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Deriving Value from Social Commerce Networks 

 

ABSTRACT 

 Social commerce is an emerging trend in which sellers are connected in online social 

networks, and where sellers are individuals instead of firms. This paper examines the economic 

value implications of a social network between sellers in a large online social commerce 

marketplace. In this marketplace each seller creates his or her own shop, and network ties 

between sellers are directed hyperlinks between their shops. Three questions are addressed: (i) 

Does allowing sellers to connect to one another create value (i.e., increase sales), (ii) what are the 

mechanisms through which this value is created, (iii) how is this value distributed across sellers 

in the network and how does the position of a seller in the network (e.g., its centrality) influence 

how much it benefits or suffers from the network? We find that: (i) allowing sellers to connect 

generates considerable economic value; (ii) the network’s value lies primarily in making shops 

more accessible to customers browsing the marketplace (the network creates a “virtual shopping 

mall”); and (iii) the sellers that benefit the most from the network are not necessarily those that 

are central to the network, but rather those whose accessibility is most enhanced by the network.   
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INTRODUCTION 

 Social commerce and social shopping communities are growing in number and in size. 

Broadly defined, social commerce and social shopping are forms of Internet-based “social 

media” that allow people to actively participate in the marketing and selling of products and 

services in online marketplaces and communities. One way to think of these applications is that 

they merge online shopping and social networking (Tedeschi 2006). The distinction between 

social shopping and social commerce is that while social shopping connects customers, social 

commerce connects sellers. The roles played by consumers vary across websites or platforms, 

and can range from generating content (e.g., product reviews and recommendations, known as 

“consumer-generated media,” on websites like Epinions.com, ThisNext.com, and Yelp.com) to 

being sellers and curators of online stores (e.g., eBay MyWorld/Neighborhoods, Squidoo.com, 

and Zlio.com). The Financial Times reported that Internet traffic to social commerce and social 

shopping websites grew by more than 500% between early 2007 and early 2008 (Palmer 2008), 

the New York Times reported that a number of social commerce firms are attracting substantial 

venture capital financing (Tedeschi 2006), and further growth and investment in this online 

retailing segment is expected.  

Social shopping revolves around online word-of-mouth, and has recently been studied 

academically. For example, Chevalier and Mayzlin (2006), Godes and Mayzlin (2004) and Liu 

(2006) studied word-of-mouth and the influence of consumer-generated media on business 

outcomes, and Salganik, Dodds, and Watts (2006) and Watts and Dodds (2007) studied some 

marketing-related implications of social contagion from a social networks perspective. Recent 

research in marketing has also examined related issues, such as consumer interdependence in 

choice and spatial models (Yang and Allenby 2003; Zhang and Netzer 2008), and other issues 
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related to social networks in marketing contexts (Iyengar, Valente, and Van den Bulte 2008; 

Katona and Sarvary 2008; Katona, Zubcsek, and Sarvary 2008; Nair, Manchanda, and Bhatia 

2006; Trusov, Bucklin, and Pauwels 2008; Van den Bulte and Joshi 2007; Van den Bulte and 

Lilien 2001).  

Social commerce, on the other hand, is a more recent phenomenon and has not been 

studied as extensively. Social commerce marketplaces have four defining characteristics: (i) 

sellers (or shopkeepers) are individuals instead of firms, (ii) sellers create product assortments 

organized as personalized online shops, (iii) sellers’ can create hyperlinks between their 

personalized shops, and (iv) sellers’ incentives are based on being paid commissions on sales 

made by their shops. What emerges is a consumer-driven online marketplace of personalized, 

individual-curated shops that are connected in a network. Links between sellers’ shops in this  

network are directed, clickable hyperlinks that customers can use to move from shop to shop. In 

the specific marketplace that we study, which is a large and typical social commerce marketplace 

created in Europe, the products that sellers add to their shops come from vendors (e.g., Amazon, 

Apple, Gap) based on arrangements made by the marketplace owner. As a result, sellers do not 

own any inventory and do not set prices; they only manage the product mix. 

Our aim is to understand social commerce as a new business concept, focusing on 

whether and how it generates economic value for marketplace-owning firms and for the 

individuals who participate as sellers in these marketplaces (by increasing sales). Issues related 

to connecting sellers have not been studied extensively (one exception is the shopping center 

literature that we review below). The value implications of networks have been studied in other 

contexts, such as inter- and intra-firm networks of a formal or an informal nature (e.g., Ingram 

and Roberts 2000; Rindfleisch and Moorman 2001; Tsai and Ghoshal 1998), and collaborative 
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group networks (e.g., Freeman, Roeder, and Mulholland 1980; Grewal, Lilien, and Mallapragada 

2006). The economic implications of social structure have also been discussed recently in 

economics and sociology (e.g., Goyal 2007; Granovetter 2005), and illegal collusive networks 

between firms have been studied in sociology (Baker and Faulkner 1993). However, very little is 

understood about whether networks provide some economic value in marketing and retailing 

contexts. We consider the following questions in relation to social commerce: (i) does allowing 

sellers to connect to one another create economic value (i.e., increase sales), (ii) what are the 

mechanisms through which this value is created, (iii) how is this value distributed across sellers 

in the network and how does the position of a seller in the network (e.g., its centrality) influence 

how much it benefits or suffers from the network?   

We address these questions using a novel dataset from an online marketplace which, after 

hosting a set of independent, consumer-generated online shops for about 18 months, became a 

social commerce marketplace by allowing its sellers to connect their shops and form a shop 

network (a connection from shop A to shop B is represented by a directed hyperlink to shop B on 

shop A’s website). Our dataset covers both a pre-network and a post-network period (therefore 

allowing us to study the effect of the introduction of the networking feature), and it contains 

detailed information on the characteristics and performance of each shop (therefore allowing us 

to explore how the value created by the network is shared across members). We use multiple 

methods and analyze these data at the marketplace level (using time series analysis) and at the 

shop level (using Bayesian statistical analysis). The paper is organized as follows. First, we 

review relevant literatures on shopping centers and social networks. Second, we describe our 

dataset. Third, we report the results of our marketplace-level analysis. Fourth, we report the 
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results of our shop-level analysis. Finally, we conclude with a general discussion of the results, 

and suggestions for future research. 

BACKGROUND AND THEORY 

Network ties between sellers in social commerce marketplaces are links between sellers’ 

shops that customers can use to browse between shops, akin to browsing through a virtual 

shopping center. For the individuals who participate as sellers in social commerce marketplaces 

and who earn commissions on sales that they make, the network can make their shops more 

accessible and more likely to be discovered by a browsing customer. 

Bricks-and-mortar shopping centers are possible analogs to online social commerce 

marketplaces. Whereas social commerce shops are connected by directed hyperlinks, in offline 

shopping centers shops are linked by spatial proximities (although these offline “links” are not 

inherently social and are usually determined by retail planners). The literature on shopping 

centers in real estate economics has considered relevant issues such as tenant mixes and 

locations, rent setting, customer traffic generation, co-location, and spatial dependence between 

grouped shops (e.g., Eppli and Benjamin 1994; Eppli and Shilling 1996; Gerbich 1994; Lee and 

Pace 2005; Martineau 1958). Marketing researchers have also contributed to this literature (e.g., 

Anderson 1985; Nevin and Houston 1980), including recent work examining retailers’ decisions 

to enter shopping centers (Vitorino 2008), and work on spatial dependence between marketing 

variables (e.g., market shares) at the geographic region level (e.g., Bronnenberg and Mahajan 

2001; Bronnenberg, Mahajan, and Vanhonacker 2000; Bronnenberg and Sismeiro 2002).  

An important concept in the shopping center literature is that of “retail demand 

externalities.” A positive retail demand externality exists when customers are drawn to a 

shopping center due to the presence of attractive “anchor” tenants, such as department stores, 
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supermarkets, or super-stores (Eppli and Benjamin 1994). Smaller shops benefit from being in 

the same center as an anchor, because anchors increase customer traffic, and thus increase 

smaller shops’ chances of attracting customers and making sales (Ingene and Ghosh 1990). The 

benefits to customers include reduced travel costs and the convenience of multi-purpose or “one 

stop” shopping (Eppli and Benjamin 1994). These effects are generally empirically well 

supported (e.g., Anderson 1985; Brueckner 1993; Eppli and Benjamin 1994; Eppli and Shilling 

1996; Martineau 1958; Nevin and Houston 1980). The spatial dependence stream of the 

shopping center literature (e.g., Lee and Pace 2005)  suggests that shops’ locations within offline 

shopping centers can influence their sales (e.g., being next-door to an anchor may boost sales), 

although any shop in a shopping center is more accessible than a standalone shop outside of the 

center in most cases.1 

Therefore, bricks-and-mortar shopping centers generate value primarily by making stores 

more accessible to customers. We argue that social commerce networks act as “virtual shopping 

centers” that create economic value through the same basic concept of accessibility. For 

individual sellers in large social commerce marketplaces, being found by customers can be 

challenging. Hence, being part of a network and, importantly, being accessible and reachable in 

that network, has a benefit comparable to the benefit offered by bricks-and-mortar shopping 

centers. Increasing the overall accessibility of the shops in the network makes the marketplace 

more “sticky”, i.e., helps retain customers within the marketplace for longer. In other words, the 

network has the potential to affect the number of visitors to any given shop, which has a direct 

impact on sales since the number of sales is simply equal to the number of visitors multiplied by 

the shop’s conversion rate. 
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However, while similar to offline shopping centers at a basic level, social commerce 

marketplaces are not merely online equivalents of shopping centers, thus making social 

commerce a theoretically and substantively interesting context to study. In particular, the drivers 

of accessibility are likely to differ between social commerce networks and bricks-and-mortar 

shopping centers for at least four reasons.  

