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Abstract
4

Recent empirical evidence supports the view that the income process has an individual-specific5

growth rate component (Baker (1997), Guvenen (2007b), and Huggett, Ventura, and Yaron (2007)).6

Moreover, the individual-specific growth component may be stochastic. Motivated by these empir-7

ical observations, I study an individual’s optimal consumption-saving and portfolio choice problem8

when he does not observe his income growth. As in standard income fluctuation problems, the9

individual cannot fully insure himself against income shocks. In addition to the standard income-10

risk-induced precautionary saving demand, the individual also has learning-induced precautionary11

saving demand, which is greater when belief is more uncertain. With constant unobserved income12

growth, changes in belief are not predictable. However, with stationary stochastic income growth,13

belief is no longer a martingale. Mean reversion of belief reduces hedging demand on average and14

in turn mitigates the impact of estimation risk on consumption-saving and portfolio decisions.15

Keywords: Incomplete markets, precautionary saving, learning, hedging, estimation risk.16

JEL classification: E2, G11, G3117

1. Introduction18

Intertemporal consumption-saving and portfolio allocation is a fundamental topic in mod-19

ern economics. Almost all existing research on this topic assumes that the individual has20

complete information about the parameters of his income process such as the growth rate21
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am especially grateful to the anonymous referee and Bob King (Editor) for many insightful comments, which
have substantially improved the paper. I thank Larry Shampine for his expert advice on numerical solutions
and Jinqiang Yang for superb research assistance. Address: Columbia Business School, 3022 Broadway, Uris
Hall 812, New York, NY 10027. Email: neng.wang@columbia.edu.
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and volatility. The complete-information assumption may be a sensible starting point, if one1

believes that an individual’s income process can be represented by a growth component com-2

mon to all individuals plus an idiosyncratic shock process (MaCurdy (1982) and Abowd and3

Card (1989)). Intuitively, if all individuals share the same income growth rate (for example,4

among individuals within the same education group), each individual can then estimate the5

“common” income growth by using panel data of income within his associated group.6

However, Baker (1997), Guvenen (2007a), and Huggett, Ventura, and Yaron (2007) pro-7

vide convincing empirical evidence in support of a competing view that the income process8

has an important individual-specific growth component. If income growth is individual spe-9

cific, it then becomes much more difficult for each individual to estimate his own income10

growth. An individual enters the labor market with a prior belief about his future income11

growth and updates his belief over time based on realized incomes. Learning affects the in-12

dividual’s consumption-saving and portfolio allocation decisions through two channels: the13

expected growth of income and precautionary saving demand induced by the individual’s14

learning of his income growth.15

Income volatility has two effects on consumption and saving. The first is the standard pre-16

cautionary saving demand against income fluctuations. Naturally, hedging demand against17

income risk is higher when the income stream is more volatile. More interestingly, unknown18

income growth also induces hedging demand, which is stochastic and depends on the agent’s19

time-varying belief. For a given fixed spread between the two possible levels of income growth20

rates, estimation risk (induced by learning about his income growth) decreases with income21

volatility. This seemingly counter-intuitive result may be explained as follows. Past incomes22

from a more volatile income process provide less information about the unknown true income23

growth rate. Hence, the agent updates his belief less in response to unanticipated income in-24

novations. Therefore, estimation risk is smaller when the underlying income process is more25

volatile, ceteris paribus. The net impact of income volatility on hedging demand depends on26

the relative magnitude of these two opposing effects.27
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Recent work also provides strong empirical evidence consistent with the hypothesis that1

income growth is stochastic. Haider (2001) and Guvenen and Kuruscu (2008) document that2

cross-sectional dispersion in income growth has been rising since the 1970s. The stochas-3

tic feature of income growth further enriches the agent’s learning problem, but makes his4

consumption-saving and portfolio decisions more complicated. The potential empirical im-5

portance of stochastic income growth on decision rules and utility costs calls for models6

incorporating stochastic income growth. Intuitively, when income growth is stochastic and7

unknown, belief change is locally predictable (due to the expected change in income growth)8

and hence belief is no longer a martingale as in the case of constant growth. For exam-9

ple, when the conditional probability of income growth being low is small, mean reversion10

(due to the stochastic transition of income growth from low to high) pulls the agent’s be-11

lief upward in expectation. Intuitively, this mean reversion of belief makes shocks driving12

the change of belief no longer permanent, unlike in settings with unknown constant income13

growth. The stationary belief updating process in turn lowers the impact of estimation risk14

on consumption. Therefore, consumption responds less to change in belief.15

This paper contributes to the literature on incomplete-markets consumption, saving,16

and portfolio choice with learning. Earlier papers that explore the role of partially observed17

income on consumption include Goodfriend (1992), Pischke (1995), and a collection of papers18

in Hansen and Sargent (1991). All these studies postulate that the agent’s consumption is19

given by the certainty-equivalence-based permanent-income hypothesis (PIH) rule (Friedman20

