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This paper considers a profit maximizing make-to-order manufacturer that offers multiple products to a
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1. Introduction
This paper studies the operational and demand control decisions faced by a profit-maximizing
make-to-order production firm that offers multiple products to a market of price and delay sensitive
customers, emphasizing three features of particular interest: first, the joint use of dynamic pricing
and leadtime quotation controls to manage demand; second, the access to a dual sourcing mode
that can be used to expedite orders at a cost; and third, the interaction between the demand
controls with the operational ones of sequencing and expediting employed by the firm.

Starting with the airline industry, the adoption of revenue management strategies has trans-
formed the transportation and hospitality sectors over the past couple of decades, and is now
becoming important in retail, telecommunications, entertainment, financial services, health care
and manufacturing. Broadly speaking, these involve the use of sophisticated information technol-
ogy systems and intense data processing to construct detailed forecasts and quantitative demand
models, coupled with the use of differentiated product offerings that are managed through dynamic
capacity allocation and/or pricing strategies to maximize the firm’s expected profitability. This
paper is motivated from manufacturing applications, a notable example of which comes from the
automotive industry’s effort to produce cars in a make-to-order fashion.1 In such a setting, the
joint consideration of economic and operational decisions makes the manufacturer more respon-
sive to market changes and to fluctuations in its operating environment due to the variability
of the demand and production processes. Moreover, the dynamic pricing and leadtime decisions

*This research was partially supported through a grant from Columbia’s center for E-Business.

1 For example, BMW claims that 80% of the cars sold in Europe and 30% of those sold in the US are built to order.
When a dealer inputs a potential order to BMW’s web ordering service, a target leadtime is generated within five
seconds. This is typically 11 to 12 days in Europe and about double that amount in the US (13).
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can exploit the customers’ heterogeneity in their price and delay sensitivities and drive higher
profitability.

In more detail, the production system is modelled as a multi-class Mq/GI/1 queue. The system
manager can dynamically select its prices and quoted leadtimes. Operationally, the manager has
discretion with respect to the sequencing of orders at the server, and can choose to instantaneously
expedite existing orders at a cost. Instantaneous expediting is an idealized model for systems
with significant surge capacity, which also enables the firm to satisfy the quoted leadtimes on all
accepted orders. Customers choose what to buy, if any, by trading off price and leadtime against
their product valuations and delay preferences. The firm’s problem is to select state-dependent
pricing and leadtime quotation strategies, and expediting and sequencing policies to maximize its
long-run average expected revenue minus expediting cost.

This paper strives to contribute in terms of the modelling and analysis of these problems, as well
as the derivation of structural insights that may be of practical value. In terms of modelling, this
paper is one of the first to address the joint dynamic pricing and leadtime control problem in a
stochastic production environment, and it combines two novel features: first, the incorporation of
expediting capability that enriches the model while simplifying the analysis of leadtime guarantees;
and second, its treatment of the dynamic leadtime control capability. This is done by committing to
offer each “good” at multiple predetermined leadtimes, and then focusing on pricing these options.
Using dynamic pricing the firm can effectively dynamically divert demand across this discrete set
of leadtime options. Restricting the possible leadtime options (e.g., 1, 2 or 4 weeks) is practical,
and simplifies the customer choice model, which reduces to just a function of price. Finally, the
customer choice model outlined in §5 builds on extensive marketing research and seems novel.

The resulting problem could be approached using the theory for Markov Decision Processes, but
such a formulation is analytically and numerically intractable. This paper follows the methodology
proposed by Harrison (17) that suggests studying such a model in a regime where its processing
resource is almost fully utilized. This leads to a Brownian control problem that is often simpler than
the original problem at hand. Apart from this analytical simplification, this operating regime can
–at least in some cases– be justified economically (e.g., see Maglaras and Zeevi (25)). Within this
framework, the key analytical results of this paper are the following. In §3.1 we propose a diffusion
model approximation for the underlying system that is accurate (and asymptotically correct) in
settings with high levels of potential demand and processing capacity, respectively, and where the
latter is almost fully utilized. We formulate a control problem that is motivated from settings
with low capacity costs or production economies of scale, such as in information service networks
and some examples of make-to-order manufacturing, respectively. The approximating problem is
solved using results by Plambeck et.al. (31) and Ata et.al. (4). Specifically, we use results from
(31) to characterize the sequencing and expediting controls that are optimal for the approximating
problem (Proposition 1). We then reduce the resulting multi-dimensional drift control problem to a
one-dimensional one in terms of the workload process (Proposition 2), which we solve by adopting
results from (4) (Theorem 1).

The solution of the approximating diffusion control problem leads to intuitive and practically
implementable policies for the original problem (see §4), as well as to several structural insights:
i. Pricing decisions depend on the aggregate system workload and not the product-level queue
lengths, and thus tend to vary on a slower time-scale. ii. Expediting is done according to a greedy
priority rule (from cheapest to most expensive) in order to keep the total workload below a certain
level that depends on the predetermined leadtime bounds. iii. Sequencing is done according to a
dynamic rule that roughly speaking serves the order that is “closest” to violating its leadtime. iv. In
high-volume systems, end-to-end delays are relatively small, and as a result the price differentials
that the firm can charge between two variants that only differ in terms of their leadtime guarantees
will be small. Our analysis quantified this effect. Extensive numerical results illustrate the value of
joint pricing and leadtime control, as well as the performance of the proposed set of policies.
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This section concludes with a literature survey. The remainder of the paper is structured as
follows. §2 describes the problem formulation, §3 proposes and solves its approximating diffusion
control problem, the solution of which is interpreted in §4. §5 describes a suitable customer choice
model. §6 summarizes a set of numerical experiments.

Literature survey. This paper is related to the literature on dynamic due-date and sequencing
control. We refer the reader to Keskinocak and Tayur (21) for a review of this literature focusing
on algorithms for computational solutions to such problems, and to Baker (5) and Wein (38) for a
review emphasizing the stochastic nature of the production dynamics and its effects on the firm’s
controls. Duenyas and Hopp (12) and Duenyas (11) were the first to incorporate the customer
response to the firm’s leadtime policy, while Keskinocak et.al. (20) and Charnsirisakskul et.al. (10)
provide deterministic optimization models for delay and price sensitive demand, respectively.

The second body of research related to our paper focuses on static pricing and sequencing in
queues. One stream of this work initiated with Naor (30) and includes Mendelson (28) and Mendel-
son and Whang (29) studies problems of social welfare optimization for price and delay sensitive
customers. Maglaras and Zeevi (25) established conditions under which revenue maximization in a
single-product system induces the heavy-traffic regime. An important partial analog to (29) in the
context of revenue maximization is the recent paper by Afeche (1). One insight that follows from
the analysis of Afeche (see Maglaras and Zeevi (26)) is that in some cases the firm should create
significant leadtime separation between substitutable products in order to increase its revenues. As
shown in (26), this effect does not arise in the context of the conventional heavy-traffic conditions
that underlie our present work, and, in such, it is not captured in a natural way in this paper.

Methodologically, our work builds on the work by Mandelbaum and Pats (27) that derived fluid
and diffusion approximations for queues with state-dependent parameters. State-space collapse in
Brownian control problems is explained in Harrison and Van Mieghem (19), and Ata et.al. (4)
address a class of diffusion control problems that includes as a special case the one we analyze in
§3.3. The formulation of leadtime constraints as upper bounds on the respective queue lengths is
from Plambeck et.al. (31) and Maglaras and Van Mieghem (24), and builds on Reiman’s “snapshot
principle” (34). Other related papers are Plambeck (32) that studied a problem of static pricing
and leadtime differentiation for two partially substitutable products, Maglaras (23) that looked
at dynamic pricing and sequencing for a multi-product queue with price sensitive customers and
holding costs incurred by the firm, and Ata (3) that focused on admission control for a multi-class
system with leadtime guarantees and thin arrival streams. While (3) does not involve any pricing
decisions, similar to our work its solution builds on (31) and (4). Papers that include expediting
or dual-source modes include Plambeck and Ward (33) and Bradley (7, 6). The demand model
we propose in §5 borrows from the marketing literature, see e.g., Bucklin and Gupta (9); for an
overview of demand models for revenue management see Talluri and van Ryzin (37).

2. Model Formulation
We consider a make-to-order firm that offers multiple products, indexed by i= 1, . . . , I, to a market
of price and delay sensitive customers.

Leadtime guarantees. The firm will offer each “good” at multiple predetermined leadtimes,
whereby a “product” corresponds to a (type of good, leadtime) combination. By dynamically
adjusting the product prices the firm can divert demand from one leadtime to another, thus effec-
tively exercising dynamic leadtime control over this predetermined set of options. Specifically,
product i orders are quoted a leadtime “guarantee” of di time units, which serves as a reliable upper
bound for the time it takes from when the order is placed until its production is completed. In a
stochastic production setting such guarantees are typically stated as P(delay for a class i order>
di)≤ ǫi, where ǫi ∈ (0,1) is a desired service level, but the capability for instantaneous expediting
allows us to instead impose “hard” leadtime guarantees, i.e., ǫi = 0 for all i (explained later on).
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Economic structure and demand model. The firm operates in a market with imperfect
competition, and has power to influence its vector of demand rates by varying its prices p; pi(t)
denotes the per-unit price for product i at time t. Potential customers arriving at the system at time
t observe the current menu of products, which is summarized by the pair (p(t), d) and make their
decision of which product to buy, if any. The resulting demand is assumed to be an I-dimensional
non-homogeneous Poisson process with instantaneous rate vector λ(p(t);d) determined through a
demand function that maps a price vector p ∈ P into a vector of demand rates λ ∈ L(d), where
P ⊆ R

I is the set of feasible price vectors, and L(d) = {x≥ 0 : x= λ(p;d), p∈P}⊆R
I
+ is the set of

achievable demand rate vectors for the leadtime vector d ∈R
I
+. Note that λ(·;d) only depends on the

time t through the price posted at that instance. We assume that L(d) is a convex set for all d∈ R
I
+,

and that the demand function λ(p;d) is bounded and continuously differentiable in both p and d.
If i, j correspond to the same good and di > dj, then pi < pj. In addition: (a) for each product i,
λi(p;d) is strictly decreasing in pi, (b) for each feasible p−i = (p1, . . . , pi−1, pi+1, . . . , pI) and leadtime
vector d, there exists a null price p∞i (p−i) ∈R such that limpi→p∞

i
(p−i) λi(pi, p−i;d) = 0; and (c) the

revenue rate p ·λ(p;d) =
∑

i piλi(p;d) is bounded for all p∈P and has a finite maximizer. (For any
two n-vectors, x · y denotes their inner product.)