First, links between shops in a social commerce network are directed, that is, a hyperlink 

is from shop A to shop B, and not necessarily the reverse. In bricks-and-mortar shopping centers, 

“links” (physical proximities) between shops are obviously undirected and customers’ browsing 

paths are not as structurally constrained as in an online shop network.  

Second, when a customer browses in a shopping center they do not visit (i.e., go into) 

every shop that they pass on their way from one shop to another. In the online context, however, 

browsing requires that the customer visit every shop along a path. For example, on a path A  B 

 C, going from A to C requires visiting B.  

Third, traveling costs are lower online (relative to the goods being purchased). As 

mentioned earlier, one key benefit of grouping bricks-and-mortar retailers to form a shopping 

center is convenience, i.e., reduced traveling costs for customers. This benefit is likely to be less 

critical online.  

Fourth, while the number of neighbors of a bricks-and-mortar shop in a shopping mall is 

physically constrained, the number of links to and from any given shop in a social commerce 

network is not constrained.  

As a result, while we use the shopping center literature to motivate the concept of 

accessibility, we turn to the social networks literature to study the drivers of accessibility in 

social commerce networks.  At the marketplace level, networks that are more connected (i.e., 



10 
 

with a larger number of links) generally tend to better improve the overall accessibility of their 

members. However, simply increasing the number of links may not always be beneficial. 

Improvements in accessibility depend on the browsability of the network, and not all links 

equally contribute to a network’s browsability (this is related to the concept of network-based 

“search;” cf. Watts, Dodds, and Newman 2002). In particular, creating new links sometimes 

actually hurts the browsability of the network. For instance, in Figure 1 a simple network 

evolves from time 1 to time 2 with the addition of a new link. In time 2 shop D is brought into 

the network by shop A with the creation of the A D link. This makes shop D accessible from 

shop A, but this also makes D a “dead-end” (i.e., a shop with at least one incoming link, but no 

outgoing links).2 If a customer browses to D (starting at A) then he or she will not be able to 

access shop B or C. Although the network at time 2 is more connected, the creation of a dead-

end makes it less browsable (at least from B’s and C’s perspective). 

[INSERT FIGURE 1 ABOUT HERE] 

The accessibility of a website (in our case a shop) is influenced by the structure of the 

network to which it belongs and its position in this network relative to other sites (Vázquez 

2003). Specifically, shops with higher indegree centrality (number of incoming links) should 

benefit more from the network compared to shops with lower indegree centrality because more 

incoming links equates to a higher chance of customer traffic in one’s shop. We also expect that 

shops with higher incoming proximity (can be reached from more shops in fewer steps) will 

benefit more from the network compared to shops with lower incoming proximity, because shops 

that are accessible from fewer other shops and that lie further down browsing paths are less 

likely to be visited. Conversely, shops that provide many opportunities for customers to leave, by 

having a higher outdegree centrality (many outgoing links) or a higher outgoing proximity (can 



11 
 

lead to more shops in fewer steps), should themselves benefit less from the network. Also, shops 

that are connected to by shops that are themselves highly interconnected will be less accessible 

since the likelihood of browsing customers reaching such a shop will be low unless their 

browsing path starts in its ego-network. We therefore anticipate that shops with lower incoming 

clustering coefficients tend to benefit more from the network. The concepts of indegree 

centrality, outdegree centrality, incoming proximity, outgoing proximity, incoming clustering 

coefficients and outgoing clustering coefficients are defined formally in Table 1. (Note that hub 

centrality and authority centrality, which are also defined in Table 1, are addressed later in the 

paper.) 

[INSERT TABLE 1 ABOUT HERE] 

Of course, other features will influence a shop’s likelihood of generating sales, which can 

generally be referred to as a shop’s “attractiveness” to customers. In this context, a shop’s 

attractiveness may be related to its product assortment (e.g., number of products, and uniqueness 

of its products vis-à-vis other shops in the marketplace) and the general ability or skill of the 

shopkeeper in creating an appealing product assortment. Finally, note that allowing sellers to 

connect to other shops could also have the effect of intensifying competition. However, because 

sellers typically do not set prices in such marketplaces (e.g., sellers select merchandise for their 

shops but do not set prices; vendors who provide the products set prices), intensified competition 

between sellers cannot force them to lower prices.3  

 

DATA 

Our data come from a company that runs popular and rapidly growing social commerce 

marketplaces in France, Germany, the United Kingdom, and the United States. Our dataset 
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covers the French marketplace, which is the largest and was the first that this company launched. 

The company leverages online retailers’ “affiliate” selling programs whereby websites that refer 

purchases to these retailers are paid commissions. Individuals (“sellers”) join this marketplace 

and are given tools to create their own online personalized stores or “shops” (each shop has its 

own URL). Sellers add products to their shops from a database of over 4 million products across 

many categories, with these products coming from over 100 vendor retailers such as Amazon.fr, 

Apple, Buy.com, Dell, and the Gap. Each seller has complete control over their shop’s product 

assortment. Importantly, sellers are individual people, as opposed to companies.  

The purchasing process in this marketplace is as follows. When a customer selects a 

product from a shop, he or she is referred to the corresponding vendor who processes the 

transaction and ships the product (i.e., the marketplace owner and its members hold no 

inventory). The vendor then pays the marketplace owner a commission for each transaction 

generated by one of the marketplace’s shops, and this commission is shared with the seller whose 

shop generated the sale. For example, suppose that Mark visits Roger’s shop in this marketplace 

where Roger lists a range of books on Bayesian estimation. If Mark purchases a particular book, 

he is taken to the corresponding vendor’s website (say Amazon), pays the vendor with his credit 

card, and a few days later receives the book shipped from (or through) Amazon. Since Mark 

purchased a book from Roger’s shop, Amazon pays the marketplace a commission on that sale, 

and Roger in turn earns a portion of this commission. In summary, sellers are individual 

shopkeepers who do not own any inventory but create online shops that direct customers to 

online vendors, and who earn commissions on the sales made by their shops. 

In June 2007, approximately 18 months after the marketplace had been established, the 

firm introduced a new feature that allowed members to link their shops to other shops (at that 
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time the marketplace had 74,291 shops). Shops were independent (all disconnected) prior to the 

introduction of this feature. This feature gave birth to a network with shops as nodes and directed 

hyperlinks as ties. A link from shop A to shop B means that shop A’s owner placed a hyperlink 

to shop B on shop A’s homepage. Shop B’s owner cannot reject the incoming link, but is not 

required to reciprocate this link (shop B’s owner is notified of the incoming link by email). 

Therefore, this network is directed.  

Our dataset includes the entire French population of shops that were created anytime 

between the first day and the 781st day of this marketplace’s life (the last day of our dataset). The 

network was created (i.e., sellers were given the ability to link their shops to other sellers’ shops) 

on the 583rd day of the marketplace’s life; therefore our data cover approximately the first seven 

months of the network’s life. After 781 days of this marketplace’s life in France, 136,774 shops 

had been created, and 21,373 of these shops (15.6%) were part of the network (i.e., had at least 

one incoming or outgoing link). By this time the network had 82,810 directed links (network 

density, or the proportion of possible directed links that exist, was 1.21 × 10-5). The marketplace 

and the network within it were growing quickly: an average of 180 new shops had been created 

in the marketplace each day, and once the network was born an average of 107 shops had joined 

the network each day, with an average of 421 new links created each day. Shops in this 

marketplace are generally small and have limited product assortments (the average shop features 

nine products). While the average commission revenue generated by each shop was modest 

(€2.84; although shops that made at least one sale had a higher average commission of €8.36, the 

aggregate revenue generated by the entire marketplace was nontrivial: 2.3 million sales 

transactions and €388,970 in commission revenues (from vendors) had been generated by the 

end of the observation window. 
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 We first analyze the data at the marketplace level to assess the economic value created by 

allowing sellers to link their shops to other sellers’ shops in a manner observable to customers. 

We use time series modeling to examine the value created by the network, as well as the relation 

between this value and some aggregate characteristics of the network. We then analyze the data 

at the individual shop level in order to address the issue of how the economic value created by 

the network is distributed across its members, using a hierarchical Bayesian Tobit model with 

latent variables. 

MARKETPLACE-LEVEL ANALYSIS 

Modeling Approach 

 Our analysis of marketplace-level data uses autoregression with exogenous variables 

(ARX) time series models (these models are also called autoregressive distributed lag [ARDL] 

models in the econometrics literature; Greene 2003). This type of model, as well as its 

multivariate version (vector autoregression with exogenous variables or VARX) is increasingly 

popular in marketing dynamics research (e.g., Pauwels et al. 2004; Trusov, Bucklin, and Pauwels 

2008), and is appropriate here because it allows for an endogenous series (daily marketplace-

level commission revenues; i.e., how much the marketplace receives from vendors each day for 

sales that were made that day) to be modeled as a function of p-period lags of itself (i.e., the pth-

order vector autoregression component) and as a function of m covariates or exogenous 

variables, which can also be lagged (up to r periods). The covariates we use dynamically track 

certain aggregate characteristics of the marketplace and the network within it. Specific variables 

are described below. Note that an alternative specification would be a VAR or VARX model 

(with the difference being that VARX includes exogenous regressors whereas VAR is a fully 

endogenous dynamic system). Whether this is appropriate is ultimately an empirical question, 
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and is the subject of tests which we describe below. For now, consider the generic ARX/ARDL 

model: 

t
r

j jtj
p

l ltlt yy εφβ +⋅+⋅+= ∑∑ = −= − 010 xΛ  

Where yt is a dependent (endogenous) variable at period t, β0 is an intercept, p is the number of 

autoregressive lags on the endogenous variable (selected using an appropriate information 

criterion such as the Bayesian Information Criterion [BIC]), lφ is the effect of the l-period lagged 

endogenous variable on its current value, Λj is an m-dimensional row vector with the effects of 

the j-period lagged exogenous variables (m is the number of exogenous variables in the model), 

xt – j is an m-dimensional column vector of the j-period lagged exogenous variables, r is the 

number of lags on the exogenous variables (also selected using information criteria), and εt is a 

random disturbance. Ordinary least squares or maximum likelihood estimation techniques are 

used to estimate these models. This specification is appropriate provided that Granger causality 

tests confirm that the variables in x are indeed exogenous (i.e., not caused by lags of the 

dependent variable y) (Granger 1969; Greene 2003; Hanssens et al. 2001; Trusov et al. 2008). If 

one or more variables in x are found to not be exogenous then a VAR specification is needed. 