(1957)), which precludes any possible effect of estimation risk on consumption. The most21

closely related papers are Guvenen (2007b) and Wang (2004). Guvenen (2007b) solves for the22

consumption rule numerically for agents with constant relative risk-averse utility. His work23

complements this one in terms of methodology and economic insights. Unlike Wang (2004),24

in the present paper, learning has implications not only on income volatility, but also on25

expected changes in income. More importantly, the conditional variance of belief updating26

is stochastic. As a result, learning induces stochastic belief-dependent precautionary saving27
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demand in this paper. Finally, unlike Guvenen (2007b) and Wang (2004), this paper also1

studies the effect of estimation risk on hedging and portfolio allocation.2

2. Model Setup3

Consider a consumption-saving and portfolio allocation problem. An infinitely-lived agent4

receives an exogenous perpetual stream of stochastic income. Let y(t) denote the level of5

the agent’s time-t labor income. Assume that the dynamics of {y(t) : t ≥ 0} is given by6

dy(t) = (α(t) − κy(t)) dt+ σdZ(t) , (1)7

where Z is a standard Brownian motion. The parameter σ measures the conditional volatility8

of the income change over an incremental unit of time. The income growth parameter9

{α(t) : t ≥ 0} may change stochastically. The detailed specification for α is deferred to the10

next section. For convergence, assume r + κ > 0, i.e. income cannot grow too fast. When11

κ = 0, the income process (1) has a unit root (non-stationary). When κ > 0, the process12

given in (1) is stationary and is known as an Ornstein-Uhlenbeck process.1 In this case, the13

parameter κ measures the degree of mean reversion. The discrete-time counterpart of (1)14

when κ > 0 is represented by the following first-order autoregressive (AR1) process:15

y(t+ 1) = a0(t) + a1y(t) + σ̂ε(t+ 1), (2)16

where a1 = e−κ, a0(t) = α(t) (1 − e−κ) /κ, σ̂ = σ
√

(1 − e−2κ) /(2κ), and ε(t + 1) is a time-17

(t+ 1) innovation drawn from the standard normal distribution. The above AR1 process18

has been widely used to model income (Deaton (1992) and Attanasio (1999)). In the precau-19

tionary saving literature, Caballero (1991) uses a discrete-time unit-root process (κ = 0), a20

special case of (2) to model labor income and derives a closed-form consumption rule. Wang21

(2006) obtains the closed-form consumption rule and characterizes the stochastic precau-22

tionary saving demand for a class of the income process known as “affine” models nesting23

(1) as a special case.24

1I thank the anonymous referee and Bob King (Editor) for the suggestion to extend the model specification
for the income process to allow for mean reversion.
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The agent can invest in both a risk-free asset (with a constant rate of return r) and a1

risky financial asset (e.g. the market portfolio). Investing in the risky asset offers the agent2

both the opportunity to earn a higher expected return than the risk-free rate r and the3

benefit of hedging labor-income related risk. The instantaneous return dR(t) of the market4

portfolio over time increment dt is given by:5

dR(t) = (r + ζ) dt+ νdW (t), (3)6

where ζ is the market risk premium, ν is the volatility of the market return, and W is a7

standard Brownian motion. Equation (3) specifies that the market return is independently8

and identically distributed (iid). Let ρ be the (instantaneous) correlation between the labor9

income process (1) and the return of the risky asset, i.e. the correlation between Brownian10

motions Z and W is ρ. Let η = ζ/ν denote the Sharpe ratio of the market portfolio. Let11

ψ(t) denote the amount of wealth that the agent allocates to the market portfolio at time12

t, and hence x(t) − ψ(t) corresponds to time-t wealth invested in the risk-free asset. The13

agent’s financial wealth dynamics is then given by14

dx(t) = (rx(t) + y(t) − c(t)) dt+ ψ(t) (ζdt+ νdW (t)) , (4)15

where the first term in (4) gives the sum of interest income rx (if all wealth is invested in16

the risk-free asset) and labor income y minus consumption c. That is, the first term gives17

the saving rate s = rx+ y− c in standard self-insurance models if the agent can only invest18

in the risk-free asset. The last term, ψ(t) (ζdt+ νdW (t)), captures the “excess” return by19

borrowing at the risk-free rate and investing in the risky asset.20

The agent has a time-additive separable utility function given by21

U(c) = E

(∫ ∞

0

e−βs u(c(s)) ds
)
, (5)

22

where β > 0 is his subjective discount rate and γ > 0 is the coefficient of absolute risk aversion23

(CARA), i.e. u(c) = −e−γc/γ. It is well known that CARA utility gives much tractability in24

deriving the consumption rule because it ignores the wealth effect. Merton (1971), Kimball25
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(1989), Caballero (1990, 1991), Svensson and Werner (1993), Davis and Willen (2000), and1

Wang (2003, 2006) have all adopted CARA utility in analyzing the agent’s consumption-2

saving decisions under incomplete markets with different income process specifications. The3

agent chooses his consumption c and wealth allocation to the risky asset ψ to maximize his4

utility given in (5) subject to his stochastic labor-income process (1), his wealth accumulation5

process (4), and the transversality condition specified in the online appendix.6

3. Model Analysis7

In standard consumption-saving models, the agent knows both his income process and8

the parameters governing his income process, such as the growth parameter α. However,9

much empirical evidence suggests that the agent’s income growth may be individual specific10

and hence the agent does not necessarily know his income growth parameter. Learning11

about income growth could potentially have a significant impact on the agent’s intertemporal12

consumption-saving and portfolio allocation rules. Moreover, income growth α may change13

stochastically over time, further complicating the agent’s decision problem.14

To understand the effects of learning and the stochastic feature of the income growth15

on consumption-saving and portfolio allocation in an intuitive and pedagogical way, we16

categorize our model into four special sub-models along two dimensions: whether the agent17

knows the value of {α(t) : t ≥ 0}, and whether the agent’s income growth {α(t) : t ≥ 0}18

is stochastic. Table 1 summarizes the structure of the model development in this paper.19

