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Network competition in nonlinear pricing
Wouter Dessein∗

Previous research, assuming linear pricing, has argued that telecommunications networks may
use a high access charge as an instrument of collusion. I show that this conclusion is difficult
to maintain when operators compete in nonlinear pricing: (i) As long as subscription demand
is inelastic, profits can remain independent of the access charge, even when customers are het-
erogeneous and networks engage in second-degree price discrimination. (ii) When demand for
subscriptions is elastic, networks may increase profits by agreeing on an access charge below
marginal cost (relative to cost-based access pricing). Welfare is typically increased by setting the
access charge above marginal cost.

1. Introduction

� Most industrialized countries are engaged in a project to create competition in one of the
largest noncompetitive industries of modern economies: local telecommunications. Because of
technological advances, the local network has ceased to be a natural monopoly, and competing
operators are starting to develop their own local and interurban networks. This is likely to affect
considerably the way the industry operates. As customers of different operators want to get
in touch with each other, competing networks must be interconnected. This requires a mutual
provision of access: each competitor must terminate calls from his rival’s customers in exchange
for a fee or access charge. Such a two-way access problem differs considerably in its nature
from the more familiar one-way access situation in which an (integrated) monopolist controls
the local network and is required to interconnect with entrants competing on complementary
segments such as long-distance or value-added services. Whereas in the latter case, the economic
literature and practice has made clear that regulation is necessary, this is less obvious for the
two-way bottleneck situation (see, e.g., Laffont and Tirole, 2000). Should access charges be
freely negotiated between operators, with a possible recourse to private arbitration in case of
conflict, or should there be a (strong) regulatory involvement? Should private agreements between
competitors be trusted to bring about effective competition? No consensus has yet been reached
on this point, and the telecommunications industry and regulators are still defining principles for
two-way interconnection fees.
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Up to now, the economic literature on two-way access charges has advocated the regulatory
approach or at least taken a very ambivalent position. In two seminal articles, Armstrong (1998)
and Laffont, Rey, and Tirole (1998a) independently warn that competing networks may use a
high access charge as an instrument of collusion due to a “raise-each-other’s-cost effect”: for
given market shares, a higher access charge increases each network’s average marginal cost and
thus induces networks to raise their retail price. The symmetric equilibrium price is therefore
increasing in the access charge.1

To derive the latter result, however, both articles assume that networks compete in linear
pricing. This assumption is not very harmless, as noted by Laffont, Rey, and Tirole (1998a): the
collusive power of the access charge disappears completely when networks compete in two-part
tariffs and, hence, customers pay a monthly fixed fee in addition to a usage price per call. A higher
access charge then still boosts usage prices, but the positive effect from this on retail profits is totally
neutralized by a lower fixed fee. Intuitively, nonlinear pricing erodes the fat profits generated by
a high access charge, as networks then have an instrument to build market share without inflating
their outflow. It seems nevertheless extreme that there is no net effect on profits, in particular
since Laffont, Rey, and Tirole obtain their result in a simple model with homogeneous customers.
Indeed, the literature on nonlinear pricing has shown that once customers are heterogeneous in
volume demand, results under nonlinear pricing typically resemble again those obtained under
linear pricing, as firms then try to discriminate implicitly between different types (for example,
usage fees are set above marginal cost, some surplus is left to customers). Laffont, Rey, and Tirole
(1998a), p. 22, conjecture therefore that the collusive effect of high access charges is likely to
be partially restored if one would generalize the model “so as to allow consumers to differ . . .

in their taste for variable consumption” (see also (Laffont, Rey, and Tirole (1998b), p. 53, and
Armstrong (1998), p. 557, for similar statements). Given that nonlinear pricing is prevailing in the
industry, the main question the literature tries to answer, whether effective competition between
telecommunications networks is possible in a deregulated environment, thus remains open.

The main aim of this article is to provide a more realistic analysis of competition in nonlinear
pricing. For this purpose, I shall introduce heterogeneity in volume demand and heterogeneity in
subscription demand. This allows me to analyze network competition in the presence of second-
degree price discrimination and elastic subscription demand.

� Second-degree price discrimination. Volume demand for calls differs tremendously among
customers in the telecommunications industry. I also observe that operators make abundant use
of calling plan menus in order to discriminate implicitly between different types of customers.
I model this heterogeneity in a straightforward way by assuming that customers are either high-
demand or low-demand users, and I allow for a wide range of calling patterns, where high-demand
users tend to call more than they are being called and vice versa. I consider both optimal nonlinear
pricing and the case where networks are restricted to a menu of two-part tariffs.

� Elastic subscription demand. Customer participation is a significant issue in the telecom-
munications industry. In the mobile sector, for example, actual penetration rates are currently
closer to 50% than 100% in most countries. I allow for an elastic subscription demand by assum-
ing that consumers are heterogeneous in their reservation value for telecommunications services.
In equilibrium, some customers then drop out of the market.

I derive two main insights:

(i) Introducing heterogeneity in volume demand is not sufficient to restore the collusive
effect of high access charges. Extending the model of Laffont, Rey, and Tirole (1998a) with
high- and low-demand customers, I obtain again the result that profits are independent of the
access charge, even when differences in demand cannot be perfectly overcome through a menu
of calling plans.2 Intuitively, the main effect of an access markup is that it makes it optimal

1 No equilibrium exists, however, when access charges and/or the substitutability between networks are too large.
2 Independently, Hahn (2000) has shown that this result also holds for a continuum of consumer types.
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for both networks to offer lower quantities (i.e., the raise-each-other’s-cost effect). With linear
pricing, a low quantity of calls is equivalent to a high price and high profits. Once networks
compete in nonlinear pricing, however, there is by definition no direct link between the quantities
of calls offered to customers and the tariffs that are charged by the operators. If customers are
heterogeneous in volume demand, then quantities and tariffs must play an additional role in
helping discriminate between customers of different types. The need to meet certain incentive
constraints, however, does not reduce a network’s incentive or ability to reduce its average tariff
in order to build market share. In particular, I show that the benefits of reducing tariffs remain
independent of the equilibrium quantities of calls offered to customers. Therefore, unlike under
linear pricing, agreeing to offer low quantities to customers—by means of agreeing on a high
access charge—does not soften competition for market share.

(ii) If subscription demand is elastic, firms prefer an access charge below marginal cost. As
I shall argue, the exact “profit-neutrality” of the access charge relies on some assumptions that are
unlikely to be satisfied in more complex settings. In these cases, however, networks may easily
prefer an access charge below marginal cost. An important example is elastic subscription demand.
If some customers choose not to subscribe in equilibrium, as customers are heterogeneous in their
reservation value for a subscription,3 networks can increase profits by agreeing on an access
charge below marginal cost (relative to a cost-based access charge). Intuitively, one consequence
of an elastic subscription demand is that the industry exhibits positive network externalities: as
customers derive utility from calling other customers, the value of a subscription to one customer
is increasing in the total number of subscriptions. Furthermore, these externalities are larger for
lower usage fees, as a customer then makes more calls to each additional subscriber. Finally,
the larger these externalities, the more each duopolist acts like a monopolist, since a decrease
in its tariffs then also benefits his rival’s customers. It follows that by agreeing on a low access
charge and thus, implicitly, on a low usage fee, networks can increase their equilibrium profits.
For example, if for a cost-based access charge two duopolists offer customers a larger net surplus
than a monopolist would offer, then a decrease in the access charge results in a decrease in this
net customer surplus, a decrease in overall welfare (as market participation decreases), and an
increase in profits. Conversely, an increase in the access charge then decreases profits but increases
welfare and customer surplus.

