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Abstract
We provide an applied introduction to Bayesian estimation methods for empirical
accounting research. To showcase the methods, we compare and contrast the esti-
mation of accruals models via a Bayesian approach with the literature’s standard
approach. The standard approach takes a given model of normal accruals for granted
and neglects any uncertainty about the model and its parameters. By contrast, our
Bayesian approach allows incorporating parameter and model uncertainty into the
estimation of normal accruals. This approach can increase power and reduce false
positives in tests for opportunistic earnings management as a result of better esti-
mates of normal accruals and more robust inferences. We advocate the greater use
of Bayesian methods in accounting research, especially since they can now be easily
implemented in popular statistical software packages.

Keywords Bayes · Prediction · Accruals · Earnings management · Measurement
uncertainty

JEL Classification C11 · C53 · M40

1 Introduction

A central theme in accounting is the measurement of latent constructs (e.g., economic
earnings, managerial effort, or abnormal accruals). Such measurement is inherently
uncertain (e.g., Barker et al. 2020). To account for the uncertainty, the Bayesian
framework provides a formal approach (e.g., Gelman et al. 2013) that is commonly
used in accounting theory (e.g., Johnstone 2018). In empirical accounting research,
by contrast, the formal Bayesian approach is uncommon, despite its conceptual
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appeal.1 An important barrier to adoption has been the Bayesian framework’s compu-
tational requirements. But as a result of increasing computational power, this barrier
has diminished in recent years. A remaining barrier is unfamiliarity.

We provide an applied introduction to key methods of Bayesian estimation
relevant for the measurement of latent constructs, including Bayesian regression,
Bayesian hierarchical modelling, and Bayesian model averaging. To illustrate the
methods, we apply them to a central concern of accounting researchers, investors,
and regulators: the detection of accruals-based earnings management (e.g., Healy
and Wahlen 1999; Dechow et al. 2010; Lewis 2012). A key challenge in detecting
managed abnormal accruals is researchers’ uncertainty about the determinants of nor-
mal accruals, absent earnings management (Ball 2013). Faced with this uncertainty,
researchers default to models of normal accruals to detect accruals-based earnings
management. Several studies, for example, use a variant of the seminal Jones (1991)
model. But reliance on any given model and its estimates risks overstating the con-
fidence of conclusions by producing false positives. The likely false positives are
not only troubling to the literature (e.g., Ball 2013) but also concerning investors
allocating scarce capital and regulators allocating enforcement resources (e.g., Lewis
2012).2

Using the popular Jones (1991) model, we first conceptually discuss and then
empirically document how Bayesian methods increase power and reduce false posi-
tives in tests of accruals-based earnings management by combining various sources
of information (e.g., priors and data), according to their relative (un)certainty. The
Jones model provides a useful example because its OLS-based estimation is well
known, allowing a contrast with the Bayesian approach. In addition, the Jones model,
while widely employed, is strongly criticized for producing false positives (e.g.,
Dechow et al. 2010; Ball 2013), allowing us to tackle a first-order problem of this
important model.

Bayesian estimation per se does not solve all the issues with the Jones model,
nor does it eliminate the need for model fixes and alternative models. It instead
allows combining and assessing the importance of various fixes and alternatives via
Bayesian model averaging, a technique increasingly applied to fundamental ques-
tions in economics (for a review, see Steel 2020). Given this feature, we use the basic
modified Jones model (Dechow et al. 1995) for the purpose of exposition, but note
that the conceptual benefits of the proposed Bayesian estimation only increase with
the incorporation of more and more recent models used in the literature and prac-
tice (Piironen and Vehtari 2017). In this spirit, we apply our Bayesian approach to
an extended set of models, including popular and recent ones (e.g., Dechow et al.

1While Glaeser and Guay (2017) advocate a Bayesian approach to inference in accounting research,
empirical studies using formal Bayesian methods have only recently emerged (e.g., Du et al. 2020; Zhou
2021).
2Ball (2013) voices concerns that limited knowledge of the determinants of accruals results in bias and
false positives. To address the issue, several studies have proposed improvements to the Jones model (e.g.,
Kothari et al. 2005; Hribar and Collins, 2002) or new models (e.g., Dechow and Dichev 2002; Gerakos and
Kovrijnykh 2013; Bloomfield et al. 2017; Beyer et al. 2019; Nikolaev 2018; Du et al. 2020). The issue of
false positives, arising from the neglect of model and parameter uncertainty, by contrast, remains largely
unaddressed.
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1995; McNichols 2002; Ball and Shivakumar 2006; Collins et al. 2017; Frankel and
Sun 2018). The resulting model-averaged estimates of abnormal accruals can read-
ily be used by researchers interested in explaining or controlling for accruals-based
earnings management.3

To conceptually discuss the benefits of our Bayesian approach, we compare and
contrast it with the literature’s standard approach to detecting accruals-based earnings
management. The standard approach entails three steps. First, researchers choose a
model for normal accruals (i.e., accruals explained by fundamental forces), usually
the modified Jones model (Dechow et al. 1995).4 Next, they estimate the model’s
parameters (i.e., the regression coefficients). To account for heterogeneity in the
accruals process, they typically estimate the model separately for different groups
of observations—usually industry-years with a minimum amount of observations.
Finally, researchers use the estimated model parameters to generate a point predic-
tion of normal accruals for a given firm-year. Any deviation from this prediction is
classified as abnormal (i.e., accruals potentially affected by managerial discretion).
A crucial point is that this approach shoves any uncertainty about the predicted level
of normal accruals into the abnormal accruals measure.

The Bayesian approach allows for an explicit accounting for researchers’ predic-
tion uncertainty in abnormal accruals estimation. It can account for the two central
components of prediction uncertainty: uncertainty about the parameters of a cho-
sen model (e.g., the coefficient values of the Jones model) and uncertainty about the
model to choose. The Bayesian estimation of a given model’s parameters produces a
posterior distribution for each of the parameter values. Equipped with these distribu-
tions, we can obtain a distribution of normal accruals for each firm-year, instead of
merely a point prediction. This distribution, called posterior predictive distribution,
incorporates the parameter uncertainty, given a chosen model. Notably, this distri-
bution can be calculated for several variants of the Jones model and alternatives.
Using Bayesian averaging techniques, the various models’ accruals predictions can
be combined to yield a model-averaged predictive distribution of normal accruals.
This distribution explicitly incorporates the uncertainty about the best model (within
the set of considered models). We can use this distribution of normal accruals to
discern the extent of plausibly abnormal accruals. This extent can be expected to
be substantially reduced, compared to the extent implied by the standard approach,
which conflates abnormal accruals and prediction uncertainty.

Following the conceptual discussion, we implement the Bayesian approach to
empirically assess its benefits. We explicitly consider two model variants in our
empirical implementation: models with varying levels of parameter heterogeneity
and those with varying extents of controls. With respect to parameter heterogene-
ity (across groups), we implement a model allowing for parameters varying at the
industry-year level (consistent with the literature, e.g., DeFond and Jiambalvo 1994)

3To facilitate the adoption of our approach, we provide the code for our Bayesian estimation publicly. We
also provide a dataset containing the means and standard deviations of abnormal accruals produced by our
averaged model for each firm-year in our sample.
4Following the literature, we use the modified Jones model, which includes the change in cash revenues,
instead of the change in total revenues, as a determinant of accruals, in all of our analyses.
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and a model allowing for firm-level heterogeneity (in the spirit of Owens et al. 2017).
We implement the parameter heterogeneity using Bayesian hierarchical modelling,
which uses two sources of information about a group’s parameters, that is, within-
and across-group data. The less within-group information available for a particular
group, the more that group’s coefficient estimates rely on the information provided
by other groups. This cross-group learning obviates any ad hoc cutoffs and allows
accommodating even firm-level heterogeneity. With respect to the extent of controls,
we implement a model with the basic determinants included in the modified Jones
model and one model with performance, financing, and volatility controls (in the
spirit of prominent model critiques, e.g., Kothari et al. 2005).

Our empirical implementation confirms the conceptual benefits of the Bayesian
approach and yields additional insights. First, we find that the firm-level model with
extensive controls receives the greatest weight in the Bayesian model’s averaging
stage. This finding highlights that it is not only important to control for fundamental
factors, such as performance but also to allow for firm-level heterogeneity. To date,
firm-level heterogeneity in accruals models has been neglected, because of concerns
about the required number of observations (per firm). The Bayesian hierarchical
approach circumvents this constraint, allowing an accounting for a relevant level of
heterogeneity in firms’ accruals processes.

Second, we find that the distribution of plausible normal accruals, after accounting
for parameter and (selected) model uncertainty, is quite wide. This finding suggests
the large extent of abnormal accruals (e.g., in terms of percentage of total assets)
observed in the literature largely reflects parameter and model uncertainty, rather
than truly unexpected or abnormal accruals.

Third, we document that the predicted normal (abnormal) accruals of the Bayesian
averaged model are more (less) correlated with total accruals than the normal (abnor-
mal) accruals obtained using the literature’s standard approach, even after controlling
for performance, financing, and volatility. This finding suggests that combining var-
ious models, including models with firm-level heterogeneity, substantially improves
our ability to model firms’ accruals. As long as the vast amount of firms’ accruals is
driven by factors other than opportunistic reporting incentives, such improved model
fit translates into a reduced risk of false positives (e.g., Dechow et al. 2010).

Lastly, we find that, in simulations with randomly assigned true and false earnings
management indicators, the Bayesian approach increases the power of earnings man-
agement tests and reduces the incidence of false positives, relative to the standard
approach. This improvement is particularly evident in cases when accruals processes
vary at the firm level, instead of the industry-year level, and when there is high uncer-
tainty (e.g., among young firms with few observations and volatile fundamentals).
Notably, our earlier evidence suggests accruals processes indeed primarily vary at
the firm, not industry-year, level. Moreover, the literature often uses opportunistic
incentive variables correlated with uncertainty. In these cases (missspecified model
and limited or noisy data), our simulations suggest that the standard approach can
frequently yield false positives, while a Bayesian approach provides more powerful
and robust inferences.

In a final step, we extend our Bayesian estimation to incorporate accruals mod-
els besides the Jones model. Following a review of the recent literature, we consider
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industry-year and firm-level variants of the models developed by Dechow et al.
(1995), Kothari et al. (2005), Dechow and Dichev (2002), McNichols (2002), Ball
and Shivakumar (2006), Collins et al. (2017), and Frankel and Sun (2018). The aver-
aged model gives nonzero weights to all models, documenting the importance of
including various empirical models. The greatest weight is put on more recent mod-
els, especially Frankel and Sun (2018), and model variants allowing for firm-level
heterogeneity, consistent with our previous finding.

We assess the usefulness of the averaged model by examining its ability to explain
future performance and popular earnings management indicators (AAERs, restate-
ments, and comment letters). We find that the normal accruals produced by our
averaged model explain future performance better than those of the individual (OLS-
based) models, while its (absolute) abnormal accruals exhibit a stronger relation with
earnings management indicators than those of the individual models. Collectively,
these findings indicate the usefulness of the normal and abnormal accruals estimates
produced by our averaged model.