We will assume that there exists an inverse demand function p(λ;d), p : L(d) →P, that maps
an achievable vector of demand rates λ into a corresponding vector of prices p(λ;d). Although, in
general, this inverse mapping need not be unique, it turns out that it is for common examples of
demand relations; see (37, §7.3.2). Following a standard practice from revenue management, we
shall view the demand rate vector as the firm’s control, from which prices can be inferred using
the inverse demand function. The expected revenue rate is r(λ;d) := λ · p(λ;d), which is assumed
to be bounded, strictly concave and twice continuously differentiable. Later on we will require the
somewhat stronger condition of differentiability along appropriately defined sequences (pn, dn) with
dn → 0 (cf. the example in §5). Let λ̂(d) := argmax {r(λ;d) : λ ∈ L(d)}, and Λ =

∑

i λ̂i(d) act as
proxy of the total market size for our problem. We will assume that λ̂i(d)> 0, i.e., in the absence
of any capacity and congestion considerations, the firm would choose to produce all products.

The system model. The production facility is modelled as a multi-product (or multi-class)
single-server queue. Orders for each product arrive according to non-homogeneous Poisson processes
and upon arrival join dedicated, infinite capacity buffers associated with each product. For each

product i the number of orders placed in [0, t] is given by Ni

(

∫ t

0
λi(s)ds

)

, where Ni(t) is a unit

rate Poisson process. Service time requirements for product i orders are independent identically
distributed (i.i.d.), drawn from some general distribution with mean mi (rate µi = 1/mi) and finite
squared coefficient of variation ξi. Let Si(t) denote the number of class i service completions if the
server dedicates t time units in processing class i orders. The processes Ni, Si are independent of
each other and across products. The load or traffic intensity of the system when the demand vector
is λ is defined as ρ :=m ·λ.

The firm also controls the order sequencing at the server, and order expediting. Within each
product, orders are processed in First-In-First-Out (FIFO), the server can only work on one job
at any given time, and preemptive-resume type of service is allowed. Under these assumptions, a
sequencing policy takes the form of the I-dimensional cumulative allocation process (T (t) : t≥ 0)
with T (0) = 0, where Ti(t) denotes the cumulative time that the server has allocated to class i jobs
up to time t. In addition, T (t) is continuous and non-decreasing (Ti(t) increases only when there
is at least one job in the queue i or in the server), and satisfies the capacity constraint

∑

i

Ti(t)−
∑

i

Ti(s)≤ t− s for 0≤ s≤ t <∞. (1)

The cumulative idleness process (I(t) : t≥ 0) is defined by I(t) = t−∑i Ti(t), and is non-negative,
continuous, and non-decreasing. The expediting policy captures actions such as the use of overtime,
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sub-contractors, etc. that increase the firm’s short term production capacity, whenever necessary

to meet its leadtime guarantees. It is modelled as an I-dimensional process (B(t) : t ≥ 0) with

B(0) = 0, where Bi(t) is the cumulative number of product i orders that were expedited in [0, t]. We

will make the simplifying assumption that expedited orders are produced (and get removed from

the corresponding queue) instantaneously. The cost of expediting a class i order is ci, and without

loss of generality we will assume that products are so labelled that c1µ1 ≥ c2µ2 ≥ · · · ≥ cIµI .

Let Qi(t) denote the number of product i jobs in the system (i.e., in queue or in service) at time

t, that evolves according to (we are assuming for concreteness that Q(0) = 0):

Qi(t) =Ni

(
∫ t

0

λi(s)ds

)

−Si(Ti(t))−Bi(t) for i= 1, . . . , I. (2)

A control (λ,T,B) will be admissible if in addition to all of the above it is non-anticipating, i.e.,

decisions at time t only use information that has been made available up to that time.

Control problem formulation. The profit maximization problem for the stochastic queueing

model is the following: choose admissible demand, sequencing and expediting policies (λ, T, B),

respectively, to maximize the long-run average expected profit given by 2

lim
t→∞

1

t
E

[∫ t

0

r(λ(s);d)ds− c ·B(t)

]

. (3)

Discussion of modelling assumptions. The Poisson nature of the demand processes is needed

to be able to justify the diffusion models used in §3. The assumption regarding the general service

time distributions is innocuous, since the diffusion analysis only uses its first and second moments.

As in most papers on pricing in queues and revenue management, our model assumes that self-

interested customers decide whether to place an order based solely on the price (and leadtime)

vector at the time of their arrival; i.e., they are strategic in making purchase selections by explicitly

or implicitly optimizing some form of a personal utility function, but not strategic in selecting the

timing of their arrival in response to the firm’s pricing strategy. This reduces the firm’s pricing

problem to one of optimal intensity control not involving a game-theoretic analysis; see Lariviere

and Van Mieghem (22) for a discussion of this point and a justification of the Poisson arrival process

assumption as the equilibrium of such a game for a related model. Expediting control capability

is a common business practice that fits naturally in our problem formulation, and it allows the

firm to be able to satisfy all outstanding leadtime guarantees. In the context of the asymptotic

analysis of this paper this could also be achieved by ejecting orders from a queue, exercising “hard”

admission control (i.e., turn off a demand stream), or simply through a more “aggressive” pricing

policy.

3. An approximating diffusion control problem and its solution
This section studies a diffusion model approximation for the problem described in §2. In more detail,

§3.1 develops the approximating diffusion control problem, §3.2 reduces this multi-dimensional

formulation to a one-dimensional problem in terms of the aggregate system workload, which is

solved in closed-form in §3.3. The solution is interpreted into an implementable policy in §4.

2 The formulation in (3) is derived using a standard result for intensity control (see Brémaud (8, §II.2)) from the
primitive problem: choose p,T,B to maximize limt↑∞

1

t
E[

R t

0
p(s) · dA(s)− c ·B(t)], where Ai(t) = Ni(

R t

0
λi(s)ds).
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3.1. Heuristic derivation of an approximating diffusion control problem
The approximating diffusion control problem derived below is summarized through conditions (6)-
(10) for the system dynamics and the control objective (13). A rigorous justification of this model
through an asymptotic analysis would follow the line of argument found in Plambeck et.al. (31)
with two modifications to account for the dynamic pricing capability of our model that makes the
demand rate state-dependent, and the fact that orders are not blocked but are expedited.
Background on the large-scale behavior of the single-server queue: Consider a single-class
M/M/1 queue with arrival rate Λ, service rate µ>Λ, and traffic intensity ρ= Λ/µ< 1. Denote by
EQ and EW the expected queue length and waiting time that jobs spend in the system, respectively.
Elementary results from queueing theory give that EQ = ρ

1−ρ and EW = ρ
Λ(1−ρ) . The primary

motivation for the work in this paper is high-volume stochastic production systems, which in the
context of the stylized M/M/1 queue described above would entail that both Λ, µ are large. The
production economies of scale that are inherent in the above expressions imply that unless the
load ρ is close to one, the steady state behavior of the system is one where the queue lengths are
modest and the expected waiting time experienced by consumers is negligible. With that in mind
it is natural to study these systems in heavily loaded regimes, where, more precisely, ρ= 1− θ/

√
Λ

for some constant θ > 0. This is the so-called heavy-traffic operating regime, with Λ acting as a
proxy for the “size” of the system. It can be shown to be economically optimal for an M/M/1
production queue that offers one product to a market of price and delay sensitive consumers.3

For this regime the above expressions imply that the queue length and the resulting waiting time
are of order

√
Λ and 1/

√
Λ, respectively; specifically, EQ=

√
Λ/θ− 1 and EW = 1/(θ

√
Λ)− 1/Λ.

Each arriving order waits for roughly
√

Λ jobs to be processed before itself commences service, but
the overall level of congestion is moderate due to the production economies of scale of large scale
systems embodied in the shorter service times (of order 1/Λ). These results suggest that typical
leadtimes in such systems will also be of order 1/

√
Λ; shorter leadtimes will be impossible to cope

with in steady-state, and longer ones will be trivially satisfied.
Approximating diffusion model: The above insights hold for more general models that include
multiple products and networks of servers; see (34, 35, 31, 18). The diffusion model proposed below
is for a multi-product, single-server system, whose drift parameters θi are state-dependent. It could
be justified as an asymptotic limit in settings where the market sizes for each product (one measure
of which are the quantities given by λ̂(d)) and the processing rate vector µ grow proportionally
large, and where the leadtime bounds grow large relative to the processing time requirement of
each order, but remain modest in absolute terms. Recall the definitions of λ̂(d),Λ and define

λ̄(d) := argmax{r(λ;d) :
∑

iλi/µi = 1, λ∈L(d)} (4)

to be the demand rate vector that maximizes the instantaneous revenue rate subject to the con-
straint that the server is fully utilized.4 As we scale the market potential and processing rate for
each product in a way that λ̂i(d) grows large, λ̄i(d) defined via (4) will also grow large. We will
assume that λ̄i(d)> 0 for all i, i.e., that it is optimal to produce all products in this deterministic
planning problem, and let ρ̄i = λ̄i(d)/µi. This assumption will ensure that all product variants will
be offered in the approximating model that we will propose in the sequel, which, in broad terms,
will be used to characterize the demand rate fluctuations around the nominal demand vector λ̄(d).

3 Maglaras and Zeevi (25) established this result for an M/M/N system model, and a simplified version of their
argument could handle the M/M/1 queue discussed here. The key underlying assumptions are that delay costs are
linear and additive, and that the demand function is elastic.