[Insert Table 1 here.]
20

Each special case will provide new insights on the effect of learning on precautionary saving.21

I start with the models where the agent knows the value of his income growth parameter α.22

3.1. Models I and III: Known (but possibly stochastic) income growth23

First, I describe the dynamics for the income growth {α(t) : t ≥ 0} , and then analyze24

the agent’s optimality. The agent’s income growth is often subject to both aggregate and25
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idiosyncratic risks. One parsimonious way to capture the stochastic nature of income growth1

is to postulate that income growth {α(t) : t ≥ 0} varies stochastically over time between α12

and α2 < α1, the two possible levels.2 Let N(t) denote the regime for the agent’s income3

growth α(t) at time t. That is, income growth α(t) takes the value αN(t) for N(t) = 1, 2.4

Fix a small time period Δt. If the time-t growth rate is high, i.e. (α(t) = α1), the growth5

rate remains high at time (t+ Δt) with probability (1 − λ1Δt) and decreases to α2 at time6

(t+ Δt) with the remaining probability λ1Δt. Similarly, if the time-t growth rate is low,7

i.e. (α(t) = α2), λ2Δt is the transition probability from low growth rate α2 to α1, the high8

value.3 Now, I use dynamic programming to characterize the agent’s optimality.9

Wealth x, income y, and income growth are the three state variables. Let V (x, y, n)

denote the value function when the income growth rate is αn, where n = 1, 2. When the

current income growth is high (α(t) = α1), the agent’s Hamilton-Jacobi-Bellman (HJB)

equation is given by

βV (x, y, 1) = max
c, ψ

u(c) + (rx+ ψζ + y − c)Vx(x, y, 1) + (α1 − κy)Vy(x, y, 1)

+
ψ2ν2

2
Vxx(x, y, 1) + ψρνσVxy(x, y, 1) +

σ2

2
Vyy(x, y, 1)

+ λ1 (V (x, y, 2) − V (x, y, 1)) . (6)

The left side of (6) is the “flow” value of the agent’s value function. The right side of (6) is10

the sum of his utility flow u(c) and the instantaneous expected changes in his value function.11

Optimality of consumption and portfolio rules implies that the two sides of (6) are equated.12

The Vx term describes the marginal increase of the agent’s value function from saving. The13

Vy term captures the marginal increase of the agent’s value function if income y increases by14

2Kimball (1989) assume that the “level” of income, rather than the growth rate (drift) of the income
process, stochastically switches between two states in their study of the impact of precautionary saving on
Ricardian (tax) equivalence. Indeed, the income process in Kimball (1989) is a special case of (1).

3For the continuous-time regime switching model, the implied stationary probabilities for high-income-
growth and low-income-growth states are λ2/(λ1 + λ2), and λ1/(λ1 + λ2), respectively. See Hamilton (1989)
for an early and important application of regime-switching models to economics and econometric analysis in
discrete time.
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a unit. The Vxx, Vxy, and Vyy terms reflect the effects of stochastic return, income volatility1

and their correlation on the agent’s value function. The last term captures the effect of2

stochastic transition of his income growth rate on the expected change in his value function.3

Note that the value function changes discretely from V (x, y, 1) to V (x, y, 2) when the growth4

rate changes.5

The first-order condition (FOC) for consumption is u′(c) = Vx(x, y, 1). That is, the6

marginal utility of consumption u′(c) is equal to the marginal value of wealth Vx. The FOC7

with respect to the portfolio rule ψ gives8

ψ = − ζVx(x, y, 1)

ν2Vxx(x, y, 1)
− ρσVxy(x, y, 1)

νVxx(x, y, 1)
, (7)

9

where the first term captures the standard risk-return tradeoff from investing in the market10

portfolio, and the second term reflects the agent’s motive to hedge against labor income11

shocks. Next, we incorporate the effect of learning.12

3.2. Models II and IV: Unknown (but possibly stochastic) income growth13

If the agent does not know his income growth, his time-t information set Ft then only14

contains the history of his past incomes {y(s) : s ≤ t}, not the true (but possibly stochastic)15

value of α(t). Let p(t) denote his time-t belief that the growth rate is high (i.e. α(t) = α1),16

in that p(t) = Prob (α(t) = α1|Ft) . Let μ denote the expected growth rate of the income17

process. By definition, the expected growth rate μ is a weighted average of the two possible18

income growth rates, in that19

μ(t) = Et (α(t)) = p(t)α1 + (1 − p(t))α2 = α2 + δp(t), (8)20

where21

δ = α1 − α2 (9)22

is the difference between the two possible values of α. For a given small time period (t, t+Δt),23

the change in income is (y(t+Δt)−y(t)). Out of this total change, (μ(t) − κy(t)) Δt is the ex-24

pected change. The unanticipated change is given by (y(t+ Δt) − y(t) − (μ(t) − κy(t)) Δt).25
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Scaling by volatility σ
√