Our paper contributes to the accounting literature by illustrating key methods of
Bayesian estimation of relevance to empirical accounting research. Bayesian meth-
ods, while conceptually appealing, have received limited attention in applied work
until recently, because they require computational power and methodological exper-
tise. These barriers to their application, however, are vanishing, as a result of the rapid
expansion of computational power and the implementation of ready-made Bayesian
methods into popular applied statistics programs (e.g., R and STATA). Taking advan-
tage of these trends, recent work in accounting has adopted select Bayesian methods
(e.g., hierarchical modelling) to uncover latent constructs, such as a new earnings
quality measure (Du et al. 2020) and investor learning (Zhou 2021). We add to
this emerging stream of the literature by providing a timely illustration of various
Bayesian methods, including Bayesian regression, Bayesian hierarchical modelling,
and, in particular, Bayesian model averaging. This illustration should help make the
new empirical tools more accessible and reduce barriers to adoption.5

Our paper also contributes to the extensive literature on accruals-based earnings
management. We suggest a novel estimation approach to address a central, unad-
dressed criticism of the literature: researchers’ uncertainty in specifying normal
accruals and the corresponding concern about false positives. Our proposed approach
provides a natural way to incorporate uncertainty into the prediction of normal accru-
als derived from accruals models. It improves the literature’s standard approach in
two key ways. First, it uses more information and models, leading to better pre-
dictions and greater power in tests for (opportunistic) abnormal accruals. Second,
it accounts for model and parameter uncertainty, reducing the incidence of false
positives.

5We view the Bayesian methods as additional tools for accounting researchers, instead of a substitute for
familiar frequentist methods (including recent machine-learning techniques). Indeed, several features of
our Bayesian approach can be mimicked by frequentist methods (e.g., regularization and model averag-
ing). We focus on the Bayesian approach because it provides a coherent framework, which nests various
methods to account for uncertainty about models and their parameters.
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More broadly, Bayesian estimation promises to enhance the measurement and
identification of several other constructs of interest, such as productivity (Syverson
2011), investment inefficiency (Biddle and Hilary 2006; Biddle et al. 2009), real
earnings management (Roychowdhury 2006), abnormal R&D activity (Kothari et al.
2015), abnormal tone (Huang et al. 2014), and abnormal readability (Bushee et al.
2018). Each of these constructs, like abnormal accruals, is measured using models
predicting normal behavior, which researchers are uncertain about. Using the famil-
iar example of abnormal accruals as an application, we provide a relevant and timely
introduction to key methods of Bayesian estimation and explain how they can help
researchers with their predictions.

Before delving into the details of our approach, we acknowledge that the pre-
sented Bayesian methods, while eliminating several ad hoc choices typically made by
researchers (e.g., cutoff values for industry-year observations), are not free from sub-
jectivity. Researchers must specify the distributions representing the beliefs and data.
In particular, they must explicitly specify prior beliefs. This feature often invokes
criticism. We note that prior beliefs are usually chosen such that the data, not the
prior, chiefly determine the posterior belief. In cases of limited data and reasonable
expectations about plausible values (e.g., regarding the range of economically plau-
sible coefficient values), however, we actually view the ability to inject information
into the prior as an advantage, not a drawback, of Bayesian methods. This feature
prevents over-fitting the data and enables cross-study learning and truly cumulative
empirical work.6

2 Concepts

2.1 Prediction problem

Researchers need to know firms’ normal accruals process to discern abnormal devia-
tions, due to managerial discretion and opportunism. However, this sort of knowledge
has remained elusive to date. Absent perfect knowledge of the normal process, the
modelling of the normal process and measurement of abnormal accruals is akin to
a prediction problem. Given researchers’ imperfect knowledge and data, the goal is
to produce the best prediction of normal accruals possible. This prediction, however,
is naturally uncertain, and the uncertainty should be considered in classifying firms’
accruals as abnormal. In the presence of prediction uncertainty, not every deviation
from predicted normal accruals can confidently be classified as abnormal.

2.1.1 Standard approach

The literature’s standard approach to predicting normal accruals proceeds in three
steps. Researchers first pick a model specifying the relevant determinants (e.g.,

6In the online appendix, we document the robustness of our inferences to alternative prior choices by
varying the informativeness and the functional forms of our priors.
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change in revenues) and functional forms (e.g., linear model) of normal accruals,
typically the modified Jones model:

T Ai,t = β0,gInvAti,t−1 + β1,g�CRevi,t + β2,gPPEi,t + ei,t (1)

where InvAti,t−1 is the inverse of lagged total assets, �CRevi,t is the change in cash
revenues scaled by lagged total assets, and PPEi,t is property, plant, and equipment
scaled by lagged total assets.7 (For detailed variable definitions, see Table 1.)

The model’s parameters (i.e., coefficients) are treated as unknown but estimable
quantities. In the second step, these parameters are estimated via ordinary least
squares (OLS). Typically, the parameters (�g) are estimated at the industry-year
level (g), for industry-years with a minimum number of observations, to allow for
heterogeneity in the accruals process across industries (j = 1, ..., J ) and time
(t = 1,...,T ):

�̂g = {β̂0,g, β̂1,g, β̂2,g} = argmin
�g

[
(T Ai,t − ˆT Ai,t )

2
]

∀ g = 1, ..., JT (2)

In the last step, these parameter estimates are combined with firms’ observed
determinants in the way described by the chosen model to generate a prediction of
normal accruals for a given firm at a given point in time:

ˆT A
OLS

i,t = β̂0,gInvAti,t−1 + β̂1,g�CRevi,t + β̂2,gPPEi,t (3)

These point predictions are expected accruals, conditional on firms’ observed
determinants (Dg), the estimated parameters (�̂g), and the chosen model (M):

ˆT A
OLS |Dg, �̂g, M (4)

These predictions do not account for the fact that the model parameters were esti-
mated (parameter uncertainty) and that researchers are uncertain about the true model
(model uncertainty). Nevertheless, the literature typically neglects prediction uncer-
tainty (model and parameter uncertainty), takes the predicted accruals of the chosen
model as the true accruals, and classifies any deviations of firms’ observed accruals
from the predictions as abnormal. As a result, this classification rule can be expected
to lead to excessive evidence of managerial discretion and opportunism.

2.1.2 Bayesian approach

Our proposed Bayesian approach to predicting normal accruals attempts to explic-
itly incorporate model and parameter uncertainty to reduce the incidence of false
positives.

Bayes Bayesian statistics provide a convenient way to incorporate uncertainty about
firms’ accruals processes in predicting normal accruals. Researchers’ beliefs about

7In line with the original Jones (1991) model, we include the inverse of total assets, instead of a constant.
In latter sections, we also consider models with (group-specific) constants, instead of (group-specific)
coefficients on the inverse of total assets.
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unknown quantities (e.g., models, parameters, or normal accruals) can be repre-
sented by distributions. As researchers examine data (on firms’ observed accruals and
their determinants), their initial beliefs change following Bayes’s rule. For example,
researchers’ beliefs about the coefficient values of the modified Jones model after
examining the data are a weighted average of researchers’ beliefs before examin-
ing the data (prior distribution) and the data (likelihood), where the relative weights
depend on the precision of the prior belief vis-à-vis the amount and quality of the
data:

(5)

In the following three steps, we illustrate how Bayesian methods and tools can
be applied to the estimation of the modified Jones model to better predict normal
accruals and explicitly account for multiple sources of uncertainty.

Parameter uncertainty In a first step, we show how uncertainty surrounding the
model’s parameters (i.e., coefficients) is incorporated into the normal accruals predic-
tion. For this purpose, we take the modified Jones model as given and simply estimate
its parameters using Bayesian, instead of OLS regressions. For the Bayesian regres-
sion estimation, we must specify distributions describing accruals and our priors
about reasonable coefficient values (p(�g|M)).

The Bayesian estimation yields posterior distributions for the coefficient values
(p(�g|Dg, M)), informed by the data (Dg). The wider these distributions, the less
precise are the coefficient values. The coefficient distributions serve as a key input
into the prediction of normal accruals. Just as in the standard approach, we pre-
dict firms’ normal accruals by combining the firms’ observed determinants with
the respective coefficient values. In contrast to the standard approach, however, we
do not simply use one point estimate per coefficient but instead calculate predicted
accruals by weighting all plausible coefficient values with the respective probabil-
ities assigned by the posterior coefficient distribution (p(�g|Dg, M)). As a result,
we obtain a full distribution of predicted normal accruals for a given firm at a given
time—the so-called posterior predictive distribution (p( ˆT A|Dg, M)):

p( ˆT A|Dg, M) ∝
∫

p( ˆT A|Dg, �g, M)p(�g|Dg, M)d�g (6)

This predictive distribution incorporates uncertainty about the true parameters of
the model into the prediction of normal accruals. Unlike the OLS point prediction,
the predictive distribution does not take the coefficient estimates as given.
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Heterogeneity In a next step, we illustrate how one can efficiently incorporate het-
erogeneity in parameters across groups into the normal accruals prediction. For this
purpose, we again take the modified Jones model as given and estimate its parameters
using Bayesian regressions. In addition, we now explicitly model the heterogene-
ity in parameters across groups using Bayesian hierarchical modelling, instead of
merely estimating our coefficients within groups with a given minimum number of
observations.

The hierarchical model accounts for the fact that, in a hierarchical setting,
the data really contains two sources of information: the within-group data and
across-group variation. It splits the model parameters into group-specific parame-
ters (e.g., industry-year-specific coefficients) and hyper-parameters (ψ) governing
the distribution of the group-specific parameters across groups:

p( ˆT A|D,M) ∝
∫ JT∏

g=1

(∫
p( ˆT A|Dg,�g,ψ,M)p(�g |Dg,ψ,M)d�g

)
p(ψ |D,M)dψ

(7)

The hierarchical model uses the entire sample (D instead of Dg) to estimate all
the parameters jointly. If there are plenty of observations in a given industry-year, the
group-specific coefficient is chiefly determined by these observations. If instead there
are only limited observations in a given industry-year, the group-specific coefficient
borrows information from the other industry-year coefficients. (This information is
contained in the across-group hyper-parameters.) This approach eliminates the need
to define ad hoc cutoffs of minimum required observations and discard useful infor-
mation/data (e.g., cross-group information and information in groups with fewer
observations than defined by the cutoff).