4 We assume that this problem is feasible for the choice of leadtime vector d under consideration, i.e., that there exists
a vector of non-negative prices (including p = 0) for which the resulting demand will utilize all the capacity.
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The candidate controls: Any candidate dynamic drift control λ(t) can be expressed as λ(t) =
[

λ̄(d)− ν(t)
]+

for some choice of ν(t). Motivated by the preceding discussion on the M/M/1 queue,

we will rewrite ν(t) as
√

Λθ(t) and consider drift controls of the form

λ(t) =
[

λ̄(d)−
√

Λθ(t)
]+

. (5)

The traffic intensity at time t is given by ρ(t) =
[

1−∑i(
√

Λ/µi)θi(t)
]+

. If Λ, µ are proportionally

large, then (
√

Λ/µi) is of order 1/
√

Λ, and the system will operate in the desired heavy-traffic
regime. Since λ̄(d) is also of order Λ, if θ is of moderate magnitude, then λ(t)> 0 for all t.

The sequencing decisions are expressed by the cumulative server allocation process T (t). For
each product i, define Vi(t) = ρ̄it− Ti(t) to measure the deviation between the cumulative time
allocated into processing class i orders up to time t and the “nominal” service requirement for that
product predicted by the utilization vector ρ̄. The intuition here is that if Λ, µ are large and the
server is almost fully utilized, then the cumulative time that the server has allocated in processing
class i orders must be close to ρ̄it. Note that the cumulative idleness up to time t is I(t) =

∑

i Vi(t).
System dynamics: In large scale systems the cumulative arrivals and service completions up

to any time t can be approximated using the Strong Approximation Theorem for the associated
stochastic processes. We use (14, Corollary 7.5.5) that allows us to approximate a process Y (t) with
a given mean and variance by Y (t) =X(t) + o(

√
t) almost surely (a.s.), where X(t) is a Brownian

motion with the same mean and variance with Y (t), and the notation f(x) = o(g(x)) denotes
that f(x)/g(x)→ 0 as x ↑∞, Applying this result to the service completion process Si(Ti(t)) and
using the fact that Ti(t) = ρ̄it−Vi(t) we get that for all i, Si(Ti(t)) = µiρ̄it−µiVi(t) +X ′

s,i(µiρ̄it−
µiVi(t))+ o(

√
µit), a.s., where X ′

s,i are independent, standard Brownian motions. Recall that µ is
of same order as Λ. Motivated by the preceding discussion for the M/M/1 queue in heavy traffic
we proceed by assuming optimistically that µiVi(t) is itself of order

√
µit, which gives that

Si(Ti(t)) = µiρ̄it−µiVi(t) +
√

Λσs,iXs,i(t+ ϕ̄(t)) + o(
√

Λ), a.s.

where ϕ̄(t) is of order 1/
√

Λ and Xs,i are independent, standard Brownian motions, σ2
s,i = λ̃iξi,

where λ̃ := λ̄(d)/Λ. Similarly, Ni

(

∫ t

0
λi(s)ds

)

=
∫ t

0
λi(s)ds+X ′

a,i(
∫ t

0
λi(s)ds) + o(

√
Λ), a.s., where

X ′
a,i are independent, standard Brownian motions. Expanding the expression for λi(t) and assuming

that λi(t)> 0 for all t (this is expected to hold for large enough Λ), we get that

Ni

(∫ t

0

λi(s)ds

)

= λ̄i(d)t−
√

Λ

∫ t

0

θi(s)ds+
√

Λσa,iXa,i(t+ ϕ̃(t)) + o(
√

Λ),

where ϕ̃(t) is of order 1/
√

Λ, Xa,i are independent standard Brownian motions, and σ2
a,i = λ̃i.

Plugging into (2), dividing by
√

Λ and defining

Z(t) =Q(t)/
√

Λ, Y (t) =
√

ΛV (t) and D(t) =B(t)/
√

Λ,

as motivated by the scaling relations briefly highlighted for the M/M/1 queue, we get that

Z(t) =Z(0)−
∫ t

0

θ(s)ds+MY (t) +ΣX(t)−D(t) + o(1),

where X is an I-dimensional standard Brownian motion with X(0) = 0 a.s. on some filtered
probability space (Ω,F ,P;Ft, t ≥ 0), with (Ft, t ≥ 0) being the filtration generated by X, M =
diag(µ̃1, . . . , µ̃I), Σ2 = diag(σ2

1 , . . . , σ
2
I), and where µ̃i = µi/Λ and σ2

i = σ2
a,i(1+ξi) respectively, and



Çelik and Maglaras: Dynamic pricing and leadtime quotation for a multi-class make-to-order queue

8 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

the notation diag(x) denotes a diagonal matrix with entries x1, x2, . . . , xI . This heuristic argument
suggests the following approximating diffusion model:

dZ(t) =−θ(t)dt+ΣdX(t) +MdY (t)− dD(t), Z(0) = 0 (6)

L(t) =
∑

i Yi(t), L(·) is continuous, non-decreasing with L(0) = 0 (7)

D(·) is continuous, non-decreasing with D(0) = 0 (8)

Z(t)≥ 0, ∀t≥ 0 and Y,D are non-anticipating with respect to X. (9)

In the above model Z represents the queue length process, D is the expediting policy, Y is the
allocation control (measuring deviations from the nominal allocation), and L represents the scaled
cumulative idleness. The control processes Y,D are right continuous with left-hand limits (RCLL).
As in (31), the leadtime constraints take the form

Z(t)≤ b for t≥ 0, where bi = λ̃id̃i ∀ i, (10)

where d̃= d
√

Λ. The latter can be interpreted as follows. Since (10) indicates that Qi(t) . λ̄i(d)di
and λ̄i(d)di is roughly the number of class i arrivals in the last di time units, this constraint implies
that the waiting times for orders in queue i at time t is less than or equal to di, as required.

Performance criterion and the resulting diffusion control problem: The expediting costs
in [0, t] are given by c ·B(t) = c̃ ·D(t) for c̃= c

√
Λ. To express the revenue term of the objective

function when Λ, µ are large, we first define

κ :=
λ̂(d)− λ̄(d)√

Λ
. (11)

Using (11) one can rewrite λ(t) as λ(t) =
[

λ̂(d)−
√

Λ(κ+ θ(t))
]+

. Recall that d̃ = d
√

Λ and let

r̃(x; d̃) = r(Λx; d̃/
√

Λ)/Λ be the revenue function normalized again by Λ, which acts as proxy for
the system size.5 Let x̂= argmax r̃(x; d̃) = λ̂(d)/Λ be the corresponding maximizer. The large scale
behavior of the single server queue suggests that the system can operate at almost full resource
utilization while jobs experience only modest delays, which, in turn, implies that the firm needs to
apply only moderate demand adjustments through θ(t), such that

√
Λθ(t)≪ λ̄(d). This allows us

to approximate the revenue function using a Taylor expansion as follows:

r(λ(t);d) = Λr̃

(

[

x̂− (κ+ θ(t))/
√

Λ
]+

; d̃

)

= Λr̃(x̂;d)− [κ+ θ(t)] ·A[κ+ θ(t)] + o(1),

where
A=−(1/2)∇2r̃(x̂; d̃). (12)

The second expression for r(λ(t);d) uses the observation that for large Λ, µ, the demand vector is
strictly positive, and then applies a Taylor expansion of r̃(·; d̃) around x̂; the first order term is
missing since ∇r̃(x̂; d̃) = 0 by the optimality of x̂.

In the sequel, to minimize technical complexity and comply with the restrictions imposed in Ata
et.al. (4) in solving diffusion control problems similar to ours, we will assume that θ is bounded

5 To understand the proposed scaling it is easiest to think of the demand function in the form N × F (p, d), where
N is the number of potential customers per unit time and Fi(p, d) is the fraction of these customers that would
choose product option i given the price and delay menu (p, d). The function F (·, ·) encodes the heterogenous customer
valuations and delay preferences. The approximate model we study in this paper would correspond to a setting where
N grows large but the mapping F , and as a result the customer preferences, stay unchanged. That is, customers
would choose which product to purchase if any based on the price vector p and the delay vector d̃/

√
Λ.
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by a large constant K. Using the definitions of κ,A, c̃ given above, and restricting attention to
Markovian, stationary, bounded drift controls, the preceding analysis suggests the following diffu-
sion control problem: choose a non-anticipating measurable drift function θ(t) ∈ [−K,K]I for all
t≥ 0, and non-anticipating, RCLL, allocation and expediting policies Y and D to minimize

limsup
t→∞

1

t
E

[∫ t

0

{2κ ·Aθ(s) + θ(s) ·Aθ(s)}ds+ c̃ ·D(t)

]

(13)

subject to (6)-(10).
Remark on (11): The vector κ measures the difference between the demand rate vectors that

maximize the instantaneous revenue rates with and without the capacity constraint, λ̄(d) and λ̂(d),
respectively. Given a set of system parameters, it is, of course, always possible to define κ as in
(11), even if the difference λ̂(d)− λ̄(d) is significant, but the implicit assumption imposed through
the definition of κ is that it is meaningful to express this difference as a second order term that
is proportional to

√
Λ, even though both λ̄(d) and λ̂(d) are themselves of order Λ. This says that

the capacity rate vector is close to the nominal processing requirement implied by the vector of
(capacity unconstrained) revenue maximizing demand rates. Our numerical results will illustrate
that the performance of the heuristics derived from our diffusion approximation is best, and the
overall value of dynamic pricing is highest, when κ is moderate. This is reminiscent of other papers
in revenue management, such as Gallego and van Ryzin (15), that showed a) the central role
played by the demand rates given by λ̂ and λ̄ that either maximize revenues or optimally deplete
capacity by a specified time, and b) that the effect of tactical dynamic pricing adjustments is more
significant for load factors close to one. Finally, we note that the normalization of the expediting
cost coefficient from c to c̃makes the expediting costs of the same order of magnitude as the revenue
corrections due to dynamic pricing, leading into a control problem formulation that captures the
tradeoff between these two elements.

