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1. Introduction
One of the core challenges in supply chain management
is to manage uncertainty. Frequently, the demand that a
firm experiences for its goods is uncertain, necessitating
the use of safety stocks. Another main driver of uncertainty
is randomness in the supply process. Especially, in today’s
global supply chains, where companies work with suppliers
in different continents or operate facilities that are far away,
uncertainty in supply is a fact of life. In the inventory man-
agement literature, supply uncertainty is discussed in three
main forms: yield uncertainty, lead time uncertainty, and
capacity uncertainty. These different ways of thinking about
supply uncertainty are related to each other; for example,
one can think about capacity shortage at a supplier lead-
ing to a longer lead time for the delivery of orders. In this
paper, we address the issue of supply uncertainty in the
form of uncertainty in lead times. We study exogenous lead
times, which is a broad class of stochastic lead times, that
includes sequential and order-crossing lead time processes.
We study both single and serial multistage systems.

There are numerous papers in the inventory management
literature that deal with the issue of uncertain lead times.
An early reference is the book of Hadley and Whitin (1963,
Chapter 5.14), who study an inventory model with indepen-
dent and identically distributed (i.i.d.) lead times. Further
assuming that the orders arrive in the same sequence they

were placed, i.e., no order crossing, they characterize the
long-run behavior of the system. In particular, their analysis
boils down to computing the distribution of total demand
during one realization of the random i.i.d. lead time, i.e., the
lead time demand. As Hadley and Whitin (1963) point out,
the two assumptions of lead times being independent and no
order crossing can be satisfied at the same time only under
specific conditions. For example, if lead times are smaller
than the review period, then the analysis is exact. Another
example is the case when the smallest possible lead time and
the largest possible lead time differ by at most the length
of the review period. Under more general conditions, order
crossing can take place, and the analysis becomes substan-
tially more intricate. In fact, i.i.d. lead times can give rise
to complicated optimal policies that depend on the state of
the pipeline inventory vector. Zalkind (1978) gives an exam-
ple demonstrating the nonoptimality of base-stock policies
when lead times are i.i.d. Still, the predominant approach
for dealing with lead time uncertainty, both in the literature
and in practice, has been to use the method of Hadley and
Whitin (1963), i.e., to assume i.i.d. lead times and to use the
lead time demand in the analysis. This approach results in
a base-stock policy but does not optimize the system even
within the class of base-stock policies. The quantity needed
for an exact analysis of a base-stock policy is the distribution
of pipeline inventory, instead of the lead time demand. In
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many cases, lead time demand is a good approximation for
pipeline inventory, but in many other cases, using such an
approximation leads to substantial suboptimality, as demon-
strated in §5.

There are some notable exceptions to Hadley and
Whitin’s (1963) paradigm that fall into two main categories.
The first set of papers assume a certain type of nonorder-
crossing stochastic lead time process, initially proposed by
Kaplan (1970). Kaplan shows the optimality of base-stock
policies in a single-stage, periodic review setting under his
proposed lead time model. The underlying assumptions are
that orders do not cross and that the arrival probability of
a given order at a given period depends only on how long
that particular order has been outstanding. Nahmias (1979)
and Ehrhardt (1984) use a similar lead time process. Zipkin
(1986) extends Kaplan’s lead time model to include a more
general class of nonorder-crossing stochastic lead time pro-
cesses, which he denotes as “exogenous, sequential lead
times” (Zipkin 2000, Chapter 7.4). Svoronos and Zipkin
(1991) evaluate one-for-one replenishment policies in serial
systems with such lead times. Muharremoglu and Tsitsiklis
(2008) show that echelon base-stock policies are optimal
for serial systems with Kaplan’s nonorder-crossing stochas-
tic lead time processes. All these papers assume that orders
do not cross.

The second set of papers that diverge from Hadley and
Whitin’s (1963) paradigm are Zalkind (1978), Robinson
et al. (2001), Bradley and Robinson (2005), and Robinson
and Bradley (2008). These papers study single-stage inven-
tory systems and assume that base-stock policies are uti-
lized. The goal is to find the optimal base-stock levels. The
lead times are taken to be independently and identically
distributed (i.i.d.). The class of i.i.d. lead times allows for
order crossing, so these papers were the first to analyze an
inventory system with order crossing. The papers charac-
terize the distribution of pipeline inventory, either through a
computational method or through approximations. Zalkind
(1978) provides an exact computational method to optimize
base-stock levels in single-stage inventory systems with
i.i.d. lead times. Robinson et al. (2001) give an approxi-
mate method to optimize base-stock levels by matching the
first two moments of the inventory shortfall distribution.
Bradley and Robinson (2005) and Robinson and Bradley
(2008) improve upon this approximation with tighter upper
bounds for the variance of the pipeline inventory. Song and
Zipkin (1996b) study the effect of lead time variance in an
�r� q� system with i.i.d. lead times and discuss the rela-
tionship of i.i.d. lead times with exogenous sequential lead
times. Note that all these papers assume i.i.d. lead times in
a single-stage setting.

We analyze a set of lead time processes that is more
general than previously studied lead time models. We refer
to this class as exogenous lead time processes. In fact, to
our knowledge, all lead time models from existing liter-
ature are in the class of exogenous processes. For exam-
ple, both Kaplan’s lead times with no order crossing and

i.i.d. lead times with order crossing are special cases of
exogenous lead time processes, as are the Markov mod-
ulated lead time models of Song and Zipkin (1996a) and
Chen and Yu (2004), among many others. Lead times that
can be modeled as an ARMA process are another exam-
ple. In terms of ordering strategies, we confine ourselves
to the class of base-stock policies. The justification for this
restriction is threefold: (i) the truly optimal policy can have
a prohibitively complex structure that depends on the state
of pipeline inventories, and would be very difficult, if not
impossible, to implement, (ii) base-stock policies are very
commonly used in practice, and (iii) when applied to mul-
tistage systems, (echelon) base-stock policies can be imple-
mented in a decentralized fashion as shown by Axsäter and
Rosling (1993), who demonstrated the equivalence of local
and echelon base-stock policies. We provide a method to
determine base-stock levels and to compute the cost of a
given base-stock policy for systems with an exogenous lead
time process. For single-stage systems, the method finds
the optimal base-stock levels and provides the exact cost.
For multistage problems, the method is exact under certain
conditions. If those conditions are not satisfied, the result
provides a very good approximation of the cost and finds
near-optimal base-stock levels, as we demonstrate through
a numerical study.

We use an idea that has been utilized by Hadley and
Whitin (1963) and Zalkind (1978). The idea is to assume
that orders are being released at every period, and a
stochastic lead time is assigned to every order, but some-
times the order size is zero. Of course, this is just a math-
ematical tool to analyze the system; no extra costs are
incurred due to these zero-sized orders. Let Lj�t� denote
the lead time of the order released at time t from stage
j + 1 to stage j . The sequence of values Lj�t�, for all t,
is the “lead time process of stage j .” The joint process of
all stages constitutes the “lead time process.” A lead time
process is exogenous if the lead time process of any stage
is independent from the lead time processes of all other
stages and independent of the demand process. We also
assume that the lead time process is ergodic throughout the
paper. (For a formal definition of ergodicity, see §2.) The
class of exogenous lead time processes is an extension of
the exogenous sequential lead time class that Zipkin (1986)
introduced, in that we relax the sequential restriction. The
ergodicity assumption is reasonable if the conditions under-
lying the lead time process remain stable over a relatively
long period, as compared to the frequency of the shipment
decisions. The assumption of the lead times being exoge-
nous is reasonable if the orders of our firm are a relatively
small portion of the total orders in the supply process. This
ensures that the order sizes of our firm are not the primary
reason of fluctuations in the supply process.

One can model interesting phenomena under the frame-
work of exogenous and ergodic lead times. For example,
if a third-party logistics provider adopts a congestion-
dependent dispatch policy, where if more than a certain
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Table 1. The relative positioning of this paper compared to existing literature.

Single-stage Multistage

Kaplan’s lead times Kaplan (1970) Muharremoglu and Tsitsiklis (2008)
Exogenous and sequential lead times Zipkin (1986) Svoronos and Zipkin (1991)
i.i.d. lead times Zalkind (1978), Robinson et al. (2001) This paper1

Exogenous lead times This paper This paper1

1The multistage analysis is exact in the four cases outlined in item (c) of the list of contributions given in the introduction, approximate
otherwise.

number of trucks are on their way between Chicago and
New York, they would start sending new orders by a faster
mode of transportation, such as by air. They could also
communicate with the truck drivers on the road and tell
them to speed up. Note that congestion here refers to the
overall congestion in the logistic provider’s system, not the
congestion due to the order sizes of our firm. Another inter-
esting application of our model is when the supply process
corresponds to the production process at a contract man-
ufacturer. In this case, the contract manufacturer is work-
ing with many customers, including our firm. The contract
manufacturer can use congestion-dependent policies, where
congestion refers to the overall workload at the manufac-
turer, of which our firm’s orders are a small part.

The contributions of this paper are:
(a) We provide a method to determine base-stock lev-

els and to compute the cost of a given base-stock pol-
icy for systems with exogenous lead times. The method
is based on relating the original problem to a single-unit,
single-customer problem (Proposition 3.3). In contrast to
Muharremoglu and Tsitsiklis (2008), the problem addressed
in this paper does not decompose into single-unit prob-
lems in the sense of separability of optimal controls of the
different units. Still, we are able to obtain a correspon-
dence between the overall cost and the cost of a single-unit,
single-customer problem, by interpreting an infinite num-
ber of unit-customer pairs on a single sample path as an
infinite number of sample paths that one unit-customer pair
can experience.

