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Abstract

We propose an origination-and-contingent-distribution model of banking, in which liq-

uidity demand by short-term investors can be met with cash reserves (inside liquidity) or

sales of assets (outside liquidity) to long-term investors. Outside liquidity is a more efficient

source, but asymmetric information about asset quality can introduce a friction in the form

of excessively early asset trading in anticipation of a liquidity shock, excessively high cash

reserves, and too little origination of assets by banks. The model captures elements of

the current financial crisis and yields policy prescriptions on public liquidity provision to

overcome liquidity crises.
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I. INTRODUCTION

The goal of this paper is to propose a tractable model of origination and contingent distri-

bution of assets by financial intermediaries, and the liquidity demand arising from the maturity

mismatch between asset payoffs and desired redemptions. When financial intermediaries invest

in long-term assets they may face redemptions before these assets mature. Early redemptions

can be met either with an intermediary’s own reserves – what we refer to as inside liquidity –

or with the proceeds from asset sales to other investors with a longer horizon–what we refer

to as outside liquidity. The purpose of our analysis is to determine the relative importance of

inside and outside liquidity in a competitive equilibrium of the financial sector.

We consider two different groups of agents that differ in their investment horizons. One

class of agents is short-run investors (SRs) who prefer early asset payoffs, and the second

class is long-run investors (LRs) who are indifferent to the timing of payoffs. One may think

of the long-run investors as wealthy individuals, endowments, hedge funds, pension funds or

sovereign wealth funds, and of the short-run investors as financial intermediaries, banks or

mutual funds, catering to investors with shorter horizons. Within this model the key questions

are, what determines the mix of inside and outside liquidity in equilibrium? And how is the mix

of inside and outside liquidity linked to the origination of assets by financial intermediaries?

In our model SRs invest in risky projects and a set of LR investors, those with sufficient

knowledge to value and oversee the risky projects, may stand ready to buy them at a rela-

tively good price. An important potential source of inefficiency in reality and in our model is

asymmetric information between SRs and LRs about project quality. LRs cannot always tell

whether the SR asset sale is motivated by a sudden liquidity need or whether the SR investor

is trying to pass on a lemon. This problem is familiar to market participants and has been

widely studied in the literature in different contexts.

A novel aspect our model is the focus on the timing of liquidity trades. Over time, SRs

learn (asymmetrically) more about the value of the assets they originated. Therefore, when

at the onset of a liquidity shock they choose to hold on to their assets in the hope of riding

out a temporary liquidity need, SRs run the risk of having to go to the market in a much

worse position later. Yet, it makes sense for SRs not to rush to sell their projects, as these may

mature and pay off soon enough so that SRs ultimately may not face a liquidity shortage. This

timing decision by SRs as to when to sell their assets creates the main tension in the model.

We capture the unfolding of a liquidity crisis by establishing the existence of two types

of rational expectations equilibria: an immediate-trading equilibrium, where SRs are expected
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to trade at the onset of the liquidity shock, and a delayed-trading equilibrium, where they are

instead expected to try to ride out the crisis and only trade as a last resort.

We show that under complete and symmetric information about asset values the unique

equilibrium involves delayed trading. Under asymmetric information, however, an immediate-

trading equilibrium always exists and under some parameter values, both an immediate and

delayed-trading equilibrium may coexist. In the delayed trading equilibrium the anticipation

of future asymmetric information induces an acceleration of trade.1

When two different rational expectations equilibria can coexist one naturally wonders

how they compare in terms of efficiency. The answer to this question is crucially related to

the amount of risky projects originated by the SRs. In a nutshell, under the expectation of

immediate liquidity-trading, LRs expect to obtain the assets originated by SRs at close to fair

value. In this case the returns of holding outside liquidity are low and the LRs hold little cash.

On the other side of the trade, SRs will then expect to be able to sell a relatively small fraction

of assets at close to fair value, and therefore respond by relying more heavily on inside liquidity

and originating fewer projects. In an immediate-trading equilibrium there is less cash-in-the-

market pricing (to borrow a term from Allen and Gale, 1998) and a lower supply of outside

liquidity. The anticipated reduced supply of outside liquidity causes SRs to originate fewer

projects and, thus, bootstraps the relatively high equilibrium price for the assets.

In contrast, under the expectation of delayed liquidity trading, SRs rely more on outside

liquidity. Here the bootstrap works in the other direction, as LRs decide to hold more cash in

anticipation of a larger future supply of the assets held by SRs. These assets will be traded at

lower prices in the delayed-trading equilibrium, even taking into account the lemons problem.