3.2. Reduction to the equivalent workload formulation
The first step in analyzing (6)-(10) and (13) establishes that the optimal pair of allocation and
expediting policies (Y,D) derived in Plambeck et.al. (31) is also optimal for our problem that
incorporates dynamic drift rate control capability. [The model analyzed in (31) involved admission
rather than expediting decisions, but the two are analytically equivalent.] The optimal (Y,D) yield
a one-dimensional equivalent workload formulation for our problem (see Harrison and Van Mieghem
(19) for background), which will be used to derive the optimal dynamic drift control θ(·).

We start with some background material. The system workload process is defined by W (t) :=
m̃ ·Z(t), where m̃i = 1/µ̃i. The workload dynamics are given by:

dW (t) =−m̃ · θ(t)dt+σwdXw(t) + dL(t)− dU(t) (14)

U(t) = m̃ ·D(t), U(·) is continuous and non-decreasing, U(0) = 0, (15)

where L satisfies (7), D satisfies (8), Xw(t) is a standard Brownian motion with infinitesimal
variance σ2

w =
∑

i(1 + ξi)m̃
2
i λ̃i. Note that Z(t)≤ b implies that

W (t)∈ [0, w̃] t≥ 0 for w̃ := m̃ · b. (16)

The next result specializes some of the results of Plambeck et.al (31) to our model. Specifically,
we show that it is optimal to (i) only expedite orders of the cheapest class I when the workload
W (t) reaches its upper bound w̃, and (ii) schedule orders according to the “least slack policy”
that maintains the relative backlogs defined as ηi(t) := (Zi(t)/bi) equal for all i, by giving priority
to the class that is closest to violating its leadtime bound. [All proofs are relegated to the online
appendix.]
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Proposition 1. Fix any admissible drift (θ(t), t≥ 0) and consider the problem of minimizing

limsup
t→∞

1

t
E [c̃ ·D(t)] , (17)

by choosing (Y,D) subject to the constraints (6)-(10), with Z(0) = 0, and under the labeling assump-
tion that c̃1µ̃1 ≥ c̃2µ̃2 ≥ · · · ≥ c̃Iµ̃I . Let L,U be the pair of continuous, non-decreasing processes,
with L(0) =U(0) = 0 such that

∫ t

0

1{W (s)>0}dL(s) = 0 and

∫ t

0

1{W (s)<w̃}dU(s) = 0 t≥ 0, (18)

where W (t) satisfies condition (14) and the constraint (16). Then, the policy

Di(t) = 0 ∀ i 6= I, DI(t) = µ̃IU(t), (19)

and Y given in (EC.1) is optimal. In addition, under this policy Z(t) = (b/w̃)W (t) for all t≥ 0.

Under the control (Y,D) identified in (EC.1)-(19),

Z(t) =
b

w̃
W (t), (20)

and the problem specified by (6)-(10) and (13) reduces to one of selecting the drift control θ to
minimize

limsup
t→∞

1

t
E

[∫ t

0

{2κ ·Aθ(s) + θ(s) ·Aθ(s)}ds+ c̃Iµ̃IU(t)

]

(21)

subject to (14), (16), and conditions (18) that uniquely identify the processes L,U (see Harrison
(16, §2.4)). Expressions (EC.1), (19) and (20) can then be used to specify Y,D,Z, respectively.

This problem can be further simplified by noting that the system dynamics in (14) are only
affected by the drift control θ through its aggregate value ψ := m̃ ·θ. This will allow us to reformulate
the above problem in terms of the one-dimensional control ψ ∈ [−K ′,K ′]. To that end, let

θ∗ = f̃(ψ) := argmin{2κ ·Aθ+ θ ·Aθ : m̃ · θ= ψ}=
A−1m̃

m̃ ·A−1m̃
(ψ+ m̃ ·κ)−κ, (22)

and note that the revenue loss at θ∗ is

2κ ·Aθ∗ + θ∗ ·Aθ∗ =
(ψ+ m̃ ·κ)2

m̃ ·A−1m̃
+κ ·Aκ. (23)

Using these definitions and removing the constant term κ ·Aκ of (23) from the objective function,
we can formulate the following diffusion control problem:

Proposition 2. The diffusion control problem (6)-(10) and (13) is equivalent to the following
formulation: choose a non-anticipating measurable function ψ(t)∈ [−K ′,K ′] for t≥ 0 to minimize

limsup
t→∞

1

t
E

[∫ t

0

{

[ψ(s) + m̃ ·κ]2

m̃ ·A−1m̃

}

ds+ c̃I µ̃IU(t)

]

; (24)

subject to
dW (t) =−ψ(t)dt+σwdXw(t) + dL(t)− dU(t), (25)

(16) and (18). Specifically, for every feasible control ψ there exists a feasible control (Y,D,θ) for
(6)-(10) with the same performance; and, for every feasible control (Y ′,D′, θ) for (6)-(10), there
exists a feasible control ψ with at least as good performance.
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3.3. Solution of the equivalent workload formulation
The equivalent workload formulation is a one-dimensional drift control problem for a diffusion
that is constrained to lie in the interval [0, w̃]. We will solve the problem described immediately
above using results derived in Ata et.al. (4), for which we need to restrict attention to Markovian,
stationary, and bounded controls. To avoid introducing new notation we “overload” the use of the
symbol ψ to now be a function of the workload position, i.e., ψ(W (t)), instead of being a function of
time ψ(t) as in the previous subsection. Let αw = (m̃ ·A−1m̃)−1 > 0 and κw = m̃ ·κ, which together
with the Markovian structure of the drift controls allows us to rewrite the objective as

limsup
t→∞

1

t
E

[∫ t

0

{

αw[ψ(W (s)) +κw]2
}

ds+ c̃I µ̃IU(t)

]

. (26)

Let

h(c̃Iµ̃I , αw, κw, w̃, σw) := c̃Iµ̃I −
[

2αwκw−
(

w̃

2αwσ2
w

+
1

2αwκw

)−1
]

.

Theorem 1. Consider the problem of selecting a non-anticipating measurable function ψ :
[0, w̃]→ [−K ′,K ′] to minimize (26) subject to (16), (18) and (25). Then, if h(c̃Iµ̃I , αw, κw, w̃, σw) =
0, the optimal workload drift rate ψ∗(w) is

ψ∗(w) =−
(

w

σ2
w

+
1

κw

)−1

, (27)

if h(c̃Iµ̃I , αw, κw, w̃, σw)> 0,

ψ∗(w) =

√

ζ1
αw

tan

[

w

σ2
w

√

ζ1
αw

− arctan

(

κw

√

αw
ζ1

)

]

, (28)

where ζ1 is the unique positive solution of (EC.7), and otherwise if h(c̃Iµ̃I , αw, κw, w̃, σw)< 0,

ψ∗(w) =

√

ζ2
αw

− 2

√

ζ2
αw

[

1− exp

{

−2w

σ2

√

ζ2
αw

+C

}]−1

, (29)

where C = ln

(√
ζ2/αw−κw√
ζ2/αw+κw

)

and ζ2 is the unique solution of (EC.10) that lies in (0, αwκ
2
w). The

optimal product-level drift rate is given by

θ∗(w) = f̃(ψ∗(w)) = αwA
−1m̃(ψ∗(w) + m̃ ·κ)−κ. (30)

Remark: Note that ψ∗ is monotonically increasing in w in all three cases above, which, in turn,
implies that θ∗(w) is increasing in w, as expected in light of (5). Expression (28) corresponds to
the case where the expediting cost c̃I µ̃I is high, whereas expression (29) is for the case where
expediting is cheap. Since the workload is bounded by w̃, one can always select the constant K ′ in
the Theorem so that the boundedness constraint is never binding, and therefore not restrictive.

3.4. Optimal static pricing solution
The numerical experiments in §6 will contrast the proposed solution against one that uses static
pricing. This amounts to selecting the constant vector θ ∈ R

I to minimize

limsup
t→∞

1

t

[

E

∫ t

0

{2κ ·Aθ+ θ ·Aθ}ds+ c̃ ·D(t)

]

(31)
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subject to (6)-(10). Using Propositions 1 and 2, this is reduced to the problem

min
ψ∈R

{

αw[ψ+κw]2 + c̃Iµ̃I limsup
t→∞

E

[

1

t
U(t)

]}

(32)

subject to (16), (18) and (25). That is, the optimal allocation and expediting policies Y,D are
the same with those for the dynamic drift control problem. The workload process evolves like a
Brownian motion with infinitesimal drift ψ and infinitesimal variance σ2

w in the interval [0, w̃], with
exponential steady-state distribution with mean σ2

w/(2ψ). This leads to the optimization problem

min
ψ∈R

{

αw[ψ+κw]2 +
c̃I µ̃Iψ

e2ψw̃/σ2
w − 1

}

, (33)

where the expression for the second term above is given in Harrison (16, pg.88-90).

Theorem 2. Consider the problem of selecting a constant vector θ ∈R
I to minimize (33) subject

to (6)-(10). Let ψ∗ be the minimizer of (33). The optimal drift vector is θ∗ = αwA
−1m̃(ψ∗ + m̃ ·

κ)−κ.

4. The proposed solution
This section interprets the optimal diffusion controls derived above into an implementable set of
pricing, expediting and sequencing policies for the original problem posed in §2. For completeness,
we also recapitulate the definitions of the various parameters used in computing the drift function
ψ that plays an important role in the pricing policy. Recall the definitions of λ̄(d), λ̂(d) and Λ and
let λ̃= λ̄(d)/Λ, µ̃= µ/Λ (m̃= 1/µ̃), c̃= c

√
Λ, d̃= d

√
Λ, and w̃=

∑

i m̃iλ̃id̃i. Finally, given κ and A
as defined in (11) and (12), let κw = m̃ ·κ and αw = (m̃ ·A−1m̃)−1.