Variables   

We now introduce the variables that will be the focus of our time series analysis. Data are 

available on each of these variables for each of the 781 days in our dataset, covering both pre- 

and post-network birth periods.  

• Commission_revenuest: the commissions in € paid to the marketplace owner by the 

vendors for the sales made by the shops on day t.  

• Networkt: a dummy variable indicating whether the network existed on day t or not; 

(1) 
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• Marketplace_sizet: total number of shops in the marketplace at the end of day t (includes 

shops that are in the marketplace but do not have any network links); 

• Network_linkst: total number of links in the shop network on day t; 

• Dead_endst: the total number of dead-end shops in the shop network on day t. See Figure 

1.  

Results 

Impact of Allowing Sellers to Form a Network. Before investigating more specific 

issues related to network connectivity and marketplace commission revenues, we performed an 

initial test to address whether adding the networking feature had a positive effect on the 

commission revenues earned by the marketplace. In other words, did changing the disconnected 

online marketplace into a social commerce marketplace improve commission revenues? We 

addressed this question using a regime shift model, as introducing the shop network feature on 

the 583rd day of the marketplace’s life was a “regime shift” for this marketplace. The impact of 

this regime shift can be modeled with the following ARX model: 

ttt

p

l ltlt

sizeeMarketplacNetwork

revenuesCommissionrevenuesCommission

ελλ

φβ

+Δ⋅+⋅+

⋅+= ∑ = −

_

__

10

10  

The best-fitting model (i.e., with the lowest BIC) had autoregressive lag of p = 6.4 

Commission_revenuest, which we defined in its daily (differenced) form, was found to be stable 

and not evolving using a Dickey-Fuller unit root test (with a null hypothesis of non-stationarity; 

p < .001). Marketplace_sizet, defined above in its total or cumulative form was found non-

stationary based on a Dickey-Fuller test (p = .99), however when differenced (i.e., the daily 

change in the number of shops in the marketplace) it was stationary (p < .001). Thus, we use the 

difference in Marketplace_sizet (i.e., the daily change) and not the cumulative level in our model 

(2) 
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(Dekimpe and Hanssens 2004). A Stock and Watson common trend test for cointegration found 

that these series were not cointegrated. The use of an ARX model instead of a VAR model was 

supported by a series of Granger causality tests (Granger 1969; Hanssens et al. 2001; Trusov et 

al. 2008) which confirmed the exogeneity of ΔMarketplace_sizet and Networkt. Since an 

incorrect choice of the AR lag p can erroneously conclude the absence of Granger causality, we 

selected a high lag (AR p = 30) to be more sure that the results apply at any lag and not just the 

best-fitting lag for the model (Hanssens 1980; Trusov et al. 2008). ΔMarketplace_size was not 

“Granger caused” by either Commission_revenues or Network (χ2[60] = 65.19, p = .30), and 

Network was not Granger caused by either ΔMarketplace_size or Commission_revenues (χ2[60] 

= 40.07, p = .98).  

The regime shift model appeared to fit the actual series well (R2 = .72, BIC = 11.77, 

median absolute deviation [MAD] = €59.78, median absolute percentage error [MAPE] = 

17.94%). The parameter for the network indicator was positive and significant (λ0 = 112.54, t = 

2.06, p < .05), suggesting that shifting to a networked marketplace was a revenue-boosting 

decision on the marketplace owner’s part.5 The effect of increasing marketplace size was also 

positive and significant (λ1 = .36, t = 4.45, p < .01. Overall, these results indicate that, after 

controlling for marketplace size, allowing sellers to network their shops permanently increased 

the mean daily commission revenues (i.e., the network effect can be interpreted as a small 

discontinuity or “jump”). 

Effects of Marketplace and Network Characteristics on Commission Revenues. Given 

this preliminary evidence indicating that the network’s effect on commission revenues is 

positive, we next examined the influence of the marketplace’s and the network’s aggregate 

properties on daily commission revenues with the following model: 
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All 781 days in the dataset were used to estimate this model (which makes for a more 

conservative test of the network’s effects given that the corresponding exogenous variables do 

not vary until day 583).  

In this model we more directly examine the effects of evolution in the marketplace’s size 

and network structure on marketplace commission revenues. As before, ΔMarketplace_sizet is 

the number of new shops to join the marketplace on day t. ΔNetwork_linkst and ΔDead_endst 

capture daily evolution of the network. If the network adds value at the marketplace level by 

making shops more accessible and by facilitating customer browsing, we should expect new 

links to have a positive effect on marketplace commission revenues since new links increase 

browsing opportunities. However, if the network’s browsability is adversely affected by dead-

end shops, we should expect an increase in the number of dead-end shops in the network to have 

a negative effect on marketplace commission revenues.  

Per our above discussion about modeling time series in levels or differences, an 

alternative specification of these variables would of course be to use cumulative levels (e.g., 

cumulative number of links created by the end of day t for Network_linkst). Although 

conceptually plausible, cumulative versions of these variables pose problems because they are all 

non-stationary (even after controlling for a time trend; all Dickey-Fuller tests ps > .95, whereas 

all Dickey-Fuller tests on daily/differenced series ps < .001). This suggests that differences are 

appropriate. The autoregressive lags of the dependent variable contain information about 

previous days’ levels of each of the exogenous variables, thus ensuring that these variables’ 

(3) 
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histories are accounted for. Note that we also found no evidence of cointegration for the daily 

series, making a VAR or ARX model in differences appropriate (instead of, for example, an 

error-correction model; cf. Dekimpe and Hanssens 2004). The ARX specification in (3) (and not 

a VAR model) was confirmed by Granger causality tests: (1) ΔMarketplace_size was not 

Granger caused by Commission_revenues, ΔNetwork_links, or ΔDead_ends (χ2[90] = 60.49, p = 

.99), (2) ΔNetwork_links was not Granger caused by Commission_revenues, ΔMarketplace_size, 

or ΔDead_ends (χ2[90] = 88.34, p = .53), and (3) ΔDead_ends was not Granger caused by 

Commission_revenues, ΔMarketplace_size, or ΔNetwork_links (χ2[90] = 81.20, p = .74). 

The best-fitting model (i.e., with the lowest BIC) had p = 7 and r = 0 (i.e., the effects of 

the exogenous variables appear to be contemporaneous). The model has reasonable fit (R2 = .72, 

BIC = 11.77, MAD = €49.73, MAPE = 15.73%). A Wald test for the joint hypothesis that Λ = 0 

(i.e., all exogenous variables’ effects are zero) was significant (χ2[3] = 27.44, p < .001), 

indicating that the exogenous variables have an impact on commission revenues. A Wald test for 

the joint hypothesis that λ2 = λ3 = 0 (i.e., the network-related exogenous variables) was also 

significant (χ2[2] = 6.77, p < .05). Results are reported in Table 2, and Figure 2 plots the actual 

and fitted daily commission revenues time series to illustrate the model’s fit. 

[INSERT TABLE 2 AND FIGURE 2 ABOUT HERE] 

There is a positive and significant effect of growth in marketplace size (λ1 = .35, t = 4.31, 

p < .001), meaning that daily marketplace revenues receive a boost from each new shop added. 

Likewise, growth in the number of links in the network has a positive and significant effect (λ2 = 

.25, t = 2.03, p < .05), consistent with the idea that more connected networks tend to improve the 

overall accessibility of their members. Also as predicted, growth in the number of dead-end 

shops has a negative effect on marketplace performance (λ3 = -3.10, t = -2.54, p < .05). All 
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autoregressive parameters (effects of lagged daily commission revenues) were also positive and 

significant (except for the fourth day lag).  

Long-Run Impacts. Persistence modeling can be used to examine the long-run effects of 

the exogenous variables in (3). This approach estimates how a “shock” in an “impulse” variable 

(e.g., adding a new link) affects a “response” variable over time (e.g., daily commission 

revenue). This approach has been used in the marketing literature to study the long-run impact of 

changes in marketing variables on performance variables such as sales (e.g., Dekimpe and 

Hanssens 2004, 2005) or service adoptions (e.g., Trusov et al. 2008). 

Specifically, we use impulse-response functions (IRFs).6 An IRF simulates the impact 

over time of a change in one variable (in our case one of the exogenous variables) on the full 

dynamic system (Bronnenberg, Mahajan, and Vanhonacker 2000). Here the IRFs are based on 

the estimated coefficients from the ARX model (3) above. The cumulative IRFs (sometimes 

referred to as total short-run effects) are plotted in Figure 3. These plots show how much 

commission revenue is generated by a one unit increase in each of the exogenous variables and 

how long the “shock” lasts in the system (the effect propagates through the lags of the dependent 

variable). Adding an extra shop to the marketplace generates €2.22 of additional revenues. 