Δt and taking the limit as Δt → 0, we may construct a “new”1

Brownian motion process B as follows:2

dB(t) = (dy(t) − (μ(t) − κy(t)) dt) /σ , (10)3

which will serve as the innovations process for belief updating.4

Re-writing the innovations process (10), we have the following innovations-based repre-5

sentation of the income process (1):6

dy(t) = (α2 + δp(t) − κy(t)) dt+ σdB(t), (11)7

where we use (8) for μ(t). Since the agent only observes his past income, the innovations8

representation (11) will naturally be useful when we derive the agent’s optimal consumption9

and portfolio rules. Using the results in Liptser and Shiryayev (1977), we can write the belief10

process as follows:11

dp(t) = (λ2 − (λ1 + λ2) p(t)) dt+ σ−1δp(t) (1 − p(t)) dB(t), (12)12

where B is given in (10). Note that belief p and income y are perfectly correlated (one shock13

model). We defer the economic interpretations of (12) to later sections when discussing14

model intuition.15

When the income growth rate α is unknown, the optimization problem is not Markovian16

with respect to the original information set Ft, which only contains the history of income17

y. The belief updating process (12) and the innovations-representation process (11) for18

income y jointly convey the same information as the agent’s original income process (1) and19

his prior belief about his income growth do. We can transform the original non-Markovian20

optimization problem into a Markovian one. That is, the agent maximizes his utility function21

(5), subject to the innovations-based representation of his income process (11), his belief22

updating process (12), his wealth accumulation equation (4), and the standard transversality23

condition given in the online appendix.4 Importantly, the agent’s learning about his income24

4Gennotte (1986) and Xia (2001) study the optimal asset allocation when the agent has incomplete
information about his investment opportunities, such as the dividend growth rate or the expected stock
return. See Detemple (1986), Wang (1993), and Veronesi (1999) for equilibrium asset pricing implications
of learning.
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growth implies that belief p is also a state variable in addition to wealth x and income y.1

There are three state variables for the agent’s optimization problem: wealth x, income y,

and belief p that income growth α is high. The HJB equation for the agent’s value function

J(x, y, p) is given as follows:

βJ = max
c, ψ

u(c) + (rx+ ψζ + y − c) Jx +
ψ2ν2

2
Jxx + (α2 + δp− κy) Jy

+ ψρνσJxy + (λ2 − (λ1 + λ2) p) Jp +
δ2

2σ2
p2 (1 − p)2 Jpp

+ ψρνσ−1δp (1 − p) Jxp + δp (1 − p) Jyp +
1

2
σ2Jyy. (13)

The left side of (13) is the annuity (flow measure) of his value function. As for the HJB2

equation (6) when the income growth α is known, the right side includes standard terms,3

such as Jx, Jy, Jxx, Jyy, and Jxy. Unlike the HJB equation (6) for the case with known4

income growth, the agent’s learning has additional effects on decision making. For example,5

Jp and Jpp terms capture the effects of the agent’s belief about income growth on his value6

function. Since belief updating is solely driven by realized incomes, the agent’s income7

process is perfectly correlated with his belief updating, as reflected in the Jyp term in (13).8

Finally, the Jxp term captures the agent’s hedging demand induced by his estimation risk9

(associated with belief updating).10

4. Model I: Known and constant growth parameter α11

I first solve the model and then discuss its economic implications.12

Model Solution. First, consider the setting where α(t) is known and is constant over13

time. This is the standard consumption-saving and portfolio allocation problem for an agent14

endowed with uninsurable stochastic labor income. The transition probability out of the15

current income growth α is zero. That is, α(t) = α for all t. The following proposition16

summarizes the main results on consumption and portfolio rules for this setting, dubbed as17

Model I:18
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Proposition 1 If the agent knows his constant income growth α, his consumption c∗ and

wealth allocation to the risky asset ψ∗ are given by

c∗(t) = r (x(t) + g(y(t);α)) , (14)

ψ∗(t) =
ζ

γrν2
− ρσ

ν

1

r + κ
, (15)

where the risk-adjusted certainty equivalent human wealth g(y;α) is given by1

g(y;α) =
1

r + κ

(
y +

α− ρση

r

)
− γ (1 − ρ2)σ2

2(r + κ)2
+
β − r

γr2
+

η2

2γr2
. (16)

2

Model intuition and implications. The agent’s investment opportunity in the risky3

asset has two effects. First, the risky asset offers a higher expected return and hence shall4

raise the forward-looking agent’s current consumption (Merton (1971)). This effect is cap-5

tured by the first term in the agent’s portfolio rule (15), and also by the constant positive6

term η2/(2γr2) in the agent’s risk-adjusted certainty equivalent wealth g(y) given in (16).7