From an economic theory perspective, the above results show that the collusion concern
should not necessarily be associated with a high access charge (as argued by Laffont, Rey, and
Tirole (1998a) and Armstrong (1998)). From a policy perspective, they suggest that an optimal
regulation of the access charge is likely to be tricky. Ensuring that the access charge is close to
cost may therefore be a good second-best policy.

This article is organized as follows. Section 2 describes the model of high- and low-demand
users. In Section 3 I review the collusive effect of a high access charge under linear pricing,
highlighted in the previous literature, and show that it should be qualified by a study of the calling
pattern. Indeed, unbalanced calling patterns may increase or decrease this effect depending on
the direction of the call bias. Section 4 analyzes competition in nonlinear pricing when networks
engage in second-degree price discrimination. It derives the profit-neutrality result and discusses
its limits. Section 5 looks at the impact of an elastic subscription demand. Section 6 concludes.

2. A model with heterogeneous customers

� I consider the competition between two horizontally differentiated networks. The main
elements are as follows:

� Cost structure. The two networks have the same cost structure. Serving a customer involves
a fixed cost f . Per call, a network also incurs a marginal cost c0 at the originating and terminating

3 For tractibility, customers are assumed to be homogeneous in volume demand.
© RAND 2003.
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ends of the call and a marginal cost c1 in between. The total marginal cost is thus

c = 2c0 + c1.

� Demand structure. The networks are differentiated à la Hotelling. Consumers are uniformly
located on segment [0, 1] and networks are located at the two extremities, namely at x1 = 0 and
x2 = 1. Given income y and telephone consumption q, a type-k consumer located at x joining
network i has utility

y + k1/ηu(q) + v0 − τ |x − xi | ,
where v0 represents a fixed surplus from being connected, τ |x − xi | denotes the cost of not
being connected to its “most-preferred” network, and k1/ηu(q) is the variable gross surplus, with
u′(·) > 0 and u′′(·) < 0.4 Faced with a usage fee p, a customer thus consumes a quantity qk(p),
where k1/ηu′(qk) = p. I consider two different customer types or customer segments:

(i) Light users: fraction µ of the market, characterized by k = kL .
(ii) Heavy users: fraction 1 − µ of the market, characterized by k = kH > kL .

I denote qL ≡ qkL and qH ≡ qkH . By definition, qH (p) > qL (p). The distribution of customers
on segment [0, 1] is assumed to be independent of their type ki (i = L , H ).

� Calling patterns. Customers may differ in their likelihood of receiving a call, where this
likelihood may be a function of the originator of the call. Light users, for example, will typically
also be “light receivers.” Customers may further have a tendency to mainly call customers of their
own type. The only restriction I put on calling patterns is that the probability that a subscriber
receives a call is independent of both his address on segment [0, 1] as well as the address of the
originator of the call. Under these assumptions, a calling pattern is fully characterized by the pair
(�H , �L ) ∈ [0, 1]2, where �H denotes the fraction of calls that heavy users make to light users,
and �L is the fraction of calls that light users make to other light users.

� Reciprocal access pricing. Each network charges a per-unit access charge a for terminating
its rival’s off-net calls. As a result, a network faces a marginal cost for off-net calls equal to
c + a − c0. The access charge or termination charge is assumed to be the same for both networks.
This assumption is standard in the literature on two-way access charges, and regulators tend to
insist on the reciprocity of access charges.5

� Retail pricing. I consider competition both in linear and nonlinear pricing. I do not, however,
allow networks to charge different prices for on-net and off-net calls. This type of price discrim-
ination has been extensively discussed in Laffont, Rey, and Tirole (1998b). I allow networks
neither to charge nor subsidize customers for receiving calls.6

3. Competition in linear pricing

� I first review the argument for collusion developed by Armstrong (1998) and Laffont, Rey,
and Tirole (1998a). They show, with homogeneous customers, that an increase in the access charge
results in a higher equilibrium price due to a “raise-each-other’s-cost effect”: for given market

4 With the exception of Section 5, I will assume that v0 is “large enough” so that all consumers are connected in
equilibrium.

5 The U.S. Telecommunications Act of 1996 mandates reciprocal interconnection pricing unless there is a rebuttal
of symmetry. Symmetry may be violated if traffic is unbalanced or if access costs are very unequal. Although I investigate
unbalanced calling patterns, traffic flows between networks are balanced in equilibrium. Hence there is no rebuttal of
symmetry.

6 As argued by Laffont and Tirole (2000), this extension, as well as the previous one, is likely to reduce the (under
linear pricing) collusion effect of a high access charge.
© RAND 2003.
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shares, the average marginal cost of a call increases with the access charge so that a higher access
charge induces the networks to set a higher retail price. In this section I show that similar results
hold when customers are heterogeneous, but the calling pattern may then considerably affect the
impact of the access charge.

Without loss of generality, I assume in this section that �L = �H ≡ �.7 I further assume that
u(q) = η − 1/ηq1−1/η, which results in an iso-elastic demand function,

qL (p) = kLq(p) and qH (p) = kH q(p),

with q(p) ≡ p−η. Denoting network 1’s market shares in the heavy users’ and the light users’
segment by αH and αL respectively, it follows that network 1’s and network 2’s shares in the
volume of incoming calls are given by

α̂1 = αL� + αH (1 − �) and α̂2 = 1 − α̂1, (1)

where αH and αL are a function of both p1 and p2. As a result, network 1’s profits are given by

π1(p1, p2) = µαL ([p1 − c − α̂2(a − c0)] kLq(p1) − f )
+ (1 − µ)αH ([p1 − c − α̂2(a − c0)] kH q(p1) − f )
+ α̂1 [(1 − αL )µkL + (1 − αH )(1 − µ)kH ] q(p2)(a − c0). (2)

The first and second lines in the above expression denote the retail profits of network 1 in the light
users’ and the heavy users’ market segment respectively. Indeed, given that α̂2 is the fraction of
calls that terminate on network 2, the average marginal cost of a call (including any access charges
being paid) equals c + α̂2(a − c0). The last line then denotes the access revenues of network 1.

Based on the parameters (�, µ, kL , kH ), we can distinguish three types of calling patterns.
I denote by light biased those calling patterns where for equal usage fees (p1 = p2), light users
receive in aggregate more calls than they originate. This will be the case if and only if � > µkL/k,
where k denotes the average customer type:

k ≡ µkL + (1 − µ)kH .

A heavy biased calling pattern is then a calling pattern where for equal usage fees, heavy users
receive in aggregate more calls than they originate and thus � < µkL/k. If light (heavy) users
send in aggregate as many calls as they receive for equal usage fees, that is, � = µkL/k, I will
speak of a balanced calling pattern.

Let us first assess the impact of the access charge, assuming a balanced calling pattern, a
case that is most closely related to the one studied by Armstrong (1998) and Laffont, Rey, and
Tirole (1998a). I then discuss the impact of unbalanced calling patterns.

Proposition 1. With a balanced calling pattern,
(i) For a close to c0, there exists a unique, symmetric equilibrium, characterized by p1 =

p2 = p∗, given by

p∗ − (c + a − c0/2)
p∗ =

1
η

(
1 − 2σ

[
(1 + h)k(p∗ − c)q(p∗) − f

])
, (3)

7 In a previous draft, I consider the case where customers are allowed to call more their own type, that is,
�L = �H + �. This case is equivalent to one in which a fraction � of consumers only calls its own type, whereas for all
other consumers � ≡ �H /(1 − �). I show that Proposition 1 is not affected, whereas in Propostion 2, one should replace
ψ by (1 − �)ψ .
© RAND 2003.
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where σ ≡ 1/2τ is an index of substitutability between the two networks and h is a measure of
heterogeneity in demand:

h ≡ var ki

k2 =
µ(kL )2 + (1 − µ)(kH )2

k2 − 1. (4)

(ii) The access charge is an instrument of collusion: as long as the equilibrium price p1 =
p2 = p∗(a) exists, p∗ increases with a.