Adding an extra new link to the network generates €1.59 of additional revenues. Adding an extra 

dead-end to the network, however, costs €19.54 in lost revenues to the marketplace owner. For 

each of these impacts, 95% of the total impact is realized by 70 days after the shock. Of course, 

these values are based on the marketplace during its first 781 days and may not apply when it is 

more mature. Nevertheless, the cumulative IRFs indicate that growth in the marketplace and in 

the general accessibility of shops in the network have somewhat persistent revenue-enhancing 

effects.  
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[INSERT FIGURE 3 ABOUT HERE] 

Moreover, these results illustrate the role of the network links in generating value by 

facilitating browsing, particularly showing that if links hurt the network’s browsability by 

sending customers to dead-ends then such links are very costly to the marketplace owner. The 

size of the dead-end effect is surprisingly large; for example, approximately nine new shops in 

the marketplace, or 13 new links in the network would be needed to offset the cost of a net gain 

of one new dead-end shop in the network. Interestingly, holding the number of dead-ends 

constant, one new link has approximately 72% of the value of one new shop. Acquiring new 

sellers is likely to be more costly than encouraging existing sellers to create new links, hence the 

value of a link compares favorably with the value of a shop.  

Discussion of Marketplace Results 

The time series modeling in this section demonstrates the generally positive effect of the 

shop networking feature on aggregate marketplace performance: the network adds economic 

value, after controlling for the growth of the marketplace itself. These marketplace-level findings 

also provide initial support for our hypothesis that this value is generated by making shops more 

accessible. Having a network structure that provides customers with opportunities to move from 

shop to shop, by having a more connected network with few “dead-ends,” is valuable as it helps 

customers browse and find appealing shops and products before abandoning the marketplace. 

We now turn to a shop-level analysis of the marketplace, in order to further investigate the role 

of accessibility, and to assess how the value created by the network is distributed across its 

members. 
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SHOP-LEVEL ANALYSIS 

Model 

In this section we examine the effect of the network at the level of the individual seller 

(shop). Our aims here are to further test the role of accessibility as a mechanism through which 

the network enhances economic value in this marketplace, to further explore similarities and 

differences between social commerce marketplaces and bricks-and-mortar shopping centers, and 

to address our question of how the value generated by the network is distributed across its 

members. We measure Performancei as shop i’s total commissions earned during the seventh 

(last) month of our dataset. Performance is modeled as a function of network- and assortment-

related variables. All independent variables are measured at the end of the sixth (second-to-last) 

month of this period.  

We examine how a shop’s position in the network relative to other shops at the end of the 

sixth month influences its performance in the seventh month. We use several network-related 

measures to describe a shop’s network position relative to other shops. Specifically, we use 

various traditional measures of a shop’s centrality in the network, computed based on the state of 

the network at the end of the second-to-last (sixth) month of data. The measures included are 

mostly based on those outlined by Faust and Wasserman (1992), Freeman (1979), de Nooy, 

Mrvar, and Batagelj (2005), Scott (2000), and Van den Bulte and Wuyts (2007), and come from 

sociology and graph theory. In addition to centrality measures we use other node-level measures 

that help to describe a node’s (shop’s) position in the network relative to others. Each measure is 

defined in Table 1: 

• Indegree centrality: number of incoming links received by a shop from other shops; 

• Outdegree centrality: number of outgoing links from a shop to other shops; 
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• Incoming proximity (Faust and Wasserman 1992; Lin 1976; de Nooy et al. 2005): this 

measures the reachability of shop i from other shops in the network. Incoming proximity 

is proportional to the proportion of shops in the network other than i that can reach i in a 

finite number of steps (shop i’s “indomain”), and inversely proportional to the mean 

geodesic distance (shortest path length) from these shops to i. Thus, incoming proximity 

is highest for shops that are accessible from a large number of shops in the network in 

only few steps. Note that this is a directed graph analog of Freeman’s (1979) standard 

“closeness” metric for undirected graphs; 

• Outgoing proximity (Faust and Wasserman 1992; Lin 1976; de Nooy et al. 2005): this 

measures the reachability of other shops in the network from shop i. Outgoing proximity 

is proportional to the proportion of shops in the network other than i that can be reached 

from i in a finite number of steps (shop i’s “outdomain”), and inversely proportional to 

the mean geodesic distance (shortest path length) from shop i to these shops. Thus, 

outcoming proximity is highest for shops from which a large number of shops in the 

network are accessible in only few steps.  

• Incoming clustering coefficient (Watts and Strogatz 1998; Zhou 2002): the incoming 

clustering coefficient of shop i is the degree of interconnectedness among the shops that 

link to shop i. Specifically, it is the proportion of possible links that exist among the 

shops in shop i’s incoming ego-network. The higher a shop’s incoming clustering 

coefficient, the more densely interconnected its incoming ego-network is, i.e., that shop is 

connected to by other shops that are themselves highly interconnected (as opposed to 

being connected to by shops that are more dispersed throughout the network). Note that 
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clustering is not a centrality measure, but rather a measure of how dense each shop’s ego-

network is; 

• Outgoing clustering coefficient (Watts and Strogatz 1998; Zhou 2002): the outgoing 

clustering coefficient of shop i is the degree of interconnectedness among the shops that 

shop i links to, and thus is the proportion of possible links that exist among the shops in 

shop i’s outgoing ego-network. The higher a shop’s outgoing clustering coefficient, the 

more densely interconnected its outgoing ego-network is, i.e., that shop connects to other 

shops that are themselves highly interconnected; 

• Hub centrality and authority centrality (Kleinberg 1999): these measures of centrality are 

directed graph analogs of eigenvector centrality (Bonacich 1987) for outgoing links (hub) 

and incoming links (authority). The basic concept of eigenvector centrality is that a shop 

is more prominent in the network if it is well-connected to other well-connected shops. A 

shop with a high hub score links to many shops with high authority scores, and a shop 

with a high authority score is linked to by many shops with high hub scores (these 

metrics are based on eigenvector decompositions of the network’s adjacency matrix; see 

Kleinberg 1999 for derivations). Because these centrality measures are not directly 

related to accessibility, we do not expect them to have a significant impact on shop 

performance. 

We use the following variables to describe a shop’s product assortment, also computed at 

the end of the sixth (second-to-last) month of the dataset: 

• Number of products listed by shop i; 

• Average popularity of the products listed in shop i, based on how many other shops in 

the marketplace feature the same products.7 
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In addition to these product assortment control variables, we also control for shop i’s age 

(the number of days between the time the shop was created in the marketplace and the last day of 

the sixth month of data), include in the model quadratic terms for indegree and outdegree to 

allow nonlinear effects on performance, and allow for interactions between the network position 

variables and the number of products listed in a shop (shop assortment size).  

A potential problem, however, is that a shop’s network position, its assortment, and its 

performance may all be influenced by a common latent variable . This endogeneity could be due 

to, for instance, a seller’s overall unobserved ability, which makes them a better seller in the 

marketplace as well as helps them get into a better position in the network and have a better 

assortment (e.g., akin to a general seller-specific “skill” effect). This type of endogeneity is an 

important issue when modeling social network-related variables (cf. Hartmann et al. 2008), 

because many social network properties may be driven by either unobserved attributes or 

endogenous attributes that are related to network structure or network position (Handcock, 

Raftery, and Tantrum 2007; Wasserman and Faust 1994). We control for this using latent 

variables. We allow each network position and product assortment variable to be a function of a 

shop’s latent ability. Our approach is similar to the data augmentation approach used by Hui, 

Bradlow, and Fader (2007) to model “category attractiveness” in their shopping path model for 

the movements of customers around grocery stores.  

Our model is as follows: 

Network Positioni, j = γ0, j + γ1, j Abilityi + δi, j

Product Assortmenti,k = α0,k + α1,k Abilityi + ζ i,k
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Performancei =
0
Performancei

*

⎧ 
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if Performancei
* = 0

if Performancei
* > 0

 

Where j indexes the network position measures (j = 1, …, J) taken at the end of the sixth month, 

k indexes the product assortment measures (k = 1, …, K) (in our case J = 8 and K = 2) taken at 

the end of the sixth month, l indexes the quadratic terms (in our case L = 2), j′ and k ′  index the 

position and assortment size interaction components (in our case j′ = 1, …, 8 and k ′ = 1), the γ’s 

are the network equation parameters, the α’s are the assortment equation parameters, 

),(~],[ Λ0ζδ Nii  (Λ is unconstrained, allowing nonzero covariances between the residuals), the 

β’s are the performance equation parameters , ε is a random i.i.d. error with ),0(~ 2σε Ni , and 

Performancei is the observed performance (i.e., commission revenues) of shop i in the last 

(seventh) month. We use a Tobit specification (7) because commission revenues in this 

marketplace cannot be negative.  

In addition to influencing shop performance, our model allows the Ability latent variable 

to influence each shop’s network measures and assortment characteristics. Directly entering the 

network and assortment variables into the performance equation (6) would be inappropriate as it 

would give rise to biased and inconsistent network- and assortment-related estimates.8 Instead, 

the residuals from the network (4) and assortment (5) equations (δi and ζi, respectively) are used 

as regressors in the performance equation (6). These residuals are ability-adjusted network- and 

assortment-related variables. Our latent variable approach appears to be an appropriate, and 

relatively straightforward, technique for dealing with endogeneity issues in these types of 

models. This specification may also help us deal with some potential collinearity between the 

network position measures that may be induced by a common latent variable.9  

(7) 
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A hierarchical Bayesian procedure was used to estimate the parameters in this model. 