(b) For single-stage systems, the base-stock levels
obtained by our single-unit method are optimal within the
class of base-stock policies (Proposition 3.10). This extends
Zipkin (1986), who studies single-stage systems with exoge-
nous and sequential lead times, by removing the sequential
lead times condition. It also extends Zalkind (1978), who
studies single-stage systems with i.i.d. lead times, by allow-
ing more general stochastic lead time processes.

(c) For multistage systems, we show that the single-
unit method is exact in four cases: (i) when orders do
not cross (Proposition 3.7 and Corollary 3.8), or (ii) when
order crossing is allowed only at the most upstream stage
(Proposition 3.11), or (iii) when the difference between
base-stock levels of consecutive stages is sufficiently large
(Proposition 3.12), or (iv) in two-stage systems with
deterministic upstream lead time, when the difference
between base-stock levels is zero (Proposition 3.13). This

extends Svoronos and Zipkin (1991), which studies mul-
tistage systems with exogenous sequential lead times, by
removing the sequential lead times condition.

(d) For multistage systems where the conditions above
do not apply, the method is approximate. We demonstrate
through a numerical study that the single-unit method pro-
duces near-optimal base-stock levels and accurate cost esti-
mates (§5).

We summarize the relative positioning of this paper com-
pared to existing literature in Table 1. Note that all of
the lead time models listed in Table 1 assume ergodicity.
Kaplan’s lead times are a special case of exogenous and
sequential lead times, and the first three lead time models
are special cases of exogenous lead times.

The rest of this paper is organized as follows. Section 2
formulates the problem. Section 3 contains the main results.
Section 4 discusses estimation issues. Section 5 provides
a numerical study to test the accuracy of the method in
cases where the correspondence between the original prob-
lem and the single-unit problem is not exact. We conclude
the paper with §6.

2. Problem Formulation
We consider an M-stage serial system with stochastic lead
times. Stage M is the manufacturer, who is assumed to have
ample supply. We use linear ordering, holding, and backo-
rder costs, with rates cj , hj (for all stages j = 1� � � � �M − 1),
and b > 0, respectively. Without loss of generality, we
assume that the holding cost rate hj is decreasing in j . The
goal is to determine the optimal policy within the class of
base-stock policies. Demands in successive periods are i.i.d
random variables and demand occurs only at stage 1. Let
d̄ <� be the expected demand per period. The lead time
process is exogenous. Let C�s� denote the infinite-horizon
average cost of base-stock policy s.

In each time period, there are five successive events.
First, deliveries for this period are received. Second,
demand arrives. Third, holding and backorder costs are
charged. Fourth, orders are placed according to the current
echelon inventory positions. Fifth, orders are shipped, and
ordering costs are charged.

In the rest of the paper, we use the following convention
to refer to stochastic processes and their realizations.

Convention 2.1. Let �Xj�i��� i= 1� � � � �� and j = 1� � � � �
M−1 be a stochastic process. We denote vectors using bold
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letters, i.e., X�i�= �X1�i�� � � � �XM−1�i�� for all i. We refer
to the process as stochastic process X. The realization of
this process under sample path � is x�i���, i = 1� � � � ��.
We use the notation Xss to denote the steady-state random
vector of the process X.

In a system with an exogenous lead time process, an
order is released in every period t from each stage j + 1
(possibly of size zero). Let Lj�t� be the lead time for this
order. We now define two other processes that are instru-
mental in our analysis.

Definition 2.2. (a) The order-based ordered lead time
process L̂j �t� is the time between the tth order release from
stage j + 1 and the tth order arrival at stage j . Note that
these orders do not have to be the same order because when
orders cross, orders do not arrive in the same sequence they
were released.

(b) The unit-based ordered lead time process L̃j �i� is
defined as the time between ith unit release from stage j+1
and the ith unit arrival at stage j . These units do not have
to be the same unit because when orders cross, units do not
arrive in the same sequence they were released.

Figure 1 illustrates the order-based ordered lead time
process, as well as the unit-based ordered lead time process.
Part (a) of the figure depicts the lead times of three succes-
sive orders placed at t = 1, 2, and 3. Note that order 2 has
a size of zero. Part (b) of the figure depicts the order-based
order lead time process, as defined in Definition 2.2(a).
Note that while the first order release occurs in period 1,
the first order arrival occurs in period 9. Therefore, the
first order-based ordered lead time goes from period 1 to
period 9 in Figure 1(b), and thus equals 8. Figure 1(c)
depicts the lead times that the actual units experience.
Units 1 and 2 are part of order 1, and therefore have the
same lead time as order 1. Unit 3 is part of order 3, and
has the same lead time as order 3. Figure 1(d) depicts the
unit-based ordered lead time process, as defined in Defi-
nition 2.2(b). For example, the third unit release occurs in

Figure 1. A realization of the lead time processes and their ordered versions (under sample path �).
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Note. Each arrow starts at the departure time and ends at the arrival time of an order/unit.

period 3 as part of order 3, whereas the third unit arrival
occurs in period 11 as part of order 1. Therefore, the
third unit-based ordered lead time goes from period 3 to
period 11 in Figure 1(d), and thus equals 8.

We assume the ergodicity of the orginal lead time pro-
cess, as well as the ordered lead time processes defined
above. In particular, the ergodicity definition and the termi-
nology that we use is the following:

Definition 2.3. The stochastic process X is ergodic if the
following two conditions are satisfied (Karlin and Taylor
1975, Theorem 5.6):

�a� lim
n→�

∑n
i=1 ��x�i���= x�

n
= f X�x�

for all x on all sample paths �, where ��·� is the indicator
function.

�b� lim
i→�

Pr�X�i�= x�= f X�x�

for all x.

The term f X�x� is the frequency of the value x in an
infinitely long sample path of the ergodic stochastic pro-
cess X, and we call f X�·� the steady-state distribution of
process X. The steady-state random vector Xss has the dis-
tribution f X�·�.

3. Analysis
In this section, we develop a method to determine base-
stock levels and to compute the cost of a given base-stock
policy for our problem. We proceed in three stages. We
first show that the overall problem can be interpreted as
a single-unit problem. Second, we develop the method for
the case of sequential lead times. Lead times are sequential
if t+Lj�t� is nondecreasing in t for all j , i.e., there is no
order crossing. In this case, the single-unit method deter-
mines the optimal base-stock levels and computes the exact
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cost for both single and multiechelon problems. Finally, we
analyze the case of nonsequential lead times. In this case,
the single-unit method is exact for single-stage problems
and for multistage problems under certain conditions, but
is an approximation otherwise. In §5, we study the per-
formance of the algorithm for multistage problems under
nonsequential lead times and show that it produces near-
optimal base-stock levels and accurate cost estimates.

Our analysis uses a cost accounting scheme that relies
on viewing the units and customers as distinct objects
and seeing them as forming pairs, as in Muharremoglu
and Tsitsiklis (2008). We use the concepts of the loca-
tion of a unit and the position of a customer as defined in
Muharremoglu and Tsitsiklis (2008). For convenience, we
include these definitions in the online appendix. (An elec-
tronic companion to this paper is available as part of the
online version that can be found at http://or.journal.informs.
org/.) Briefly, the location of a unit measures where in the
supply chain the unit is. A unit is either in a physical stock-
ing point or in transit between stages or has already been
given to a customer. For example, in Figure 2(a), each cir-
cle represents a distinct unit. Units 1 and 2 have already
been given to a customer and have location 0. Units 3 and 4
are on-hand inventory at stage 1 and have location 1. For
units in transit, the location also identifies how long they
have been in transit. For example, in Figure 2(a), unit 6
has been in transit for 1 period and unit 5 has been in
transit for 2 periods, and the maximum lead time between
stage 2 and stage 1 is 3 periods. The position of a cus-
tomer represents the ranking of the customer in terms of
their arrival times of the system. In particular, a customer
that has a position of y > 0 is the yth next customer to
arrive. In Figure 2(b), each rectangle represents a customer.
Customers 1 and 2 have already received a unit and have
position −1. Customer 3 has arrived, is waiting for a unit,
and has a position of 0. Customer 4, which has position 1,
is the next customer to arrive.

The cost accounting scheme breaks down the total cost
into a sum of costs attributable to pairs of units and cus-
tomers. There is a particular way in which we pair the
units and customers in this paper, which is similar to
Muharremoglu and Tsitsiklis (2008), but there is a subtle
and significant difference. In short, we update the pair-
ing of the units and customers in every time period taking
into account any possible order crossings. In particular, we
index the countably infinite pool of units by the nonneg-
ative integers. We assume that the indexing is chosen at
the beginning of every period in increasing order of their
location, breaking ties arbitrarily. This is different from the
treatment in Muharremoglu and Tsitsiklis (2008), where the
indexing is made at time 0 and is then kept fixed through-
out the horizon. In this paper, we relabel the units at the
beginning of every period in increasing order of their loca-
tion. Therefore, when we talk about a unit i in this paper,
it may not necessarily refer to the same physical unit in
different periods. For example, in Figure 2(a), unit 6 is in

Figure 2. Illustration of the unit positions and customer
locations and the relabeling of units after
order crossing.
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(c) Unit location at time t+1 before relabeling

Outside supplier

Stage 1

(d) Unit location at time t+1 after relabeling

(e) Customer position at time t+1

1

Stage 2Stage 3
7 6 45 2 13 0

Outside supplier

Stage 1

location 3 and unit 7 is in location 4 at time t. At this time,
unit 7 is released from stage 2 and arrives at stage 1 at time
t+ 1. Unit 6, on the other hand, is still in transit between
stage 2 and stage 1 and moves to location 2. This means
that between period t and t+1, unit 7 overtakes unit 6 and
this is shown in Figure 2(c). At this point, all units are re-
labeled in increasing order of their updated locations. After
the relabeling, the indices of units 6 and 7 are swapped.
Note that this means that when we refer to unit 6 at time t
and t+ 1, we refer to different physical units.