Second, investing in the risky asset allows the agent to partially hedge against his labor in-8

come risk (i.e. the second term in the portfolio allocation rule (15)). The agent has a higher9

hedging demand, if the systematic volatility ρσ is larger. Hedging changes the agent’s labor10

income growth from α to (α− ρση), and also reduces the non-diversifiable component of his11

labor income volatility from σ to σ
√

1 − ρ2. Since precautionary saving demand arises from12

the agent’s non-diversifiable idiosyncratic risk, hedging lowers the agent’s precautionary sav-13

ing demand. We measure the agent’s precautionary saving demand as the amount by which14

the certainty equivalent wealth g(y) is lower than the corresponding certainty equivalent15

wealth under the PIH rule. It is immediate to see that the precautionary saving demand16

only depends on idiosyncratic volatility σ
√

1 − ρ2 and is given by17

π(t) =
γ (1 − ρ2)σ2

2 (r + κ)2 . (17)
18

The more persistent income shocks are (lower κ), the greater the agent’s precautionary saving19

demand π is, which is consistent with our analysis on hedging demand ψ. If labor income is20
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perfectly correlated with the risky asset return, the agent can fully hedge his income risk. As1

a result, his precautionary saving demand is zero (i.e. complete markets setting). Finally,2

Model I nests Caballero (1991) and Wang (2006), settings where the agent cannot invest in3

the risky asset (ψ(t) = 0), as special cases.54

To sum up, Model I generates the following empirically testable predictions. First, pre-5

cautionary saving demand is higher for the more persistent income process. Second, for6

incomes more correlated with the market portfolio, hedging demand is higher, and hence7

precautionary saving demand is lower.8

Next, I analyze the case where income growth is constant but unknown.9

5. Model II: Unknown and constant growth parameter α10

First, I analyze the agent’s Bayesian learning problem and then use dynamic program-11

ming to solve for his decision rules. Finally, I highlight the model implications on learning-12

induced precautionary saving.13

Model Solution. When the agent does not know his income growth, he needs to use14

his past realized incomes to estimate the likelihood that his income growth α is high. Note15

that Model II is a special case of the general learning model of Section 3.2. with λ1 = λ2 = 0.16

We may write the belief updating process (12) as follows:17

dp(t) = σ−1δp(t) (1 − p(t)) dB(t), (18)18

where B is the Brownian motion process under the innovations representation given in (10).19

Note that the belief updating process (18) is a martingale. This is because the unknown20

5Wang (2006) extends the discrete-time CARA-Gaussian formulation of Caballero (1991) in a continuous-
time setting to allow for conditionally heteroskedastic labor income process. The key advantage of introducing
conditional heteroskedaticity of labor income process is that the agent’s marginal propensity to consume
(MPC) out of labor income may be less than the MPC out of financial wealth, a desirable feature argued
in Friedman (1957) , Hall (1978) , and Zeldes (1989). Using isoelastic-utility-based buffer-stock-type saving
models, Deaton (1991), Carroll (1997), and Gourinchas and Parker (2002) also generate this desirable feature
on the MPC.
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growth rate α is constant, and hence the change in the agent’s belief must be unpredictable,1

in that μ(t) = Et (α(t)) = Et (Es (α(t))) = Et (μ(s)) , for any t < s.2

The instantaneous volatility of belief updating is symmetric in p and (1 − p) because the3

unobserved growth rate can only take two possible values: α1 and α2. The greater the wedge4

δ = α1 −α2 > 0 is, the more volatile belief updating is. Moreover, a higher income volatility5

σ implies a less volatile belief updating. Intuitively, a higher realized value of income is more6

informative about the unknown income growth if the income process is less volatile (lower7

σ). The following proposition summarizes the results on consumption and portfolio rules8

when the agent learns about his (constant) income growth.9

Proposition 2 If income growth α is constant but unknown to the agent, his consumption

c∗ and wealth allocation to the risky asset ψ∗ are given by

c∗(t) = r (x(t) + g(y(t);α2) + f(p(t))) , (19)

ψ∗(t) =
ζ

γrν2
− ρ

ν

σ

r + κ
− ξ(t), (20)

where g(y; α2) is given by (16), learning-induced hedging demand ξ is10

ξ(t) =
ρ

ν

δp(t) (1 − p(t)) f ′(p(t))
σ

, (21)11

and {f (p) : 0 ≤ p ≤ 1} solves the following non-linear ODE:

rf(p) =
δp

r + κ
− ρη

σ
δp (1 − p) f ′(p) +

δ2

2σ2
p2 (1 − p)2 f”(p)

− γr
(
1 − ρ2

) [
1

r + κ
δp (1 − p) f ′(p) +

δ2

2σ2
p2 (1 − p)2 f ′2

]
, (22)

subject to f(0) = 0 and f(1) = δ/(r(r + κ)).12

Model implications: Learning, precautionary saving, and hedging. When the13

agent learns about his income growth {α(t) : t ≥ 0}, his certainty equivalent wealth has14

an additional term f(p), which depends on p. If income growth is low with probability one15
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at all times (i.e. α(t) = α2 for all t), we are back to Model I with constant known income1

growth α2 with f(0) = 0. Similarly, if income growth α is always high (i.e. α(t) = α1 for all2

t), we have f(1) = δ/(r(r + κ)). Note that p = 0 and p = 1 are absorbing states here. For3