(iii) Keeping average demand constant, an increase in the heterogeneity of volume demand
(h) lowers the equilibrium price. Similarly, keeping heterogeneity in demand constant, an increase
in average demand (k) results in tougher competition.

Proof. See the Appendix.

Condition (3) tells us that the equilibrium price p∗ reflects a markup over a network’s average
marginal cost, c + (a − c0)/2, where this markup is decreasing in the elasticity of demand η, the
substitutability of the two networks σ , the equilibrium profits per customer k(p∗ − c)q∗ − f , and
the heterogeneity of demand h. A high access charge is thus still an instrument of collusion: as
long as the equilibrium p1 = p2 = p∗ exists, p∗ increases with a. Laffont and Tirole (2000) call
this the “raise-each-other’s-cost” effect. Each network’s average marginal cost, c + (a − c0)/2,
increases with the access charge, leading to a higher equilibrium price.

The impact of heterogeneity in volume demand (h > 0) on the equilibrium price stems
from the fact that heavy users are more price-sensitive in the choice of their network: since they
benefit more from a low price, they more easily accept not being connected to their preferred
network for a given price differential.8 A first consequence is that competition is tougher with
only heavy users than with only light users: an increase in the average type of customers (k) leads
to a lower equilibrium price. Secondly, a low price-network will have a relatively high fraction of
heavy users among its clientele: there is an endogenous selection of customers. As a consequence,
competition is tougher than what the “average” size of users may suggest: all other things equal,
the equilibrium price is lower when customers are more heterogeneous in demand.

I now show that if calling patterns are unbalanced, this endogenous selection changes the
impact of the access charge on the equilibrium price.

Proposition 2. For any calling pattern,
(i) For a close to c0, there exists a unique, symmetric equilibrium characterized by p1 = p2 =

p∗, given by

p∗ −
(

c +
a − c0

2

)

p∗ =
1
η

(
1 − 2σ

[
(1 + h)k(p∗ − c)q∗ − f + (a − c0)ψkq∗]) , (5)

where

ψ ≡ kH − kL

k

(
µkL

k
− �

)
.

We have that ψ = 0 for a balanced calling pattern, ψ < 0 for a light-biased calling pattern, and
ψ > 0 for a heavy-biased calling pattern.

(ii) Compared with the case of a balanced calling pattern, for a close to c0, the impact of an
increase in the access charge on the equilibrium price is

(a) even more positive when the calling pattern is biased toward light users;

8 The fact that high-demand users are more price sensitive depends on the lump-sum nature of the transport cost. If
the transport cost were per unit, things would be more ambiguous. It is, however, a widely observed fact that high-volume
customers are quickest to switch to lower-price alternatives, which is what drives my results.
© RAND 2003.
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(b) still positive but smaller when the calling pattern is biased toward heavy users and

4σ · ψ · k p̃q( p̃) < η, (6)

where p̃ = p∗|a=c0 ; and
(c) reversed (negative) when the calling pattern is biased toward heavy users and

4σ · ψ · k p̃q( p̃) > η. (7)

Proof. See the Appendix.

The nature of the calling pattern affects price competition as soon as the access charge differs
from the termination cost (a �= c0), because the composition of a network’s customer portfolio
then also affects access revenues. To see this, suppose first that a > c0 and the calling pattern is
light biased (ψ < 0). Heavy users then have a negative impact on the access revenues because
they tend to call more than they are called. A cut in the usage price is thus also less profitable, as
it attracts especially these heavy users. Compared to the balanced calling pattern benchmark, an
access markup thus has a bigger collusive effect: it further reduces incentives to set low prices.
A polar picture is obtained if heavy users receive more calls than they make, that is, if there is a
heavy-biased calling pattern (ψ > 0). The effect of the access markup on the equilibrium price
is then ambiguous: on the one hand, the access markup still reduces incentives to lower prices
through the raise-each-other’s-cost effect; on the other hand, lowering prices attracts mainly heavy
users, which are now a source of access revenues. Whenever (7) holds, an increase in the access
charge reduces p∗.

Conditions (6) and (7) suggest that the raise-each-other’s-cost effect becomes relatively less
important as demand gets more inelastic. Intuitively, in the limit whereη = 0 (demand per customer
is constant), the marginal cost of a good does not affect the equilibrium price in an oligopoly.
The collusive (or procompetitive) effect of the access charge then stems only from unbalanced
calling patterns.9 The impact of unbalanced calling patterns, for its part, will be stronger the larger
the substitutability. Indeed, for a given price cut, the effect on the composition of the customer
portfolio is larger if the substitutability is high, as customers then switch faster: for σ very large,
a price cut by an ε may attract almost all heavy users and still leave a lot of light users to the rival
network.

4. Competition in nonlinear pricing: the profit-neutrality result

� Perhaps the most striking result in Laffont, Rey, and Tirole (1998a) is the dichotomy between
competition in linear and nonlinear pricing. In their model with homogeneous customers and a
balanced calling pattern, the collusive power of the access charge disappears completely when
networks compete in (then optimal) two-part tariffs (t(q) = F + pq). An access charge above
marginal cost then still boosts final usage prices, since in equilibrium, networks set usage fees
equal to the average marginal cost of a call:

p1 = p2 = p∗ = c + (a − c0)/2.

The positive effect from this on retail profits, however, is totally neutralized by a lower fixed fee.
As a result, total profits are independent of the access charge and firms may as well set the access
charge equal to marginal cost.

Intuitively, if customers are homogeneous, price schedules must achieve two goals: creating
surplus by offering a certain volume of calls and sharing this surplus with customers. By agreeing

9 Suppose that consumers have a constant demand q(p) = k (k = kL , kH ) and assume for simplicity that f = 0;
then the equilibrium price is given by p∗ − c = [1/(1 + h)][(1/2σk) − ψ(a − c0)].
© RAND 2003.
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on a high access charge, networks basically agree on offering a low quantity of calls to customers.
Since under linear pricing the quantity offered to customers is linked to the way the resulting
surplus is shared with customers (there is only one pricing instrument), an increase in the access
charge then results in higher profits. Under nonlinear pricing, however, there is no such link.
Networks then have two instruments (quantities and tariffs) that allow them to separate the two
roles of pricing.

If customers are heterogeneous, on the other hand, and networks are not allowed to discrim-
inate explicitly, a new, third, role of pricing is to discriminate implicitly between customers of
different types. The literature on nonlinear pricing has then shown that results in general resemble
those obtained with linear prices (for example, usage fees are set above marginal cost, some sur-
plus is left to customers).10 The central question is thus whether the presence of heterogeneity in
volume demand and the resulting difference between the number of goals and instruments allows
networks again to use a high access charge as an instrument of collusion, as under linear pricing.

I consider competition in optimal nonlinear pricing both under the assumption that networks
can discriminate explicitly between heavy and light users (third-degree price discrimination) and in
the more realistic case in which only implicit discrimination (second-degree price discrimination)
is allowed. From the revelation principle, networks cannot do better than offering customers a
quantity qL for a tariff tL and a quantity qH for a tariff tH where, under implicit discrimination,
{qL , tL , qH , tH} must be such that light users opt for (qL , tL ) and heavy users choose (qH , tH ).
The variable net surplus of respectively a light and a heavy user is then

wL ≡ k1/η

L u(qL ) − tL and wH ≡ k1/η

H u(qH ) − tH .