Pricing: Our analysis shows that the optimal demand control in the approximating diffusion
model is a function of the aggregate workload in the system W (t) =m ·Q(t). Specifically, given
the workload position w, the manager computes the target resource utilization ρ∗(w) as

ρ∗(w) :=
[

1−
(

1/
√

Λ
)

·ψ∗
(

w
√

Λ
)]+

, (34)

where ψ∗(·) is the monotonically increasing function specified in Theorem 1, and then selects the
demand rate vector

λ∗(w;d) = argmax{r(λ;d) : λ ·m= ρ∗(w), λ∈L(d)} (35)

The corresponding pricing strategy can be inferred via the inverse demand relation p(λ;d).
Sequencing: Priority is given to class

i∗ = argmax
i

Qi(t)

b′i
where b′i = λ̄i(d)di− δi,

and δi ∈ R is a “tunable” parameter discussed below. This is the “least relative slack” policy of
Plambeck et.al. (31).

Expediting: Orders are expedited when the total workload reaches W ′ =m ·b′ according to a rule
that gives priority to class I then class I−1 (if no class I orders are in queue) and so on. This is the
simplest interpretation of the diffusion policy derived in §3.2 in the context of the original problem
at hand, keeping in mind that products are labeled in a way that c1µ1 ≥ c2µ2 ≥ · · · ≥ cIµI . Perhaps
a more intuitive policy would take into account the relative age of different classes by expediting
class I orders whenever Qi(t) ≥ b′i for some class i. This policy “corrects” for the possibility that
some class may be violating its leadtime bound while the workload is below its threshold W ′.
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Another interpretation of the diffusion control expediting policy is in terms of the age of the jobs
in the system. That is, the system expedites when the workload reaches the upper bound w̃, which
under the proposed sequencing rule corresponds to the instances (in the diffusion model) where
the queue lengths and the corresponding waiting times are about to violate their upper bounds.
Hence, one could interpret the expediting policy as one that keeps track of the age of jobs in the
system and expedite accordingly; this is harder to implement in terms of information requirements,
but may still be executable in some production environments.

We conclude this section with a few comments on the structure of the proposed policies.
i. Leadtime constraint formulation, sequencing & the choice of the tunable parameter δ: The

parameter b′i serves as a proxy for the number of class i arrivals in di time units, and thus maintain-
ing the queue lengths below their respective thresholds would tend to imply that the corresponding
leadtime guarantees are met with high probability; c.f., (24, 31).

The threshold b′i is derived from (10), appropriately adjusted through some “tunable” parameters
δi to correct for the modelling idealizations of the diffusion model, and the state-dependent nature
of the demand rate. Specifically, while if in the diffusion model the queue length is less than or
equal to its respective threshold, then the leadtimes of all orders in queue are met with probability
one, in the original system this may only be true with high probability. By decreasing the original
threshold bi by δi > 0, the manager adds some safety margin in her calculation to guard against
this issue. The second effect that factors in this calculation is that since λ∗

i (w;d) is decreasing in
the workload w, bi = λ̄i(d)di is in fact an overestimate of the expected number of arrivals in di time
units. Hence, it is likely that when a queue i reaches bi the age of the oldest orders in queue will
have already violated their leadtime bound. Again, a lowering of the threshold bi will adjust for that
effect as well. Table 1 in §6 offers some insight on its effect on the probabilities of expediting and
leadtime violation. The magnitude of these two effects is small, and so is the size of the parameter
δ, which can be selected via simulation. Note that both of these effects vanish asymptotically, and
thus the diffusion model cannot be used to compute these δ’s.6 To further simplify this calculation
we note that one could instead of computing all the δi’s, find one tunable parameter ω that adjusts
the workload threshold to W ′ = (

∑

imiλ̄i(d)di)−ω, and then set δi’s equal to ωµi/(
∑

imi). This
simpler procedure exploits the behavior of the optimally controlled system, and was suggested in
a recent preprint by Rubino and Ata (36).

ii. Workload dependence and time-scale of price changes: The proposed sequencing policy tries
to distribute the workload in fixed proportions across the various queues, therefore making W (t)
an accurate proxy for the system state; this equivalence is exact in the diffusion model. It therefore
suffices to restrict attention to pricing and expediting policies that are functions of the workload.
This simplifies analysis and has an important implication on the relative time-scale for these deci-
sions. Specifically, known results for queues operating in heavy-traffic predict that order interarrival
and service times are much shorter than the typical queueing times encountered in the system,
which in turn are much shorter than the time required for the workload (and the respective queue
lengths) to experience significant fluctuations. Pricing changes and expediting decisions occur on
the slowest time-scale on which the system workload evolves, which is practically appealing. As an
example, orders may be arriving every 30 minutes, queueing delays and leadtimes may be of order
of a week, and the workload (and the prices) may fluctuate on a monthly basis.

iii. Leadtime control: The dynamic leadtime control decisions are effectively captured in the
demand control λ∗(W (t);d) that specifies how to optimally divert demand from one leadtime class
to another. This will become clearer in §5 where we study in more detail a particular demand
model that is suitable for the problem under consideration.

6 Similar small safety parameters that are selected by trial-and-error are common in policies extracted via a fluid or
diffusion model analysis. Computing these parameters is fairly simple after one has specified the pricing, sequencing
and expediting policies, which was the hard part of the analysis.
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5. A choice model for joint pricing and leadtime control
The customer choice model we propose below satisfies the assumptions imposed in §2, and seems
suitable for the choice problem considered in this paper. It builds on a framework that has been
used extensively in the marketing literature (see Bucklin and Gupta (9)), which postulates that
customers make their purchase selection in two stages: first, they decide which product category
to buy from, if at all, and second, they choose a specific product from their selected category –
these are referred to as “purchase incidence” and “product or brand choice,” respectively; see (9)
for a discussion of such models and their practical use. From our viewpoint, this model captures
the substitution effects among otherwise identical products offered at different price and lead-
time combinations, while maintaining analytical and numerical tractability and being suitable for
calibration using real data as indicated by the associated voluminous marketing literature.

As explained in §2, a product corresponds to a (type of good, leadtime) combination. To simplify
the exposition we first describe the choice model for the case of one good offered at multiple
leadtimes, and then extend it to consider many goods offered at multiple leadtimes each.

One good offered at multiple (price, leadtime) combinations: Following Bucklin and
Gupta (9), we model the probability that a customer will buy one of the products (the “purchase
incidence”) using a binary logit function

P(inc) =
eV (p,d)

1 + eV (p,d)
, where V (p, d) = γ0 + γ1 log

(
∑

ie
−b1pi−b2di

)

. (36)

V (p, d) corresponds to the deterministic component of the purchase utility from all offered products
specified through p, d. The constants γ0, γ1, b1, b2 are meant to be calibrated from observed data
(see (9)). This purchase incidence probability is equivalent to saying that each arriving customer
assigns a utility V (p, d)+ ǫ to the offered group of products, where ǫ is an i.i.d. random component
that differentiates potential customers, and follows a logistic distribution with shape parameter
equal to one; the effect of different shape parameters can be rolled into γ0, γ1, b1, b2.

Each arriving customer also has a random delay sensitivity parameter χ for the offered good,
which is assumed to be drawn from a continuous distribution with finite support, is independent
of ǫ and i.i.d. across customers. Given that an arriving customer decides to purchase a product,
she makes her selection to minimize her cost given by pi +χdi, i.e.,

P(i | inc) = P (pi+χdi ≤ pj +χdj, ∀j 6= i) ; (37)

the form of (37) captures the price-delay trade-off faced by each customer, and differs from the
Multinomial Logit model used in (9). Assuming that potential customers arrive according to a
Poisson process with rate Λo, products are labelled in such a way that d1 < d2 < · · ·< dI, and that
prices are ordered in reverse, i.e., p1 ≥ p2 ≥ · · · ≥ pI , we get that

λi(p;d) = Λo ·P(inc) ·P(i | inc) = Λo ·
eV (p,d)

1 + eV (p,d)
·P
(

max
j>i

pi− pj
dj − di

≤ χ ≤ min
k<i

pk− pi
di− dk

)

.

Many goods offered at multiple (price, leadtime) combinations: The above model can be
extended to allow for many goods offered at potentially multiple (price, leadtime) combinations by
incorporating the decision of which good to purchase in the incidence probability, leaving unchanged
the second decision stage where a customer selects which product option of a particular good to
purchase. Specifically, suppose that there are K goods, with K < I, and let C(k) be the set of
products that correspond to good k. Let

V k(p, d) = γk0 + γk1 log
(

∑

i∈C(k)e
−bk

1
pi−bk2di

)

,
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denote the purchase utility from good k products, and the constants γk0 , γ
k
i , b

k
1 , b

k
2 are meant to

have been calibrated from observed data. Assume that a customer’s net purchase utility for good
k products is V k(p, d) + ǫk, where the ǫk’s are i.i.d. across goods, Gumbell distributed random
variables with shape parameter one. The incidence probability, which now reduces to the decision
of which good to purchase, if any, is computed using the Multinomial Logit Model (37, §7.2):

P(select good k) =
eV

k(p,d)

1 +
∑

j e
V j(p,d)

.

The product choice is done according to (37), specialized only to products in the set C(k).
A structural property of this demand model and its impact on leadtime control:

An important step in implementing the policy described in §4 is the computation of the optimal
demand vector given a target aggregate traffic intensity ρ∗ = 1− ψ∗/

√
Λ; see §4 and Theorem 1.