0 < p < 1, we need to solve for f(p) given in (22).4

Learning has two effects: the expected growth rate of income and the precautionary5

saving demand effect. In the following analysis, we separate these two effects on f(p). Since6

the expected growth rate of income exists for any agent, we first solve for f(p) for risk-7

neutral agents (γ = 0). Let f̄(p) denote the certainty equivalent wealth satisfying (22) for8

risk-neutral agents (i.e. γ = 0). Intuitively, f̄(p) captures the learning effect via the channel9

of the expected growth rate of income. Let l(p) = f̄(p) − f(p), where f(p) solves (22) for10

a given γ ≥ 0. The wedge l(p) captures the second effect: learning-induced precautionary11

saving demand.12

Consider the special setting with ρ = 0, which includes the standard self-insurance (in-13

come fluctuation) problem (with risk-free asset only) as a special case. When ρ = 0, the14

solution for f̄(p) is linear and is given by15

f̄(p) =
δp

r(r + κ)
. (23)

16

Figure 1 plots the “risk-adjusted” certainty equivalent wealth f(p) and the wedge l(p) =17

f̄(p)− f(p) for γ = 0, 1, 2. We use the following (annualized and continuously compounded)18

parameters for the remainder of the paper unless otherwise noted. The interest rate r = 4%,19

the dispersion of income growth δ = α1 − α2 = 3%, income volatility σ = 40%, and the20

degree of income mean reversion κ = 5%.
21

[Insert Figure 1 here.]

The left panel of Figure 1 shows that f(p) is increasing in p for a given γ. Moreover,22

f(p) decreases with the coefficient of absolute risk aversion γ. The right panel plots the23

learning-induced precautionary saving l(p) = f̄(p)− f(p). Note that l(0) = l(1) = 0 because24

there is no more uncertainty if p = 0, 1 under constant but unknown growth (Model II).25
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Learning-induced precautionary saving l(p) is concave in p. Intuitively, when the agent is1

more uncertain about his income growth (i.e. in the interior region of p), learning induced2

precautionary saving l(p) is higher, ceteris paribus. However, note that l(p) is not symmetric3

around p = 1/2, and is rather skewed. This is due to the fact that f(p) is convex, (i.e.4

f ′(1−p) > f ′(p) for 0 < p < 1/2), and the fact that l(p) depends both on p(1−p) and f ′(p).5

The nonlinear term in ODE (22) and the right panel of Figure 1 capture this asymmetry.6

Now I consider the effect of learning when the agent can invest in the risky asset. As in7

Model I and Merton (1971), the agent earns a higher expected return, (i.e. the first term8

ζ/(γrν2) in (20)), hedges the systematic component of his labor income risk (the second9

term in (20)), and also hedges the correlated component of his income growth risk (the ξ(t)10

term given in (21)). The hedging demand with respect to the labor income risk is the same11

as in our Model I, Svensson and Werner (1993), and Davis and Willen (2000). The hedging12

demand with respect to the estimation risk is however, stochastic, and depends on the time-13

varying volatility σ−1δp(1− p) of the belief updating process (18) and f ′(p), which measures14

the sensitivity of f(p) with respect to belief p.15

Income volatility σ has two opposite effects on the total hedging demand. On the one16

hand, a higher income volatility σ increases the hedging demand of labor income risk. On17

the other hand, incomes from a more volatile income process provide less precise information18

about the unknown income growth α given a fixed dispersion δ = α1 −α2. Hence, the agent19

updates his belief less in response to “unexpected” income news. Therefore, a higher income20

volatility σ maps to a lower estimation risk and a lower hedging demand against estimation21

risk, ceteris paribus.
22

[Insert Figure 2 here.]

The left panel of Figure 2 plots the certainty equivalent wealth f(p) for three levels of23

income volatility σ = 0.1, 0.2, 0.3 with correlation ρ = 0.5 (the other parameters are the same24

as those for Figure 1). Note that f(p) increases with income volatility σ for ρ > 0, whereas25

g(y;α2) decreases with σ. If ρ < 0, the opposite holds: f(p) increases with income volatility26
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σ and is concave in p. The right panel of Figure 2 plots learning-induced hedging demand1

ξ(p). Note that hedging demand ξ(p) decreases with income volatility σ. This seemingly2

counter-intuitive result is due to the assumption that income changes are less informative3

for a given δ = α1 − α2 (recall that the conditional volatility of income changes (in terms4

of levels) is constant in our model.) However, in reality, income volatility may increase with5

the income level. If so, then estimation risk will also increase with income volatility. In that6

case, the estimation-risk-induced precautionary saving and the standard income risk effect7

on precautionary saving may potentially move in the same direction, as shown by Guvenen8

(2007b). In that paper, the logarithmic income process is conditionally homoskedastic, which9

implies that the volatility of income increases with the level of income and hence estimation10

risk may increase with the level of income.11

Empirically, an interesting and testable prediction is the effect of income risks on the12

precautionary saving demand induced by estimating income growth. We have highlighted a13

potential mechanism which makes the estimation risk lower when income is riskier. Again, we14

need to carefully control for the level effect of income growth estimation risk on precautionary15

saving demand. Having analyzed the impact of learning when income growth is constant,16

we now turn to the more general setting where income growth is stochastic.17

6. Stochastic income growth18

I first solve the model with stochastic income growth but without learning as a bench-19

mark. Then, I solve the model with learning and interpret the economics of learning about20

stochastic income growth.21

Model III: Known and stochastic growth parameter α.22

Recall that income growth is given by a regime-switching model. While stochastic, income23

growth is known to the agent. The agent’s information set Ft includes {N(s) : s ≤ t}, where24