For given net surpluses (wL , wH ) and (w′
L , w′

H ) offered by networks 1 and 2, the market share αs
of network 1 in segment s is then

αs = α(ws, w
′
s) ≡ 1

2
+ σ

[
ws − w′

s
]

(s = L , H ), (8)

where σ ≡ 1/2τ is an index of substitutability between the two networks. If networks are not
allowed or not able to price discriminate explicitly, the following incentive constraints must be
satisfied:

wH = k1/η

H u(qH ) − tH ≥ k1/η

H u(qL ) − tL (ICH)

wL = k1/η

L u(qL ) − tL ≥ k1/η

L u(qH ) − tH . (ICL)

I now show that whether networks engage in second- or third-degree price discrimination, profits
are independent of the access charge.11 I use the following calling pattern property:

Lemma 1 (calling pattern property). If both firms offer the same pair of quantities (qL , qH ) and
network 1’s market share in the heavy- and light-user’s segment satisfies αL = αH ≡ α, then there
is no net outflow of calls from a network.

Proof. If both firms offer (qL , qH ), the net outflow of network 1 is given by

αLµqL + αH (1 − µ)qH − µqL [�LαL + (1 − �L )αH ] − (1 − µ)qH [(1 − �H )αL + �HαH ] ,

which equals zero if αL = αH . Q.E.D.

Let {qL , tL , qH , tH} be the symmetric equilibrium, with profits per type-s subscriber equal
to πs (s = L , H ). From Lemma 1, since αL = αH = 1/2 at a symmetric equilibrium, firms incur

10 See, for example, Varian (1989) and Wilson (1993).
11 I am very grateful to one of the referees for suggesting this proof, which is at once more general and more

straightforward than the original proof.
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no access deficit and average profits per subscriber are equal to π = µπL + (1 − µ)πH . What
happens if one firm reduces both its tariffs tL and tH by the same amount, say ε? This means that
no incentive constraints are affected, and from (8), the market shares of the deviating firm are
increased by the same amount σε for the two types of subscriber. From Lemma 1, the deviating
firm then still does not incur an access deficit (or surplus), and its total profits are

(
1
2

+ σε

)
(π − ε).

Therefore, for the original contract to be an equilibrium (i.e., for ε = 0 to maximize the above), I
require that π = 1/2σ and so profits per firm equal 1/4σ :

Proposition 3. In any symmetric equilibrium, profits are independent of the access charge and
given by 1/4σ .

Intuitively, the need to meet certain incentive constraints (i.e., discriminate implicitly between
customers) means that the role of the offered quantity is not just to maximize surplus, and the role
of tariffs is not just to share this surplus optimally with customers, but also to help discriminate
between customers of different types. Concerns for incentive compatibility, however, never lead
networks to use the quantity instrument to share surplus with customers. In this sense, agreeing
to offer low quantities to customers (by way of agreeing on a high access charge) does not soften
competition for market share. This leads to the profit-neutrality result in my basic model.

Note that the same argument and result would hold if networks were constrained to compete
with (a menu of) two-part tariffs. Also, the argument has nothing whatsoever to do with the “two-
type” model of private information and would apply equally to a continuum model, provided all
types were served.12

� Equilibrium pricing. While the access charge has no impact on profits, it considerably
affects the way networks compete for customers. I briefly provide the main insights but refer to
Dessein (1999a, 1999b) for a detailed discussion.

For an access charge equal to the marginal cost of terminating a call, a = c0, my model is
identical to those of Armstrong and Vickers (2001) and Rochet and Stole (2002). Hence, I obtain
their “no screening” result:13 despite the fact that customers are heterogeneous, for a = c0 a single
two-part tariff t∗(q) is optimal, where

t∗(q) = cq + f + 1/2σ.

Whenever a �= 0, however, this “no screening” result disappears. Assuming a balanced calling
pattern, Dessein (1999a) shows how an increase in the access charge makes the contract offered
to heavy users more and more attractive to light users. Under explicit price discrimination, for
a high-enough access charge, light users then prefer the tariff and quantity designated to heavy
users. To discriminate implicitly, networks must therefore increase the tariff for heavy users and
lower the tariff for light users. The incentive constraint of the light users is then binding, and heavy
users face an implicit marginal price that is smaller than the perceived marginal cost. Obviously,
if there were a continuum of customer types, the incentive constraint would be binding whenever
a �= 0.

The main insight of Dessein (1999b) is that the nature of the calling pattern considerably
affects the attractiveness of certain customer types, and hence the way firms compete for—
and discriminate between—customers. Dessein (1999b) shows how for a �= c0, the tariff that a

12 See Hahn (2000) for a formal proof.
13 Rochet and Stole show, however, that this result is highly sensitive to the assumption that the customer’s type is

uncorrelated with the consumers location on the Hotelling line and that all consumer types are willing to participate with
the candidate tariffs.
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customer pays depends on the net outflow or inflow of calls he generates. Therefore, depending
on the calling pattern, for a given access charge, the incentive constraint of the light users may be
binding or the incentive constraint of the heavy users may be binding, and hence marginal prices
may be smaller, larger, or equal to the perceived marginal cost.14

� Limits to the profit-neutrality result. I do not make any claim of robustness of the above
profit-neutrality result. In particular, as is clear from the proof of Proposition 3, what is needed
is (i) symmetry in demand, (ii) distribution of volume types (high, low) to be independent of
the location, and (iii) transport costs τ to be independent of the variable consumption qk or
volume type. If (iii) is not verified, for example, then starting from a symmetric equilibrium
where αL = αH = 1/2, an increase in tL and tH by ε will result in αL �= αH , such that Lemma 1
cannot be applied. Dessein (1999a), assuming a balanced calling pattern, then shows that when
operators are seen as better substitutes by heavy users than by light users, networks obtain higher
profits by agreeing on an access charge below marginal cost. In the opposite case, an access
charge above marginal cost may boost profits.15 If (i) is not verified and, as a result, networks
differ in size, Carter and Wright (2003) show that the larger network prefers a reciprocal access
charge to be set at cost. For sufficiently large asymmetries, the smaller network will have the same
preference.

In my view, Proposition 3 should therefore be seen as a benchmark; in more complex settings,
high access charges may as easily increase as reduce operators’ profits, depending on the specifics
of the model. What is important is that, a priori, the access charge has no clear-cut impact on
profits. The next section, which considers a model in which demand for subscription is elastic,
provides a detailed example of the breakdown of the access charge’s profit neutrality.

5. Elastic subscription demand and network externalities

� In the previous analysis I have assumed that in equilibrium, all customers subscribe to one
of the two networks. Because market participation is such an important issue, especially in the
mobile sector, I now use a more general discrete-choice framework where demand for subscription
is elastic and, in equilibrium, some customers choose not to subscribe.16 I show that networks
then prefer an access charge below marginal cost, whereas overall welfare typically increases by
setting the access charge above marginal cost.

Let firms 1 and 2 be two symmetrically placed operators facing differentiated customers, who
are further homogeneous in their volume demand.17 Consumers subscribe to one or the other firm,
or opt for an outside option. Suppose that the subscription offered by firm i gives each consumer
a net surplus wi , and that the outside option generates a net surplus w0. I use a discrete-choice
framework (see Anderson, de Palma, and Thisse (1992) or, more recently, Armstrong and Vickers
(2001)) and assume that a consumer of type ε = (ε0, ε1, ε2) obtains a utility wi +εi if he buys from
firm i , and a utility w0 +ε0 if he does not subscribe. The triplet ε = (ε0, ε1, ε2) is distributed across
the population according to a known continuous distribution. There is a continuum of potential
consumers, with measure normalized to one.