Because the labeling of units is updated at the begin-
ning of every period, the unit-to-customer matchings may
change throughout the horizon. Nevertheless, at every
period t, there is a distinct ith unit and ith customer, i.e.,
the ith unit-customer pair. From now on, whenever we refer
to the ith unit-customer pair, this dynamic pairing of units
to customers will be assumed. Let zit be the location of unit
i and yit be the position of customer i at time t.
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The system incurs linear holding and backorder costs.
The total holding and backorder cost at any given period
is the sum of holding and backorder costs that can be
attributed to distinct unit-customer pairs. A unit-customer
pair can incur a holding cost depending on the location
of the unit and potentially a backorder cost if the corre-
sponding customer has arrived but has not been served.
There are no costs until the unit is released from the outside
supplier (we are assuming nonnegative base-stock levels).
Then, costs are incurred, until the unit is given to the cus-
tomer. The cost attributable to a particular unit-customer
pair is a function of the movement of the unit and the
movement of the customer. The unit is steered along the
supply chain, depending on when the customer position
crosses the thresholds (base-stock levels) of the different
stages. This is how an (echelon) base-stock policy on inven-
tory positions translates into release/don’t release decisions
for single-unit, single-customer pairs. The timing of these
threshold crossings and the lead times that the unit experi-
ences determine the cost attributable to the pair. Next, we
define two processes that represent the timing of thresh-
old crossings of the corresponding customer position for
different units and the durations between such threshold
crossings. All quantities defined below use Convention 2.1
in their notation.

Definition 3.1. Consider a unit-customer pair i. Let
Rj�i� = min�t � yit < sj�, i.e., this is the moment when
the position of customer i crosses the threshold sj for
stage j (the base-stock level for stage j) for the first time,
meaning that the corresponding unit can be released from
stage j + 1 to stage j . Let Wj�i�= Rj�i�−Rj+1�i�, which
measures the time between the moment when the posi-
tion of customer i crosses sj+1 for the first time and the
moment when it crosses sj for the first time. Let W�i� =
�W1�i��W2�i�� � � � �WM−1�i��.

For any unit-customer pair i, let gT ��L�i��W�i�� be the
cost incurred by the pair until period T . Let g��L�i��W�i��
be the total cost incurred by the pair in infinite horizon
(costs will accrue until the unit is delivered to the cus-
tomer). The fact that we can write costs for unit-customer
pairs in this form is a critical observation. This is due to
the relabeling of the units in every period and the definition
of the unit-based ordered lead time process L̃, which takes
into account order crossings among units.

Assumption 3.2. We assume that the joint process �L̃�W�
is ergodic.

By the Definition 2.3 of ergodicity, we have

lim
n→�

∑n
i=1 ��l̃�i���= l�w�i���=w�

n
= f L̃�W �l�w�

for all �. Note that f L̃�W �l�w� represents the long-run
fraction of unit-customer pairs for which �l̃�i��� = l�w
�i���=w�. The evolution of the process w�i� depends on

the choice of the base-stock vector s; however, to keep the
notation simple, we suppress this dependence.

Consider an infinite-horizon sample path �. We can write
the total infinite-horizon average cost for base-stock policy
s as

C�s�= lim
T→�

1
T

�∑
i=1

gT �l̃�i����w�i����� (1)

The first part of the next proposition states that for any T ,
we can disregard some initial unit-customer pairs and some
later pairs that are unlikely to incur costs within T , and
focus on the ones that are likely to incur costs within T .
The second part of the proposition states that the summa-
tion over the unit-customer pairs can be converted into a
summation over values that the process �L̃�W� can take.
Let A be the set of values that this joint process �L̃�W�
can take.

Proposition 3.3.

�a� C�s�= lim
T→�

1
T

��d̄−!�T 
∑
i=�!T+1


g�l̃�i����w�i����+h�!��

where lim
!→0

h�!�= 0�

�b� C�s�= d̄ ∑
�l�w�∈A

g�l�w�f L̃�W �l�w��

The intuition for part (b) is that because the cost for
pair i is determined by �l̃�i����w�i����, it is enough to
count the number of pairs that experience a certain value
�l�w� and multiply the cost g�l�w� by this number to
account for the cost incurred by all the pairs that experience
this value �l�w�. The fraction of pairs that experience a cer-
tain �l�w� value is the same over all sample paths � by the
ergodicity assumption. One then needs to do a summation
over all values of �l�w� ∈A to get to the overall cost.

Let C =∑
�l�w�∈A g�l�w�f L̃�W �l�w�, so that the cost for

a base-stock policy s is d̄C. This term essentially adds
the costs of all the unit-customer pairs in a given sample
path by grouping them according to the �l�w� values they
experience. So, it adds the costs of an infinite number of
unit-customer pairs along a given sample path. There is
an alternative way to interpret this term. If we interpret
f L̃�W �l�w� as a probability distribution, rather than frac-
tions on a sample path, then C can be interpreted as an
expected value, rather than the cost on a sample path. In
other words, the term C can be interpreted as the expected
cost of a single unit-customer pair i, where the probabil-
ity distribution of ��L�i��W�i�� for this single pair is given
by f L̃�W �l�w� for all �l�w� ∈ A. With this interpretation,
the cost of the system can be written as the product of the
expected demand and the cost of a single unit-customer
pair. This is analogous to the result in Muharremoglu and
Tsitsiklis (2008), where the system is decomposed into sin-
gle unit-customer pairs by showing that they can be opti-
mized separately. The result in that paper relies critically on
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the fact that orders do not cross and that the lead times have
a special structure to get the decomposability result. In con-
trast, in the setting of this paper, the system is certainly not
decomposable into unit-customer pairs in the sense of sepa-
rability of the optimal actions. This is due to order crossing
and the relabeling of the units and the interactions that these
incidents create. Still, Proposition 3.3 gives us a term anal-
ogous to the one in Muharremoglu and Tsitsiklis (2008),
this time through algebra, instead of using the decompos-
ability of the problem.

We have C�s� = d̄C, so the cost of the system can be
optimized by minimizing C. Using the single-unit interpre-
tation, we can optimize the cost for a single-unit, single-
customer problem, and find the optimal base-stock levels.
However, note that to even evaluate the cost of a base-stock
policy, one needs to determine the fractions f L̃�W �l�w� for
all �l�w� ∈ A. Using the single-unit view, these fractions
can also be interpreted as a joint probability distribution.
Moreover, because the process W represents the durations
between threshold crossings, its evolution depends on the
base-stock levels (thresholds). Therefore, in its most gen-
eral form, it is not easy to “optimize” the single-unit cost C.
In the next two sections, we address this challenge in two
cases. In §3.1, we study the case where orders do not cross.
In §3.2, we study the case where orders are allowed to
cross, and give an exact method for single-stage problems.
For multistage problems, the method is exact under some
conditions. If the conditions are not satisfied, the method
is an approximation.

3.1. Sequential Lead Time Processes

In this subsection, we develop an exact method for optimiz-
ing the base-stock levels in a multiechelon system where
orders do not cross, i.e., systems with sequential lead time
processes. Essentially, the method is to solve a related
single-unit problem. The method is quite easy to execute,
in that it does not require the user to model the entire lead
time process, which can be very cumbersome. Rather, it
requires a single lead time distribution for a single unit,
hence one needs to collect data and fit a distribution for a
single random variable for the lead time of each stage of the
supply chain and a single random variable for the demand.
The lead time distribution needed by the method is the
steady-state distribution Lss of the original lead time pro-
cess. Systems with ergodic and sequential lead times were
studied by Zipkin (1986) and Svoronos and Zipkin (1991)
as well. We develop an alternative method for problems
with ergodic and sequential lead times that relies on relating
the original problem to a single-unit problem. Moreover,
this correspondence is used as a building block for prob-
lems where orders can cross, which are studied in §3.2.

Proposition 3.4(a) below states that the order-based
ordered lead time process and the unit-based ordered lead
time process have the same steady-state distribution as the
original lead time process if the lead times are sequential.
The order-based lead time L and the order-based ordered

lead time L̂ are of course identical in this case. The sequen-
tial nature of the lead times, coupled with the fact that the
order sizes for a particular stage are independent of the lead
times for that stage, allow us to show that the steady-state
distribution f L̂�l� of the order-based ordered lead time and
the steady-state distribution f L̃�l� of the unit-based ordered
lead time are identical as well. This leads us to part (b)
of Proposition 3.4, which states that the joint steady-state
distribution of the process �L̃�W� can be written in product
form, when orders do not cross. Proposition 3.4 is a critical
link in establishing the relationship between the cost of a
multistage problem and the cost of a single-unit problem.

Proposition 3.4. If the lead time process is sequential,
(a) f L�l�= f L̂�l�= f L̃�l� for all l,
(b) f L̃�W �l�w�= f L̃�l� · f W �w� for all �l�w�.
Consider the expression

C�s�= d̄ ∑
�l�w�∈A

g�l�w�f L̃�W �l�w�

from Proposition 3.3(b) that corresponds to the cost of
base-stock policy s. Proposition 3.4(b) states that under
no order crossing, the lead time distribution and the W
distribution for the single unit are independent. Note that
it is relatively easy to determine f L̃�·� = f L�·�, and we
discuss this further in §4. On the other hand, the steady-
state distribution of W depends on the base-stock levels
that are used. Hence, evaluating the expression in Proposi-
tion 3.3(b) directly as part of an optimization routine may
not be a practical method. Next, we show that the optimiza-
tion of the base-stock levels can be performed by solving a
related single-unit problem whose optimal solution is a set
of thresholds that are equal to the optimal base-stock levels
for the original overall problem.