Model uncertainty In a last step, we illustrate how, using Bayesian model averaging,
one can combine different models of normal accruals to achieve better predictions
and incorporate model uncertainty into the predictive distribution. Just as with param-
eters, we can have a prior belief about the plausible models and update this belief
based on the data. The resulting posterior distribution of plausible models can be used
to weight the predictions of distinct models. These model probabilities can be used
to average the model-specific predictive distributions of normal accruals and obtain
an averaged predictive distribution of normal accruals:8

p( ˆT A|D) ∝
∫ (∫

p( ˆT A|D, �, M)p(�|D, M)d�

)
p(M|D)dM (8)

This averaged distribution uses information from all candidate models with
nonzero probabilities. Importantly, it incorporates researchers’ uncertainty about the
true model among the set of candidate models. Unlike the OLS point prediction

8For notational brevity, we us p( ˆT A|D,M) ∝ ∫
p( ˆT A|D,�,M)p(�|D,M)d� as a short form of the

hierarchical model where ψ is already integrated out.
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( ˆT A|Dg, �g, M), the predictive distribution p( ˆT A|D) does not take one ad hoc
model for granted anymore.9

2.2 Measurement problem

We can use the model-averaged predictive distribution of normal accruals in vari-
ous ways to classify firms’ accruals as abnormal. For example, we can calculate a
dichotomous variable indicating when firms’ observed accruals fall outside of, for
example, the 98% credible interval of the predictive distribution. We can also calcu-
late a continuous variable using scoring rules (i.e., loss functions). The logarithmic
scoring rule, for example, closely relates to information theory. It translates the pre-
dictive probability assigned to firms’ observed accruals into a measure of loss or cost
to a decision-maker who relies on the prediction. The negative of the logarithmic
scoring function hence can be viewed as a measure of researchers’ confidence that
observed accruals are indeed abnormal.10 Alternatively, and similar to the standard
approach, we can take the difference between the observed accruals and the mean
of the posterior predictive distribution as a point prediction of abnormal accruals but
then apply an adjustment for the corresponding prediction uncertainty.

2.3 Testing problem

We can use moments of the predictive distribution of normal accruals to test for
abnormal accruals, due to opportunistic accruals in a Bayesian measurement-error
model. In the measurement-error model, we can, for example, not only use the mean
but also the standard deviation of the predictive distribution to infer opportunistic
accruals. In particular, we can consider abnormal accruals as a latent construct:

DA∗
i,t = T Ai,t − NDA∗

i,t (9)

which can only be measured with error, because we do not observe the normal (or
nondiscretionary) accruals (NDA∗

i,t ).
To measure abnormal accruals (DAi,t ), we take the difference between firms’

observed accruals (T Ai,t ) and the expected value of the predictive distribution of

9Bayesian model averaging relates to two ad hoc approaches to addressing model uncertainty common in
the earnings management literature: showing robustness across various models (e.g., Sletten et al. 2018)
and using a combined score (e.g., Leuz et al. 2003). Unlike these approaches, Bayesian model averaging
explicitly accounts for differences in the predictive ability of the distinct models via the model weights.
This theoretically motivated and data-driven weighting increases power to detect earnings management,
relative to ad hoc judgments about which models to report and how to combine earnings management
indicators.
10The logarithmic scoring rule uses (the negative of) the logarithm of the posterior probability assigned by
the model to the observed accruals value. This rule can be linked to information theory and is commonly
used in Bayesian inference. Absent an explicit economic model, it, however, is just one among many
possible rules (i.e., it is a purely statistical construct).
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normal accruals (NDAi,t = ˆT Ai,t |D), closely following the literature’s approach:

DAi,t = (
T Ai,t − NDAi,t

) = DA∗
i,t + (

NDA∗
i,t − NDAi,t

)

∼ N
(
DA∗

i,t , σNDA,i,t

)
(10)

As our prediction of normal accruals is uncertain, so is our abnormal accruals
measure. To reflect the uncertainty, we can model our abnormal accruals measure
as normally distributed with the latent abnormal accruals value (DA∗

i,t ) as its mean

and the extent of measurement error (σNDA,i,t ) as its standard deviation.11 We proxy
for the extent of error in our measurement by using the standard deviation of the
predictive distribution of normal accruals (p

(
T Ai,t |D

)
).

Equipped with our measure of abnormal accruals and its extent of measurement
error, we can estimate the Bayesian measurement-error model regressing measured
abnormal accruals on variables for managerial opportunism (Xi,t ).12

DA∗
i,t = a0 + a1Xi,t + ui,t (11)

DAi,t ∼ N
(
DA∗

i,t , σNDA,i,t

)

In estimating the impact of managerial opportunism, this model takes into account
that some abnormal accruals are less precisely measured than others (i.e., more uncer-
tain). The model weights observations according to the prediction uncertainty for
DAi,t . This precision-based weighting of abnormal accruals will shrink the influ-
ence of volatile firms and firms with limited information. Notably, these firms
typically contribute to the many (potentially false) positives in tests for managerial
opportunism (e.g., Hribar and Collins 2002; Kothari et al. 2005).13

3 Data

We closely follow the literature in constructing the sample and variables underly-
ing our tests. We use Compustat North America data from 1988 until 2017. For the
estimation of the Jones model and its basic variants (Section 4), we exclude finan-
cial firms (three-digit SIC code between 600 and 699) and observations with lagged
total assets smaller than $10 million, leverage (debt over total assets) larger than one,
or total asset growth of 200% or more (to exclude M&A activity). We restrict the

11To implement the measurement-error model, we assume that the unobservable measurement error
(NDA∗

i,t − NDAi,t ) follows a normal distribution. This assumption is a simplifying assumption as the
actual distribution is a mixture of unknown form. It is motivated by two observations. First, we observe
that the predictive distributions of abnormal accruals appears to approximate normal distributions. Second,
we note that the normal distribution is the maximum uncertainty distribution if all we know is an expected
value and a standard deviation. Hence our simplifying assumption follows the maximum uncertainty
principle that governs our choice of priors (Section 4).
12Figure A4 in the online appendix illustrates the measurement-error regression framework.
13For the above two-step approach, it is important to include the determinants used in the normal-accruals
estimation (the first step) into the earnings-management regression (the second step) to avoid omitted
variable bias, if the incentive variables are correlated with the determinants of normal accruals (Chen et al.
2018). Alternatively, one can use a one-step estimation, regressing total accruals on both their normal
determinants and the incentive variables.
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sample to observations with nonmissing values for all of required variables. We trun-
cate all continuous variables at the first and 99th percentile. Table 1 summarizes the
data. Panel A provides the definition of our variables (following Dechow et al. 1995).
Panel B presents descriptive statistics for the variables.

For our application of the Bayesian approach to an extended set of accruals models
(Section 5), we additionally require nonmissing values for all the variables specified
by the various models (listed in Table 6). These additional requirements (e.g., avail-
ability of book-to-market information) further restrict the sample size. As before, we
truncate all continuous variables at the first and 99th percentile.

For validation tests (Section 5), we use earnings management indicators provided
by Dechow et al. (2011) and Audit Analytics. In our first earnings management test,
we employ an indicator (IAAER) taking the value of one for firm-years subject to

Table 1 Sample descriptives and variable description

Panel A:

Variable Description

�CRevi,t Change in cash revenues ((salei,t − salei,t−1 − (recti,t − recti,t−1))/ati,t−1)

InvAti,t−1 Inverse of lagged total assets (1/ati,t−1)

Levi,t−1 Financial leverage ((dlt ti,t−1 + dlci,t−1)/ati,t−1)

PPEi,t Property, plant, and equipment (ppegti,t /ati,t−1)

RoAi,t Return on assets (oidadpi,t /ati,t−1)

SdRevi,t Revenue volatility (σ(salei,t , salei,t−1, salei,t−2)/ati,t−1)

T Ai,t Total accruals ((ibi,t − oancfi,t )/ati,t−1)

Panel B:

Variable N Mean StDev P05 P25 Median P75 P95

�CRev 139,241 0.075 0.240 −0.237 −0.019 0.039 0.147 0.480

InvAt 139,241 0.013 0.020 0.000 0.001 0.004 0.015 0.059

Lev 139,241 0.242 0.215 0.000 0.037 0.216 0.375 0.652

PPE 139,241 0.634 0.472 0.070 0.253 0.532 0.942 1.477

RoA 139,241 0.035 0.188 −0.315 −0.007 0.066 0.123 0.251

SdRev 139,241 0.163 0.185 0.007 0.045 0.104 0.213 0.519

T A 139,241 −0.070 0.120 −0.264 −0.108 −0.056 −0.018 0.080

The table presents information about the sample used to fit the six accruals models used in the analysis.
The sample is based on the Compustat North America File. Panel A shows the computations for all vari-
ables used. We generally use the variable definitions by Dechow et al. (1995). Variables inside the brackets
refer to the corresponding Compustat column names: sale is revenues; rect is trade receivables; at is total
assets; dltt is long-term debt; dlc is current debt; ppegt is gross property, plant, and equipment; oiadp

is operating income after depreciation; ib is income before extraordinary items; and oancf is cash from
operating activities. The seven final variables are scaled to mean zero and standard deviation one before
fitting the models. Panel B presents descriptive statistics for the unscaled final sample. We use all data
from 1988 till 2017 that fulfill the following requirements: we exclude financial firms (three-digit sic code
between 600 and 699) and observations with lagged total assets smaller $10 million. To be included an
observation must further have nonmissing values for all seven variables. Finally, we truncate all contin-
uous variables at the first and 99th percentiles of their respective distributions and keep only firms with
leverage less than 1 and total asset growth of less than 200% (to exclude extreme M&A activity)
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upward earnings management, according to an Accounting and Auditing Enforce-
ment Release (AAER) of the SEC (Dechow et al. 2011) (and zero otherwise). In our
second test, we use an indicator (IREST ) taking the value of one for firm-years with
a restatement due to accounting rule (GAAP/FASB) application failure, excluding
disclosure issues (and zero otherwise) (Du et al. 2020). In our third test, we use an
indicator (ICL) taking the value of one for firm-years with an SEC comment letter
pertaining to a 10-K or 10-Q in the particular year (and zero otherwise) (Du et al.
2020).14

4 Estimation

4.1 Predicting normal accruals

4.1.1 Bayesian approach

Specification The Bayesian version of the industry-year-level modified Jones model
(with g = {j, t}) takes the following form:

T Ai,j,t ∼ N(μi,j,t , �)

μi,j,t = β0,j,t InvAti,j,t−1 + β1,j,t�CRevi,j,t + β2,j,tPPEi,j,t (12)

Similar to the OLS model in Eq. 1, we model total accruals (T A) as a linear func-
tion of (inverse) total assets, changes in revenues, and PP&E, plus some noise. For
the Bayesian estimation, we need to specify the distribution of the noise and priors
over the model parameters. Following standard Bayesian practice for linear regres-
sions, we model the noise of the accruals model as normally distributed, with mean
zero and unknown standard deviation �. In specifying the priors, we follow guiding
principles advocated by leading Bayesian statisticians (e.g., McElreath 2020; van de
Schoot et al. 2021). We choose priors that satisfy three criteria. First, they should
down-weight unreasonable parameter ranges. Second, they should make minimal
assumptions about the prior shape. Third, they should be easy to reason about.15

Following the first criterion, we choose weakly informative priors for the unknown
standard deviation � and the industry-year-level coefficients, β0,j,t , β1,j,t , β2,j,t . In
contrast to diffuse priors, ours down-weight unreasonable parameter values, reduc-
ing overfitting concerns. Following the second criterion, we choose an exponential
distribution for the shape of the unknown standard deviation and normal distributions
for the shape of the coefficient priors. Following the maximum entropy argument
(e.g., Jaynes 2003; McElreath 2020), these distributions encode maximum uncer-
tainty about the shapes of the priors. The exponential distribution, for example, is the

14We follow Du et al. (2020) in requiring that the filing date of the form (10-K or 10-Q) commented on
by the SEC to fall within a 365-calendar-day interval ending 100 days after the fiscal year-end.
15A popular alternative approach to choosing priors is to consider conjugate priors that, in combination
with the likelihood, result in known posterior distributions. The benefit of conjugacy is that it reduces
the computational burden. Its drawback is that it may impose undesirable restrictions on the shape of the
priors.
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maximum uncertainty distribution if all we are willing to specify is the “average devi-
ation.” Similarly, the normal distribution is the maximum uncertainty distribution if
all we are willing to specify are the mean and standard deviation. Lastly, following
the third criterion, we standardize total accruals and all determinants to have means
of zero and standard deviations of one. This standardization (and the choice of low-
parameter distributions) aids the accessibility of the model estimation by simplifying
the reasoning about the priors.