Technical details are provided in the appendix. The prior on latent ability was 

),1(~ 2η−NAbility i ; diffuse priors were used for β0, β1, β2, β3, β4, β5, α0, α1, γ0 and γ1; the 

priors on σ, η, and Λ were ⎟
⎠
⎞

⎜
⎝
⎛

2
,

2
~ 002 sr

maInverseGamσ , where r0 = s0 = 1, 

⎟
⎠
⎞

⎜
⎝
⎛

2
,

2
~ 002 sr

maInverseGamη , where r0 = s0 = 1, and ( )0ΔΛ 00 ,~ nnhartInverseWis , n0 = J + K + 

3, and Δ0 = I.10 

All network position- and product assortment-related variables were standardized (mean 

= 0, standard deviation = 1) before running the model. All shops in the dataset with at least one 

product at the end of the sixth month of the network’s life (i.e., at the time the independent 

variables were computed) were included in the shop-level analysis. These criteria resulted in a 

set of 85,708 shops for estimating this model. Means, standard deviations, and correlations for 

the unstandardized variables are reported in Table 3. Estimation was based on 20,000 MCMC 

iterations with the first 10,000 as burn-in. All parameters mixed well and convergence was fast.  

[INSERT TABLE 3 ABOUT HERE] 

Results 

Model Fit and Validation. First, in-sample fit was checked by comparing shops’ actual 

commission revenues with those predicted by the model. For each of the 10,000 post-burn-in 

MCMC draws we computed the predicted values for the shop performance dependent variable 

for each shop in the dataset. Fit may be assessed using posterior checks (Gelman, Meng, and 

Stern 1996). In Figure 4 we plot the distribution across MCMC draws of the mean (across shops) 

predicted performance. The average across MCMC draws of the mean predicted performance is 

€0.1782, extremely close to the actual value of €0.1783. For each draw we also computed the 
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median (across shops) of the absolute deviation (MAD) between actual and predicted 

performance. The mean MAD over all draws was reasonably small (€0.056), keeping in mind 

that our dependent variable is a financial performance variable, which are typically difficult to 

predict with extremely high accuracy. The mean over the MCMC draws of the correlation 

between the shops’ actual and predicted commissions was .22. 

[INSERT FIGURE 4 ABOUT HERE] 

Second, we compared the full model in (4) to (7) to a nested model without network 

position effects; i.e., in (6) restricting β3 = β5 = β6 = 0. Following Newton and Raftery (1994) and 

Rossi, Allenby, and McCulloch (2005) we computed the log marginal densities for the two 

models using the harmonic means of the respective models’ likelihoods across posterior draws 

(every tenth draw after burn-in, for computational reasons). The full model had a better fit 

( )|(ˆlog2 onlyproductMyp −− = 2.334 × 10-5 versus )|(ˆlog2 fullMyp− = 2.308 × 10-5; smaller is 

better), and a large log Bayes factor based on these log marginal densities ( onlyproductvsfullBF −log = 

1289; note that AvsBBFlog > 5 is “strong evidence” in favoring model A over model B), which 

provided very strong evidence in favor of the full model over the product-only restricted model. 

The mean correlation between actual and predicted commissions (over MCMC draws) for this 

restricted model was clearly inferior to the full model (.07 versus .22). 

Third, we performed another nested model comparison, this time comparing the full 

model in (4) to (7) to a restricted model with α = 0, γ = 0 and β1 = 0, which was a simpler Tobit 

model without the latent ability variable and entering the network position and product 

assortment variables directly as regressors instead of their ability-adjusted residuals. This simpler 

model’s fit and log Bayes factor were worse ( )|(ˆlog2 simpleMyp− = 2.311 × 10-5 versus 

)|(ˆlog2 fullMyp− = 2.308 × 10-5; log BFfull vs simple = 139), and the correlation between actual and 
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predicted commissions was also worse than for the full model (.15 versus .22). We therefore base 

our findings on the full model with the latent “ability” specification. Parameter estimates for the 

simpler Tobit model are reported in Table 5 for sake of comparison and as a robustness check. 

All effects that we report as significant in the full model below are confirmed by this simpler 

specification, and the magnitudes of the effects are very comparable. A few effects, such as that 

of outgoing clustering coefficient and authority, are not significant in the full model but are 

significant in the simpler model. Since the former fits better than the latter we do not focus 

heavily on these points of difference. Indeed, basing our substantive findings on the full model 

with fewer significant effects is conservative. 

Fourth, out-of-sample fit was checked. The common approach of randomly splitting the 

data into an estimation sample and a hold-out validation sample is inappropriate here since our 

latent ability variable needs to be estimated for each shop, and predicting shop performance in a 

validation sample would require estimating latent ability for each shop in that sample, which 

would require using the validation data for estimation. Instead, we re-estimated the model with 

the network and product assortment variables measured at the end of month 5 (instead of the end 

of month 6) and the commission revenues measured during month 6 (instead of during month 7; 

i.e., “month 5/6” data instead of “month 6/7” data). As an indicator of robustness we found no 

qualitative differences between the results reported below from analysis of the month 6/7 data 

and the results from this month 5/6 data (details available from the authors). We then assessed 

out-of-sample fit by using these month 5/6 parameter estimates (including shop-level latent 

ability estimates) to predict the commission revenues earned during month 7 as a function of the 

network and assortment variables at the end of month 6 (i.e., using the month 5/6 data for 

calibration and the month 6/7 data for validation). The average predicted month 7 commission 
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(mean taken across MCMC draws of the parameter estimates) was €0.1947, close to the actual 

mean month 7 commission of €0.1783 (and the actual mean lied well within the distribution of 

the predicted means from the MCMC draws). The MAD across draws was €0.077, which was 

slightly larger than for in-sample fit but still reasonable, and the mean correlation between actual 

and predicted commissions was .21.  

Parameter estimates are reported in Tables 4A, 4B and 4C (full model) and Table 5 

(simpler model without latent ability). Note that only one of the interaction terms between the 

network position measures and shop product assortment size was statistically significant. 

Therefore we focus on the main effects and quadratic terms in our discussion, and mention the 

significant interaction where appropriate. 

[INSERT TABLES 4A, 4B, 4C AND 5 ABOUT HERE]  

Latent Ability Effects. The effect of a shop’s latent ability on its performance was not 

significant, and the parameters (intercepts and slopes) in each of the network position and 

product assortment equations (4, 5) were not significant either. Hence, the residuals (δ, ζ) in the 

performance equation (6) are very similar to the original standardized independent variables. 

Note that the fact that the full latent variable model was favored over the simpler non-latent 

model based on the Bayes factor suggests that modeling latent ability is the more appropriate 

specification, despite the non-significance of these effects.  

Degree Centrality Effects. A shop’s position in this network affects its commission 

revenues. The largest effects on shop’s commissions were associated with degree centrality, that 

is, the number of ties going into and out of each shop. Indegree centrality had a positive effect on 

commissions, and outdegree centrality had a (smaller) negative effect. This suggests that shops 

with more links going into them from other shops, and fewer links going out of them to other 
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shops tend to perform better in terms of generating commission revenues for themselves. Both 

the indegree and outdegree effects are nonlinear given the significant quadratic terms (negative 

for indegree, positive for outdegree). Thus, the positive (negative) impact of a new incoming 

(outcoming) link diminishes as the number of existing links increases.11 

These results support our argument that the value of the network at the individual shop 

level lies in how the network makes shops more or less accessible to browsing customers. A 

higher indegree means that a shop is more likely to be found by a browsing customer. A shop 

with a higher outdegree, on the other hand, makes it easier for customers to leave that shop, 

which hurts performance. The asymmetry between incoming and outcoming links highlights one 

key difference between bricks-and-mortar shopping centers and social commerce marketplaces: 

such asymmetries are not possible in the former since links in bricks-and-mortar shopping 

centers are undirected.  

These effects also raise some interesting game theoretic issues because they imply that 

sellers have an incentive to try to attract others to connect to their shops, but have a disincentive 

to connect their shops to others’ shops. This also raises the interesting issue of how the 

marketplace owner could incentivize its sellers to create network links that facilitate browsing. 

Note that because the absolute effect size of indegree centrality is greater than that of outdegree 

centrality, shop A may still benefit from linking to shop B as long as shop B reciprocates this 

link (in which case shop A would increase both its indegree and outdegree by 1, leading to a 

positive net effect). The posterior means for the standardized effects of indegree and outdegree 

centrality are .923 and -.503, respectively. The corresponding unstandardized effects are .272 

and -.114,12 and the proportion of links that were reciprocated in our dataset is 61.7%. Supposing 

that when a shop creates an outgoing link to another shop there is a 61.7% chance of receiving a 
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reciprocal incoming link, the expected net effect (unstandardized) on the performance of the 

shop that created the outgoing link is -.114 + .617 × .272 = .0538. In other words, given the 

tendency for reciprocity in this network, creating links to other shops is not costly in expectation.  

Proximity Centrality Effects. The inproximity and outproximity effects were significant, 

and respectively positive and negative. The positive effect of inproximity means that shops that 

can be reached from a greater proportion of other shops in the network in fewer steps (i.e., with 

the customer having to pass through fewer other shops) benefit more from the network compared 

to shops that are less easily reached. It also shows that not only direct incoming links are 

important; rather, direct and indirect paths into a shop are value-relevant. This directly supports 

our accessibility argument. It also suggests that being closer to the start of potential browsing 

paths through the network is important. The comparatively weaker, negative effect of 

outcloseness complements this, and indicates that being positioned in the network such that 

many other shops can be reached from one’s shop in relatively few steps hurts a shop’s 

performance. The inproximity × number of products interaction was negative, suggesting that the 

positive effect of a shop’s incloseness centrality on its performance decreases as its assortment 

size becomes larger.  