In the above framework, the number of subscribers to firm i , αi , is given by the probability
that wi + εi = max{w1 + ε1, w2 + ε2, w0 + ε0}. I denote α1 ≡ s(w1, w2) and, by symmetry,

14 Similarly, assuming a uniform calling pattern, where light users receive many more calls than they originate,
Hahn (2000) finds that for a > c0, the marginal price is larger than the perceived marginal cost. From Dessein (1999b),
the opposite result is likely to hold for more balanced calling patterns.

15 Since the mechanism at work is quite technical, I refer to Dessein (1999a) for more details.
16 The Hotelling model is ill-suited to analyze limited participation. Only customers in the middle of the Hotelling

line drop out then, such that each network has a local monopoly. The Hotelling model can nevertheless be considered as
a special case of the more general discrete-choice framework that I consider.

17 As noted by a referee, if subscribers also differ in volume demand, then the marginal subscriber is likely to make
and receive far fewer calls than the average subscriber. While this reduces network externalities, it is unlikely to affect
my results qualitatively, since they hold for any level of externalities.
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α2 ≡ s(w2, w1). Total subscription demand or market participation is denoted by

φ = φ(w1, w2) ≡ s(w1, w2) + s(w2, w1).

Assumption 1.

∂φ(w1, w2)
∂w1

∣∣∣∣
w1=w2=w∗

and
∂s(w1, w2)

∂w1

∣∣∣∣
w1=w2=w∗

are nonincreasing in w∗.

Assumption 1 implies that for larger values of φ(w, w) and s(w, w), it should not become
easier to further increase, respectively, market penetration and market share. These conditions are
verified for the logit model18 and the Hotelling model.19

Since volume demand is known and the same for all customers, network i cannot do better
than offer a two-part tariff ti (q) = Fi + pi q. Given a market participation φ ≡ φ(w1, w2), demand
for calls by a given customer and the variable gross surplus derived from making these calls
is given respectively by φq(pi ) and φu(qi ). Thus, a lower market participation lowers the per-
customer demand for calls, as there are fewer customers to whom a call can be made. As a result,
net surpluses w1 and w2 are the solution to

wi = φ(w1, w2)v(pi ) − Fi i = 1, 2, (9)

where v(pi ) = max
q

{u(q) − pi q}.
I assume that w1 and w2 are continuous in, and uniquely defined by, the variables (p1, p2, F1,

F2) in the relevant parameter range.
From (9), the industry exhibits positive network externalities: customers value the fact that

more customers are connected to one of the two operators. Each connected customer thus has an
externality on all other customers, where this externality is increasing in v(pi ) and, hence, de-
creasing in pi . Intuitively, if usage fees are smaller, customers value more an additional connected
customer, as they will make more calls to this customer. Since a lower access charge results in
lower equilibrium usage fees pi and p j , it also results in larger network externalities. This will
drive my main result.

I look for a candidate symmetric equilibrium that satisfies the first-order conditions. Let
F∗ and p∗ denote respectively the symmetric equilibrium fixed fee and usage fee, and w∗ the
resulting net surplus to customers. As usual, I obtain marginal-cost pricing, p∗ = c + (a − c0)/2.
From (9), symmetric equilibrium profits can therefore be written as

πi (w∗, w∗) ≡ s(w∗, w∗)
[
φ(w∗, w∗)V (a − c0) − w∗ − f

]
, (10)

with

V (a − c0) ≡ v

(
c +

a − c0

2

)
+

(
a − c0

2

)
q

(
c +

a − c0

2

)
.

I am interested in the sign of dπi (w∗, w∗)/da for a close to c0.
From (10), a change in the access charge may affect symmetric equilibrium profits in two

ways:

(i) The access charge affects πi (w∗, w∗) through its effect on V (a − c0). It is easy to verify
that V (a − c0) is maximized for a = c0 and is decreasing in |a − c0|. Intuitively, setting a �= c0

18 The most commonly used discrete-choice model is the logit model where εi −ε j (i �= j) is distributed according
to the logistic function, yielding s(wi , w j ) = ewi /ρ/(ewi /ρ + ew j /ρ + 1), where ρ is a measure of differentiation between
the two firms. Both derivatives in Assumption 1 are then strictly decreasing in w.

19 In a Hotelling model with limited participation, both derivatives of Assumption 1 equal 2σ and are thus constant
in w.
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results in a distorted usage price p∗ �= c, which, all other things equal, reduces total surplus and
profits per customer. This force thus tends to push the profit-maximizing access charge close to
c0. For a = c0, however, this effect is only of second order and can be neglected. Indeed, we have
that

∂V (a − c0)
∂a

∣∣∣∣
a=c0

= 0.

(ii) The access charge affects πi (w∗, w∗) through its impact on w∗. As hinted above, an
increase in the access charge reduces the amount of network externalities, which in turn affects
w∗. Because for a close to c0 the impact of a on V (a − c0) is of second order, the following result
holds:

Lemma 2. For a = c0, dπi (w∗, w∗)/da has the same sign as

dw∗

da
[
wM − w∗] ,

where wM is the net surplus offered by a monopolist.

Proof. See the Appendix.

Intuitively, for a = c0, industry profits are concave in w and maximized for w = wM . Hence
if w∗ < wM , profits will increase with a if and only if dw∗/da > 0. Similarly, if w∗ > wM ,
profits will increase with a if and only if dw∗/da < 0.

Before we discuss the sign of dw∗/da, note first that both w∗ < wM and w∗ > wM are
possible. On the one hand, a duopolist i does not take into account that by decreasing Fi he
may reduce the market share of his competitor. This is the standard business-stealing effect of
competition, which, in the absence of network externalities, would always imply that w∗ > wM .
On the other hand, when setting Fi , neither does a duopolist internalize the impact of an increase
in the overall market participation φ(wi , w j ) on his competitor’s profits per customer. As a result,
if network externalities are large, it may be possible that in equilibrium two competitors offer less
surplus than would a monopolist, that is, w∗ < wM . Intuitively, we may expect w∗ > wM unless
−∂s(w1, w2)/∂w2 is relatively small (networks are very differentiated) and ∂φ(w1, w2)/∂w1 is
relatively large (the market expansion effect is very important).20

Let us now investigate the sign of dw∗/da. Due to network externalities, when network 1
reduces its fixed fee F1, it increases both w1 and w2. From (9), in a symmetric equilibrium, we
have that

χ∗ ≡ dw2/d F1

dw1/d F1

∣∣∣∣
p1=p2=p∗,F1=F2=F∗

=
v(p∗)φ1(w∗, w∗)

1 − v(p∗)φ1(w∗, w∗)
, (11)

where p∗ = c + (a − c0)/2, and φ1(w1, w2) is the derivative of φ with respect to w1.21 χ∗ can be
considered a measure of the importance of network externalities in equilibrium. As hinted before,
since v(p∗) is decreasing in a, (11) suggests that network externalities are more important when
the access charge a is smaller.

What is the impact of χ∗ on w∗? Intuitively, the more important network externalities are,
and thus the larger χ∗ is, the more each competitor will act as a monopolist, as a decrease in his
own tariff then also benefits his rival’s customers. One might thus conjecture that an increase in
χ∗—through a decrease in the access charge—will bring w∗ closer to wM . In the Appendix, I
prove that this intuition is correct:

Lemma 3. For a = c0, dw∗

da∗
[
w∗ − wM]

> 0.