Consider the following single-unit problem. The demand
process and the cost parameters are the same as the orig-
inal problem. However, we are interested in only a single
customer. The initial position of this customer is y0, and
let yt be the position of the customer at time t. For exam-
ple, if y0 = 15, when we refer to “the customer,” we are
talking about the 15th customer to walk through the door,
counting from time 0. Note that we do not know when
“the customer” will show up and who she is, we just know
that she is the 15th customer to walk through the door.
There is a single unit of the good, currently at the outside
supplier, that is going to be used to serve the customer
(which we refer to as “the unit”). Letting zt be the loca-
tion of the unit, we have z0 =M . Let X = �X1� � � � �XM−1�
be the vector of lead times for the unit, where each Xj is
a random variable, and Xj and Xk are independent from
each other for all j and k. In other words, once the unit is
released from stage j , it takes Xj−1 periods for it to arrive
at stage j − 1. For each period the unit spends in stage j
or between stages j and j − 1, a cost of hj is incurred.
For each period the customer spends backlogged, a cost
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of b is incurred. The sequence of events is chosen to be
consistent with the sequence of events of the original prob-
lem. The goal is to minimize the total cost incurred by
choosing the moments to release the unit from its current
stage to the next stage. We denote this single-unit problem
as �1�X�. The following proposition states that the opti-
mal policy for this single-unit problem is of threshold type
for any random lead time vector X. Let the sequence of
functions �#1�y��#2�y�� � � � �#M−1�y�� describe a station-
ary policy where if the unit is in stage j+1, #j�yt� ∈ �0�1�
corresponds to a hold (0) or release (1) decision for the
unit.

Definition 3.5. A threshold policy can be described by a
sequence of thresholds s= �s1� � � � � sM−1� such that

#j�y�=
{

1 if y � sj
0 if y > sj

for all j� (2)

where sj ∈�0 for all j .

Proposition 3.6. For any random lead time vector X,
there exists an optimal policy for �1�X� which is a thresh-
old policy with thresholds s1 � s2 � · · ·� sM−1.

Consider the version of the single-unit problem where
the lead times have the steady-state distribution of the orig-
inal lead time process, i.e., �1�Lss�. Let J �y0� s�L

ss� be
the total cost of threshold policy s for �1�Lss� when the
position of the customer at time 0 is y0. Let CS�s�Lss�=
limy0→� J �y0� s�L

ss�. CS�s�Lss� represents the cost of the
single-unit problem when the customer is initially far away,
i.e., when its initial position goes to infinity. The following
proposition relates the infinite-horizon average cost C�s� of
a base-stock policy s in the original problem to the total
cost CS�s�Lss� of a threshold policy s in problem �1�Lss�.

Proposition 3.7. If the lead time process for the original
problem is sequential, then

(a) CS�s�Lss�=∑
�l�w�∈A g�l�w�f L̃�w�l�w�,

(b) C�s�= d̄CS�s�Lss� for all s.

The following corollary is a simple consequence of
Proposition 3.7(b).

Corollary 3.8. Suppose that the lead time process for the
original problem is sequential. The base-stock policy s∗ is
optimal within the class of base-stock policies for the origi-
nal problem if and only if the threshold policy s∗ is optimal
for the single-unit problem �1�Lss�. Mathematically, the
set of minimizers of the two cost functions are equivalent:{
s′ �C�s′�= min

s
C�s�

}
=
{
s′ �CS�s′�Lss

�= min
s
CS�s�Lss�

}
� (3)

Corollary 3.8 enables us to find the optimal base-stock
levels for the original problem by solving a related single-
unit problem. This is quite striking because we have

reduced the task of finding the optimal base-stock levels
of the original problem to solving a single-unit single-
customer problem if the lead times are sequential. Note that
this result was achieved, even though the original problem
(even if lead times are sequential) does not decompose into
single-unit single-customer problems in the sense of the
separability of optimal controls as in Muharremoglu and
Tsitsiklis (2008).

The related single-unit problem �1�Lss� to be solved
needs the demand distribution, the cost parameters, and the
steady-state distribution Lss . We will discuss issues related
to the estimation of the random variable distributions in §4.
Suffice it to say that using our single-unit method, we need
to fit a distribution to a single random variable for each
stage, instead of trying to model and estimate parameters
for the whole lead time process, which can be quite com-
plicated. Next on the agenda is to study the case where the
lead time process is not sequential.

3.2. Nonsequential Lead Time Processes

In this section, we study systems where orders may cross.
The lead time process is assumed to be exogenous and
ergodic. Note that Proposition 3.3 still holds even if lead
times are not sequential; however, Proposition 3.4, Propo-
sition 3.7, and Corollary 3.8 are no longer valid if orders
are allowed to cross. For single-stage systems, we develop
analogous results to Proposition 3.7 and Corollary 3.8. In
other words, we show that for a single-stage system, the
base-stock level can be optimized by solving a related
single-unit problem, even if orders can cross. There exists a
related single-unit problem for multistage systems as well,
but the cost of the original problem and the related single-
unit problem can no longer be related in a simple exact
form in all cases. The result holds under certain sufficient
conditions. If those conditions are not satisfied, the method
is not necessarily exact. Still, through a set of numeri-
cal experiments, we demonstrate that using the single-unit
problem to calculate base-stock levels is an extremely accu-
rate approximation, even in those cases.

Let Vj�t� be the number of outstanding orders between
stages j + 1 and j at time t. Note that we are counting
orders (including the ones of size 0), not units. We use
Convention 2.1 for this process as well, so V�t� denotes the
vector of outstanding orders for stages 1 through M − 1 at
time t and Vss is the steady-state random vector of the pro-
cess V . The results we develop next rely on two important
facts:

(a) The process V describing the number of outstanding
orders over time has the same steady-state distribution as
the order-based ordered lead time process L̂.

(b) The infinite-horizon average cost of a single-stage
problem depends on the lead time process only through
the distribution of Vss , the steady-state random vector of
the number of outstanding orders, in other words, only
on the distribution of �Lss , the steady-state random vector
of the order-based ordered lead time process.
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Propositions 3.9 and 3.10 formally state these facts. (In
what follows,

d= means equal in distribution.)

Proposition 3.9. (a) Pr�L̂j�t� � k� = Pr�Vj�t + k� � k�
for all j� t, and k,

(b) Vss d= �Lss .

Consider the following interpretation of the orders in
transit between stages j + 1 and j as a queueing system.
Every period, one order is released, meaning that a “cus-
tomer” enters the queue. Hence, the arrival rate ( is equal
to one. Every time an order arrives, we see that as a ser-
vice completion. We can think about this queueing system
as a first-come-first-serve queue, where the service time for
the ith customer is L̂j �i�. The number of customers in the
queue at time t then corresponds to the number of outstand-
ing orders Vj�t�. Little’s law then tells us that in steady
state, the expected number of customers waiting is equal
to the arrival rate times the expected time each customer
spends in the queue. Therefore, we get E*V SS

j += 1 ·E*L̂SSj +.
What Proposition 3.9 provides is a much stronger result.
Not only are the expected values of these random variables
the same, the distributions are completely identical.

The way we relate the original problem to the single-unit
problem is to go through an intermediate surrogate prob-
lem. The surrogate problem is very similar to the original
problem, but one in which orders do not cross. The sur-
rogate problem can be described as follows. The demand
process and the cost structure are exactly the same as the
original problem, the only difference being in the lead time
process. In particular, the lead time process for the sur-
rogate problem is defined to be stochastically identical to
the order-based ordered lead time process L̂ of the original
problem. In particular, given a sample path of the lead time
process for the original problem, there is a corresponding
sample path of the lead time process for the surrogate prob-
lem, where the same number of orders arrive in the same
periods, but the orders arrive in sequential order. Table 2
illustrates the lead time dynamics of the original problem
and the surrogate problem. In period 7, two orders arrive in
the original problem. The first order was released at time 5
and the second order at time 6. The size of the first order
is 8 units and the size of the second order is 6 units. In
the surrogate problem, again two orders arrive in period 7.
The first order was released at time 4 and the second order
at time 5. The size of the first order is 5 units and the size

Table 2. An example illustrating the lead time dynamics of the original problem and its surrogate
problem.

Time 3 4 5 6 7 8 9 10 11 12 13 14

Original Release time 2 1 3 5 and 6 4 7 9 8, 11, and 12 10
problem Order size 10 3 7 8 and 6 5 1 0 2, 15, and 4 12

Surrogate Release time 1 2 3 4 and 5 6 7 8 9, 10, and 11 12
problem Order size 3 10 7 5 and 8 6 1 2 0, 12, and 15 4

Note. Each column represents a time period and shows the release time and the size of the order(s) that arrive during
that period, if any, both for the original problem and the surrogate problem.

of the second order is 8 units. In periods 6, 11, and 12,
no orders arrive, neither in the original problem, nor in the
surrogate problem. The order that was released at time 9 is
a zero-sized order, which arrives in period 10 in the origi-
nal problem and in period 13 in the surrogate problem. In
the original problem, the first order is released at time 1
and arrives at time 4, yielding a lead time L�1�= 3. The
order-based ordered lead time L̂�1� in the original problem
is defined as the difference between the time of the first
arrival and the time of the first release, which is 3− 1 = 2.
In the surrogate problem, the first order is released at time 1
and arrives at time 3, yielding a lead time LSurrogate�1� =
2 = L̂�1�. In fact, LSurrogate�i� = L̂�i� for all i by the con-
struction of the surrogate problem.