The reason is that in this equilibrium SRs originate more projects and therefore end up trading

more assets following a liquidity shock. They originate more projects in this delayed trading

equilibrium because the expected return for SRs to investing in a project is higher in the

delayed-trading equilibrium, due to the lower overall probability of liquidating assets before

they mature.

Our model predicts the typical pattern of liquidity crises, where asset prices progressively

deteriorate throughout the crisis.2 Because of this deterioration in asset prices one would expect

that welfare is also worse in the delayed-trading equilibrium. However, the delayed-trading
1An analogy with Akerlof’s famed market for second hand cars is helpful to understand these results. When

sellers of second hand cars can time their sales they tend to sell their cars sooner, when they are less likely to
have become aware of flaws in their car, so as to reduce the lemons discount at which they can sell their car.

2SRs’ decision to delay trading has all the hallmarks of gambling for resurrection. But it is in fact unrelated
to the idea of excess risk taking as SRs will choose to delay whether or not they are levered.
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equilibrium is in fact Pareto superior. What is the economic logic behind this result? The

fundamental gains from trade in our model are between SRs who undervalue long term assets

and LRs. The more SRs can be induced to originate projects the higher are the gains from

trade and therefore the higher is welfare. In other words, the welfare efficient form of liquidity

provision is outside liquidity. Since the delayed-trading equilibrium relies more on outside

liquidity it is more efficient. As the lemons’ problem worsens, however, the cost of outside

liquidity for SRs rises. There may then come a point when the cost is so high that SRs are

better off postponing the redemption of their investments altogether rather than realize a very

low fire-sale price for their valuable projects. At that point the delayed-trading equilibrium

collapses, as only lemons are traded for early redemption.

Our analysis sheds light on the recent transformation of the financial system towards

more origination and greater reliance on distribution of assets as evidenced in Adrian and Shin

(2009). This shift can be understood in our model in terms of a move from an immediate-

trading equilibrium, with little reliance on outside liquidity, to a delayed-trading equilibrium.

The consequences of this shift is more origination and distribution but also a greater fragility

of the financial system, to the extent that assets are distributed at larger discounts under

delayed trading. Our analysis highlights that greater fragility does not necessarily imply greater

inefficiency. On the contrary, the move to more distribution and reliance on outside liquidity

is a welfare improving move even if it means that liquidity crises may be more severe when

they occur. That being said, an important concern with origination and distribution that is

omitted from our model is the greater moral hazard in origination that arises with greater

distribution.

In this paper we do not take an optimal mechanism design approach. We attempt instead

to specify a model of trading opportunities that mimics the main characteristics of actual

markets. The advantage of this approach is that it facilitates interpretation and considerably

simplifies aspects of the model that are not central to the questions we focus on. Nevertheless,

we do consider one long-term contracting alternative to markets, in which SRs write a long-

term contract for liquidity with LRs. Such a contract takes the form of an investment fund set

up by LRs, in which the initial endowments of one SR and one LR are pooled, and where the

fund promises state-contingent payments to its investors. Under complete information such a

fund arrangement always dominates any equilibrium allocation achieved through future spot

trading of assets for cash.

However, when the investor who manages the fund also has private information about

the realized returns on the fund’s investments then, as we show, the long-term contract cannot
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always achieve a more efficient outcome than the delayed-trading equilibrium. Indeed, the fund

manager’s private information then constraints the fund to make only incentive compatible

state-contingent transfers to the SR investor, thus raising the cost of providing liquidity. We

show in particular that the fund allocation is dominated by the delayed-trading equilibrium in

parameter regions for which there is a high level of origination and distribution of risky assets.

Given that neither financial markets nor long-term contracts for liquidity can achieve a

fully efficient outcome, the question naturally arises whether some form of public intervention

may provide an efficiency improvement. There are two market inefficiencies that public policy

might mitigate. An ex-post inefficiency, which arises when the delayed-trading equilibrium

fails to exist, and an ex-ante inefficiency in the form of an excess reliance on inside liquidity.

It is worth noting that a common prescription against banking liquidity crises–to require that

banks hold cash reserves or excess equity capital–would be counterproductive in our model.

Such a requirement would only force SRs to rely more on inefficient inside liquidity and would

undermine the supply of outside liquidity.