20 See the Appendix, proof of Lemma A1, Remark, for a formal argument.
21 See the Appendix for a formal derivation.
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Proof. See the Appendix.

From Lemma 3, a lower access charge decreases w∗ only when a decrease in consumer
surplus w∗ increases networks’ profits, despite a decrease in overall consumer participation. This
yields the following proposition:

Proposition 4. For a close to c0, in any symmetric equilibrium:

(i) Profits are decreasing in a.

(ii) Total welfare is increasing in a if and only if w∗ > wM (that is, if and only if two
duopolists offer a larger net surplus to customers than would a monopolist).

Proof. Part (i) stems directly from Lemmas 2 and 3. I now discuss the impact of the access charge
on total welfare, given by

S = S(w∗(a), a) ≡ φ(w∗, w∗)
[
φ(w∗, w∗)V (a − c0) − w∗ − f

]
+ �(w∗, w∗),

where �(w1, w2) ≡ E
[
max {w1 + ε1, w2 + ε2, w0 + ε0}

]
is total consumer surplus. For a = c0,

∂V (a − c0)/∂a = 0, from which

d S(w∗, a)
da

∣∣∣∣
a=c0

=
∂S(w∗, a)

∂w

dw∗

da
. (12)

By the envelope theorem, ∂�(w1, w2)/∂w1 = s(w1, w2). (See, for example, Armstrong and
Vickers (2001).) Hence,

∂S
∂w

= 2φ1(w∗, w∗)
[
φ(w∗, w∗)V (a − c0) − w∗ − f

]
+ 2φ1(w∗, w∗)φ(w∗, w∗)V (a − c0),

which is strictly positive because firms must obtain nonnegative profits in equilibrium. From
Lemma 3, then d S/da > 0 for a = c0 if and only if w∗ > wM . Q.E.D.

Proposition 4 removes the idea that the collusion concern should be associated with high
access charges. Indeed, if demand for subscription is elastic and, hence, the industry exhibits
network externalities, firms may increase their profits by setting the access charge below marginal
cost (relative to a case where a = c0). Whenever w∗ > wM , that is, whenever competition between
the two networks results in a larger consumer surplus relative to a case in which both colluded
explicitly, such a decrease in the access charge reduces consumer surplus and, hence, market
participation. Intuitively, a social planner then prefers an access charge above marginal cost. In
contrast, if w∗ < wM , an access charge below marginal cost increases consumer surplus, and
both a social planner and the networks prefer an access charge below marginal cost. As argued
above, w∗ > wM is likely unless networks are very differentiated and/or network externalities
are very important.22

While Proposition 4 only shows how profits move with the access charge for a close to c0, in
simulations with a constant elasticity demand and logit preferences,23 I always found an access
charge a∗ < c0, such that symmetric equilibrium profits are maximized for a = a∗. In contrast,
in these simulations, total welfare was maximized for a = aR > c0.24

22 In my model, reciprocal access charges are optimal. In the context of mobile telecommunications, however, it
may be optimal to set the fixed-to-mobile access charge above the mobile-to-fixed access charge (and above cost). This
subsidizes the mobile segment and boosts consumer participation. See Armstrong (2002) for a formal argument.

23 See footnote 18 for a description of the logit model. The parameter values used were the following: constant
elasticity η = 1.5, c1 = c0 = .05 (so c = .15), f = 2, and ρ respectively equal to 10, 50, and 100.

24 I am grateful to Jullian Wright, Steve Poletti, and Aaron Schiff for providing me with these simulations. Inde-
pendently, Schiff (2002) has developed an alternative model of partial consumer participation. Although Schiff cannot
solve his model analytically, simulation results are exactly as suggested by Proposition 4.
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In my model, network externalities are industrywide: the value of a subscription is increasing
in the total number of subscribers to any of the two networks. One of my assumptions, however,
is that networks are not allowed to charge a different price for intra- and internetwork calls.25 If
one allows for such termination-based price discrimination, firm-specific network externalities
may arise even with full market participation. Indeed, whenever a > c0 (a < c0), firms then
charge a higher (lower) price for internetwork calls than for intranetwork calls. All else equal,
the value of a subscription is then increasing (decreasing) in the market share of the network one
subscribes to. Gans and King (2001) show that, as with industrywide network externalities, the
presence of such firm-specific network externalities induces firms to agree on an access charge
below marginal cost (a < c0). Intuitively, if off-net calls are cheaper than on-net calls, customers
prefer to subscribe to a smaller network, reducing the incentives of firms to compete for market
share.26

6. Concluding remarks

� Previous research on network interconnection and two-way access has mainly focused on
linear pricing, thereby emphasizing the collusive power of a high access charge. Given that
competition between telecommunications operators is de facto competition in nonlinear pricing,
this can only be justified by an implicit assumption that linear prices are a good shortcut to nonlinear
prices. Though Laffont, Rey, and Tirole (1998a) show in a simple model with homogeneous
customers that this collusive effect then completely disappears, both Laffont, Rey, and Tirole
(1998a, 1998b) and Armstrong (1998) argue that once customers are heterogeneous in demand
and marginal prices differ from marginal cost, results are likely to more closely resemble those
under linear pricing. Subsequent research and policy-oriented publications have continued to
report results obtained under the assumption of linear pricing, often without mentioning the result
on two-part tariffs in Laffont, Rey, and Tirole (1998a) (see, for example, Carter and Wright
(1999) and Doganoglu and Tauman (1996)). As a result, the idea that high access charges are an
instrument of collusion has become widespread among policy makers.

This article shows that introducing customer heterogeneity does not restore the collusive
effect of a high access charge. First, the access charge may have no effect on profits even when
customers are heterogeneous, whether networks engage in second- or third-degree price dis-
crimination. Second, if subscription demand is elastic and, hence, the industry exhibits network
externalities, operators may increase their profits by agreeing on an access charge below the
marginal cost of access, an act that typically decreases both overall welfare and consumer surplus
relative to cost-based access pricing. In fact, total welfare and consumer surplus can typically be
increased by setting the access charge above marginal cost.

From an economic theory perspective, the above results remove the idea that the collusion
concern should be associated with high access charges. From an economic policy perspective, my
results warn that defining the best regulation may be tricky. On the one hand, welfare maximization
may require an access charge above marginal cost. On the other hand, in complex environments,
the impact of the access charge on profits and welfare may a priori go either way, depending
on often unobservable variables. Indeed, while I have shown that limited participation results in
a collusive access charge below marginal cost, I have also argued that other forces may push
the collusive access charge in a different direction. To the extent that these forces are difficult
to evaluate by a regulator, ensuring that the access charge is close to cost is likely to be a good
second-best policy.

To conclude, it should be noted that in this article I have analyzed competition between
two symmetric operators, a situation that mirrors a well-developed industry. As networks then
have similar preferences with respect to the level of the access charge, my focus has been on the

25 This may be due to regulatory restrictions or may reflect that consumers are not aware of the network they are
calling (for example, given the existence of local number portability).

26 In contrast to my model, however, the welfare-maximizing access charge equals c0.
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potentially collusive nature of access agreements. My results, however, do not purport to speak
about the potential need for regulation in the entry phase of competition, where entrants and
incumbents may prefer a different (reciprocal) access charge.

Appendix

� Proofs of Propositions 1 and 2 and Lemmas 2 and 3 follow.

� Competition in linear pricing.