N(t) = 1, 2 correspond to the high and the low income growth rates, respectively. The25

following proposition summarizes the main results of Model III.26
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Proposition 3 When the agent knows income growth {α(t) : t ≥ 0}, his portfolio allocation1

is given by (15), and his consumption is given by2

c∗(t) = r
(
x(t) + g(y(t);α2) + φN(t)

)
, (24)3

where g(y;α2) is given in (16) and {φ1, φ2} jointly solve

rφ1 = −λ1

γr

(
e−γr(φ2−φ1) − 1

)
+

δ

r + κ
, (25)

rφ2 = −λ2

γr

(
e−γr(φ1−φ2) − 1

)
. (26)

The portfolio rule is also given by (15), the same as in Model I. Equations (25) and (26)4

jointly characterize the growth-dependent consumption profiles: φ1 and φ2. Compared with5

Model I, the stochastic growth feature of income induces additional precautionary saving6

demand.7

Model IV: Unknown and stochastic growth parameter α.8

Without observing his income growth α, the agent uses his past incomes to estimate the

likelihood that his income growth is high. Equation (12) gives the belief updating process.

The intuition for the volatility specification in (12) is the same as the one for the belief

process (18) in Model II, a special case of Model IV. See discussions on volatility in Section

5 for Model II. The intuition for the drift specification in (12) is richer than the one for

Model II. Because the underlying unknown income growth α is stochastic, the expected

change in the agent’s belief is no longer zero, unlike Model II in Section 5. Consider a small

time period (t, t+ Δt). Suppose the current income growth is high (i.e. α(t) = α1). The

conditional probability that income growth changes from α1 to α2 is λ1Δt . The size of this

change is α2 − α1 = −δ. Therefore, the expected change in income growth (conditional on

α(t) = α1) is −δλ1Δt. The time-t probability that α(t) = α1 is p(t) = Probt(α(t) = α1).
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The unconditional expected change in income growth is thus given by

Et (μ(t+ Δt) − μ(t)) = −p(t)δλ1Δt+ (1 − p(t)) δλ2Δt (27)

= δ [λ2 − (λ1 + λ2) p(t)] Δt. (28)

Using μ(t) = α2 + δp(t), we can show that the drift of p(t) is equal to (λ2 − (λ1 + λ2) p(t)).1

The above analysis on the drift and the analysis on volatility in the previous section jointly2

provide an economically intuitive explanation for the Bayesian updating rule (12). When3

the belief p(t) is larger than the (unconditional) long-run probability λ2/(λ1 +λ2), the belief4

p(t) is expected to move downward on average. This reflects the mean reversion property5

of the belief process {p(t) : t ≥ 0}. Using this belief updating rule, we solve the agent’s6

decision problem and summarize the results in the following proposition.7

Proposition 4 When the agent does not know his stochastic income growth α, his consump-

tion c∗ and wealth allocation ψ∗ are given by (19) and (20), respectively, where g(y;α2) is

given in (16), and {f (p) : 0 ≤ p ≤ 1} solves

rf(p) =
δp

r + κ
+

[
(λ2 − (λ1 + λ2) p) −

(
ρη

σ
+ γ

r (1 − ρ2)

r + κ

)
δp (1 − p)

]
f ′(p)

+
δ2

2σ2
p2 (1 − p)2 f”(p) − γr (1 − ρ2)

2σ2
δ2p2 (1 − p)2 f ′2, (29)

subject to the following boundary conditions:

rf(0) = λ2f
′(0), (30)

rf(1) =
δ

r + κ
− λ1f

′(1). (31)

Results, intuition, and implications.8

Unlike Model II (with constant growth), the states p = 0 and p = 1 in Model IV are no9

longer absorbing. The intuition is as follows. With stochastic growth, income growth may10
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become low with probability λ1Δt over time increment (t, t+Δt), even if the agent knows for1

sure his income growth is high at time t. Therefore, learning induces precautionary saving2

demand at all times for any levels of belief p, provided that income growth is stochastic.3

I now turn to the impact of income growth persistence (λ1, λ2) on consumption-saving4

decisions. Recall that learning-induced precautionary saving l(p) is given by the difference5

between the certainty equivalent wealth f(p) and f̄(p), where f̄(p) solves (29) for γ = 0, i.e.6

l(p) = f̄(p) − f(p). The left and the right panels of Figure 3 plot the certainty equivalent7

wealth f(p) and learning-induced precautionary saving l(p), respectively. In addition to the8

parameters we have used in Figures 1 and 2, we set market (portfolio) risk premium ζ = 6%9

and market (portfolio) return volatility ν = 20%.10

[Insert Figure 3 here.]