Let C ′�s� denote the infinite-horizon average cost of the
surrogate problem under base-stock level s. Note that while
the original lead time process was not sequential, the lead
time process for the surrogate problem is sequential by the
definition of the process L̂. Therefore, we can apply Propo-
sition 3.7 to the surrogate problem and its related single-
unit problem �1��Lss�. In the remainder of this section, we
show that for any given base-stock level, the cost of this
surrogate problem is equal to the cost of the original prob-
lem for single-stage systems and for multistage systems
under certain conditions.

3.2.1. Single-Stage Systems. Using Proposition 3.9,
we obtain the following result.

Proposition 3.10. For a single-stage problem:
(a) The average cost of the system operating under base-

stock level s depends on the lead time process only through
its effect on L̂ss; i.e., if two systems differ only in their lead
time processes and have the same steady-state distribution
L̂ss of the order-based ordered lead time process, then these
two systems have the same average costs under any base-
stock level s.

(b) C�s�=C ′�s�= d̄CS�s� L̂ss� for all s.
(c) The set of minimizers for the original problem and

the single-unit problem are equivalent:{
s′ �C�s′�= min

s
C�s�

}
=
{
s′ �CS�s′� L̂

ss
�= min

s
CS�s� L̂

ss
�
}
� (4)

Part (a) of Proposition 3.10 relies on the fact that the
order sizes in a single-stage system under a base-stock
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policy are realizations of the i.i.d. demand distribution,
and that the steady-state distribution of the order-based
ordered lead time process is equal to the steady-state dis-
tribution of the number of outstanding orders. Therefore,
given the number of outstanding orders, the total size of the
pipeline inventory is stochastically determined. This means
that even though in the original problem and the surrogate
problem different orders may be outstanding, as long as
the total number of outstanding orders are equivalent, the
steady-state distributions of pipeline inventories under the
two systems are equivalent.

Proposition 3.10(b) is analogous to Proposition 3.7, and
it relates the cost of the original problem to the cost of a
related single-unit problem by going through an interme-
diate surrogate problem. Note that the single-unit problem
in this case uses L̂ss as its lead time distribution instead
of Lss . If orders do not cross in the original problem, these
two distributions are identical. However, when orders can
cross, they are different, and the correct one to use in the
single-unit problem is L̂ss to relate the costs of the two
problems. Proposition 3.10(c) is analogous to Corollary 3.8,
in that it shows that the original problem and the related
single-unit problem are optimized at the same base-stock
level. Proposition 3.10 allows us to reduce the task of find-
ing an optimal base-stock level for a single-stage problem
to solving a related single-unit problem, even when orders
can cross.

3.2.2. Multistage Systems. Note that Proposition 3.9
is valid for multistage systems. Similar to the single-stage
case, one can talk about a surrogate problem for a multi-
stage system as well. The surrogate problem has the same
steady-state distribution ��Lss� of the order-based ordered
lead time process, and furthermore, the surrogate prob-
lem can be optimized by solving its related single-unit
problem �1��Lss�. In this subsection, we show that the cost
of the surrogate problem is equal to the cost of the original
problem for multistage systems under certain conditions.

First, consider a case where order crossing can happen
only between the outside supplier and the most upstream
stage. In this case, we have an analog to Proposition 3.10
for multistage systems.

Proposition 3.11. Suppose that order crossing happens
only in the most upstream stage, i.e., between the out-
side supplier and stage M − 1. Then, C�s� = C ′�s� =
d̄CS�s� �Lss

�, and the set of minimizers of the two cost func-
tions are equivalent:{
s′ �C�s′�= min

s
C�s�

}
=
{
s′ �CS�s′� �Lss

�= min
s
CS�s� �Lss

�
}
� (5)

The steady-state distribution of the number of outstand-
ing orders Vss is the same under the original problem and
the surrogate problem because the steady-state distribution
of the order-based ordered lead time �Lss is equal to Vss

(by Proposition 3.9), and the distribution of the order-based
ordered lead time is the same in the original problem and
the surrogate problem. In both problems, the order sizes
between the outside supplier and the most upstream stage
M − 1 are equal to demand realizations under a base-stock
policy, which are i.i.d. with the same distribution. It follows
that the steady-state distribution of the number of outstand-
ing units between the outside supplier and stage M − 1 is
the same for the original and surrogate problems. There-
fore, the expected holding cost incurred at stage M − 1
is equal for the two problems. Because the distribution of
the most upstream pipeline inventory was the same, the
steady-state distribution of the internal backlog that stage
M − 1 provides for stage M − 2 is the same under both
problems as well. Because there is no order crossing after
this stage, the two systems are identical considering stages
M−2� � � � �1. Therefore, the sum of expected costs incurred
at stages M − 2� � � � �1 and the expected backlog costs are
equal under the two problems.

The exact relationship between the original problem and
the single-unit problem breaks down in the case of a gen-
eral multistage system. In particular, the costs of the origi-
nal problem and the surrogate problem are not equal, even
though the steady-state distributions of the number of out-
standing orders are the same for the two problems. This
is due to the fact that in a multistage system, the order
sizes are no longer realizations of the i.i.d. demand process,
but are modified depending on upstream inventory avail-
ability. This causes the order sizes to be dependent over
time. This dependency, coupled with the fact that under the
two problems the pipeline inventory consists of different
orders, means that the steady-state distributions of pipeline
inventory in the two systems are no longer equal.

Even though the exact relationship between the original
problem and the single-unit problem does not hold in the
multistage case, solving the single-unit problem serves as
a good approximation to both the optimal base-stock level
and the optimal cost. A numerical study is provided in §5.
There are two more cases where the single-unit approach
does yield exact results. These cases are covered in the
following two propositions.

Proposition 3.12. Consider a problem with base-stock
levels s = �s1� � � � � sM−1�. Suppose that sj − sj−1 � Lmax

j ·
Dmax for all j = 2� � � � �M − 1, where Dmax is the maximum
level of demand in any period and Lmax

j is the maximum
lead time between stage j+1 and j . Then, C�s�=C ′�s�=
d̄CS�s� �Lss

�.

The proposition states that in cases where the differ-
ence between echelon base-stock levels of adjacent stages
is large enough, the costs of the original problem and the
surrogate problem are equal, and they are both equal to
expected demand times the cost of the single-unit prob-
lem. The reason for this result is that under this condition,
there is never an internal backlog in the system. Therefore,
all order sizes are realizations of demand, which means
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that the steady-state distribution of pipeline inventories is
the same under the original and the surrogate problems.
Of course, such base-stock levels are not likely to be opti-
mal. Still, in many systems, the optimal base-stock levels
are such that internal backlogs are generally small. This is
especially the case if the holding cost differences between
adjacent stages are also substantial, i.e., when significant
value is added to the product in every stage of the supply
chain. Proposition 3.12 provides some theoretical justifi-
cation for the use of the approximation under conditions
when sj+1 − sj is considerable.

Proposition 3.13. Consider a two-stage problem where
the lead time between the outside supplier and stage 2
is deterministic. Then, C�s� = C ′�s� = d̄CS�s� �Lss

� if
s1 = s2.

Under the conditions of Proposition 3.13, one can view
the two-stage system as a single-stage system with stochas-
tic lead times, so the result is not surprising and is a simple
corollary of Proposition 3.10. However, we explicitly state
this result here because when taken in conjunction with
Proposition 3.12, it provides some further analytical justifi-
cation for using the single-unit problem to approximate the
overall problem. In particular, consider a two-stage problem
with a deterministic lead time between the outside supplier
and stage 2. Proposition 3.12 states that for base-stock lev-
els where the difference s2−s1 is large, the method is exact.
Proposition 3.13 states that for base-stock levels where this
difference is zero, the method is exact. This means that for
both small and large values of the difference, the method
is expected to do well. In §5, we indeed show that the per-
formance of the approximation is quite good over a diverse
set of instances.

4. Estimation Issues
In §§3.1 and 3.2, we established a relationship between the
original problem and a related single-unit problem. Solving
the single-unit problem provides a method to compute base-
stock levels. In particular, the single-unit problem to solve is
�1��Lss�, i.e., a single-unit single-customer problem, where
the vector of lead times of the unit are distributed as the ran-
dom variable �Lss . The detailed definition of this single-unit
problem was given in §3.1. By Proposition 3.6, the solu-
tion of the single-unit problem �1��Lss� is a set of thresh-
olds su. These thresholds are the base-stock levels that the
single-unit method recommends, and they are optimal for
single-stage problems and multistage problems under cer-
tain conditions. Otherwise, they are not guaranteed to be
optimal, but are near optimal, as demonstrated in §5.

To formulate and solve the single-unit problem �1��Lss�,
we need the following inputs: the echelon holding cost vec-
tor h, the backlog cost parameter b, the distribution of one-
period demand D, and the steady-state distribution of the
order-based ordered lead time process of the original prob-
lem, �Lss . h, b, and the distribution of D are standard quan-
tities that are commonly used in inventory theory. �Lss is

the new input in our procedure. Conceptually, there are two
ways of obtaining an estimation for the distribution of �Lss .
The first approach starts with choosing a model to repre-
sent the original lead time process and fitting parameters
to that model. One then needs to derive the distribution
of �Lss from this estimated original lead time process. Such
a derivation is already available for the case of i.i.d. lead
times. Zalkind (1978) assumes that the original lead time
process is i.i.d. with a given distribution, and provides an
efficient procedure to compute the steady-state distribution
Vss of the number of outstanding orders. Note that Vss is
equal to �Lss in distribution by Proposition 3.9, meaning
that the procedure in Zalkind (1978) also provides �Lss . In
cases where the original lead time process is i.i.d. and its
distribution is readily available, this approach gives a quick
method for computing �Lss .