Proof of Proposition 1. (i) For given prices p1 and p2, αL and αH are given by

αs = αs (p1, p2) ≡ 1
2

+ ksσ [v(p1) − v(p2)] s = L , H,

where ksv(p) is the variable net surplus from a subscription,

ksv(p) ≡ max
q

{
k1/η

s u(q) − pq
}

= ks

(
p−(η−1)

η − 1

)
,

and σ ≡ 1/2τ is an index of substitutability between the two networks. Let us maximize network 1’s profit, given by (2),
over p1. At a symmetric equilibrium, p1 = p2 = p and αi = α̂i = 1/2. Denoting q∗ ≡ q(p∗), the first-order condition
yields

p∗ −
(

c +
a − c0

2

)

p∗
=

1
η

(
1 − 2σ

[
(1 + h)k(p∗ − c)q∗ − f + (a − c0)ψkq∗]) , (A1)

where

h ≡ var ki

k2 =
µ(kL )2 + (1 − µ)(kH )2

k2 − 1

and

ψ ≡ �k
k

(
µkL

k
− �

)
.

We have that ψ = 0 for a balanced calling pattern, hence (A1) simplifies to (3). The proof of existence and uniqueness of
the symmetric candidate equilibrium is an extension of Proposition 1 in Laffont, Rey, and Tirole (1998a).

(ii) and (iii) The symmetric equilibrium price p∗ must satisfy the first-order condition

∂πi

∂pi

∣∣∣∣
p1=p2=p∗

=
k
2

[
R′(p∗) − a − c0/2q ′(p∗)

]
− σkq(p∗)

[
k(1 + h)R(p∗) − f

]

=
k
2

q∗

p∗
[
(η − 1)(pM − p∗) + ηa − c0/2 − 2σ p∗π̂ (p∗)

]
= 0,

with π̂ (p) = k(1 + h)R(p) − f and R(p) = (p − c)q(p). Using the implicit function theorem, I obtain

∂p∗

∂a
=

η

2
η − 1 + 2σ [π̂ (p∗) + p∗π̂ ′(p∗)]

and
∂p∗

∂k
=

−2σ (1 + h)p∗R(p∗)
η − 1 + 2σ [π̂ (p∗) + p∗π̂ ′(p∗)]

.

Using exactly the same argument as Laffont, Rey, and Tirole,27 it is shown that the denominator of both terms is positive.
It follows that ∂p∗/a is positive and ∂p∗/∂k is negative. By the same argument, ∂p∗/∂h is negative also. Q.E.D.

27 Laffont, Rey, and Tirole (1998a) explain the uniqueness and monotonicity of p∗ with respect to a; just substitute
for π (p) with π̂ (p) and use π (p) > 0 ⇒ π̂ (p) > 0.
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Proof of Proposition 2.

(i) See proof of Proposition 1.

(ii) The symmetric equilibrium price p∗ must satisfy the first-order condition,

k
2

[
R′(p∗) − a − c0/2q ′(p∗)

]
− σk2q(p∗)

[
(1 + h)R(p∗) − f/k

]
− ψ(a − c0)σkq(p∗)2

=
k
2

q∗

p∗

[
(η − 1)(pM − p∗) + (η − 4σkp∗q∗ψ)

a − c0

2
− 2σ p∗π̂ (p∗)

]

= 0,

and thus

∂p∗

∂a
=

η

2 − 2ψkp∗q(p∗)σ
η − 1 + 2σ [π̂ (p∗) + p∗π̂ ′(p∗) − ψq∗(η − 1)(a − c0)]

.

As for a = c0, p∗ is independent of ψ and the denominator is positive, so it follows that ∂2 p∗/∂a∂ψ < 0. By continuity,
this also holds for a close to c0. To conclude the proof, I thus only have to show that if ψ > 0 (heavy-biased calling
pattern), p∗ decreases with a if and only if 4σψk p̃q( p̃) > η, where p̃ denotes the equilibrium price in case a = c0.
For a close to c0, the denominator of ∂p∗/∂a is positive and I denote by A the largest access charge below which this
denominator is still strictly positive. I show that if for a = c0, 4ψk p̃q( p̃)σ > η and thus ∂p∗/∂a < 0, then ∂p∗/∂a < 0
for any access charge smaller than A. Indeed, suppose that there exists an access charge a′ < A for which ∂p∗/∂a > 0
and thus 4ψkp∗q(p∗)σ < η; then, by continuity, there exists an access charge a′′ < a′ for which 4ψkp∗q(p∗)σ = η.
Consequently, at a′′, all the derivatives of p∗ with respect to a are zero, so that ∂p∗/∂a = ∂p∗/∂a|a=a′′ = 0 for any access
charge smaller than A. As a result, 4ψk p̃q( p̃)σ = η also, a contradiction. By the same argument, if 4ψk p̃q( p̃)σ < η,
then for any access charge smaller than A, 4ψkp∗q(p∗)σ < η and p∗ increases with a. Q.E.D.

� Elastic subscription demand.

Remark on notation. In what follows, si (w1, w2) and φi (w1, w2), i ∈ {1, 2}, denote the derivative with respect to wi of
s(w1, w2) and φ(w1, w2).

First-order conditions. To prove Lemmas 2 and 3, I first derive the first-order conditions and show that in a symmetric
equilibrium, usage prices p1 = p2 = p∗ are equal to the average marginal cost of a call. The profits of firm 1 are given by

π1 = s(w1, w2) [F1 + [p1 − c − s(w2, w1)/φ(w1, w2)(a − c0)] φ(w1, w2)q(p1) − f ] (A2)

+ s(w2, w1)φ(w1, w2)q(p2)
s(w1, w2)
φ(w1, w2)

(a − c0), (A3)

which, from (9), can be rewritten as

π1 = s(w1, w2) [φ(w1, w2) (v(p1) + (p1 − c)q(p1)) − w1 − f ]
+ s(w2, w1)s(w1, w2) [q(p2) − q(p1)] (a − c0). (A4)

I look for the candidate symmetric equilibrium that satisfies the first-order conditions with respect to F1 and w1. Let F∗

and p∗ be the symmetric equilibrium fixed fee and usage fee, and w∗ = w(p∗, F∗) the resulting net surplus to customers.
From (9), we have that

dw2

d F1
=

∂φ(w1, w2)
∂w1

v(p2)
dw1

d F1
+

∂φ(w1, w2)
∂w2

v(p2)
dw2

d F1
.

Let us denote

χ∗ ≡ dw2/d F1

dw1/d F1

∣∣∣∣
p1=p2=p∗,F1=F2=F∗

.

Since φ2(w, w) = φ1(w, w), then

χ∗ = φ1(w∗, w∗)v(p) + φ1(w∗, w∗)v(p)χ∗

and thus

χ∗ =
φ1(w∗, w∗)v(p∗)

1 − φ1(w∗, w∗)v(p∗)
. (A5)
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For w1 and w2 to be continuous in F1 and F2, one must have that χ∗ < 1, or φ1(w∗, w∗)v(p) < 1/2. Similarly, we have
that

dw2

dp1
=

∂φ(w1, w2)
∂w1

v(p2)
dw1

dp1
+

∂φ(w1, w2)
∂w2

v(p)
dw2

dp1

and thus also

dw2/dp1

dw1/dp1

∣∣∣∣
p1=p2=p∗,F1=F2=F∗

= χ∗.