On the left panel of Figure 3, we see that either a higher value of λ1 or of λ2 makes f(p)11

flatter. Of course, increasing λ2, the transition probability from low income growth to high12

income growth, on average makes income growth higher and hence f(p) larger. For example,13

comparing the setting of (λ1, λ2) = (0, 0) with that of (λ1, λ2) = (0, 3%), we see that f(p) is14

higher when λ2 = 3% than when λ2 = 0. Moreover, with λ1 = 0, the high-income-growth15

state is absorbing, and f(1) = δ/(r(r + κ)) for both settings as we see from the figure.16

The right panel of Figure 3 plots learning-induced precautionary saving demand l(p). In-17

tuitively, with stochastic growth, income growth is more transitory and hence precautionary18

saving demand is lower when belief in the interior region, ceteris paribus. Comparing the set-19

ting of (λ1, λ2) = (0, 0) with the setting of (λ1, λ2) = (3%, 3%), we see that learning-induced20

precautionary saving demand is higher with constant income growth (i.e. (λ1, λ2) = (0, 0))21

other than near the boundaries p = 0 and p = 1.22

Figure 4 plots learning-induced hedging demand ξ as a function of belief p. The left23

panel analyzes the impact of transition intensities (λ1, λ2) on f(p). As in Model II, learning-24

induced hedging demand ξ is concave in p. More interestingly, hedging demand ξ decreases25

with λ. Intuitively, the more transitive the income growth is, the lower learning-induced26
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hedging demand ξ is. The right panel of Figure 4 shows that learning-induced hedging1

demand ξ decreases with income volatility σ. This result is consistent with the one for Model2

II. Intuitively, the same realized changes in income from a less volatile stream are more3

informative and reflect more changes in income growth. Hence, learning-induced hedging4

demand is higher when income streams are less volatile.5

[Insert Figure 4 here.]

When income growth is stochastic and unknown, the change in beliefs is locally pre-6

dictable. Mean reverting beliefs imply that shocks are no longer permanent, unlike in settings7

with unknown constant income growth. The stationarity of belief implies that the agent’s8

learning process is less volatile and the estimation risk is lower. Therefore, learning-induced9

precautionary saving demand is lower and consumption responds less to the change in belief,10

when unknown income growth is stochastic.11

7. Conclusions12

In this paper, I study the effect of learning about income growth on an individual’s13

consumption-saving and portfolio choice decisions when he cannot fully diversify his labor-14

income risk. The individual uses the dynamic Bayesian rule to update his belief about his15

income growth. Estimation risk naturally arises from his learning process. Importantly,16

this estimation risk generates additional precautionary savings demand beyond the standard17

income-risk-induced precautionary savings. By investing in the risky asset, the agent par-18

tially hedges against both income risk and estimation risk. While higher income volatility19

induces greater hedging demand against income shocks, higher income volatility (for a fixed20

income growth wedge) also induces less volatile belief updating because realized income is21

less informative about unknown income growth. Hence, higher income volatility implies22

lower estimation risk, which in turn suggests a smaller learning-induced hedging demand.23

When income growth is stochastic and unknown, the agent’s learning about income24

growth becomes even less volatile. Intuitively, the change in beliefs is locally predictable25
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due to the expected change in income growth and hence beliefs are no longer martingales.1

Mean reversion of beliefs makes shocks driving the change in beliefs more transitory, unlike2

in settings with unknown constant income growth. The stationary belief updating process3

in turn lowers the impact of estimation risk on consumption. Therefore, when beliefs are4

not extreme (i.e at corners p = 0, 1), learning-induced precautionary saving demand is lower5

and consumption responds less to belief change, when unknown income growth is stochastic6

rather than constant.7

The main objective of this paper is to study the effects of incomplete information about8

the income growth rate on his consumption and portfolio allocations, when the agent’s9

income shocks are not insurable. In order to deliver this intuition in a simplest possible way,10

I have intentionally chosen the CARA utility for technical convenience. While analytically11

convenient, this utility specification ignores the wealth effect on consumption and portfolio12

allocation rules. The natural next step is to extend the analysis to settings with iso-elastic13

utility, which capture the wealth effect and hence allow for making quantitative assessments14

on the role of learning about income growth.15
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Table 1: Categorization of Models

income growth α known unknown

constant Model I Model II
stochastic Model III Model IV
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Figure 1: The certainty equivalent wealth f(p) and learning-induced precautionary
saving l(p) = f̄(p) − f(p) in Model II (with ρ = 0): The effects of risk aversion.
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Figure 2: The certainty equivalent wealth f(p) and learning-induced hedging de-
mand ξ(p) in Model II: The effects of income volatility σ. The correlation coef-
ficient: ρ = 0.5. Other parameter values are the same as those for Figure 1.
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Figure 3: The certainty equivalent wealth f(p) and learning-induced precautionary
demand l(p) in a stochastic income growth model with learning in Model IV: The
effects of transition intensities (λ1, λ2). Other parameter values are the same as
those for Figure 2.
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Figure 4: Learning-induced hedging demand ξ(p) in a stochastic income growth
model with learning (Model IV). The left panel plots for various income growth
transition parameters (λ1, λ2). The right panel plots for three levels of σ for the
setting with λ1 = λ2 = 3%. Other parameter values are the same as those for
Figure 3.
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