In sum, we specify our priors as follows:

� ∼ Exp(1)

β0,j,t ∼ N(0, 2.5) ∀j, t

β1,j,t ∼ N(0, 2.5) ∀j, t

β2,j,t ∼ N(0, 2.5) ∀j, t (13)

The prior for � implies that, before seeing the data, we expect the average devi-
ation of the residual to be one. As we standardize our dependent variable, this
parameterization allows the residuals to explain most if not all the variation in the
dependent variable. Accordingly, it is a conservative but still weakly informative prior
(which respects the nonnegativity constraint for values of the unknown standard devi-
ation). Similarly, the prior choices for the coefficients imply that, before seeing the
data, we expect that the true (standardized) coefficients lie within the range of -5 to
+5 with a 95% probability. This choice essentially says that we view it as unlikely
that a one-standard-deviation increase in InvAt , �CRev, or PPE is associated with
a change in accruals of more than five times its standard deviation. These priors
are weakly informative because only economically implausible and statistically rare
coefficients of magnitudes outside the -5 to +5 range are down-weighted.

We specify and estimate this model using STAN software (Carpenter et al. 2017).
The benefit of this software is that it can be called from standard statistical software
packages (e.g., R and STATA) and employs various forms of Markov Chain Monte
Carlo (MCMC) algorithms in the background to draw the posterior distributions.16

Accordingly, our Bayesian approach merely requires a conceptual understanding of
Bayesian statistics and concepts. It does not require knowledge of new programming
languages or expertise in sampling algorithms.

For illustrative purposes, we briefly introduce the conceptual idea behind MCMC
sampling algorithms, provide details on necessary estimation choices, and discuss
post-estimation diagnostics in the following. In our Bayesian estimation, MCMC
algorithms are needed because the posterior parameter distributions of our complex
models do not correspond to closed-form expressions of known distributions. In the
absence of such distributions, the algorithms allow to numerically approximate the
posterior distributions by generating a large sample of parameter values. To obtain
this sample, MCMC algorithms perform two operations to ensure that the parameter
values are sampled in a way that approximates the underlying posterior of interest.

16We provide our code publicly to ease the adoption of our approach.
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First, starting from current parameter values (�s), they propose a new set of parame-
ter values (�∗) by stepping randomly in a new direction in parameter space. Second,
they decide whether to accept the proposed step. The algorithms accept the proposed
values (�∗) into the series ({�(1), ..., �(s)}) if the ratio of the probabilities of the pro-
posed vis-à-vis the current parameter values (p(y|�∗)p(�∗)/p(y|�(s))p(�(s))) is
higher than some random amount between 0 and 1. Otherwise, they add the current
value (�s) to the series again. As the series or chain grows, the resulting distribution
of parameter values converges to the desired parameter distribution. (For a detailed
introduction to sampling algorithms, see Gelman et al. (2013).)

MCMC algorithms differ in how they implement the generation of proposal val-
ues and the acceptance decision. In our estimation, we use the Hamiltonian MCMC
algorithm, the default algorithm in STAN. The algorithm uses Hamiltonian motion
dynamics to determine the next proposed value. For complex models, it tends to
be more efficient than previous algorithms (e.g., Gibbs or Metropolis-Hastings) as
the proposed values tend to have a higher acceptance rate (Betancourt 2018). To
parameterize the algorithm (e.g., step size of proposal values), we rely on the default
settings in STAN. The STAN implementation auto-tunes the algorithm parameteri-
zation to achieve appropriate mixing (e.g., a high acceptance rate of proposal values)
via machine learning tools (e.g., using trees to determine the next move).

We estimate all models using two chains with 3,500 iterations each. We discarded
the first 1,000 iterations of each chain as our burn-in period. Using multiple chains
and discarding the initial values are best-practices, which reduce the dependence of
a given series on the starting value.

After the estimation, we examine the chains for convergence and efficiency (i.e.,
their mixing properties). The chains should not be stuck at any particular value for
too long and move through all possible values several times. We visually inspect
the chains of the key model parameters using trace plots, which plot the series of
accepted values across the iterations. In addition, we examine the R-hat convergence
diagnostic and effective sample size (Gelman and Rubin 1992). We make sure that
our choices of the burn-in period and number of iterations result in R-hat values of
less than 1.05, which indicates sufficient mixing and ensures an effective sample size
of at least 100 samples per chain (Stan Development Team 2018).17

Results The model estimation produces posterior distributions of the model param-
eters. Equipped with these distributions, we can generate the posterior predictive
distribution of accruals. Figure 1 showcases an example of a predictive distribution
for a given firm in a given year. The peak of the distribution represents the most
likely accruals value, according to the model. The width of the distribution reflects
parameter uncertainty. The figure highlights the importance of accounting for uncer-
tainty in the accruals prediction. The OLS estimate (marked by a thin black line)

17After checking post-estimation diagnostics (e.g., examining mixing properties), we could leave almost
all default settings in place. We only had to increase the maximum tree-depth for the Ball and Shivakumar
(2006) and the Frankel and Sun (2018) models estimated in Section 5.
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Fig. 1 Example of Posterior Predictive Distribution. The figure illustrates the posterior predictive dis-
tribution. The light-gray area shows the posterior predictive distribution for one illustrative firm-year
observation from a Bayesian hierarchical version of the modified Jones model of the form T Ai,t =
a1,j,t InvAti,t + a2,j,t�CRevi,t + a3,j,tPPEi,t . The subscripts j, t denote industry-year-specific coef-
ficients for the three variables. Variable descriptions can be found in Table 1. The dark-gray areas mark
accruals values that lie beyond the first and 99th percentile and are thus very unlikely according to the
model. More generally, the width of the posterior reflects the model’s uncertainty regarding which value
of nondiscretionary accruals to expect

and theobserved accruals level (marked by a dashed line), while differing from each
otherby around 4% of the standard deviation of accruals, are close to the center of the
predictive distribution. Accordingly, neither the observed accruals level nor the dif-
ference between the OLS estimate and the observed accruals level appears unusual
nor significant, given the extent of prediction uncertainty.

4.1.2 Heterogeneity

Specification We augment the industry-year-level model in Eq. 12 by introducing a
hierarchical parameter structure featuring hyper-parameters governing the relation of
industry-year-level coefficients across industry-years.18 To this end, we first modify
the priors for the coefficients in Eq. 13 to be:⎛

⎝
β0,j,t
β1,j,t
β2,j,t

⎞
⎠ ∼ N

⎛
⎝

⎛
⎝

μ0
μ1
μ2

⎞
⎠ ,

⎛
⎝

σ0 ρ0,1 ρ0,2
ρ0,1 σ1 ρ1,2
ρ0,2 ρ1,2 σ2

⎞
⎠

⎞
⎠ ∀j, t (14)

18In line with the literature, we allow for coefficient heterogeneity. The Bayesian hierarchical modelling
approach could also be used to allow heterogeneity in the residual variance (�).
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The coefficient priors are now functions of new hyper-parameters (μ, ρ, σ ). The
hyper-parameters determine the plausible distribution of coefficients across industry-
year groups. μ reflects the expected average coefficient across industry-years, σ

determines the range of plausible coefficients across industry-years, and ρ allows
for cross-coefficient learning. Importantly, and unlike before, the hyper-parameters
μ and σ are not fixed anymore. Their posterior distributions are estimated from the
data, jointly with the industry-year-specific coefficients. Just as the coefficients, these
hyper-parameters need (hyper-)priors. We specify these priors as follows:

μd ∼ N (0, 2.5) ∀d

σd ∼ Exp (1) ∀d

ρ ∼ LKJcorr(2) (15)

The parameters of the hyper-priors determine the plausible values of the hyper-
parameters, before seeing the data. μd is the prior for the average across all
group-specific coefficients βd,g for determinant d (with d = 0, 1, 2 in the modified
Jones model). σd is the prior for the amount of variation in βd,g across groups. We
chose relatively weak priors to have nearly all the shrinkage (i.e., the disciplining of
group specific coefficient estimates) come from the data.19 The prior for the correla-
tion between coefficients ρ is a special multivariate prior for correlations that honors
the dependencies between correlations (Lewandowski et al. 2009).20 LKJcorr(2)
defines a weakly informative prior that is skeptical of extreme correlations.

We estimate this hierarchical model using the entire dataset. The hierarchical mod-
elling eliminates the need to estimate parameters separately for industry-years and
facilitates information sharing across industry-year groups. (For further detail on the
prior definition and choice of the Bayesian hierarchical model, please refer to the
online appendix.)