Assuming a symmetric equilibrium, from (9), the first-order condition with respect to F1 yields

Z (w∗, χ∗, a)
dw1

d F1
= 0, (A6)

where

Z (w∗, χ∗, a) ≡
[
s1(w∗, w∗) + χ∗s2(w∗, w∗)

]
π∗φ1(w∗, w∗)

[
1 + χ∗] s(w∗, w∗)

[
v(p∗) + (p∗ − c)q(p∗)

]
− s(w∗, w∗),

with π∗ denoting equilibrium profits per customer:

π∗ ≡ φ(w∗, w∗)
(
v(p∗) + (p∗ − c)q(p∗)

)
− w∗ − f.

Similarly, assuming a symmetric equilibrium, the first-order condition with respect to p1 yields

Z (w∗, χ∗, a)
dw1

dp1
+ s(w∗, w∗)φ(w∗, w∗)

[
p∗ − c − a − c0

2

]
∂q(p∗)

∂p
= 0. (A7)

Together with (A6), the latter implies that p∗ = c + (a − c0)/2.

Proof of Lemma 2. Given p∗ = c + (a − c0)/2, symmetric equilibrium profits can be written as

πi (w∗, w∗) ≡ s(w∗, w∗)
[
φ(w∗, w∗)V (a − c0) − w∗ − f

]
, (A8)

where

V (a − c0) ≡ v

(
c +

a − c0

c

)
+

a − c0

c
q

(
c +

a − c0

c

)
.

For a = c0, V (a − c0) = v(c) and ∂V (a − c0)/∂a = 0.
Hence, at a = c0, dπ∗

i (w∗, w∗)/da equals

1
2

[ 2φ1(w∗, w∗) (φ(w∗, w∗)v(c) − w∗ − f ) − φ(w∗, w∗)
+2φ1(w∗, w∗)φ(w∗, w∗)v(c)

]
dw∗

da
, (A9)

where I have used the fact that s(w∗, w∗) = φ(w∗, w∗)/2.
What is the net surplus wM that customers would receive if a monopolist owned the two firms? A monopolist would

set pM = c and charge a fixed fee F M such that resulting net surplus wM maximized total industry profits

φ(w, w) [φ(w, w)v(c) − w − f ] . (A10)

Note that the derivative of (10) is given by the term in brackets of (A9). Since total industry profits are concave in w, it
thus follows that at a = c0,

dπ∗
i (w∗, w∗)/da

dw∗/da

equals zero for w∗ = wM , is positive for w∗ < wM , and is negative for w∗ > wM . Q.E.D.

To prove Lemma 3, I first establish the following result:
© RAND 2003.
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Lemma A1. In a symmetric equilibrium, for a = c0:

(
dw∗

da

)
/

(
dχ∗

da

)
< 0 ⇔ w∗ > wM , (A11)

where
dχ∗

da
=

∂χ∗

∂a
+

∂χ∗

∂w∗
dw∗

da
. (A12)

Proof. From (A6), one must have that

d Z
da

≡ ∂ Z
∂w

dw∗

da
+

∂ Z
∂χ∗

dχ∗

da
+

∂ Z
∂a

= 0.

For a = c0, we have that ∂V (a − c0)/∂a = 0, and (A6) implies

(
dw∗

da

)
/

(
dχ∗

da

)
= −

(
∂ Z
∂χ∗

)
/

(
∂ Z
∂w

)
. (A13)

I now show that for a = c0, ∂ Z/∂w∗ < 0, while ∂ Z/∂χ∗ < 0 ⇐⇒ w∗ > wM .

(i) For a = c0, ∂ Z/∂χ∗ < 0 ⇐⇒ w∗ > wM . For a = c0, Z can be rewritten as

Z =
[
s1(w∗, w∗) + s2(w∗, w∗] π∗ + 2φ1(w∗, w∗)s(w∗, w∗)v(c) − s(w∗, w∗)
−

(
1 − χ∗) [

s2(w∗, w∗)π∗ + (1 − χ∗)φ1(w∗, w∗)s(w∗, w∗)v(c)
]
.

The expression in the first line is identical to the derivative of (industry) divided by 2 and, hence, equals zero for
w∗ = wM , is positive for w∗ < wM , and is negative for w∗ > wM . Denoting

M ≡ s2(w∗, w∗)π∗ + (1 − χ∗)φ1(w∗, w∗)s(w∗, w∗)v(c), (A14)

we have that ∂ Z/∂χ∗ = M . Since Z = 0 and (1 − χ∗) > 0, we must have that M > 0 if and only if w∗ < wM .

(ii) For a = c0, ∂ Z/∂w∗ < 0. For a = c0, Z can be rewritten as

Z = s(w∗, w∗)
[

[s1(w∗, w∗) + χ∗s2(w∗, w∗)]
s(w∗, w∗)

π∗ + φ1(w∗, w∗)
[
1 + χ∗] v(c) − 1

]
.

Since Z and thus also the expression in brackets equals zero, I need only show that the expression in brackets is decreasing
in w∗.

From Assumption 1, φ1(w∗, w∗) is decreasing in w∗. Furthermore, as χ∗ < 1 and s2(w, w) = φ1(w∗, w∗) −
s1(w∗, w∗), from Assumption 1, also

∂

∂w∗

(
s1(w∗, w∗) + χ∗s2(w∗, w∗)

s(w∗, w∗)

)
< 0.

Finally,

∂π∗

∂w∗ = 2φ1(w∗, w∗)v(c) − 1,

which must be negative because χ∗ < 1 implies φ1(w∗, w∗)v(c) < 1/2.
As all terms in the expression in brackets are positive and their derivatives negative, it follows that ∂ Z/∂w∗ < 0.

Remark. Since for a = c0, w∗ < wM ⇔ M > 0, from (A14), w∗ < wM only if (i) −s2(w1, w2) is very small, (ii)
φ1(w∗, w∗) is very large, or (iii) fixed costs f are very large such that π∗ is small. Q.E.D.

Proof of Lemma 3. Lemma A1 implies Lemma 3. Indeed, let us denote

F ≡
(

dw∗

da

)
/

(
dχ∗

da

)∣∣∣∣
a=c0

.
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From Lemma A1, F > 0 ⇔ w∗ < wM . From (A12), we have that

F ∂χ∗

∂a
=

(
1 − ∂χ∗

∂w∗ F
)

dw∗

da
. (A15)

From (A5), as v(p∗) is decreasing in a and φ1(w∗, w∗) is decreasing in w, we have that ∂χ∗/∂a < 0 and ∂χ∗/∂w∗ < 0.
I consider three cases:

(i) First, suppose that F > 0, then from (A15), dw∗/da < 0.

(ii) Second, if F = 0, then dw∗/da = 0.

(iii) Third, if F < 0, then as long as (∂χ∗/∂w∗)F < 1, from (A15), dw∗/da > 0. I argue now that (∂χ∗/∂w∗)F ≥ 1
is impossible. Note first that given ∂χ∗/∂w∗ < 0 and (A13), F is continuous in the level of fixed costs f . Assume that for
some value of f, we have that (∂χ∗/∂w∗) F ≥ 1. In the proof of Lemma A1(i), I have shown that w∗ < wM , and hence
F > 0, if and only if M > 0, where I have defined M by (A14) with π∗ = φ(w∗, w∗)v(c) − w∗ − f . Since π∗ must
go to zero for f sufficiently large, from (A14), I can always find an f ′ sufficiently large such that M > 0 and, hence,
(∂χ∗/∂w∗)F < 0. Since F is continuous in f , there exists then a value f ′′ for f such that (∂χ∗/∂w∗)F = 1, which is
impossible given (A15). Hence, whenever F < 0, it must be that (∂χ∗/∂w∗)F < 1 and thus dw∗/da > 0.

Lemma A1 together with observations (i)–(iii) yields Lemma 3. Q.E.D.
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