The second approach for obtaining an estimate of the
steady-state distribution �Lss is to directly observe the order-
based ordered lead time process and to fit a distribution to
the observed realizations. The realizations are obtained by
subtracting the time of the ith order release from the time
of the ith order arrival between two adjacent stages. The
fitted distribution is an estimate of the steady-state distri-
bution �Lss of the order-based ordered lead time process,
which is all that is needed for the solution procedure. The
lead time process L and the order-based ordered lead time
process L̂ may indeed be very complex processes, involv-
ing all kinds of intertemporal dependencies. However, we
do not need to estimate either one of these two processes
in whole. To optimize the base-stock levels using the out-
lined procedure, all that we need is a single random vari-
able L̂ssj for every stage j . If the original lead time process
is not necessarily i.i.d. and/or if a model for its dynamics
is not available, this second approach may be preferable.
Finally, note that the data about arrival and departure times
of orders are typically easily accessible in shipping records
of most companies.

The discussion above disregards one important factor,
which is the existence of zero-sized orders. In the model,
these orders also have departure times and arrival times,
but of course they are not observed in reality. However, the
second method we described above assumes that we can
observe all departure and arrival times, even those of zero-
sized orders. This necessitates a correction in the estimation
procedure. The good news is that there is a simple way to
correct for this in cases where our single-unit method is
exact. In cases where our single-unit method is not exact,
the correction that we propose does not completely resolve
the issue caused by the lack of observation of the zero-
sized orders. So, this adds a second level of approximation
in cases where the method is not exact. The following two
processes are observable in reality.

Definition 4.1. The order-based ordered positive lead
time process L+

j �i� is the time between the ith positive-
sized order release from stage j + 1 and the ith positive-
sized order arrival at stage j . Note that these orders do not
have to be the same order.
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Definition 4.2. The number of positive-sized outstanding
orders process V +

j �t� is the number of positive-sized out-
standing orders between stages j + 1 and j at time t.

In reality, we can observe the process L+ and the pro-
cess V +, and we can fit a distribution to the sequence of
values observed, which gives us estimates of the steady-state
distributions L+ss and V+ss. To optimize base-stock levels,
we need the steady-state distribution �Lss of the order-based
ordered lead time process L̂. There are two cases in which
it is possible to compute L̂ssj , given either L+ss

j or V +ss
j , for a

given stage j . This is shown in the next proposition. Part (b)
of the proposition assumes that there is a maximum lead
time between stage j + 1 and j , which is denoted as Lmax

j .
However, this is not an a priori bound, and can be taken to
be the largest lead time value recorded during the observa-
tion phase of the estimation procedure. Let

fj =
(
Pr�V +ss

j = 1��Pr�V +ss
j = 2�� � � � �Pr�V +ss

j = Lmax
j �

)′
and

gj =
(
Pr�L̂ssj = 1��Pr�L̂ssj = 2�� � � � �Pr�L̂ssj = Lmax

j �
)′
�

Proposition 4.3. (a) If orders do not cross between stage
j + 1 and j , then

Lssj
d= L̂ssj d= L̃ssj d= L+ss

j �

(b) Let Lmax
j be the largest lead time value recorded dur-

ing the observation phase. If the order sizes between stage
j+1 and j are i.i.d. random variables with the distribution
of demand, then

gj = B−1
j fj�

where B is the invertible matrix defined as

Bj =



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)
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)
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)
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0
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)
�1−pj0�3

���
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1

)
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(
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)
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(
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3

)
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���
���

0
(Lmax

j

Lmax
j

)
�1−pj0�Lmax

j




and pj0 is the probability of a zero-sized order from stage
j + 1 to stage j in a given period. This is the same as the
probability of a zero-sized demand, i.e., pj0 = Pr�D = 0�
for all j .

Part (a) of Proposition 4.3 indicates that the steady-state
distribution of all the different lead time processes are
equal, when lead times are sequential between two stages.
When lead times are not sequential, but when the order
sizes are distributed as the i.i.d. demand process, Propo-
sition 4.3(b) provides a simple closed-form expression for
obtaining the necessary steady-state distribution L̂ssj , given
the steady-state distribution V +ss

j of the observable number
of positive-sized outstanding orders process.

Using Proposition 4.3, we can resolve the estimation
problem that arises due to the lack of observation of zero-
sized orders in all cases where our single-unit method is
exact. Below, we describe how Proposition 4.3 applies to
the different cases.
Case 1 (see Proposition 3.7 and Corollary 3.8). If lead

times between all stages are sequential, Proposition 4.3(a)
applies to all stages of the system. As a result, it is suffi-
cient to observe the positive-sized order-based ordered lead
times and use their steady-state distribution L+ss in the
single-unit problem.
Case 2 (see Proposition 3.10). If the system has a single

stage, then all order sizes are equal to demand realizations
under a base-stock policy. Therefore, Proposition 4.3(b) is
applicable and we can obtain the necessary steady-state
distribution L̂ss from the observed steady-state distribu-
tion V +ss .

Case 3 (see Proposition 3.11). If order crossing can
occur only in the most upstream stage, then order sizes
between the outside supplier M and stage M − 1 are
equal to demand realizations. Therefore, Proposition 4.3(b)
applies to the most upstream stage. All other stages have
sequential lead times, i.e., Proposition 4.3(a) applies to
stages 1� � � � �M − 2.
Case 4 (see Proposition 3.12). If there are no internal

backlogs, then order sizes between all stages are equal to
demand realizations. Therefore, Proposition 4.3(b) applies
to all stages in this case.
Case 5 (see Proposition 3.13). If the upstream lead time

in a two-stage problem is deterministic and the difference
of the base-stock levels is zero, then all outstanding orders
in the system carry a number of units that is a realiza-
tion of one-period demand. Therefore, Proposition 4.3(b) is
applicable.

In multistage problems that do not fall into any one of the
cases above, we propose using Proposition 4.3(b). In these
cases, pj0, the probability of a zero-sized order from stage
j+1 to stage j , is not equal to the probability of zero-sized
demand. However, one can still observe the fraction of peri-
ods when an order was not shipped between stages j + 1
and j , and use that fraction as an estimate for pj0. Using
the expression gj = B−1

j fj still implicitly assumes that the
order sizes are i.i.d, which is not necessarily true in these
systems. Therefore, in cases where using the single-unit
problem �1��Lss� to optimize base-stock levels is already
an approximation, the estimation procedure for the input
�Lss also contains an approximation.
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To summarize, the new input required by the method
developed in this paper is the steady-state distribution �Lss .
If the lead times are i.i.d. and their distribution is readily
available, we can analytically compute the distribution of
�Lss directly using the procedure in Zalkind (1978). Other-
wise, we propose estimating this distribution in three steps.
Step 1. Directly observe the positive-sized order-based

ordered lead time process L+ and/or the number of
positive-sized outstanding orders process V + for a rela-
tively long period (depending on whether and which one
of the five cases is applicable).
Step 2. Fit a distribution to the observed values to

obtain an estimate of L+ss , the steady-state distribution of
the positive-sized order-based ordered lead time process
and/or V+ss , the steady-state distribution of the number of
positive-sized outstanding orders process.
Step 3a. If one of the above described five cases is

applicable, compute the steady-state distribution �Lss of the
order-based ordered lead time process L̂ by using Proposi-
tion 4.3. This is the necessary input for the method.
Step 3b. If none of the above described five cases is

applicable, observe the fraction of periods with no ship-
ments between stages j + 1 and j , and use this as the
estimate for pj0 for all j . Then, compute the steady-state dis-
tribution �Lss of the order-based ordered lead time process L̂
by using Proposition 4.3(b) with the observed values of pj0.

5. Numerical Results
In this section, we study the effectiveness of our single-unit
method through a set of numerical experiments. We study

Figure 3. The types of lead time distributions.
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multistage problems, where none of the conditions for the
optimality of the method are satisfied. Overall, the method
performs extremely well, and produces near-optimal base-
stock levels.

We ran experiments with two-stage and five-stage sys-
tems. For both sets, we changed the cost parameters and
the lead time and demand distributions to test a wide vari-
ety of problem instances. The lead time process for a given
stage is assumed to be an i.i.d process where the lead time
for a particular order can vary between 1 and Lmax

j . Lmax
j

was chosen to be 5, 11, 101, 201, or 301 for two-stage sys-
tems and 5 or 11 for five-stage systems. We studied three
types of lead time distributions, which are illustrated in Fig-
ure 3. All lead time distributions allow for order crossing
and given Lmax

j have the same expectation. However, the
centered type is the least variable and the dispersed type is
the most variable. In a given instance, the same lead time
distribution is used for all stages of the system.

The demand is assumed to have a binomial distribution
with mean one. In half of the experiments, we used a bino-
mial distribution with two trials and a success probability
of 0.5, and in the other half, we used 10 trials and a suc-
cess probability of 0.1 to test the effect of the variability
of demand. The holding cost rate at the most upstream
stage is assumed to be one and the holding cost rate at
subsequent stages is assumed to increase linearly with a
certain holding cost increment. The holding cost increment
is taken to be one or four. For example, when the hold-
ing cost increment is four, hj − hj+1 = 4 for all stages j .
Finally, the backlog cost rate is assumed to be proportional



Muharremoglu and Yang: Inventory Management with an Exogenous Supply Process
124 Operations Research 58(1), pp. 111–129, © 2010 INFORMS

to the most downstream holding cost rate, with a ratio of
2 or 10, i.e., b/h1 ∈ �2�10�. We considered all combina-
tions of the above mentioned choices, which results in 120
two-stage numerical examples and 48 five-stage numerical
examples.