Results The model estimation produces posterior distributions of the model param-
eters. Figure 2 illustrates that, compared to the corresponding OLS estimates,
the (average) coefficient estimates obtained using the hierarchical model are less
dispersed. The hierarchical modelling, in particular, shrinks extreme coefficients
observed for industry-year groups with little information (i.e., few observations)
toward the typical coefficient values observed across industry-year groups. This
shrinkage is based on the amount of available information, and cross-group

19“Shrinkage” in Bayesian estimation refers to the impact of (weakly) informative priors on posterior
coefficient estimates. Priors pull (or shrink) the coefficient estimates obtained from the data toward the
priors. This pull is a form of regularization, which addresses issues with outliers in the data (see Leone,
Minutti-Meza, and Wasley (2019) for a discussion of outliers in accounting research).
20Correlations cannot be independent. For example, if the correlation between PPE and InvAt is large,
then this influences the correlations betweenPPE and�CRev and between InvAt and�CRev. The LKJ
prior accounts for this dependence (Lewandowski et al. 2009). Its use for multi-level models is advocated
in most software packages. See, for example, the STAN manual (Stan Development Team 2018).
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Fig. 2 Comparison of Industry-Year Coefficient Estimates. The figure plots industry-year coefficient esti-
mates (b1,j,t , b2,j,t , b3,j,t ) of the modified Jones model by industry-year sample size. The modified Jones
model used is of the form T Ai,t = b1,i,t InvAti,t + b2,j,t�CRevi,t + b3,j,tPPEi,t . Variable descrip-
tions can be found in Table 1. The three plots on the left of the figure show OLS estimates, whereas the
plots on the right show posterior means for each coefficient from a Bayesian hierarchical model. The grey
line highlights the requirement of a minimum of 20 observations in an industry-year that is common in
the literature. Comparing the OLS (left) and Bayes (right) plots for each coefficient illustrates the auto-
matic regularization inherent in Bayesian hierarchical models. No significant differences are apparent for
industry-years with large sample sizes (e.g., greater than 200 obs). By contrast, the dispersion of OLS
estimates is much larger for small industry-year samples (e.g. less than 100 observations)

learning eliminates the need to rely on ad hoc cutoffs (e.g., for the number of required
observations), opens the possibility of estimating even firm-level models, and can be
expected to lead to more plausible coefficient estimates and accruals predictions.
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4.1.3 Model uncertainty

Specification We incorporate model uncertainty in our estimation and prediction fol-
lowing Yao et al. (2018). They propose a Bayesian model-averaging approach for
the realistic case where researchers can specify a set of (K) candidate models but
do not expect any of those models to be the one true model. Their approach com-
bines the posterior predictive distributions of the various candidate models via model
weights, ŵk . These weights, which are akin to the posterior probabilities of the var-
ious models, provide a discrete distribution over the set of candidate models. They
are derived from the models’ out-of-sample prediction performance, using approxi-
mate leave-one-out-prediction accuracy. For each model, we multiply its weight with
its predictive distribution to obtain a weighted-averaged posterior predictive distribu-
tion that fits the data best (in the sense of the Kullback–Leibler divergence scoring
rule):21

p( ˆT A|D) =
K∑

k=1

ŵkp( ˆT A|D, Mk) (16)

In our implementation, we use six candidate models (K = 6). The first is the hier-
archical modified Jones model with industry-year-specific coefficients. The second
includes three additional determinants capturing firms’ operating and financing char-
acteristics (e.g., in the spirit of Kothari et al. (2005) and Hribar and Nichols (2007)):
return on assets (RoA), leverage (Lev), and revenue volatility (SdRev).

T Ai,j,t ∼ N(μi,j,t , �)

μi,j,t = β0,gInvAti,j,t−1 + β1,g�CRevi,j,t + β2,gPPEi,j,t

+β3,gRoAi,j,t + β4,gLevi,j,t−1 + β5,gSdRevi,j,t (17)

The third model resembles the extended (second) model but includes an industry-
year-specific intercept, instead of an industry-year-specific coefficient for the inverse
of total assets. Models four to six are versions of the first three models with
coefficients varying at the firm, instead of the industry-year, level.

For illustrative purposes, we focus on a narrow set of candidate models, repre-
senting slight deviations from the modified Jones model. Our implemented approach
accordingly only captures uncertainty about the models within the set of candi-
date models. It neglects any uncertainty about and information in models excluded
from the candidate set. To incorporate model uncertainty more fully and obtain the
best normal-accruals prediction, we apply our Bayesian approach to an extended

21The approach combines models based on their out-of-sample fit, reducing concerns about over-fitting
(e.g., selecting more complex models due to better in-sample fit as a result of more parameters). For a
detailed discussion and implementation of the Bayesian model-averaging approach, see Yao et al. (2018).
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set of models, including some of the most popular and recent ones in a final step
(Section 5).22

Results We fit all six candidate models to the data and compute their weights.
Panel A of Fig. 3 shows the weights for each. The extended firm-level model (model
5) receives the highest weight, followed by the extended firm-level model with
firm-level intercepts (instead of inverse total asset coefficients) (model 6). By con-
trast, the industry-year-level models receive only little weight. Only the extended
industry-year model with industry-year intercepts (model 3) receives a nonnegligible
weight.

The weights make three important points. First, the dominance of the firm-level
models highlights that firm-level heterogeneity in accruals processes is more impor-
tant in explaining the data than industry-year-level heterogeneity (which is consistent
with Owens et al. (2017)). Second, the dominance of the extended models high-
lights the importance of controlling for performance and related determinants (which
is consistent with Kothari et al. (2005)). Third, the nonnegligible weight on the
industry-year intercept model suggests that time trends in accruals (not necessar-
ily their processes (i.e., coefficients)) appear important to account for (e.g., via
industry-year fixed effects).

Panel B of Fig. 3 illustrates, for a given company in a given year, how the model-
specific predictive distributions combine to generate one model-averaged posterior
predictive distribution of normal accruals. The left graph depicts the model-specific
distributions. The predictive distributions of the industry-year-level models are cen-
tered around lower values than the firm-level distributions and exhibit more narrow
ranges. The narrower range reflects that the industry-year-level coefficients are esti-
mated with greater precision than the firm-level coefficients. The model weights,
however, suggest that this greater precision comes at the cost of significant bias,
compared to the firm-level models. As a result, the model-averaged distribution, in
the right graph, more closely resembles the firm-level predictive distribution in that
it exhibits a relatively wide range and is centered more to the right (compared to
the industry-year-level distributions). Notably, the model-averaged distribution is less
wide than the firm-level distributions, because it uses information and features from
several models. Accordingly, the model-averaged predictive distribution is not only
less biased than the individual distributions but also more precise than the widest
individual (firm-level) distribution.

22In determining the relevant candidate models, including their determinants and level of heterogeneity, we
advocate the use of theory, institutional knowledge, and prior literature. For proper inferences, we suggest
to account for first-order determinants of accruals, especially if these determinants are correlated with
proxies for opportunistic reporting incentives (e.g., Belloni et al. 2013). As a result of the bias-variance
trade-off, we note that this approach may result in a lack of power to detect earnings management. This
lack of power (or independent treatment variation), however, does not justify the omission of important
correlated factors. Instead, it suggests that, given the data and the existence of confounding influences, we
cannot confidently infer whether earnings are managed opportunistically.
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Fig. 3 Illustration of Stacking Weights. Panel A shows stacking weights for six models: a hierarchical
modified Jones model with industry-year-specific coefficients (Model 1); a hierarchical modified Jones
model with industry-year-specific coefficients and three additional determinants, RoA, Lev, and SdRev
(Model 2); a version of model 2 with an industry-year specific intercept instead of the inverse of total
assets covariate (Model 3); a hierarchical modified Jones model with firm-specific coefficients (Model
4); a hierarchical modified Jones model with firm-specific coefficients and three additional determinants,
RoA, Lev, and SdRev (Model 5); a version of model 5 with a firm-specific intercept, instead of the inverse
of total assets covariate (Model 6). The stacking weights are based on approximations of leave-one-out
cross-validation performance of the models. Models with better out-of-sample performance receive more
weight. The left plot of panel B presents the posterior predictive distributions (PPDs) of six models for
an exemplary firm-year observation. The right part shows the combined, weighted posterior predictive
distribution of all six models. The weights used are the stacking weights shown in panel A

4.2 Measuring abnormal accruals

Specification Our Bayesian approach allows for various ways of defining and mea-
suring abnormal accruals (see Section 2.2). In this section, we compare point
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Table 2 Descriptive statistics of accruals measures

Variable N Mean StDev Min P05 P25 Median P75 P95 Max

TA 139,241 0.00 1.00 −37.34 −1.62 −0.32 0.11 0.43 1.25 78.30

PredOLS 138,065 0.01 0.56 −21.65 −0.84 −0.19 0.07 0.26 0.71 47.82

PostMean 139,241 0.00 0.66 −32.02 −0.95 −0.18 0.08 0.27 0.71 70.40

PostSD 139,241 0.17 0.06 0.05 0.09 0.12 0.15 0.20 0.30 0.42

The table presents descriptive information on total accruals, OLS-based accruals predictions, and Bayesian
accruals predictions (mean and standard deviation). TA is accruals, computed as earnings before extraor-
dinary items minus operating cash flow scaled by lagged total assets and standardized to mean zero and
standard deviation one. PredOLS is the residual from a standard industry-year modified Jones model with
three coefficients (change in cash revenues, PP&E, and the inverse of lagged total assets). PostMean is
the posterior mean of our predictive distribution that incorporates parameter and model uncertainty (i.e.,
is averaged over six different versions of the modified Jones model). PostSD is the standard deviation of
the same predictive distribution

predictions between OLS and the Bayesian approach (Table 2). In line with the lit-
erature, we measure abnormal accruals (DAi,t ) as the difference between observed
accruals (T Ai,t ) and the expected (mean) normal accruals (NDAi,t = ˆT Ai,t |D):

DAi,t = T Ai,t − NDAi,t (18)

We descriptively assess the quality of the measurement of normal and abnor-
mal accruals by correlating these measures, calculated using the literature’s stan-
dard approach and our Bayesian approach, with the observed accruals levels. The
OLS-based normal and abnormal accruals are estimated using the predictions of
industry-year-level modified Jones MODEL, including performance, leverage, and
volatility controls (model 2). The Bayes-based normal and abnormal accruals are
estimated using the model-averaged predictive distribution.

Table 3 Correlations between Accruals, OLS Fit, and Bayesian predictions

TA PostSD PostMean PredOLS

TA −0.18 0.83 0.56

PostSD −0.13 −0.23 −0.22

PostMean 0.73 −0.17 0.71

PredOLS 0.45 −0.17 0.62

The table presents correlations between total accruals, Bayesian accruals predictions (standard deviation
and mean), and OLS predictions. TA is accruals, computed as earnings before extraordinary items minus
operating cash flow scaled by lagged total assets and standardized to mean zero and standard deviation
one. PredOLS is the residual from the extended industry-year modified Jones model with six determinants
(inverse of lagged total assets, change in cash revenues, PP&E, return on assets, leverage, and revenue
volatility). PostMean is the posterior mean of our predictive distribution that incorporates parameter and
model uncertainty (i.e., is averaged over six different versions of the modified Jones model). PostSD is the
standard deviation of the same predictive distribution. Upper (lower) triangle: Pearson (Spearman)



Accounting for uncertainty

Fig. 4 Comparison of Prediction Accuracy. The figure plots total accruals against predicted accruals
and abnormal accruals (residuals). The predictions (and residuals) on the left are based on the extended
modified Jones model (including performance, leverage, and volatility controls) fitted separately by
industry-year using OLS. The predictions (and residuals) on the right are based on the posterior means of
our averaged Bayesian models. One observation (TA = 78.30) was omitted from the plots for the sake of
presentation

Results Table 3 presents univariate correlations of observed accruals with OLS-based
and Bayes-based predicted normal accruals and measured abnormal accruals. The
correlation between observed accruals and OLS-based normal accruals is a mod-
est 0.56.23 By contrast, the correlation between observed accruals and Bayes-based
normal accruals is 0.83. The reverse pattern (mechanically) emerges for the corre-
lations of observed accruals with OLS- vis-à-vis Bayes-based abnormal accruals.
Figure 4 illustrates the relation between actual, normal, and abnormal accruals using
scatter plots. The upper graphs document that the Bayes-based normal accruals bet-
ter predict observed accruals than the OLS-based normal accruals do. Importantly,
the Bayes-based abnormal accruals in the lower graphs are widely unrelated to
observed accruals, whereas the OLS-based abnormal accruals are strongly positively
associated with observed accruals.