Simple but long algebraic manipulations show that in the parameter regime of interest in this
paper, i.e., where Λ and µ are large and d= d̃/

√
Λ for some d̃ > 0, the solution to the problem for

the single good case

max
p

{

∑

ipiλi(p;d) :
∑

iλi(p;d) = µ(1−ψ/
√

Λ)
}

,

is of the form

pi = p̄+
πi√
Λ

+
z(ψ)√

Λ
+ o(1/

√
Λ), (38)

where p̄ is common across all products and is independent of Λ, and πi, z(ψ) ∈R; the state depen-
dent price correction z(ψ) is also common across all products. The observation that all prices can
be expressed as small perturbations around a common price p̄ follows from the fact that the various
products correspond to the same good offered at slightly different leadtime guarantees (recall that
demand for each d= d̃/

√
Λ), and therefore they have to be priced similarly. A brief sketch of the

justification of (38) for the case of two products is given in the online appendix. A similar result
can be proved for multiple goods offered at different price, leadtime combinations, in which case
the terms zk(ψ) will depend on the good k. Note that using a pricing policy of the form given in
(38) together with the leadtime bounds d̃/

√
Λ remains well defined even as we let Λ grow large

and d decrease to zero.
This property is a consequence of the demand model considered in this section and the assump-

tion that Λ is large, and does not depend on any aspect of the diffusion model itself, including
the implicit assumption embodied in (11). The resulting form of the pricing policy in (38) has an
important implication on the firm’s “leadtime control policy.” Specifically, policies of the form given
in (38) imply that (pi− pj) = (πi−πj)/

√
Λ for all ψ, which plugging into (37) gives that P(i | inc)

is independent of ψ! That is, the firm adjusts its nominal price level through z(ψ)/
√

Λ to modulate
the aggregate order volume placed with the system, while keeping the fractions of the total order
flow that choose each leadtime option constant. That is, it does not choose to divert demand from
one leadtime to another as the system gets congested, but rather scales down the demand for all
products by a common factor by adjusting its price to affect the incidence probability.

Comments on modelling price and delay sensitive demand: An alternative to the two-
stage decision process of our model would consider customers arrive with a random valuation v
and delay sensitivity parameter χ, and make their purchase decisions in one stage according to

λi(p;d) = ΛoP(v− pi−χidi ≥ 0, pi +χdi ≤ pj +χdj ∀ j 6= i).

While this may appear to be a more direct and natural model of demand, it is harder to analyze
because evaluating the above expression involves the joint distribution of (v,χ). Moreover, its
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complexity increases significantly when one considers multiple goods offered in different (price,
leadtime) options, where customers arrive with different valuations for each of these goods. The
hierarchical decision approach of our model assumes that problem away by restricting attention to
a structure where the probability that a customer selects a particular service is given by the product
of two probabilities, where one depends on the valuation and the other on the delay sensitivity.
Apart from its inherent tractability, extensive studies reported in the marketing literature indicate
its versatility in capturing customer demand in diverse and complicated settings.

6. Numerical results and concluding remarks
This section reports on a set of numerical experiments that illustrate the effectiveness of dynamic
over static pricing, as well as the impact of leadtime control. The latter is achieved by offering
the same good at two leadtime options whose prices are dynamically adjusted. We compare the
effectiveness of the proposed heuristics against the solution of an approximate Markov Decision
Process (MDP) formulation. We use the following notation. E[π]: expected profit, E[ρ]: expected
load, P(LT ): probability of violating the leadtime constraint, P(exp): probability of expediting,
and TR: average tardiness. Average tardiness is computed conditional on job being late.

The MDP formulation that we used in our experiments is only an approximation of the orig-
inal problem at hand, where the leadtime constraint has been replaced by upper bounds on the
respective queue lengths, and where expediting occurs whenever these bounds are reached. In con-
trast, an exact MDP formulation would have to expand the state descriptor to keep track the
(continuous) age of each job in every queue, increasing significantly the analytical and numeri-
cal complexity of the resulting problem. This MDP approximation is, in part, motivated by the
analysis of §3, as well as the use of a related MDP formulation in Ata (3), where he compared
the performance of an admission control heuristic in a system with leadtime guarantees with the
solution of such an approximate MDP formulation. In more detail, the MDP formulation adopted
in the sequel imposes upper bounds on the queue lengths given by Ki := λ̄i(d)di− δi, where the
δ’s are tunable parameters adjusted to make sure that the probability of leadtime violation is no
greater than 3%; cf. discussion following Table 1. In the single leadtime case (Tables 2 and 3) the
resulting optimization problem amounts to selecting the demand rates as a function of the queue
length position q, for all q ≤K to maximize the long-run average rate of profits for an M/M/1/K
system that expedites orders at a cost of $c when q=K. The problems with two leadtime options
of Table 4 involve the analysis of a two-dimensional Markov Chain, where in addition to the two
state-dependent demand rates the system manager also selects the sequencing vector at each state.

It is worth noting that none of the policies reviewed here is feasible for the control problem
stated in §2 that required 100% compliance with the leadtime guarantees. While this is possible
to achieve with expediting, it would require that the firm keeps track of the age of each job in the
system, making the solution of the approximating MDP problem intractable.

6.1. Single leadtime
In order to isolate the effect of dynamic over static pricing, this subsection focuses on problems
of pricing and expediting for a single product offered with a leadtime guarantee. We consider the
following setup for these experiments. The demand model is that of §5, and unless otherwise stated,
its parameters will be as follows: the market potential is Λo = 10 and b1 = 1, b2 = 0.15, γ0 = 2,
and γ1 = 0.4 (cf. §5). Service times are i.i.d. exponentially distributed with rate µ. The expediting
cost is c= $5 per order, and expediting is used whenever the queue length reaches the threshold
µ ·d− δ, where δ ≥ 0 is a “tune”-parameter the effect of which will be studied in Table 1. In Tables
1 and 2, the offered leadtime is d = 4, which optimizes the profit rate under static pricing. For
these parameters, the capacity unconstrained revenue maximizing demand rate is λ̂(d) = 5.

Table 1: The effect of the expediting “tune”-parameter δ. (Typical standard deviations for the various
estimated performance measures were of the order of .1% of the estimated parameter value.)
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Dynamic Static
δ E[π] E[ρ] P(exp) P(LT ) TR E[π] E[ρ] P(exp) P(LT ) TR
0 20.66 .98 .021 .097 .57 19.24 .93 .060 .0041 .29
1 20.40 .97 .030 .070 .48 18.99 .92 .068 .0018 .27
2 20.10 .97 .039 .046 .43 18.78 .92 .074 .0005 .22
3 19.83 .97 .046 .027 .38 18.53 .91 .080 .0002 .21
4 19.43 .97 .058 .014 .34 18.20 .91 .090 .0000 .10

The effect of the expediting “tunable”-parameter δ: The first set of results focuses on the
efficiency of the proposed expediting policy. In these experiments, the service rate is µ= 4, which
gives that ρ̂(d) = λ̂(d)/µ= 1.25 (elaborated more in the next part), or equivalently that κ= 0.45
(c.f., equation (11)). We note that the gap between static and dynamic pricing was around 6.5%,
providing an illustration of the conservative nature of static pricing policies, which, in turn, lead
to higher probabilities of expediting (since price increases cannot be used to turn away orders) but
lower probabilities of leadtime violation. The average tardiness is also shorter under static pricing
(recall that the target leadtime is d= 4). The effect of the tune parameter δ on the probability of
violating the leadtime guarantee was as expected, and hereafter this parameter will be selected so
that the probability of an order violating its leadtime guarantee is no greater than 3%; the choice
of 3% is arbitrary, and serves to make our comparison more appropriate by requiring each policy
to adhere to a similar leadtime violation standard. (In almost all tests the static pricing policy had
a smaller parameter δ than the dynamic pricing one.)

The effect of capacity imbalance or load factor (ρ̂): The accuracy of the approximations
used in §3 is higher in systems where the capacity unconstrained revenue maximizing demand rate
λ̂(d) is close to the available capacity µ. This is best described by the load factor ρ̂(d) = λ̂(d)/µ,
although in the context of our analysis this is captured via the parameter “κ” which measures

the distance λ̂(d) − µ in multiples of

√

λ̂(d), the natural scale on which to study and control
the behavior of the system. Table 2 explores the dependence of our results with respect to this
parameter. We note that the dynamic pricing heuristic is most effective viz the best static pricing
policy in moderate values of κ or load factors between .8 and 1.2, and, in particular, their relative
gap shrinks when κ or ρ̂(d) gets large. If ρ̂(d)≪ 1, then the system is overcapacitated and a static
pricing policy is almost optimal. If ρ̂(d) ≫ 1, the system is undercapacitated and although the
dynamic pricing heuristic of §4 outperforms the best static pricing policy, it still performs poorly in
comparison to the MDP solution. The latter is explained by the fact that the performance criterion
of the diffusion control problem formulation was motivated by problem settings where the capacity
is close to being balanced (cf. equation (11)).

Table 2: The effect of capacity imbalance (κ) or load factor (ρ̂).

MDP Dynamic Static
µ ρ̂(d) κ E[π] E[ρ] P(exp) Gap (%) P(exp) Gap (%) P(exp)
4 1.25 .45 20.83 .94 .003 4.80 .046 7.62 .060

4.5 1.11 .22 21.51 .92 .002 .94 .014 5.42 .039
5 1.00 .00 21.88 .88 .001 .92 .009 3.72 .025

5.5 0.91 -.22 22.04 .84 .000 .83 .005 2.17 .013
6 0.83 -.45 22.08 .78 .000 .69 .002 1.21 .006

6.5 0.77 -.67 22.09 .72 .000 .57 .001 .76 .002
7 0.71 -.89 22.09 .67 .000 .46 .0005 .58 .001
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The effect of the leadtime (d): Table 3 studies the system behavior under the dynamic and
static pricing heuristics derived in §3 as a function of the quoted leadtime. The main observation
is that the impact of dynamic pricing is more pronounced when leadtimes are shorter, since in
such cases static prices have to be selected conservatively to avoid excessive use of expediting. As
the target leadtime gets large the expediting costs are reduced but so are the the prices that the
firm can charge to its prospective customers, reducing the overall expected profits. Moreover, the
dynamic pricing capability of the first two policies led to an increase of the expected throughput
times (to about 50% of the target leadtime from 35% with static pricing), and a reduction to their
variability; i.e., the overall distribution of observed throughput times was more closely clustered
around –highly skewed left towards– the target leadtime d.

We also experimented with varying other parameters such as the market potential Λo and the
expediting cost c. The former has a similar effect to decreasing the capacity µ (c.f., Table 2), while
the latter had the expected effect that as c increases, prices increase so as to lower the probability
of expediting, and in such cases the benefits from dynamic pricing are more important.