In the first set of experiments, we test the effectiveness
of the method. For every numerical example, we obtained
base-stock levels su by running the single-unit algorithm.
We also found the optimal base-stock levels s∗ through sim-
ulation. We then simulated the system under both su and s∗

for a sufficiently long period to obtain the cost under both
base-stock levels. The loss of optimality is defined as

loss of optimality

= simulated cost of su − simulated cost of s∗

simulated cost of s∗
�

Tables 3 and 4 report the results for two-stage and five-
stage systems, respectively. The maximum loss numbers
were 0.4142% and 0.4394%, respectively. In two-stage sys-
tems, the single-unit method found the optimal base-stock
levels in 73 out of 120 numerical examples, and in five-
stage systems, in 16 out of 48 numerical examples. How-
ever, even in cases where the base-stock levels su were not

Table 3. The effectiveness of the single-unit method for two-stage systems.

Demand variability (n= 60) Binomial (10, 0.1) Binomial (2, 0.5)

Average loss (%) 0.0380 0.0316
Maximum loss (%) 0.3410 0.4142
Number of optimal 34 39

Max. lead time (n= 24) Lmax
j = 5 Lmax

j = 11 Lmax
j = 101 Lmax

j = 201 Lmax
j = 301

Average loss (%) 0.0047 0.0256 0.0543 0.0485 0.0408
Maximum loss (%) 0.1134 0.3410 0.4142 0.2180 0.2224
Number of optimal 23 20 11 10 9

Lead time type (n= 40) Centered Uniform Dispersed

Average loss (%) 0.0018 0.0639 0.0386
Maximum loss (%) 0.0388 0.4142 0.3410
Number of optimal 38 18 17

Holding cost increment (n= 60) h1 −h2 = 1 h1 −h2 = 4

Average loss (%) 0.0150 0.0546
Maximum loss (%) 0.1258 0.4142
Number of optimal 37 36

Backlog/holding cost (n= 60) b/h1 = 2 b/h1 = 10

Average loss 0.0174 0.0522
Maximum loss 0.2006 0.4142
Number of optimal 40 33

Total (n= 120)

Average loss 0.0348
Maximum loss 0.4142
Number of optimal 73

Notes. For each set of experiments, the reported numbers are the average loss of optimality, the maximum loss of optimality, and the number of
numerical examples where the method found the optimal base-stock levels. (n is the number of instances for each block in the corresponding
row. For example, there are 24 instances with Lmaxj = 5.)

optimal, we observe that they are near optimal. Overall,
the average loss of optimality was 0.0348% for two-stage
systems and 0.0894% for five-stage systems.

For two-stage systems, the single-unit method found the
optimal base-stock levels in 43 out of 48 cases with Lmax

j

values of 5 or 11, but in 30 out of 72 cases with Lmax
j val-

ues of 101, 201, or 301. This is due to the difference in the
scale of the optimal base-stock levels and the resulting finer
grid of available base-stock levels with longer lead times,
due to the discreteness of inventory levels. For example,
with a maximum lead time of 5, the optimal base-stock
levels are on the order of �5�10�, whereas with a maxi-
mum lead time of 301, the optimal base-stock levels are
on the order of �150�300�. The cost difference between
base-stock levels �5�10� and �6�10� can be more substan-
tial compared to the difference between base-stock levels
�150�300� and �151�300�, which makes it easier to iden-
tify the optimal base-stock levels in cases with smaller lead
times. The other implication of the difference in scale is
that when the single-unit method fails to find the optimal
base-stock level, the loss of optimality is smaller in cases
with longer lead times. The average loss of optimality in
the five nonoptimal cases with Lmax

j values of 5 or 11 is
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Table 4. The effectiveness of the single-unit method for
five-stage systems.

Demand Binomial Binomial
variability (n= 24) �10�0�1� �2�0�5�

Average loss (%) 0.0712 0.1077
Maximum loss (%) 0.2976 0.4394
Total optimal 8 8

Maximum
lead time (n= 24) Lmax

j = 5 Lmax
j = 11

Average loss (%) 0.0768 0.1021
Maximum loss (%) 0.4394 0.2976
Total optimal 11 5

Lead time
type (n= 16) Centered Uniform Dispersed

Average loss (%) 0.0310 0.0694 0.1680
Maximum loss (%) 0.2439 0.2498 0.4394
Total optimal 9 5 2

Holding cost
increment (n= 24) h1 −h2 = 1 h1 −h2 = 4

Average loss (%) 0.0634 0.1155
Maximum loss (%) 0.2498 0.4394
Total optimal 8 8

Backlog/holding
cost (n= 24) b/h1 = 2 b/h1 = 10

Average loss (%) 0.0506 0.1283
Maximum loss (%) 0.2009 0.4394
Total optimal 11 5

Total (n= 48)

Average loss (%) 0.0894
Maximum loss (%) 0.4394
Total optimal 16

0.1458%, whereas the average loss of optimality in the 42
nonoptimal cases with Lmax

j values of 101, 201, or 301
is 0.0821%. Table 10 in the online appendix displays the
detailed results of the 47 out of 120 instances where the
single-unit method did not produce optimal base-stock lev-
els. In terms of the shape of the lead time distribution, we
observe that the effectiveness of the method is best for the
centered lead time type for both two-stage and five-stage
systems. This is intuitive because one expects less order
crossing in this case.

In the second set of experiments, we test the accuracy
of the cost estimate generated by the single-unit method.
We can use the single-unit method to find a set of base-
stock levels or to estimate the cost of a given set of base-
stock levels. For every numerical example, we consider the
optimal base-stock level, as well as some nonoptimal base-
stock levels. For every base-stock level considered, we find
the cost estimate given by the single-unit method and also
a simulated cost. Tables 5 and 6 report the relative absolute

Table 5. Accuracy of cost estimation for two-stage
systems, instances with maximum lead time of
5 or 11.

Demand variability Binomial Binomial
(n= 264) �10�0�1� (%) �2�0�5� (%)

Average 0.75 0.78
Median 0.67 0.70
90th percentile 1.41 1.51
Maximum 2.04 2.31

Maximum
lead time (n= 264) Lmax

j = 5 (%) Lmax
j = 11 (%)

Average 0.70 0.82
Median 0.66 0.74
90th percentile 1.31 1.60
Maximum 2.30 2.31

Lead time Centered Uniform Dispersed
type (n= 176) (%) (%) (%)

Average 0.52 1.04 0.72
Median 0.51 1.08 0.72
90th percentile 0.89 1.87 1.41
Maximum 1.45 2.31 2.18

Holding cost h1 −h2 = 1 h1 −h2 = 4
increment (n= 264) (%) (%)

Average 0.74 0.78
Median 0.66 0.70
90th percentile 1.45 1.47
Maximum 2.30 2.31

Backlog/holding
cost (n= 264) b/h1 = 2 (%) b/h1 = 10 (%)

Average 0.72 0.80
Median 0.66 0.70
90th percentile 1.34 1.55
Maximum 2.31 2.30

Total (n= 528) (%)

Average 0.76
Median 0.68
90th percentile 1.47
Maximum 2.31

Note. The percentages reported are the error values as defined in
Equation (6).

error of the cost estimate for two-stage systems and Table 7
does the same for five-stage systems. The error is defined as

error = �estimated cost− simulated cost�
simulated cost

� (6)

The experiments show that the single-unit method pro-
vides good estimates for the cost of the system. For two-
stage systems, the average error is 0.76%, and for five-stage
systems, the average error is 0.94%. 90% of the time, the
error was below 1.47% for two-stage systems, and below
1.87% for five-stage systems. The maximum error over all
instances is 2.31% and 5.85%, respectively.
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Table 6. Accuracy of cost estimation for two-stage
systems, instances with maximum lead time of
101, 201, or 301.

Demand variability Binomial Binomial
(n= 72) �10�0�1� (%) �2�0�5� (%)

Average 0.78 0.74
Median 0.94 0.84
90th percentile 1.42 1.43
Maximum 1.82 2.00

Maximum Lmax
j = 101 Lmax

j = 201 Lmax
j = 301

lead time (n= 48) (%) (%) (%)

Average 0.85 0.74 0.68
Median 1.06 0.90 0.81
90th percentile 1.60 1.42 1.24
Maximum 2.00 1.61 1.61

Lead time Centered Uniform Dispersed
type (n= 48) (%) (%) (%)

Average 0.08 1.26 0.92
Median 0.06 1.24 0.97
90th percentile 0.20 1.62 1.30
Maximum 0.29 2.00 1.59

Holding cost h1 −h2 = 1 h1 −h2 = 4
increment (n= 72) (%) (%)

Average 0.63 0.89
Median 0.65 1.09
90th percentile 1.20 1.58
Maximum 1.64 2.00

Backlog/holding b/h1 = 2 b/h1 = 10
cost (n= 72) (%) (%)

Average 0.68 0.83
Median 0.73 1.01
90th percentile 1.35 1.53
Maximum 1.66 2.00

Total (n= 144) (%)

Average 0.76
Median 0.88
90th Percentile 1.42
Maximum 2.00

The effect of the lead time on the accuracy of the cost
estimate is twofold. First, the support of the lead time dis-
tribution is either 5, 11, 101, 201, or 301 periods for two-
stage systems, and 5 or 11 periods for five-stage systems.
We observe that the accuracy of the method does not dete-
riorate in cases with long lead times, which are highly
variable. Changing the support is one way of varying the
variability of the lead time distribution. Another way is to
change the shape of the distribution, which we have done
by using three types of distributions—centered, uniform,
and dispersed (see Figure 3). Interestingly, the uniform type
has the highest average error, even though it is not the most
variable lead time type. This suggests that the variance of
the distribution is not the sole determinant of the accuracy
of the method; rather, the shape of the distribution is also

Table 7. Accuracy of cost estimation for five-stage
systems.

