

B2 −B1

.

We can verify M > 0 if α = 0, and dM/dα > 0, and so ∆π > 0. �

Theorem 3 Let n = n∗ denote a value of n for which a linear cost function

ĉ = α̂s satisfies α̂ < αmax. Then the seller earns a higher profit by making a

package of size s ∈ (A2T/(n+1), A2T/n) than by making a single-serve package.

Proof. The condition

lim
s→0

dc̃(s)

ds
= α,
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implies

lim
n→∞

πA = lim
n→∞

π∗ = π∗max.

That is, as s approaches zero, πA, the seller’s optimal profit under the concave cost

function c̃(s), approaches π∗max, the maximum possible profit under the linear cost

function c = αs; see Figure 5. Let πB = πB(s∗, p∗) denote the profit at (s∗, p∗) if

we use the cost c̃(s∗) instead of the cost c = αs∗ when computing the profit at

(s∗, p∗). Then

π∗ < πB ≤ πA,

where (i) π∗ < πB because c̃(s∗) < αs∗, and (ii) πB ≤ πA because (sA, pA) is the

optimal solution when the cost is given by the concave function c̃(s).

Next, consider the linear cost function ĉ = α̂s, which goes through the origin

and intersects the concave cost function c̃(s) at the point s = A2T/(n+ 1). Then

c < ĉ < c̃(s), for all s ≥ A2T

n+ 1
,

because ĉ = α̂s (i) lies everywhere below c = αs, and (ii) lies above c̃(s) for

s > A2T/(n + 1). Let π̂ = π̂(s∗, p∗) denote the profit if we use the cost ĉ = α̂s∗

instead of the cost c = αs to compute the profit at (s∗, p∗). Then

π∗ < π̂ < πB,

where (i) π∗ < π̂ because α̂s∗ < αs∗, and (ii) π̂ < πB because c̃(s∗) < α̂s∗.

The inequalities π∗ < πB ≤ πA, and π∗ < π̂ < πB, together imply

π∗ < π̂ < πB ≤ πA.
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Subtracting π∗max from each term of the above inequality gives

π∗ − π∗max < π̂ − π∗max < πB − π∗max ≤ πA − π∗max.

We showed in the previous section that π∗− π∗max < 0. However, if π̂− π∗max > 0,

then the above inequality implies πA − π∗max > 0. Thus, a sufficient condition

under which the maximum profit for a concave cost function c̃(s) is obtained for

a finite value of n = n∗ is given by the condition π̂ − π∗max > 0, which, upon

substituting

π̂∗ =
A2

2T
(√

n∗ +B1α̂−
√
B1α̂(n∗ + 1)

)2

2(A2 − A1)(B2 −B1)n∗
,

and

π∗max = lim
n→∞

π∗n =
A2

2(1−
√
B1α)2T

2(A2 − A1)(B2 −B1)
,

yields the desired condition α̂ < αmax, where

αmax =
1

B1n∗

[
2 + 2B1α− 4

√
B1α + n∗(2 +B1α− 2

√
B1α)

− 2

√
(n∗ + 1)

{
(1− 4

√
B1α) +B1α(6 +B1α− 4

√
B1α) + n∗(1 +B1α− 2

√
B1α)

}]
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Figure 1. r = π∗/π∗1 as a function of n and B1α
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Figure 2. Optimal unit price versus package size
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Figure 3. Q∗/Q∗1 as a function of n and B1α
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Figure 4. Consumers waste and unfulfilled demand
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Figure 5. Package size and package cost relationships for linear
and concave cost function

c ="s

ĉ = "̂s

c̃

A
2
T

n +1

A
2
T

n

Package size (s)

package cost (c)

"
*

"
A

s
*

"̂

"
B

s
A

·

·
·

Notes :  The figure illustrates the relation " *
< "̂ < " B # " A ,  where :

sA  denotes the optimal package size when the package cost is specified by the concave function c̃ = c̃(s). The associated profit is " A $ " A (sA , pA ).

s
* denotes the optimal package size when the package cost is c =%s. The associated profit is " *

$ "
*(s*, p*).

"̂ $ "̂ (s*, p*) is the profit associated with (s*, p*) if the cost is c = %̂s*,  where %̂ satisfies ĉ = %̂s = c̃ for s = A2T/(n +1).

" B $ " B (s*, p*) is the profit associated with (s*, p*) if the cost is c̃ = c̃(s*).

" * < "̂ < "
B
# "

A

·
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Figure 6. αmax/α as a function of n∗
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