23Without performance, leverage, and volatility determinants, the industry-year OLS model exhibits a
correlation with observed accruals as low as 0.30.
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Under the plausible assumption that variation in observed accruals is primarily
driven by first-order economic factors (e.g., business model differences), instead of
second-order reporting incentives, the above patterns highlight that our Bayesian
estimates better capture the normal structure of firms’ accruals and hence allow iden-
tifying abnormal deviations. Notably, this substantially better fit is achieved simply
by using some basic variations of a weak and often criticized model.

4.3 Testing for abnormal accruals

Specification We test for (opportunistic) abnormal accruals using a measurement-
error model (see Section 2.3). Using simulations, we compare the power to detect
abnormal accruals and the frequency of false positives of our proposed Bayesian
approach with the standard approach.24 In our simulations, we are particularly inter-
ested in the impact of model misspecification and uncertainty on test power and false
positives.

To investigate the impact of misspecification, we simulate three distinct data gen-
erating processes (DGP) for normal accruals. The three processes generate total
accruals following the modified Jones model, that is, as a linear function of the inver-
se of total assets (InvAt), change in cash revenues (�CRev), and property, plant,
and equipment (PPE). They differ only in the level of coefficient heterogeneity. The
first process assumes that coefficients only vary by industry-year (consistent with the
standard approach in the literature). The second assumes that coefficients vary by
both industry-year and firm. The third assumes that coefficients only vary by firm.

We use the entire sample of 139,241 observations to simulate the three series of
total accruals resulting from the three distinct processes. We combine firms’ observed
modified Jones model determinants with the process-specific coefficients to gener-
ate three simulated series of total accruals. We obtain the industry-year- or firm-level
coefficients for the modified Jones model determinants via random draws from
multivariate normal distributions (calibrated using previous posterior coefficient dis-
tributions). Equipped with these coefficients, we generate the simulated accruals for
the distinct industry-year- and the firm-level processes by multiplying the modified
Jones model determinants (observed for a given firm in a given year) with the respec-
tive industry-year- or firm-level coefficients and adding normally distributed noise.
To generate the mixed industry-year and firm-level process, we add one-half of the
simulated accruals from the industry-year-level process to one-half of the simulated
accruals from the firm-level process (i.e., we assign weights of 0.5 to both models to
arrive at the model-averaged process).

For each of the three accruals series, we fit an industry-year-level modified
Jones model using OLS, resulting in three OLS predictions of normal accruals
(NDADGP

OLS,i,t , where DGP is either Industry-Year, Industry-Year + Firm, or Firm).

24Simulations allow us to control the data generating process. As a result, we can seed opportunistic abnor-
mal accruals to test for power to detect truly abnormal accruals. Such power tests could only imperfectly
be done by using AAERs, restatements, or comment letters, for example, as these are imperfect proxies
for opportunism.
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For the industry-year-level process, the OLS model is correctly specified. For
the mixed industry-year and firm-level process and the purely firm-level process,
by contrast, the OLS model is increasingly misspecified. We define OLS abnor-
mal accruals as the difference between observed and predicted accruals using the
industry-year-level modified Jones model estimated via OLS.

For the Bayesian estimation, we essentially assume there are two distinct can-
didate models. An industry-year-level model and a firm-level model. We fit both
hierarchical models to each of the three accruals series. We combine the respective
posterior predictive distributions of the two candidate models using model averaging.
We define Bayes abnormal accruals as the difference between observed and predicted
(mean) accruals measured as the mean of the model-averaged posterior predictive
distribution.25

To compare test power across the Bayesian and the standard approach, we ran-
domly add earnings management to the simulated accruals series following the
example of Kothari et al. (2005). We proceed as follows. We first randomly select
20,000 observations from the entire sample. We next randomly add a constant earn-
ings management amount to 5% of the selected sample observations.26 We calibrate
the earnings management amount at 5% of the standard deviation of the simulated
total accruals. We finally run regressions of abnormal accruals on a true earnings
management indicator (taking the value of one for all firm-years with earnings man-
agement and zero otherwise). For the OLS version, we simply regress the OLS
abnormal accruals on the earnings management indicator (EM):

DADGP
OLS,i,t = aDGP

0 + aDGP
1 EMDGP

i,t + uDGP
i,t (19)

where DADGP
OLS,i,t = T ADGP

i,t − NDADGP
OLS,i,t .

For the Bayes version, we implement a measurement-error model where we
regress the Bayes abnormal accruals as a noisy measure of observed abnormal accru-
als (DA∗DGP

BAY,i,t ) on the earnings management indicator. We measure the level of noise
in the Bayes abnormal accruals as the standard deviation of the model-averaged
posterior predictive distribution (σDA,i,t ):

DA∗DGP
BAY,i,t = cDGP

0 + cDGP
1 EMDGP

i,t + eDGP
i,t

DADGP
BAY,i,t ∼ N

(
DA∗DGP

BAY,i,t , σDA,i,t

)
(20)

25The simulation is set up to show when accounting for a broader set of models and uncertainty in param-
eter estimates is important and that the Bayesian approach does so (to the extent relevant models are
considered in the model averaging). In our setup, the literature’s standard model (industry-year-level Jones
model) is true in one case, while it is misspecified in the other two. The Bayesian approach, by contrast,
considers any mixture of the industry-year and the firm-level model, which is the full set of true models.
We choose this setup to focus on the key aspects (misspecification and uncertainty) while abstracting from
other issues (e.g., all models being incorrect). The patterns documented by the simulation should carry
over to exercises where the Bayesian approach does not include all true models. There is still going to be
a benefit of considering multiple models. It will just not be perfect. See Table A5 of the online appendix.
26We first estimate the accruals models and then add earnings management. We follow this sequence to
avoid having to repeat the time-intensive accruals-model estimation for each of the 500 iterations of the
simulation.
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For both the OLS and Bayes regressions, we record whether the coefficient on the
earnings management indicator is statistically significant at the 5% level (using the
95% confidence interval for the OLS version and the 95% credible interval for the
Bayes version).

To compare false positives across the Bayesian and the standard approach, we
slightly adjust the steps above. We keep the previously added earnings manage-
ment (to have the same sample for both tests) and assign a new but random
earnings management indicator. This random indicator falsely indicates earnings
management.

We repeat the steps for the test power and false positives simulation 500 times. The
fraction of rejections of the true earnings management indicator provides a measure
of power of the OLS and Bayes approaches to detect true earnings management for
the three different accruals processes. The fraction of rejections of the false earnings
management indicator provides a measure of false positives generated by the OLS
and Bayes approaches for the three different accruals processes.

To investigate the impact of uncertainty on power and false positives, we augment
our simulations with subsample tests. We test for power and false positives separately
in samples with high versus low uncertainty or measurement error:

DADGP
OLS,i,t = aDGP

0 + aDGP
1 EMDGP

i,t × LOWi,t + aDGP
2 EMDGP

i,t × HIGHi,t + uDGP
i,t

DA∗DGP
BAY,i,t = cDGP

0 + cDGP
1 EMDGP

i,t × LOWi,t + cDGP
2 EMDGP

i,t × HIGHi,t + eDGP
i,t

DADGP
BAY,i,t ∼ N

(
DA∗DGP

BAY,i,t , σ
DGP
DA,i,t

)
(21)

We use two measures of uncertainty. Our first splits the sample into observations
from firms with a short time series (HIGH ) versus those with a long time series
(LOW ). Fifty percent of the firms in our sample have a time series of six years or
less. We use this median as the cutoff for the split. We expect that predicted and
abnormal accruals of firms with a short time series contain more measurement error,
especially in the Bayesian firm-level version. Our second measure splits the sample
into observations with high (HIGH ) versus low (LOW ) posterior uncertainty of the
Bayesian predictions. We label observations with a posterior uncertainty (σDGP

DA,i,t ) in

the fourth quartile of the σDGP
DA,i,t distribution as high uncertainty observations.

27

Results Table 4 summarizes the rates at which the null of no earnings manage-
ment is rejected for the OLS and Bayesian versions across the different accruals
processes and sample splits using a two-tailed 95% confidence/credible interval. In
Panel A, we observe that the OLS and Bayesian approaches exhibit about the same
amount of power to detect true earnings management (59% versus 60%) for the
industry-year processes. By contrast, we observe substantially higher power to detect

27We use a two-step approach to accelerate simulations. We first estimate normal accruals and then regress
abnormal accruals on an earnings-management indicator. Given the setup of our simulation, this two-step
approach is unbiased, because the first-step estimation occurred on a sample of unmanaged accruals and
the second-step earnings-management is randomly assigned (i.e., uncorrelated with the normal-accruals
determinants, Chen et al. 2018).
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Table 4 Simulation results

Assignment DGP Term % Rejected (OLS) % Rejected (Bayes)

Panel A: Main regression

True Industry-Year EM 0.586 0.596

Industry-Year + Firm EM 0.434 0.606

Firm EM 0.342 0.922

False Industry-Year EM 0.044 0.048

Industry-Year + Firm EM 0.048 0.044

Firm EM 0.058 0.050

Panel B: Cross-sectional split by long (low) versus short (high) time series length
True Industry-Year EM×Low 0.454 0.484

EM×High 0.160 0.160

Industry-Year + Firm EM×Low 0.350 0.506

EM×High 0.184 0.182

Firm EM×Low 0.252 0.838

EM×High 0.188 0.316

False Industry-Year EM×Low 0.050 0.046

EM×High 0.056 0.052

Industry-Year + Firm EM×Low 0.044 0.048

EM×High 0.072 0.036

Firm EM×Low 0.038 0.040

EM×High 0.132 0.024

Panel C: Cross-sectional split by low versus high posterior uncertainty
True Industry-Year EM×Low 0.442 0.442

EM×High 0.196 0.186

Industry-Year + Firm EM×Low 0.264 0.520

EM×High 0.246 0.212

Firm EM×Low 0.202 0.832

EM×High 0.210 0.266

False Industry-Year EM×Low 0.040 0.044

EM×High 0.050 0.054

Industry-Year + Firm EM×Low 0.030 0.056

EM×High 0.108 0.040

Firm EM×Low 0.014 0.054

EM×High 0.132 0.016

The table presents rejection rates from earnings management tests using simulated data. The rates are
based on 500 draws from the three data-generating processes: Industry-Year, Industry-Year + Firm, and
Firm. Each draw samples 20,000 observations and randomly adds earnings management of 5% of the
standard deviation of the simulated accruals (Industry-Year 0.063, Industry-Year + Firm 0.049, and Firm
0.073) to 5% of the observations. True denotes earnings management dummies (EM) that correctly identify
managed earnings. False denotes earnings managements dummies that are randomly assigned to 5% of
the samples. Panel B splits the samples into observations from firms with a time series longer than six
years (Low) and observations from firms with shorter time series (High). Panel C splits the samples into
observations with a posterior standard deviation higher than the third quartile (High) and observations with
lower posterior standard deviation (Low)
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Fig. 5 Main Simulation Results. The figure shows rejection rates for two tests of earnings management
using simulated data. Statistics are based on 500 draws from the three data generating processes (DGP):
industry-Year, averaged, and firm. Each draw samples 20,000 observations and randomly adds earnings
management of 5% of the standard deviation of the simulated accruals to 5% of the observations. For each
sample, the null of no earnings management is tested. The left figure shows tests using an earnings man-
agement dummy that correctly identifies managed earnings. The right figure shows tests using a randomly
assigned dummy (for observations with a posterior standard deviation greater than the third quartile of
sample)

earnings management for the Bayesian vis-à-vis the OLS approach for the averaged
and the firm-level processes. Notably, power decreases for the OLS approach to 43%
and 34% for the averaged process and firm-level process, respectively, whereas it
increased for the Bayesian approach to 61% and 92% (Fig. 5).