Demand variability Binomial Binomial
(n= 120) �10�0�1� (%) �2�0�5� (%)

Average 0.89 0.99
Median 0.75 0.89
90th percentile 1.72 2.09
Maximum 4.21 5.85

Maximum Lmax
j = 5 Lmax

j = 11
lead time (n= 120) (%) (%)

Average 0.80 1.08
Median 0.73 0.88
90th percentile 1.69 2.24
Maximum 3.87 5.85

Lead time Centered Uniform Dispersed
type (n= 80) (%) (%) (%)

Average 0.78 1.45 0.59
Median 0.75 1.30 0.44
90th percentile 1.37 2.67 1.36
Maximum 2.40 5.85 1.83

Holding cost h1 −h2 = 1 h1 −h2 = 4
increment (n= 120) (%) (%)

Average 0.88 1.00
Median 0.77 0.83
90th percentile 1.85 1.87
Maximum 4.13 5.85

Backlog/holding b/h1 = 2 b/h1 = 10
cost (n= 120) (%) (%)

Average 0.75 1.13
Median 0.66 1.00
90th percentile 1.46 2.40
Maximum 2.76 5.85

Total (n= 240) (%)

Average 0.94
Median 0.79
90th percentile 1.87
Maximum 5.85

an important factor. In fact, for five-stage problems, the
centered type has a higher average error than the dispersed
type. Hence, there seems to be an intricate way in which
the shape of the distribution affects the accuracy of the
method. The good news is that the average errors are quite
small across the board. The effect of the demand variabil-
ity on the accuracy of the method is not significant in the
numerical experiments. The error increases with a higher
holding cost increment or a higher backlog to holding cost
ratio, but the differences are very small.

For two-stage systems, we checked the accuracy of the
single-unit cost estimation against the difference in base-
stock levels of the two stages, inspired by Proposition 3.12.
Proposition 3.12 states that the single-unit method is exact
when this difference is large enough. Figure 4 illustrates
this effect. The cost estimation error is plotted against the
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Figure 4. The error in cost estimation vs. the difference
in base-stock levels of the two stages.
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difference in base-stock levels for all 264 instances of two-
stage problems with a maximum lead time Lmax

j of 11 plus 8
additional instances to make sure that small values of the
difference in the base-stock levels are captured as well. As
the difference in base-stock levels increases, the error goes
to zero. In fact, the error is close to zero far before the
value prescribed by Proposition 3.12, which is Lmax

2 ·Dmax,
equaling 110 for half of the instances and 22 for the other
half. We see that for values of s2 − s1 larger than 11, the
error is very close to zero.

Finally, we ran a set of experiments to test the cost of
ignoring order crossing. In particular, we determined base-
stock levels by finding the “lead time demand” distribu-
tion and using it to approximate the distribution of pipeline
inventory. In systems with i.i.d. lead times, the lead time
demand is defined as the total demand over the lead time
distribution. This is a widely used method, initially pro-
posed by Hadley and Whitin (1963). We also obtained
base-stock levels using the single-unit method. We simu-
lated the systems under both base-stock levels to obtain the
corresponding costs. Tables 8 and 9 report the cost of ignor-
ing order crossing for numerical examples with maximum
lead time of 5 or 11 and for two- and five-stage systems,
respectively. The cost increase is defined as

cost increase = HW cost− single-unit cost

single-unit cost
�

where HW cost is the cost under the Hadley and Whitin
approach. The cost increase was positive for all numeri-
cal examples that we considered except for one, where the
difference was −0�04%.

As the tables demonstrate, ignoring order crossing can be
quite costly. The average cost increase was 9.5% for two-
stage systems and 6.11% for five-stage systems, and can
be as high as 52.78% for two-stage systems and 36.60%
for five-stage systems. One interesting thing to note is that
for the centered type, the cost of ignoring order crossing
was quite small. This is intuitive because the prevalence
of order crossing is expected to be much lower in these
problems. For the uniform lead time type, the average cost
increase is 5.78% and 3.64%, respectively. For the dis-
persed lead time type, the average cost increase is 21.75%

Table 8. Cost of ignoring order crossing for two-stage
systems.

Demand variability Binomial Binomial
(n= 24) �10�0�1� (%) �2�0�5� (%)

Average 6�93 12�07
Maximum 36�02 52�78

Maximum
lead time (n= 24) 5 (%) 11 (%)

Average 4�23 14�77
Maximum 19�43 52�78

Lead time Centered Uniform Dispersed
type (n= 24) (%) (%) (%)

Average 0�97 5�78 21�75
Maximum 6�54 27�71 52�78

Holding cost h1 −h2 = 1 h1 −h2 = 4
increment (n= 24) (%) (%)

Average 7�83 11�17
Maximum 45�98 52�78

Backlog/holding b/h1 = 2 b/h1 = 10
cost (n= 24) (%) (%)

Average 6�16 12�84
Maximum 52�78 45�98

Total (n= 48) (%)

Average 9�50
Maximum 52�78

and 14.04%, respectively. Similarly, there is a higher level
of cost increase when the support of the lead time distri-
bution is larger, suggesting that the increase would be even
more for maximum lead time values of 101, 201, and 301.
Overall, we find that the single-unit method offers a sub-
stantially better alternative when the system experiences
nonnegligible order crossing.

The numerical experiments demonstrate that across a
wide range of parameter combinations, the single-unit
method is an effective way of determining base-stock lev-
els in multistage systems with stochastic lead times. The
base-stock levels are near optimal. The method provides a
way of accurately estimating the cost of any given base-
stock level. Finally, the cost of ignoring order crossing can
be quite substantial.

6. Conclusions
In this paper, we study inventory systems with exogenous
stochastic lead times operating under base-stock policies.
The class of exogenous lead times is a broad class that
includes all previously studied lead time models, and it
can also capture phenomena such as history or congestion-
dependent lead times. We related the cost of the inventory
system with the cost of a corresponding single-unit single-
customer problem. For single-stage problems, the relation-
ship enables one to easily optimize the base-stock level or
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Table 9. Cost of ignoring order crossing for five-stage
systems.

Demand variability Binomial Binomial
(n= 24) �10�0�1� (%) �2�0�5� (%)

Average 4�88 7�34
Maximum 27�15 36�60

Maximum Lmax
j = 5 Lmax

j = 11
lead time (n= 24) (%) (%)

Average 2�56 9�67
Maximum 11�92 36�60

Lead time Centered Uniform Dispersed
type (n= 16) (%) (%) (%)

Average 0�66 3�64 14�04
Maximum 2�12 12�32 36�60

Holding cost h1 −h2 = 1 h1 −h2 = 4
increment (n= 24) (%) (%)

Average 5�94 6�29
Maximum 33�46 36�60

Backlog/holding b/h1 = 2 b/h1 = 10
cost (n= 24) (%) (%)

Average 3�23 9�00
Maximum 18�26 36�60

Total (n= 48) (%)

Average 6�11
Maximum 36�60

compute the cost of a given base-stock policy by simply
solving a single-unit problem. The same is true for multi-
stage problems under certain conditions. If those conditions
are not satisfied, then the single-unit method is an approx-
imation that yields near-optimal base-stock levels.

The analysis involves the notion of an order-based
ordered lead time process L̂. The order-based ordered lead
time process represents the stochastic durations between
the ith order release and the ith order arrival at a given
stage for all i. The idea is that the ith order release and
the ith order arrival may not correspond to the same physi-
cal shipment because order crossing may have taken place.
The only relevant information we need about the (possi-
bly very complicated) lead time process is a single ran-
dom vector (which has one component for every stage):
the steady-state distribution of the order-based ordered lead
time process L̂. This random vector is used as the lead
time distribution in the associated single-unit problem. One
important implication is that one does not even need to
have a model for the overall lead time process as long as
one can estimate the distribution of the steady-state random
variable �Lss . This can be done by observing the release
and arrival epochs of orders and by fitting a distribution
to the observed order-based ordered lead time process. The
release and arrival epochs of orders are readily available
in most companies. Alternatively, one can also analytically

derive the distribution of �Lss if the original lead time pro-
cess is i.i.d. and its distribution is readily available. Another
useful fact about the steady-state random variable �Lss of
the order-based ordered lead time process L̂ is that it has
the same steady-state distribution as the outstanding order
process V .

We used a single-unit approach as the main tool in our
analysis. An alternative approach is the conventional anal-
ysis based on counting the number of units in various parts
of the system by keeping track of inventory positions, net
inventories, backlog levels, etc. Many of the results we
obtained can also be obtained using this kind of echelon-
based approach, again by going through the same surrogate
problem as we did in our analysis. For systems with deter-
ministic lead times, it is well known that this echelon-based
approach uses the distribution of lead time demand in a
stage-by-stage recursive algorithm to optimize base stock
levels (see §8.3.3 in Zipkin 2000). Svoronos and Zipkin
(1991) and Gallego and Zipkin (1999) show that using the
lead time demand distribution in such a recursion yields
the optimal base-stock levels for systems with exogenous
sequential lead times as well. Our single-unit method can
be seen as analogous to using the echelon-based recursion
with the lead time demand defined as the demand over the
steady-state random variable �Lss of the order-based ordered
lead time process. In fact, using the single-unit algorithm
with any given lead time distribution is equivalent to using
the echelon-based recursion with the lead time demand over
the same lead time distribution.

We believe that extending the methods developed in this
paper to more general supply chain configurations with
stochastic lead times is a promising future research direc-
tion. For example, there is a substantial body of literature
on assembly systems and assemble-to-order systems with
stochastic lead times (see Song and Zipkin 2003) where
order crossing may be a complicating factor.

7. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.
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