Clustering Effects. A shop’s incoming clustering coefficient had a negative effect on 

commissions, as expected. It appears to be better for a shop not to be connected to by shops that 

are themselves highly interconnected. Shops that are connected to by shops that are themselves 

highly interconnected have relatively poor accessibility from other shops in the network that are 

not in their ego-network. For instance, if most of shop A’s incoming links come from a set of 

shops that are themselves highly interconnected then the chance that a customer entering the 

network at a randomly chosen shop in the network will browse to shop A is smaller than if shop 
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A’s incoming links come from a more dispersed, less interconnected set of shops. This result 

contrasts with bricks-and-mortar shopping centers, where clustering provides the benefit of 

reduced customers’ traveling costs. Stores in bricks-and-mortar shopping centers are generally at 

least moderately clustered, and this clustering or grouping does not appear to have negative 

effects in the offline context (Eppli and Benjamin 1994). The effect of outgoing clustering, on 

the other hand, was not strong (it was marginally significant and positive). Indeed, outgoing 

clustering only has a weak and indirect effect on the accessibility of other shops outside of a 

shop’s ego-network.  

 Hub and Authority Effects. The prominence (eigenvector centrality) effects—hub and 

authority—were both non-significant, as expected. The finding that being in a more prominent 

position in the network does not affect commission revenues confirms that accessibility, not 

prominence or “prestige,” is the primary driver of how the value created by the network is 

distributed across shops. Note that we did however find a weak positive interaction between 

authority and the number of products in a shop, indicating that larger shops may benefit from 

being linked into by so-called “authority” shops. 

Discussion of Shop-Level Results 

These results provide further support for the importance of networks in social commerce 

marketplaces, and specifically highlight the critical role played by the network in making shops 

more accessible to customers browsing the marketplace. The economic value of the network is 

distributed across shops according to how accessible they are made by the network. Shops that 

are more accessible from other shops in the network generally enjoy higher commission 

revenues, after controlling for potential product assortment, shop age, and latent ability effects.   
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Importantly, we find that depending on how centrality is defined, it may help or hurt 

accessibility. The shops that benefit the most from the existence of the network are those with 

many incoming ties (positive effect of indegree centrality), few outgoing ties (negative effect of 

outdegree centrality), are easily reachable from other shops (positive effect of inproximity 

centrality), cannot easily reach other shops (negative effect of outproximity centrality), and are 

connected to by shops that are not densely interconnected (negative effect of incoming clustering 

coefficient). 

Our findings are broadly consistent with discussions of shop accessibility in the offline 

shopping center literature, although the drivers of accessibility in this social commerce network 

differ substantially from bricks-and-mortar shopping centers. The directed nature of the links 

between shops in this marketplace creates asymmetries (between indegree and outdegree, 

inproximity centrality and outproximity centrality, and incoming clustering and outgoing 

clustering) that do not exist in offline shopping centers. Moreover, clustering has a different 

effect in social commerce networks compared to bricks-and-mortar shopping centers. 

Finally, the non-significance of the prominence effects and the product assortment size 

effects suggest that it is not necessary to be prominently positioned in a social commerce 

network in order to benefit from the network, and that having a larger shop is not necessarily 

helpful.  

GENERAL DISCUSSION 

Despite the rapid growth in online social networks, and the recent emergence of online 

social commerce marketplaces where opportunities for social interactions in online retailing and 

e-commerce contexts are provided, extremely little is known about social networks between 

sellers. The findings reported here represent a first step in understanding the role that social 
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networks play in e-commerce and online retailing. Critically, this paper shows how networks can 

help to generate economic value for social commerce marketplace owners and for the individuals 

who participate in such marketplaces. 

Overall, our findings suggest that social commerce networks between sellers can play an 

important, economic value-creating role. A key issue for shops (or individual sellers) in large, 

online marketplaces is simply being accessible to customers. Social networks between sellers act 

as “virtual shopping centers” by helping customers browse between shops, therefore improving 

the accessibility of the network’s shops. A more connected network tends to improve the overall 

accessibility of its members, especially if it is structured in a way that minimizes the number of 

“dead-ends” that customers cannot browse away from. The shops that benefit the most from the 

network are not necessarily those that are central to the network, but rather those whose 

accessibility is most enhanced by the network. Network-based notions of centrality need to be 

carefully considered when examining the relationship between network position and 

performance outcome (or more generally, any node-level dependent variable), because different 

measures of a node’s centrality can have opposite effects.  

The marketplace- and shop-level results suggest some measures that social commerce 

firms (marketplace owners) and sellers (individual members of this marketplace) could take to 

enhance their performance. For instance, sellers may wish to improve their network position so 

that they receive more incoming links from shops that are dispersed (i.e., not locally clustered). 

Given the strong effect of reciprocity, this could involve connecting to shops that are many steps 

away from one’s shop (i.e., a path-shortening effect, similar to the cross-cutting paths that are 

discussed in the “small-world” network model; Watts and Strogatz 1998), instead of connecting 

to nearby shops. At the marketplace level it may be possible for the marketplace owner to 
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develop mechanisms to encourage sellers to create links (thus improving overall accessibility) 

while discouraging the creation of dead-ends. Note that while these kinds of interventions are 

possible, we caution that “strategic” attempts to alter a social network’s structure can lead to 

unintended consequences, given the inherent complexity of such systems. We leave more 

detailed considerations of these issues to future research. 

These results also shed light on how network dynamics, which are driven by inherently 

social processes, influence economic value outcomes. Some of the drivers of network evolution 

that are typical in directed social networks may not be ideal for driving network-derived 

economic value. For example, while social networks naturally tend to evolve towards clustered 

groups (e.g., if A B and A C then it is more likely than chance that the B C link will form), 

we find that the clustering of shops hurts their performance in this marketplace. This is 

particularly relevant as online social networks that have relatively high levels of clustering (e.g., 

Facebook.com, MySpace.com) start introducing e-commerce “marketplace” features. Such social 

networks are possibly not structurally well-suited to being networks of sellers. Although 

clustering is problematic for sellers, reciprocity, on the other hand, appears to help here as 

receiving an incoming link as a result of reciprocity appears to offset the “cost” of the 

corresponding outgoing link. Reciprocity is also a common driver of link formation in social 

networks. We encourage further research that explores the appropriateness of different types of 

network structures and the corresponding network evolution processes for facilitating 

commercial operations. 

This research is not without its limitations. First, our findings come from the study of a 

single online social commerce marketplace. Notwithstanding, the marketplace we studied is a 

pioneer in social commerce, and is large and established. Future research might explore 
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variations on this business model, and consider other marketplaces with different retailing 

concepts (e.g., regular shops versus auction sellers). Second, while our shop-level model 

captures interdependence between shops through a set of node-level network position measures, 

future research may also capture interdependence through the error structure, based for example 

on the work by Hoff (2003) in statistics and the spatial econometrics literature (e.g., Anselin 

2006), or by examining dynamic spillover effects across shops.13 For example, future research 

may explore how shops’ commission revenues and product assortments influence the 

commission revenues earned by shops that either link to them or to whom they link. Third, we 

did not capture network dynamics in our shop-level model (Snijders 2006), in part for tractability 

reasons. We hope that future research will lead to the development of statistical models that are 

compatible with today’s large network datasets, and that allow capturing a wide range of effects 

such as strategic behavior, interdependence between nodes, and time dynamics.  
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FOOTNOTES 

(1) Similar logic applies to retailer co-location in local districts or zones (e.g., the diamond district in midtown 
Manhattan, second-hand book stores lining the Seine in Paris, and so-called “Auto Malls” with multiple car 
dealerships lining major streets in many American and European cities.) More generally, retailer co-
location is a micro type of the concept of industrial districts introduced by Marshall (1890/1961; see also 
Brown 1992). 

(2) Nodes with incoming links but zero outgoing links are also called “sinks” in graph theory and network 
analysis (de Nooy, Mrvar, and Batagelj 2005). 

(3) Note that sellers may, however, “under-invest” in service quality, for example by spending less time 
making their shops visually attractive, in response to increased competition (Stern, El-Ansary, and 
Coughlan 1996). 

(4) We considered adding a time trend and monthly seasonality effects in Equations (2) and (3), however in 
both cases Wald tests could not reject the null hypothesis that the time trend and all month effects were 
zero, thus suggesting that time and seasonality effects were not needed. 

(5) Our argument is that allowing shops to be connected in a network makes the marketplace more “sticky” 
and therefore increases the probability that a visitor to the marketplace will make a purchase. An alternative 
explanation is that overall visitor traffic to the marketplace increased between the pre- and post-network 
birth periods. Although the company did not provide traffic data, we were able to collect approximate 
aggregate (at the level of the website domain, e.g., website.com) traffic data using Google’s Trends for 
Websites product. In the two months on either side of the birth of the network the marketplace received 
approximately 80,000 unique daily visitors, and this gradually decreased over the seven months from the 
birth of the network to the end of the dataset to approximately 65,000 unique visitors per day. Given that 
traffic actually declined between the pre- and post-network birth periods, it cannot be the case that the 
positive effect of the network’s presence on revenues was due to increased overall traffic to the 
marketplace. 