These patterns suggest that model misspecification significantly reduces the power
of the OLS approach, especially if the researcher’s model is an industry-year model
when the true model is a firm-level model. The Bayes approach does not suffer from
a loss of power due to misspecification. It adapts its model weights across the differ-
ent processes to best fit the true process. Table 5 shows that the Bayesian approach
relies (almost) completely on the industry-year-level predictions for the industry-year

Table 5 Simulation stacking weights

Fitted Model

DGP Industry-Year Model Firm Model

Industry-Year 1.000 0.000

Industry-Year + Firm 0.226 0.774

Firm 0.015 0.985

The table presents the stacking weights computed after fitting an industry-year model and a firm model
on each of the three data-generating processes. The stacking weights are computed following Yao et al.
(2018)
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process and on the firm-level predictions for the firm-level process. For the averaged
process, it puts a weight of 23% on the industry-year-level predictions and 77% on
the firm-level predictions. These weights differ from the underlying 50%-50%mix of
the averaged process. The greater weight on the firm-level predictions likely reflects
that the firm-level model already accounts for the across industry heterogeneity of
the industry-year process. Thus only the year-to-year variation by industry remains
to be explained by the industry-year model. Interestingly, the Bayesian approach not
only does not suffer from loss of power, due to misspecification, but even increases
its power, especially for the firm-level processes. One reason for this increase might
be that there are more firms than industry-years in the sample. Accordingly, the
parameters governing the across-firm distribution of coefficients can be estimated
more precisely than the parameters governing the across-industry-year distribution
of coefficients.

With respect to false positives, we observe that the OLS and Bayesian approaches
exhibit about the same rate of false positives (close to the expected 5% level) for
all processes in Panel A. Accordingly, misspecification per se does not, on average,
appear to substantially increase false positives for the OLS approach. Once we parti-
tion observations in our simulated samples by low versus high uncertainty, however,
we observe that model misspecification notably increases the rate of false positives.
In Panel B, we observe that, for the subsample of firms with few firm-year observa-
tions, the false positive rate of the OLS approach increases from 5.6% to 7.2% and
13.2%, as we go from the industry-year process to the averaged and firm-level pro-
cesses. By contrast, the false positive rate of the Bayesian approach decreases from
5.2% to 3.6% and 2.4%, as we go from the industry-year process to the averaged and
firm-level processes. In Panel C, we observe the same pattern for the subsample of
firms with the highest (posterior) uncertainty (Fig. 5).28

These patterns suggest that the combination of model misspecification and uncer-
tainty can lead to substantially increased false positive rates for the OLS approach.
By contrast, greater uncertainty leads the Bayesian approach to down-weight its
evidence, resulting in fewer (false) rejections.

Taken together, our simulation results support the conceptual merits of the
Bayesian approach over the standard approach. The former approach appears to
exhibit more power and fewer false positives as a result of its inclusion of model and
parameter uncertainty. Notably, our simulations support concerns (e.g., Ball 2013)
that the standard approach may produce many false positives, due to model mis-
specification in combination with treatment indicators correlated with uncertainty.
Our simulation documents that the power of the literature’s standard approach to
detecting earnings management is low, especially for firm-level accruals processes
and subsamples characterized by high uncertainty. By contrast, the rate of false
positives is highest in these cases. These patterns are noteworthy, as our Bayesian

28The (rejection) magnitudes depend on the parameters of the simulation (e.g., degree of noise). They can
be scaled up or down depending on the simulation parameters. Accordingly, our primary emphasis is on
comparing the relative trends and patterns across the various data generating processes and sample splits
for the literature’s standard approach vis-à-vis the Bayesian one.
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model-averaging approach suggests that observed accruals processes in the data
indeed are better described by firm-level than industry-year-level heterogeneity.
Moreover, earnings management (treatment) indicators used in the literature are
often correlated with uncertainty (e.g., younger and volatile firms). This combination
of model misspecification and selection on high uncertainty subsamples should be
expected to favor false positives.

In the online appendix, we document that our inferences from the simulation are
robust to using alternative forms of earnings management and data generating pro-
cesses. We, for example, show that the Bayesian approach also provides greater
power to detect earnings management and produces fewer false positives in subsam-
ples with high uncertainty when modeling earnings management as a deterministic
function of earnings (e.g., Einhorn and Ziv 2020; Bertomeu et al. 2021; McClure
and Zakolyukina 2021), instead of a random constant. Similar patterns obtain when
modeling earnings management as random noise (e.g., Fischer and Verrecchia 2000;
Dye and Sridhar 2004; Beyer et al. 2019) and using absolute abnormal accruals as
an outcome. Lastly, we show that, in subsamples with high uncertainty, the Bayesian
approach produces fewer false positives, even if the underlying data generating pro-
cess is not perfectly captured by its candidate models (or a mix thereof). These
patterns highlight that the benefits of the Bayesian approach extend above and beyond
the controlled environment of our stylized simulation.

5 Application

Specification In a final step, we apply our Bayesian approach to an extended set of
models, including some of the most popular and recent accruals models. Following
a review of the literature, we consider variants of the models developed by Jones
(1991), Dechow et al. (1995), Kothari et al. (2005), Dechow and Dichev (2002),
McNichols (2002), Ball and Shivakumar (2006), Collins et al. (2017), and Frankel
and Sun (2018).29 As before, we estimate industry-year and firm-level variants of
these models. Equipped with the estimates of these model variants, we calculate the
weights assigned to each of the variants and the corresponding averaged model.

Results Table 6 reports the individual model specifications and their weights. The
basic modified Jones model receives almost no weight. This pattern is consistent

29We anchor on these popular models (Fig. A1 in the online appendix) because they reflect information
about the structure of accruals derived from theory and the properties of accounting. For ease of imple-
mentation, we restrict the set of models to those using (unweighted) OLS specification. Accordingly, we
include models using flexible control functions to implicitly match on firm characteristics (e.g., Collins
et al. 2017). By contrast, we omit models that rely on explicit matching approaches (such as entropy
balancing; e.g., McMullin and Schonberger 2020). Explicit matching models tend to be motivated by con-
cerns about nonlinearities in the cross-firm relation between accruals and firm characteristics. We expect
the firm-level variants to help account for such nonlinearities by focusing on within-firm relations. The
limited weight assigned to the Collins et al. (2017) model, which uses flexible controls to account for
nonlinearities, provides support for this expectation.
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Table 6 Application stacking weights

Panel A:

Fitted Model Model Equation

ModJones NDAt = β0InvAtt−1 + β1�CRevt + β2PPEt

ModJonesROA NDAt = β0InvAtt−1 + β1�CRevt + β2PPEt + β3ROAt

AQ NDAt = β0CFOt−1 + β1CFOt

ModJonesAQ NDAt = β0InvAtt−1 + β1�CRevt + β2PPEt + β3CFOt−1 + β4CFOt

Collins NDAt = β0 + β1�CRevt + ∑5
k=2 β2,kROAQunitilek

t

+∑5
k=2 β3,kSGQunitilek

t + ∑5
k=2 β4,kBtoMQunitilek

t

BallShiva NDAt = β0 + β1�CRevt + β2PPEt + β3ROAt + β4CFOt

+β5NegCFOt + β6NegCFOt · CFOt

FrankelSun NDAt = β0 + β1�CRevt + β2OpCyclet

+β3�CRevt · OpCyclet + β4�CFOt + β5�OCFSCt

+β6�CFOt · �OCFSCt

Panel B:

Fitted Model Weight

Industry-year-level model variants

ModJones 0.005

ModJonesROA 0.034

AQ 0.012

ModJonesAQ 0.000

Collins 0.053

BallShiva 0.004

FrankelSun 0.088

Firm-level model variants

ModJones 0.000

ModJonesROA 0.050

AQ 0.000

ModJonesAQ 0.243

Collins 0.097

BallShiva 0.065

FrankelSun 0.349

The table presents the stacking weights computed following Yao et al. (2018) and used to compute the
averaged (ab)normal accruals used in the tests reported in Tables 7 to 10. Industry-year model variants are
estimated with coefficients varying per industry-year. Firm model variants are estimated with coefficients
varying per firm. To avoid lookahead bias, the models AQ and ModJonesAQ do not include CFOt+1 (fol-
lowing Frankel and Sun 2018). CFOt is operating cash flows ((oancft )/att−1). NegCFOt is an indicator
if operating cash flows is negative.OpCyclet is the average percentile rank of operating cycle over the past
three years (0.5∗(rectt +rectt−1)/salet +0.5∗(invtt +invtt−1)/cogst −0.5∗(apt +apt−1)/purchasest ).
OCFSCt is the average percentile rank of OpCycle and (1 - net profit margin ibt /salet ). BtoMt is the
book-to-market ratio at the beginning of the fiscal period ((ceqt−1/mkvaltt−1). SGt is revenue growth
((salet /salet−1). All other variables are defined as in Table 1. Weights are computed for a sample of
62,022 observations from 1988-2017, remaining after the data cleaning steps described in Table 1 and
requiring nonmissing values for all of the models’ variables
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with subsequent refinements (e.g., Kothari et al. 2005) not only improving but essen-
tially subsuming the basic model. It echoes our earlier finding that an extended Jones
model, which controls for firm characteristics, such as performance, dominates the
basic Jones model. All other models receive a nonnegligible weight for at least one
of their respective variants (industry-year or firm-level). This pattern highlights the
usefulness of considering a broad set of models. The greatest weights are assigned to
firm-level variants of the McNichols (2002) model, one of the most popular models,
which combines the Jones (1991) and the Dechow and Dichev (2002) models, and
the Frankel and Sun (2018) model, the most recent one. Consistent with our earlier
results, these patterns reiterate the need to account for firm-level heterogeneity. They
also document that the combination of two seminal models (Jones 1991; Dechow
et al. 1995) helps in modelling accruals and that recent work by Frankel and Sun
(2018) substantially improves this modelling.

We assess the usefulness of the averaged model by examining its ability to explain
future performance and earnings management indicators (AAERs, restatements, and
comment letters). Following Frankel and Sun (2018), Table 7 reports the results from
regressions of future performance on current performance, constructed by combining
current cash flow from operations and normal accruals predicted by the respec-
tive accruals models. We find that the current performance measure based on our
averaged model’s (mean) normal accruals better explains future performance than
current performance measures constructed using the normal accruals produced by
the individual models.30 The averaged model achieves an R2 of 54% (column 1),
whereas the individual models exhibit explanatory power ranging from 45% to 48%
(columns 2 to 8). The results suggest the averaged model significantly improves
over and above the individual models’ ability to capture the structure of normal
accruals.