Table 3: The effect of different leadtime guarantees.

MDP Dynamic Static
d E[π] P(exp) P(LT ) E[π] P(exp) P(LT ) E[π] P(exp) P(LT )
2 20.33 .022 .024 18.63 .115 .030 17.20 .152 .002
3 20.93 .007 .019 19.65 .068 .028 18.83 .087 .004
4 20.83 .003 .017 19.83 .046 .027 19.24 .060 .004
5 20.50 .002 .014 19.62 .037 .026 19.21 .046 .004
6 20.05 .001 .012 19.30 .029 .024 18.97 .037 .005

6.2. Effect of leadtime flexibility: single good offered at two leadtimes
We adopt the same model parameters as for the experiments reported above, setting the service
rate at µ= 4, together with the specification that the delay sensitivity parameter χ used in selecting
a product in (37) is uniformly distributed in an interval [0, χm], and χm = 2. Since both products
correspond to the same good, we will assume that ci = 5 for i= 1,2.

Table 4: Performance measures for different leadtime combinations. [∆(πMDP ) is the % gain over the
single leadtime MDP solution; Gap % is the performance gap relative to the MDP solution with two

leadtimes; and ∆(πS) is the % gain viz the single leadtime static pricing policy.]

MDP Dynamic Static
d1, d2 E[π] ∆(πMDP ) (%) Gap (%) ∆(πS) (%) Gap (%) ∆(πS) (%)
3, 4 22.04 5.49 3.37 9.65 5.15 7.95

3.5, 4 22.51 7.47 4.66 10.34 6.18 8.88
3.5, 4.5 22.42 7.09 2.46 12.00 5.92 8.77
3.5, 5 22.24 6.35 3.22 10.61 4.91 9.02
4, 4.5 22.40 7.00 1.58 12.71 4.72 9.84
4, 5 22.64 8.00 3.71 11.74 5.35 10.21

Our first set of results looks at the impact of leadtime flexibility on a baseline example that
was already analyzed in the previous subsection, for which µ= 4 and a single leadtime option was
offered at d= 4 (that corresponds to the first row in Table 2). The results in this table study the
performance of dynamic and static pricing policies for various pairs of leadtimes (d1, d2). First,
we note that leadtime flexibility leads to a 5% to 8% performance improvement for the MDP and
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dynamic pricing policies when compared to the performance under the same policies with the single
leadtime option. The performance gain due to leadtime flexibility was larger (8% to 10%) under
the static pricing policy. Adding leadtime flexibility leads to a reduction of the performance gaps
between the dynamic and static pricing heuristics and the MDP solution; the results of Table 4
correspond to the first row in Table 2 where the two gaps were 4.80% and 7.62%, respectively.

We complement this table by reporting average results from a larger set of test problems where
we varied some of the demand model parameters as follows: Λo ∈ {8,10,12}, b1 ∈ {.8,1,1.2}, and
b2 ∈ {.1, .15, .2}. For all possible parameter combinations, we first considered the problem of offering
one product option and searched for the optimal leadtime d∗ under the static pricing policy. We
then tested the performance of the dynamic and static pricing policies for the case where the firm
offered two leadtime options defined as d1 = (.8)d∗ and d2 = (1.2)d∗. Once again we report % profit
gains over the single-leadtime system under static pricing. We observed the following results:

i. Dynamic pricing: average profit gain was 13.97% with a standard deviation of 2.34%.
ii. Static pricing: average profit gain was 10.69% with a standard deviation of 2.99%.
iii. Dynamic versus static pricing: average gap 3.28% with a standard deviation of 2.03%. Actual

differences ranged in [1.06%,10.30%].

Acknowledgement: We are grateful to Philipp Afeche, Baris Ata and Omar Besbes, the associate
editor and two referees for their helpful comments.
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Online Appendix: “Dynamic pricing and leadtime quotation
for a multi-class make-to-order queue” by Sabri Çelik 7

and Constantinos Maglaras 8

Proof of Proposition 1: We first establish the feasibility of Y,D. The processes L,U define the
unique two-sided regulator associated with the workload process W (t) (see Harrison (16, §2.4)),
which in turn guarantee that W (t) ∈ [0, w̃] for all t≥ 0. Next, we identify a control Y such that
together with D given in (19) they are feasible in the sense that they satisfy conditions (6)-
(10), and moreover, they guarantee that Z(t) = (b/w̃)W (t). The latter can be written in matrix
form as follows. Let G = diag(1/b1, . . . ,1/bI), and note that W (t) = 1TM−1Z(t) and GZ(t) =
[Z1(t)/b1, . . . ,ZI(t)/bI]

T . We wish to find the control Y (t) such that w̃GZ(t) = 11TM−1Z(t) =
H̄Z(t) for H̄ = 11TM−1; H̄Z(t) is a vector of size I with all elements equal to W (t). Let Θ(t) =
−
∫ t

0
θ(s)ds. Pre-multiplying Z(t), which is given in differential form in (6), by w̃G and H̄, respec-

tively, and equating the two resulting expressions gives that the control Y (t) should satisfy the
following condition:

(w̃G− H̄)(MY (t) + [Z(0) +Θ(t) +ΣX(t)−D(t)])= 0.

Note that (w̃G− H̄) is not invertible; this can be seen by setting x=W (t)/w̃ · [b1, . . . , bI ] 6= 0 for
W (t) 6= 0 and checking that (w̃G− H̄)x= 0. Following this observation it is easy to verify that

Yi(t) =−m̃i[Z(0) +Θ(t) +ΣX(t)−D(t)]+ (m̃ibi/w̃)W (t), for i= 1, . . . , I and ∀ t≥ 0 (EC.1)

is feasible and satisfies the above relationship.
Finally, we show that D(t) is optimal. For any feasible control (Y ′,D′) with

∑

iD
′
i(t)/µ̃i =U ′(t),

denote by W ′(t) the corresponding workload position. Define the control D′′
i (t) = 0 for all i 6= I

and D′′
I (t) = µ̃IU

′(t). Then, there exists Y ′′ such that (Y ′′,D′′) is feasible and c̃ ·D′′(t)≤ c̃ ·D′(t)
for all t ≥ 0. The optimality of D(t) now follows from the properties of the two-sided regulator
(see Harrison (16, §2.4)). Specifically, L,U are the least feasible controls that maintain W (t) in
the interval [0, w̃] in the sense that L(t)≤L′(t) and U(t)≤U ′(t) for all t≥ 0 and all other feasible
controls L′,U ′. This implies that c̃ ·D(t) ≤ c̃ ·D′′(t) over all feasible D′′(t), which completes the
proof. Q.E.D.
Proof of Proposition 2: Given a feasible control ψ, define (Y,D,θ) through conditions (19)-
(EC.1) and (22), respectively. By construction this is a feasible set of control that achieves the
same performance. Conversely, given any feasible (Y ′,D′, θ) for (6)-(10), the control (Y,D,θ) with
Y,D defined in (19)-(EC.1) is feasible and achieves at least as good performance as θ,Y ′,D′. The
control ψ(·) = m̃ · θ(·) is now feasible for (16), (18) and (25) and has the same performance as
(Y,D,θ). Q.E.D.
Sketch of proof of Theorem 1. In the sequel we will only provide a skeleton of the steps required
in the proof of this result with appropriate references to (4) for detailed arguments.

Step 1 – Characterization of the solution using results from (4): The arguments of Propositions
3 and 4 in (4) suggest that the optimal policy can be characterized as a solution to the following
Bellman equation by finding a constant γ and a continuous, twice differentiable function V that
satisfy:

γ = min
ψ

{

σ2
w

2
V ′′(w)−ψV ′(w) +αw(ψ+κw)2

}

for w ∈ (0, w̃) (EC.2)

7 IEOR Department, Columbia University, 500 W. 128th St., NY, NY 10027. (sc2190@columbia.edu)

8 Columbia Business School, 409 Uris Hall, 3022 Broadway, NY, NY 10027. (c.maglaras@gsb.columbia.edu)
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with boundary conditions
V ′(0) = 0 and V ′(w̃) = c̃Iµ̃I . (EC.3)

The first order optimality conditions for (EC.2) give that ψ∗(w) = V ′(w)/(2αw)−κw and that

γ =
σ2
w

2
V ′′(w)− 1

4αw
(V ′(w)− 2αwκw)2 +αwκ

2
w. (EC.4)

This is, of course, a first-order differential equation, which can be summarized in the form:

σ2
w

2

(

v′(w)

γ−αwκ2
w + 1

4αw
(v(w)− 2αwκw)2

)

= 1 for w ∈ (0, w̃), (EC.5)

for v(w) = V ′(w). The boundary conditions are v(0) = 0 and v(w̃) = c̃I µ̃I .
The solution to (EC.5) can be obtained using the steps outlined in (4, §3.3-3.4). Specifically, in

the notation of (4) we have that φ(v(w)) = 1/(4αw)(v(w)− 2αwκw)2 −αwκ
2
w, b= w̃ and p= c̃I µ̃I .

Corollary 1 from (4) ensures that this equation admits a unique solution (γ, v), with γ > 0, that
jointly satisfy (EC.5) together with the two boundary conditions. In addition, the long-run profit
loss γ is strictly increasing in the expediting cost parameter c̃I µ̃I (see Ata (2, Proposition 12)).

For the particular cost structure of our problem, one can derive a closed form characterization
of the optimal (γ, v), and therefore of the optimal drift function itself, ψ∗(w). This is done in the
remainder of this proof that is divided in three cases covering the possible parameter combinations
where h(c̃Iµ̃I , αw, κw, w̃, σw) is zero, positive, or negative, respectively.