(6) Readers are referred to Dekimpe and Hanssens (2004, 2005) for a more detailed explanation of impulse-
response functions, and Pauwels (2004) for an example of their use in modeling the impact of marketing 
actions or changes in marketing variables on dynamic systems. More typical uses of IRFs in marketing 
(e.g., stock return models) attempt to quantify long-run effects of marketing mix variables that last for 
months or even years. In our case, given the rapid growth of this marketplace and its social network, our 
time frame is much shorter. 

(7) The popularity variable is an indicator of how popular a shop’s products are relative to other shops in the 
marketplace. This is measured by first taking a count of the number of times each product is listed in shops 
in the marketplace (e.g., product X might appear on shops A and B, thus giving it a count of 2). The mean 
of this count within each shop and over all of the shop’s products is then taken as the measure of average 
popularity, where a shop with a higher average popularity has, on average, a less unique product assortment 
than a shop with a lower average popularity. 

(8) This is correct only under the assumption that there actually is a genuine underlying causal variable at work 
(ability), and that the ability variable is not simply a latent factor common to the genuinely causal variables 
of network position and product assortment. 

(9) Note however that this approach may not address the collinearity between these measures that follows from 
the fact that there are linked by definition. With the large number of observations used to estimate this 
model, collinearity is less likely to be a problem (Mason and Perreault 1991). The largest correlation 
between any of the unstandardized regressors is .60 among those based on incoming links,.55 among those 
based on outgoing links, and .92 among pairs of in- versus out-link versions of the same measure. The 
mean correlation is otherwise reasonably low (.24). The largest correlation was between authority centrality 
and hub centrality (.92), both of which did not significantly affect Performancei. The model was re-
estimated without hub centrality and the results did not change (the posterior means were very similar to 
those reported for the full model - details available from the authors). The next-largest correlation was 
between indegree and outdegree (.80). Since both have large effects on commission revenues it is not 
meaningful to remove them from the model. Instead, we decomposed indegree and outdegree into 
unreciprocated indegree (number of incoming links that shop i has not reciprocated), unreciprocated 
outdegree (number of outgoing links that have not been reciprocated), and reciprocated degree (number of 
reciprocated, two-way links). The highest correlation between these three variables was .56 (between 
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reciprocated degree and unreciprocated outdegree). We then re-estimated the model with these three 
variables replacing indegree and outdegree. The other effects remained unchanged, and we found 
significant positive unreciprocated indegree (posterior mean = .46) and reciprocated degree effects 
(posterior mean = .26) with the unreciprocated outdegree effect marginally significant (posterior mean = -
.08).  

(10) The model is identified by (i) fixing the prior mean on Abilityi, which gives the latent variable a “scale,” 
and (ii) because Ability varies across shops but not network position and product assortment measures, 
while the α and γ parameters vary across measures but not across shops. 

(11) The maxima for the quadratic indegree effect is approximately 27 standard deviations above the mean 
indegree (indegree of about 93, which is less than the maximum observed indegree of 184), and the minima 
for the quadratic outdegree effect is approximately 36 standard deviations above the mean outdegree 
(outdegree of about 159, which is above the maximum observed outdegree of 100). 

(12) To convert a standardized estimate into an unstandardized estimate (which is required for this comparison) 
the posterior mean can be divided by the unstandardized variable’s standard deviation. The unstandardized 
standard deviations are 3.40 and 4.41 for indegree and outdegree centrality, respectively. 

(13) However, tractability becomes an issue with large networks, and complex error structures may not always 
be necessary: on this dataset preliminary models with interdependence entered into error structures (e.g., 
similar to the model used by Yang and Allenby 2003) did not suggest that sellers’ commissions were highly 
interdependent. Endogenous distributed effects that are entered directly as additional ability-adjusted 
regressors and not through the model’s error structure (e.g., neighbors’ commissions affecting own 
commissions), however, were significant in a preliminary endogenous spillover model that included effects 
of neighbors’ commission revenues and neighbors’ shop sizes (numbers of products offered).



45 
 

TABLE 1 
NETWORK POSITION MEASURES 

Measure Formula Definition and Intuition 
The shop network is comprised of N shops. A directed link from shop i to shop j is denoted by xij. The network is represented as an N × N adjacency matrix, X, 
with diagonal elements xii = 0 (for all i = 1, …, N), and off-diagonal elements xij =1 if there is a link from i to j (and 0 otherwise). 

Indegree centrality ( ) in
ii k=⋅1X'  where 1 is an N-dimensional vector of ones. The number of links from other shops that go to shop i.  

Outdegree 
centrality 

( ) out
ii k=⋅1X  where 1 is an N-dimensional vector of ones. The number of links from shop i that go to other shops. 

Incoming 
proximity 

]),(/[)]1/([ ∑ ∈
×−

iinj
in
i

in
i ijdnNn , where ini is the set of shops from 

which shop i can be reached in a finite number of steps, in
in is the 

number of shops in that set (indomain), and d(j,i) is the geodesic 
distance (shortest path length) from shop j to shop i.  

Shop i’s incoming proximity is proportional to the proportion 
of shops in the network other than i that can reach i in a finite 
number of steps, and inversely proportional to the mean 
geodesic distance (shortest path length) from these shops to i.  

Outgoing 
proximity 

]),(/[)]1/([ ∑ ∈
×−

ioutj
out
i

out
i jidnNn , where outi is the set of shops 

that can be reached from shop i in a finite number of steps, out
in is the 

number of shops in that set (outdomain), and d(i,j) is the geodesic 
distance (shortest path length) from shop i to shop j. 

Shop i’s outgoing proximity is proportional to the proportion 
of shops in the network other than i that can be reached from i 
in a finite number of steps, and inversely proportional to the 
mean geodesic distance (shortest path length) from shop i to 
these shops.  

Incoming 
clustering 
coefficient 

)1(/ −in
i

in
i

in kke
i  where in

i
e is the number of directed links between 

shops that connect to shop i directly (excluding i), and in
i

k  is the 
indegree of shop i.

A measure of the density of shop i’s incoming ego-network. 
A shop with a higher incoming clustering coefficient is 
connected to by more clustered (as opposed to more 
dispersed) shops.  

Outgoing 
clustering 
coefficient 

)1(/ −out
i

out
i

out kke
i  where out

i
e is the number of directed links 

between shops that shop i connects to directly (excluding i), and out
i

k  
is the outdegree of shop i.

A measure of the density of shop i’s outgoing ego-network. A 
shop with a higher outgoing clustering coefficient connects to 
more clustered (as opposed to more dispersed) shops.  

Hub centrality The hub score for shop i is the ith component of the eigenvector 
corresponding to the largest eigenvalue of XXT.  These are both directed network versions of eigenvector 

centrality, which is an indicator of position-related status (i.e., 
being well connected to other well connected shops). Good 
hubs connect to many good authorities, and good authorities 
connect to many good hubs. Authority 

centrality 
The authority score for shop i is the ith component of the eigenvector 
corresponding to the largest eigenvalue of XTX. 
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TABLE 2 

EFFECTS OF AGGREGATE MARKETPLACE AND NETWORK 

CHARACTERISTICS ON MARKETPLACE COMMISSION REVENUES 

Variable Estimated Effect (t-value) on  
Marketplace Commission Revenues 

Intercept (β0)  15.36 (.90) 
Commission Revenuest-1 ( 1φ )  .15 (4.34)*** 

Commission Revenuest-2 ( 2φ )  .10 (2.70)** 

Commission Revenuest-3 ( 3φ )  .20 (5.61)*** 

Commission Revenuest-4 ( 4φ )  .02 (.44) 

Commission Revenuest-5 ( 5φ )  .08 (2.10)* 

Commission Revenuest-6 ( 6φ )  .15 (4.31)*** 

Commission Revenuest-7 ( 7φ )  .15 (4.18)*** 

Daily increase in marketplace size (λ1)  .35  (4.31)*** 
Daily increase in number of “normal” 
network links (λ2) 

 .25  (2.03)* 

Daily increase in number of “dead-end” 
links (λ3) 

 -3.10 (-2.54)* 

* p < .05, ** p < .01, *** p < .001. R2 = .72, BIC = 11.77, MAD = €49.73, MAPE = 15.73%. 
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TABLE 3 

MEANS, STANDARD DEVIATIONS, AND CORRELATION COEFFICIENTS OF THE NETWORK POSITION 

MEASURESa 

 Mean 
(st. dev.) Correlations (between unstandardized variables) 

Indegree centrality .76 
(3.40)            

Outdegree centrality .76 
(4.41) .80           

Incoming clustering coefficient .04  
(.15) .39 .29          

Outgoing clustering coefficient .04  
(.16) .40 .28 .74         

Authority (in eigenvector centrality) .0002 
(.003) .54 .51 .10 .07        

Hub (out eigenvector centrality) .0002 
(.003) .49 .54 .09 .06 .92       

Inproximity centrality .01 
(.03) .60 .45 .48 .45 .21 .17      

Outproximity centrality .01  
(.04) .57 .55 .41 .40 .23 .22 .73     

Number of products 43.00 
(102.0) .08 .07 .05 .05 .01 .01 .12 .09    

Average product popularity 315.39 
(673.9) -.08 -.06 -.08 -.08 -.02 -.02 -.12 -.10 -.11   

Commission revenues .18 
(3.30) .12 .06 .04 .06 .03 .02 .11 .07 .02 -.02  

 
a All statistics in this table are computed on the sample of shops used in the estimation of the shop-level model, not all shops. 
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TABLE 4A 

FULL LATENT VARIABLE TOBIT MODEL: EFFECTS OF NETWORK POSITION, 

PRODUCT ASSORTMENT, AND LATENT ABILITY ON SHOP-LEVEL 

COMMISSION REVENUES (EQUATION 6) 