Table 8 reports the results from regressions of indicators for (income-increasing)
AAERs on abnormal accruals. We find that abnormal accruals are positively and
statistically significantly associated with AAERs, irrespective of the accruals model
used to estimate abnormal accruals. Compared to the abnormal accruals produced
by the individual models, the ones produced by the averaged model exhibit a higher
coefficient magnitude. The averaged model produces a slope coefficient of 0.035,
suggesting a one standard-deviation increase of abnormal accruals is associated with
a 3.5% increase in the likelihood of a financial reporting enforcement action. The
slope coefficients of the individual models, by contrast, range from 0.018 to 0.031.
These results are consistent with the averaged model producing less noisy measures
of abnormal accruals.31

30In keeping with the literature, the normal accruals of the individual models are estimated at the industry-
year level using OLS. To avoid a mechanical improvement of the prediction ability, we exclude controls
for future cash flows in estimating the individual models and the averaged model.
31Noise due to measurement error can be expected to bias the relation between AAERs and abnormal
accruals toward zero.
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Ta
bl
e
9

R
es
ta
te
m
en
ts

A
ve
ra
ge
d

M
od
Jo
ne
s

M
od
Jo
ne
sR

O
A

A
Q

M
od
Jo
ne
sA

Q
C
ol
lin

s
B
al
lS
hi
va

Fr
an
ke
lS
un

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

A
D
A

0.
07
4∗

∗
0.
01
4

0.
02
5

0.
00
4

0.
01
2

0.
01
4

−0
.0
11

0.
02
1

[2
.9
25
]

[0
.9
37
]

[1
.5
49
]

[0
.2
69
]

[0
.7
06
]

[0
.8
30
]

[−
0.
62
5]

[1
.2
08
]

R
oA

0.
05
6∗

∗
0.
05
6∗

∗
0.
05
6∗

∗
0.
05
6∗

∗
0.
05
6∗

∗
0.
05
6∗

∗
0.
05
5∗

∗
0.
05
6∗

∗

[4
.7
14
]

[4
.7
22
]

[4
.7
14
]

[4
.6
71
]

[4
.7
14
]

[4
.7
03
]

[4
.5
87
]

[4
.7
33
]

Si
ze

0.
00
9∗

∗
0.
00
9∗

∗
0.
00
9∗

∗
0.
00
9∗

∗
0.
00
9∗

∗
0.
00
9∗

∗
0.
00
9∗

∗
0.
00
9∗

∗

[8
.0
98
]

[8
.0
66
]

[8
.0
82
]

[8
.0
54
]

[8
.0
65
]

[8
.0
63
]

[8
.0
37
]

[8
.0
72
]

L
ev

0.
00
2

0.
00
1

0.
00
2

0.
00
1

0.
00
1

0.
00
2

0.
00
1

0.
00
2

[0
.3
38
]

[0
.2
38
]

[0
.2
61
]

[0
.2
33
]

[0
.2
39
]

[0
.2
45
]

[0
.2
23
]

[0
.2
54
]

N
PM

−0
.0
40

∗∗
−0

.0
42

∗∗
−0

.0
42

∗∗
−0

.0
42

∗∗
−0

.0
42

∗∗
−0

.0
42

∗∗
−0

.0
42

∗∗
−0

.0
41

∗∗

[−
5.
45
2]

[−
5.
69
0]

[−
5.
65
5]

[−
5.
69
7]

[−
5.
68
1]

[−
5.
68
1]

[−
5.
71
4]

[−
5.
62
7]

St
dS

al
e

0.
02
2∗

∗
0.
02
2∗

∗
0.
02
1∗

∗
0.
02
2∗

∗
0.
02
2∗

∗
0.
02
2∗

∗
0.
02
3∗

∗
0.
02
2∗

∗

[2
.9
95
]

[2
.9
86
]

[2
.9
46
]

[3
.0
41
]

[3
.0
22
]

[3
.0
08
]

[3
.1
32
]

[2
.9
94
]



Accounting for uncertainty

Ta
bl
e
9

(c
on
tin

ue
d)

A
ve
ra
ge
d

M
od
Jo
ne
s

M
od
Jo
ne
sR

O
A

A
Q

M
od
Jo
ne
sA

Q
C
ol
lin

s
B
al
lS
hi
va

Fr
an
ke
lS
un

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

O
pC

yc
le

0.
02
7∗

∗
0.
02
7∗

∗
0.
02
7∗

∗
0.
02
7∗

∗
0.
02
7∗

∗
0.
02
7∗

∗
0.
02
7∗

∗
0.
02
8∗

∗

[4
.8
40
]

[4
.8
45
]

[4
.8
55
]

[4
.8
43
]

[4
.8
50
]

[4
.8
50
]

[4
.8
41
]

[4
.8
67
]

In
du

st
ry

FE
Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
ea
r
FE

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

P.
R
2

0.
07
7

0.
07
6

0.
07
6

0.
07
6

0.
07
6

0.
07
6

0.
07
6

0.
07
6

N
.O
bs
.

55
,6
64

55
,6
64

55
,6
64

55
,6
64

55
,6
64

55
,6
64

55
,6
64

55
,6
64

Ta
bl
e
9
sh
ow

s
th
e
av
er
ag
e
pa
rt
ia
l
ef
fe
ct
s
of

th
e
fo
llo

w
in
g
lo
gi
st
ic

re
gr
es
si
on

I R
E

S
T

t
=

a
i
+

a
t
+

a
1
A

D
A

t
+

a
2
R

o
A

t
+

a
3
S
iz

e
+

a
4
L

e
v
t
+

a
5
N

P
M

t
+

a
6
S
td

S
a
le

t
+

a
7
O

p
C

y
c
le

t
+u

t
.T

he
sa
m
pl
e
co
ns
is
ts
of

al
lt
w
o-
di
gi
t-
SI
C
-y
ea
rs
ub
sa
m
pl
es

in
w
hi
ch

at
le
as
to
ne

fi
rm

ha
d
a
re
st
at
em

en
t,
du
e
to
ac
co
un
tin

g
ru
le
ap
pl
ic
at
io
n
fa
ilu

re
,a
cc
or
di
ng

to
A
ud
it
A
na
ly
tic
s.
W
e
fu
rt
he
r
re
qu
ir
e
al
l
ob
se
rv
at
io
ns

to
ha
ve

no
nm

is
si
ng

va
lu
es

fo
r
ea
ch

m
od
el
’s
va
ri
ab
le
s.
To

av
oi
d
lo
ok
ah
ea
d
bi
as
,
th
e
m
od
el
s
A
Q

an
d
M
od
Jo
ne
sA

Q
do

no
t
in
cl
ud
e

C
F

O
t+

1
(F
ra
nk
el

an
d
Su

n
20
18
).

I R
E

S
T

t
is

1
if
a
fi
rm

re
st
at
ed

its
fi
na
nc
ia
ls

be
ca
us
e
of

a
no
nc
le
ri
ca
l
is
su
e
in

th
e
ac
co
un
tin

g
in

ye
ar

t
an
d
0
ot
he
rw

is
e

(H
en
ne
s
et

al
.2

00
8)
.T

he
re
m
ai
ni
ng

va
ri
ab
le

de
fi
ni
tio

ns
ca
n
be

fo
un
d
in

Ta
bl
e
1.

T
he

av
er
ag
e
pa
rt
ia
le

ff
ec
ts
ar
e
bi
as
-c
or
re
ct
ed

(F
er
ná
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ná
nd
ez
-V
al
an
d
W
ei
dn
er

20
16
).
P.
R
2
is
th
e
M
cF
ad
de
n
Ps
eu
do

R
2
.I
nf
er
en
ce
s

ar
e
un
ch
an
ge
d
if
a
lin

ea
r
pr
ob
ab
ili
ty

m
od
el

is
es
tim

at
ed

in
st
ea
d.

**
*,

**
,
*
in
di
ca
te

st
at
is
tic
al

si
gn
if
ic
an
ce

at
th
e
1
pe
rc
en
t,
5
pe
rc
en
t,
an
d
10

pe
rc
en
t
co
nf
id
en
ce

le
ve
ls
,

re
sp
ec
tiv

el
y



M. Breuer, H.H. Schütt

Tables 9 and 10 report the results from regressions of indicators for restatements
(related to accounting rule misapplications) and comment letters on absolute abnor-
mal accruals. Following Dechow et al. (2011) and Du et al. (2020), we use absolute
abnormal accruals to explain restatements and comment letters, because these inci-
dences, unlike the income-increasing AAERs, capture both income-increasing and
-decreasing reporting abnormalities. We find that the absolute abnormal accruals pro-
duced by our averaged model are positively and statistically significantly associated
with both restatements (Table 9) and comment letters (Table 10). The absolute abnor-
mal accruals produced by the individual models, by contrast, exhibit economically
lower and statistically insignificant associations. These results are consistent with the
averaged model exhibiting greater power to detect earnings management than any
of the individual models.32 Notably, the averaged model appears to increase power,
especially for absolute abnormal accruals. Absolute abnormal accruals measures tend
to suffer particularly from errors in the estimation of abnormal accruals (Hribar and
Nichols 2007).

6 Conclusion

We provide an applied introduction to key methods of Bayesian estimation of
relevance to empirical accounting research. To illustrate the methods, we apply
them to an issue of central concern to the literature and practice: the detection of
accruals-based earnings management.

Our proposed Bayesian approach explicitly incorporates uncertainty about param-
eters and models in the estimation of normal (or unmanaged) accruals and tests for
abnormal (or suspect) accruals. We document that the Bayesian approach signifi-
cantly reduces the extent of accruals that can confidently be classified as abnormal
and lowers the incidence of false positives in tests for earnings management. Our
approach even increases the power to detect earnings management (i.e., reduce false
negatives). This improvement is due to the fact that it allows for firm-level hetero-
geneity in accruals processes via hierarchical modelling. Firm-level heterogeneity
appears to be key for improving the modelling of normal accruals and detection of
abnormal accruals.

We illustrate the Bayesian approach with the help of the popular and familiar
modified Jones model to ease comparison with the literature’s standard estimation
approach. Our proposed approach, however, is not model specific. To the contrary,
it can combine several models, such as the modified Jones model and other popular
and more recent models (e.g., Dechow and Dichev 2002; Frankel and Sun 2018),
to obtain superior normal and abnormal accruals estimates. Even more so, it can be
applied to the problem of estimating normal levels of a host of variables of interest
(e.g., productivity, investment, tone, or readability), not just accruals. Given its broad

32As each individual model produces a lower association than the averaged model, the results in Tables 9
and 10 illustrate that inferences drawn from the average association across multiple models are weaker
than those drawn from the association of an averaged model.
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applicability, conceptual appeal, and increasing computational feasibility, we expect
the Bayesian tools explained here to be widely adopted and to contribute to more
credible inferences in the accounting literature.

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/s11142-021-09654-0.
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