Step 2 – Closed form characterization of the optimal drift function:
Case i. (h(c̃Iµ̃I , αw, κw, w̃, σw) = 0): Let’s assume optimistically that γ = αwκ

2
w, in which case

(EC.5) reduces to

2αwσ
2
w

v′(w)

(v(w)− 2αwκw)2
= 1 for w ∈ (0, w̃),

with the boundary conditions v(0) = 0 and v(w̃) = c̃Iµ̃I . Making the change of variable u := (v(w)−
2αwκw), and integrating from w= 0 to w= y we transform the above equation to

2αwσ
2
w

∫ u2

u1

du

u2
= y for y ∈ (0, w̃),

where u1 =−2αwκw and u2 = (v(y)− 2αwκw), from which we get that

2αwσ
2
w

[

1

2αwκw− v(y)
− 1

2αwκw

]

= y for y ∈ (0, w̃).

and that

v(w) = 2αwκw−
(

w

2αwσ2
w

+
1

2αwκw

)−1

.

Note that v(0) = 0 and v(w̃) = c̃I µ̃I if and only if h(c̃Iµ̃I , αw, κw, w̃, σw) = 0. From ψ∗(w) =
v(w)/(2αw) − κw we derive (27). Brute force verification shows that γ = αwκ

2
w and v(w) defined

above satisfy (EC.5), and an application of Theorem 1 in (4) establishes the optimality of (27).
Case ii. (h(c̃Iµ̃I , αw, κw, w̃, σw)> 0): Given the monotonicity of γ as a function of c̃I µ̃I (2, Propo-

sition 12) and the result of case i., the parameter combinations considered in this case will have
γ > αwκ

2
w. With that in mind, we let ζ1 = γ−αwκ2, and proceed under the assumption that ζ1 > 0,

making the change of variable u := (v(w)−2αwκw)/(2
√
αwζ1), and integrating from w= 0 to w= y

we transform the above differential equation to

σ2
w

√

αw
ζ1

∫ u2

u1

du

1 +u2
= y for y ∈ (0, w̃),
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where u1 =−κw
√

αw

ζ1
and u2 = (v(y)− 2αwκw)/(2

√
αwζ1). Recalling from calculus that

∫ w

t
du

1+u2 =

arctanw− arctan t, leads to the following solution for the above equation:

σ2
w

√

αw
ζ1

[

arctan

(

v(y)− 2αwκw
2
√
αwζ1

)

+arctan

(

κw

√

αw
ζ1

)]

= y for y ∈ (0, w̃) (EC.6)

which should satisfy the boundary conditions at y= 0 and y= w̃. The condition at y= 0 is satisfied
since v(0) = 0. Using v(w̃) = c̃I µ̃I at y= w̃, the second boundary condition reduces to

σ2
w

√

αw
ζ1

[

arctan

(

c̃Iµ̃I − 2αwκw
2
√
αwζ1

)

+arctan

(

κw

√

αw
ζ1

)]

= w̃, (EC.7)

which can be used to specify the positive constant ζ1, which is guaranteed to exist and is unique
(4, Corollary 1). Using (EC.6) we get that

v(w) = 2
√

αwζ1 · tan

[

w

σ2
w

√

ζ1
αw

− arctan

(

κw

√

αw
ζ1

)

]

+2αwκw, (EC.8)

from which we derive the control ψ given in (28). Brute force analysis shows that (γ, v) with
γ = ζ1 +αwκ

2
w solve (EC.5), and an application of Theorem 1 in (4) establishes the optimality of

(28).
Case iii. (h(c̃Iµ̃I , αw, κw, w̃, σw)< 0): As before, the monotonicity of γ as a function of c̃Iµ̃I (2,

Proposition 12) and the result of case i. imply that the parameter combinations considered here
will have 0< γ <αwκ

2
w. With that in mind, we let ζ2 =−(γ−αwκ

2
w), and rewrite (EC.4) as:

− σ2

2ζ2

(

v′(w)

1− 1
4αwζ2

(v(w)− 2αwκw)2

)

= 1 for w ∈ (0, w̃).

Proceeding under the assumption that ζ2 > 0, making the change of variable u := (v(w) −
2αwκw)/(2

√
αwζ2), and integrating from w= 0 to w= y we get that

−σ
2

2

√

αw
ζ2

[

ln

∣

∣

∣

∣

v(y)− 2αwκw +2
√
αwζ2

−v(y) + 2αwκw +2
√
αwζ2

∣

∣

∣

∣

− ln

∣

∣

∣

∣

∣

√

ζ2/αw−κw
√

ζ2/αw +κw

∣

∣

∣

∣

∣

]

= y for y ∈ (0, w̃), (EC.9)

together with the boundary conditions v(0) = 0 and v(w̃) = c̃I µ̃I . Using (EC.9) we get that

v(w) = (2αwκw +2
√

αwζ2)− 4
√

αwζ2

[

1− exp

{

−2w

σ2

√

ζ2
αw

+C

}]−1

where C = ln

(√
ζ2/αw−κw√
ζ2/αw+κw

)

, which in turn implies the functional form for ψ given in (29). It is

easy to verify that v(0) = 0, while v(w̄) = c̃Iµ̃I reduces to

(2αwκw +2
√

αwζ2)− 4
√

αwζ2

[

1− exp

{

−2w̃

σ2

√

ζ2
αw

+C

}]−1

= c̃Iµ̃I , (EC.10)

which can be used to define ζ2 as its unique positive solution, which from (4, Corollary 1) and
(2, Proposition 12) is guaranteed to lie in (0, αwκ

2
w). Proceeding as for the two previous cases for

γ = αwκ
2
w− ζ2 establishes the optimality of (29). Q.E.D.
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Sketch of the justification of (38) for two products: First, note that since
∑

i λi(p;d) =
∑

iΛoP(inc)P(i|inc) = ΛoP(inc), the constraint
∑

i λi(p;d) = µ(1−ψ/
√

Λ) can be rewritten as

P(inc) = µ̃

(

1− ψ√
Λ

)

,

where µ̃= µ/Λo. Rewriting the objective function as R(p) =
∑

i piλi(p;d) = ΛoP(inc)
∑

i piP(i|inc),
we get that the optimal price maximizes

∑

i piP(i|inc) where

P(i|inc) = P

(

max
j>i

pi− pj
dj − di

≤ χ ≤ min
k<i

pk− pi
di− dk

)

,

subject to P(inc) = µ̃
(

1− ψ√
Λ

)

. The form of P(i|inc) and the fact that d=O(1/
√

Λ), imply that

this optimization will have a non-trivial (multi-product) solution if and only if pi− pj =O(1/
√

Λ).
It follows that pi ∈R can be expressed in the form

pi = p(Λ) +
πi√
Λ

+
zi(ψ)√

Λ
+ o(1/

√
Λ),

where p(Λ)∈ R is a common price component that may depend on Λ. In order to establish (38) it
suffices to show that a) p(Λ) = p̄+ o(1/

√
Λ) and b) zi(ψ) = zj(ψ) for all i, j.

Part a): The purchase incidence probability is given by P(inc) = 1/(1+ e−V (p,d)), which implies
that V (p, d) =− log(−1 +1/P(inc)). For large Λ, 1/P(inc) = 1

µ̃
(1 + ψ√

Λ
) + o(1/

√
Λ) (since for small

x, 1/(1−x) = 1 +x+ o(x)), and

V (p, d) =− log

(

−1 +
1

µ̃

(

1 +
ψ√
Λ

)

+ o(1/
√

Λ)

)

=C1 −C2

ψ√
Λ

+ o(1/
√

Λ),

for C1 = − log(1/µ̃− 1) and C2 = 1/(1− µ̃). Since V (p, d) = γ0 + γ1 log(
∑

i e
−b1pi−b2di), the above

expression implies that

∑

i

e−b1pi−b2di =C3

(

1−C4

ψ√
Λ

)

+ o(1/
√

Λ),

for some constants C3, C4. Given that d= d̃/
√

Λ and arguing by contradiction shows that p(Λ) =
p̄+ o(1/

√
Λ), where p̄= pi(λ̄(d);d). This completes the justification of part a).

Part b): To simplify the algebraic manipulations in this part we will restrict attention to a

model with two products, in which case P(1|inc) = P

(

χ ≥ p1−p2
d2−d1

)

= F̄χ

(

p1−p2
d2−d1

)

and P(2|inc) =

Fχ

(

p1−p2
d2−d1

)

. Let yi(ψ) = πi+ zi(ψ) and k1 = (y1 − y2)/(d̃2− d̃1), and note that (p1 − p2)/(d2− d1) =

k1 + k2(Λ), for some k2(Λ)→ 0 as Λ grows large. Simple manipulations give that

R(p) = µ̃

(

1− ψ√
Λ

)(

p̄+
1√
Λ

[

(y1 − y2)F̄χ(k1) + y2

]

+ o(1/
√

Λ)

)

,

from which it follows that maximizing R(p) is equivalent to maximizing (y1−y2)F̄χ(k1)+y2 subject
to an appropriate constraint on P(inc). The latter can be written as

P(inc) = µ̃



1−

[

b1(y1 + y2) + b2(d̃1 + d̃2)
]

µ̃γ1

2
√

Λ



+ o(1/
√

Λ),
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from which we get that y1 + y2 = k3ψ− k4 for k3 = 2/(γ1b1µ̃) and k4 = b2(d̃1 + d̃2)/b1. Combining
the last two observations gives the following optimization problem:

max
y1,y2

{

(y1 − y2)F̄χ(k1) + y2 : y1 + y2 = k3ψ− k4

}

.

Using the equality constraint to rewrite y1 as y1 = k3ψ − k4 − y2, and applying the first order
optimality conditions we get that the optimal solution is

y∗1 =
ψ

γ1b1µ̃
− b2(d̃1 + d̃2)

2b1
+ ς∗

d̃2 − d̃1

2
and y∗2 =

ψ

γ1b1µ̃
− b2(d̃1 + d̃2)

2b1
− ς∗

d̃2 − d̃1

2
,

where ς∗ is the unique root of the equation Fχ(ς) + ςfχ(ς) = 1/2. It follows that zi(ψ) = ψ/(γ1b1µ̃)
for i= 1,2, which completes our sketch of part b) and (38). Q.E.D.