Parameter Posterior  
Mean 

Posterior 
Standard 

Error 

95% 
Credible 
Interval 

Intercept (β0) .175 .0067 -1.18, 1.34 
Latent ability (β1) .015 .0067 -1.14, 1.37 
Shop age (β2) .015 .0002 -.02, .05 
Network effects    

Indegree centrality (β3,1) .923*** .0006 .82, 1.05 
Outdegree centrality (β3,2) -.503*** .0006 -.62, -.39 
Incoming clustering coefficient (β3,3) -.155*** .0003 -.22, -.10 
Outgoing clustering coefficient (β3,4) .049* .0003 -.01, .11 
Authority (in eigenvector centrality) (β3,5) -.087 .0009 -.27, .09 
Hub (out eigenvector centrality) (β3,6) .039 .0009 -.14, .22 
Inproximity (incloseness) centrality (β3,7) .176*** .0004 .10, .24 
Outproximity (outcloseness) centrality (β3,8) -.072** .0003 -.14, -.01 

Product assortment effects    
Number of products (β4,1) .012 .0002 -.02, .04 
Average product popularity (β4,2) -.019 .0002 -.05, .01 

Quadratic and significant interaction effectsa    
Indegree2 (β5,1) -.017*** .00002 -.02, -.01 
Outdegree2 (β5,2) .007*** .00002 .003, .01 
Authority × number of products (β6,5) .094* .0006 -.03, .20 
Inproximity × number of products (β6,7) -.041** .0002 -.09, -.002 

*  The 90% credible interval does not contain zero (two-sided). 
**  The 95% credible interval does not contain zero (two-sided). 
*** The 99% credible interval does not contain zero (two-sided). 
a None of the other interaction effects are close to being significantly different from zero. 
Notes: (1) the error standard deviation (σ) has posterior mean = 3.226, standard error = .0004, and 95% credible 
interval (3.10, 3.27). (2) All network position- and product assortment-related variables were standardized (mean = 
0, standard deviation = 1) before running the model. 
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TABLE 4B 

FULL LATENT VARIABLE TOBIT MODEL: EFFECTS OF LATENT ABILITY ON 

NETWORK POSITION MEASURES (EQUATION 4) 

Parameter Posterior  
Mean 

(× 10-3) 

Posterior 
Standard 

Error 

95% 
Credible 
Interval 

Network effects: intercepts γ0,j    
Indegree centrality (γ0,1) -.491 .0003 -.07, .06 
Outdegree centrality (γ0,2) -.422 .0003 -.07, .06 
Incoming clustering coefficient (γ0,3) -.504 .0003 -.07, .06 
Outgoing clustering coefficient (γ0,4) -.498 .0003 -.07, .07 
Authority (in eigenvector centrality) (γ0,5) -.493 .0003 -.07, .06 
Hub (out eigenvector centrality) (γ0,6) -.515 .0003 -.07, .07 
Inproximity (incloseness) centrality (γ0,7) -.437 .0003 -.06, .06 
Outproximity (outcloseness) centrality (γ0,8) -.614 .0003 -.07, .07 

Network effects: slopes γ1,j    
Indegree centrality (γ0,1) .505 .0003 -.06, .07 
Outdegree centrality (γ0,2) .447 .0003 -.06, .07 
Incoming clustering coefficient (γ0,3) .422 .0003 -.06, .06 
Outgoing clustering coefficient (γ0,4) .496 .0003 -.06, .07 
Authority (in eigenvector centrality) (γ0,5) .524 .0003 -.07, .06 
Hub (out eigenvector centrality) (γ0,6) .565 .0003 -.06, .07 
Inproximity (incloseness) centrality (γ0,7) .404 .0003 -.06, .07 
Outproximity (outcloseness) centrality (γ0,8) .573 .0003 -.06, .07 



50 
 

TABLE 4C 

FULL LATENT VARIABLE TOBIT MODEL: EFFECTS OF LATENT ABILITY ON  

PRODUCT ASSORTMENT MEASURES (EQUATION 5) 

 

Parameter Posterior  
Mean 

(× 10-3) 

Posterior 
Standard 

Error 

95% 
Credible 
Interval 

Product assortment effects: intercepts α0,k    
Number of products (α0,1) -.448 .0003 -.07, .06 
Average product popularity (α0,2) -.415 .0003 -.07, .06 

Product assortment effects: slopes α1,k    
Number of products (α1,1) .505 .0003 -.06, .07 
Average product popularity (α1,2) .412 .0003 -.06, .06 
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TABLE 5 

SIMPLER TOBIT MODEL: EFFECTS OF NETWORK POSITION AND PRODUCT 

ASSORTMENT ON SHOP-LEVEL COMMISSION REVENUES 

Parameter Posterior  
Mean 

Posterior 
Standard 

Error 

95% 
Credible 
Interval 

Intercept (β0) .189*** .0001 .17, .21 
Latent ability (β1) 0a n/a n/a 
Shop age (β2) .018 .0002 -.004, .04 
Network effects    

Indegree centrality (β3,1) .914*** .0004 .84, .98 
Outdegree centrality (β3,2) -.498*** .0005 -.59, -.41 
Incoming clustering coefficient (β3,3) -.152*** .0002 -.19, -.12 
Outgoing clustering coefficient (β3,4) .050***  .0002 .02, .09 
Authority (in eigenvector centrality) (β3,5) -.084*** .0003 -.15, -.02 
Hub (out eigenvector centrality) (β3,6) .038  .0005 -.02, .10 
Inproximity (incloseness) centrality (β3,7) .178*** .0002 .14, .22 
Outproximity (outcloseness) centrality (β3,8) -.071*** .0002 -.11, -.03 

Product assortment effects    
Number of products (β4,1) .013 .0001 -.01, .04 
Average product popularity (β4,2) -.015 .0002 -.04, .01 

Quadratic and significant interaction effectb    
Indegree2 (β5,1) -.017*** .00001 -.02, -.01 
Outdegree2 (β5,2) .007*** .00002 .003, .01 
Authority × number of products (β6,5) .100** .0004 .02, .18 
Inproximity × number of products (β6,7) -.036** .0002 -.07, -.01 
Outproximity × number of products (β6,8) .021* .0001 -.004, .05 

*  The 90% credible interval does not contain zero (two-sided). 
**  The 95% credible interval does not contain zero (two-sided). 
*** The 99% credible interval does not contain zero (two-sided). 
a Fixed to zero. 
b None of the other interaction effects are close to being significantly different from zero. 
Notes: (1) These estimates are based on a non-hierarchical Tobit model without a latent ability variable. Estimation 
involved 20,000 MCMC draws (10,000 burn-in). The model mixed well and converged quickly. (2) The error 
standard deviation (σ) has posterior mean = 3.260, standard error = .0001, and 95% credible interval (3.24, 3.28). 
All network position- and product assortment-related variables were standardized (mean = 0, standard deviation = 1) 
before running the model. Thus, posterior means in this table can be compared as “standardized” coefficients.  
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 FIGURE 1 

ILLUSTRATION OF DEAD-ENDS 

Time 1 Time 2 

A B

C

A customer browsing the network 
starting at shop A may access shops 
B and C. Browsing from shop B leads 
to shop C, browsing from shop C 
leads to shop B, and browsing is not 
possible from shop D. 

A customer browsing the network 
starting at shop A may now access 
shops B, C and D. However, shop D 
is a dead-end. If a customer 
accesses shop D from shop A, shops 
B and C become inaccessible. 
Browsing from shops B, C or D is 
similar to time 1. 

C 

A B 

D C C

A B

D
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FIGURE 2 

DAILY MARKETPLACE COMMISSION REVENUES  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: the solid black line is the actual daily marketplace commission revenues, and the broken grey line is the fitted daily commission revenues 
using the model in Equation (3). The solid vertical line indicates the birth of the network. The model tracks daily marketplace commission 
revenues well. Marketplace commission revenue is the total commissions paid to the marketplace owner on day t for all sales that are made by 
shops in the marketplace on on day t.
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FIGURE 3 

CUMULATIVE IMPULSE-RESPONSE FUNCTIONS 
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FIGURE 4 
 

POSTERIOR CHECKS: POSTERIOR DISTRIBUTION OF PREDICTED MEAN 
COMMISSION REVENUES 

 

 

Note: the histogram shows the posterior distribution of the fitted mean commission revenues, the solid 
vertical line represents the actual value (€0.1783). 
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APPENDIX: BAYESIAN ESTIMATION PROCEDURE FOR SHOP-LEVEL MODEL 

Priors 

• ),1(~ 2η−NAbility i . 

• Diffuse on β0, β1, β2,β3, β4, β5, β6, α0, α1, γ0 and γ1. 

• ⎟
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2
,

2
~ 002 sr

maInverseGamσ , where r0 = s0 = 1. 
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⎠
⎞

⎜
⎝
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2
,

2
~ 002 sr

maInverseGamη , where r0 = s0 = 1. 

• ( )0ΔΛ 00 ,~ nnhartInverseWis , where n0 = p + q + 3, and Δ0 = I, with p the number of 

network-related variables (7) and q the number of assortment-related variables (3). 

 

Markov Chain Monte Carlo Simulation Steps 
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if Performancei < 0. Otherwise ii ePerformancePerformanc =*  . 
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Step 3 
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Step 6 
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Step 7 
 
For all j: 
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where ],1[ ii Ability=X and ][ , jii NetworkW = , and similarly for all k: 
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Note that we did not update ];[ 10 jj γγ and ];[ 10 jj αα for all j’s and k’s simultaneously for 
tractability reasons. 
 
 