We discuss policy interventions and use this model to interpret the current crisis in

Section VII and, in greater depth, in Bolton, Santos and Scheinkman (2009). We point out

that the best form of public liquidity intervention relies on a complementarity between public

and outside liquidity. Public liquidity in the form of a price support (or guarantee) for SR

assets can restore existence of the delayed-trading equilibrium and thereby induce LRs to hold

more outside liquidity. Such a policy would induce long-term investors to hold more cash in the

knowledge that SRs rely less on inside liquidity, and thus help increase the availability of outside

liquidity. Thus, far from being a substitute for privately provided liquidity, a commitment to

providing a price support in secondary asset markets in liquidity crises can be a complement

and give rise to positive spillover effects in the provision of outside liquidity.

II. RELATED LITERATURE

Our paper is related to the literatures on banking and liquidity crises, and the limits

of arbitrage. Our analysis differs from other contributions in these literatures mainly in two

respects: first, our focus on ex-ante efficiency and equilibrium portfolio composition, and

second, the endogenous timing of liquidity trading. Still, our analysis shares several important

themes and ideas with previous papers.

Diamond and Dybvig (1983) and Bryant (1980) provide the first models of investor liq-

uidity demand, maturity transformation, and inside liquidity. In their model a bank run may

occur if there is insufficient inside liquidity to meet depositor withdrawals. In contrast to
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our model, investors are identical ex-ante, and are risk-averse with respect to future liquid-

ity shocks. The role of financial intermediaries is to provide insurance against idiosyncratic

investors’ liquidity shocks.

Bhattacharya and Gale (1986) provide the first model of both inside and outside liquidity

by extending the Diamond and Dybvig framework to allow for multiple banks, which may

face different liquidity shocks. In their framework, an individual bank may meet depositor

withdrawals with either inside liquidity or outside liquidity by selling claims to long-term assets

to other banks who may have excess cash reserves. An important insight of their analysis is

that individual banks may free-ride on other banks’ liquidity supply and choose to hold too

little liquidity in equilibrium.

More recently, Allen and Gale (2000) and Freixas, Parigi, and Rochet (2000) (see also

Aghion, Bolton and Dewatripont, 2000) have analyzed models of liquidity provided through

the interbank market, which can give rise to contagious liquidity crises. The main mechanism

they highlight is the default on an interbank loan which depresses secondary-market prices

and pushes other banks into a liquidity crisis. Subsequently, Acharya (2009) and Acharya and

Yorulmazer (2008) have, in turn, introduced optimal bailout policies in a model with multiple

banks and cash-in-the-market pricing of loans in the interbank market.

While Diamond and Dybvig considered idiosyncratic liquidity shocks and the risk of

panic runs that may arise as a result of banks’ attempts to insure depositors against these

shocks, Allen and Gale (1998) consider aggregate business-cycle shocks and point to the need

for equilibrium banking crises to achieve optimal risk-sharing between depositors. In their

model aggregate shocks may trigger the need for asset sales, but their analysis does not allow

for the provision of both inside and outside liquidity.

Another strand of the banking literature, following Holmstrom and Tirole (1998 and

2008) considers liquidity demand on the corporate borrowers’ side rather than on depositors’

side, and asks how efficiently this liquidity demand can be met through bank lines of credit.

This literature emphasizes the need for public liquidity to supplement private liquidity in case

of aggregate demand shocks.

Most closely related to our model is the framework considered in Fecht (2004), which

itself builds on the related models of Diamond (1997) and Allen and Gale (2000). The models

of Diamond (1997) and Fecht (2004) seek to address an important weakness of the Diamond

and Dybvig theory, which cannot account for the observed coexistence of financial interme-

diaries and securities markets. Liquidity trading in secondary markets undermines liquidity

provision by banks and obviates the need for any financial intermediation in the Diamond and
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Dybvig setting, as Jacklin (1987) has shown. In Diamond (1997) banks coexist with securities

markets because households face costs in switching out of the banking sector and into securities

markets. Fecht (2004) extends Diamond (1997) by introducing segmentation between financial

intermediaries’ investments in firms and claims issued directly by firms to investors though

securities markets. Also, in his model banks have local (informational) monopoly power on

the asset side, and subsequently can trade their assets in securities markets for cash–a form of

outside liquidity. Finally, Fecht (2004) also allows for a contagion mechanism similar to Allen

and Gale (2000) and Diamond and Rajan (2005),3 whereby a liquidity shock at one bank

propagates itself through the financial system by depressing asset prices in securities markets.

Two other closely related models are Gorton and Huang (2004) and Parlour and Plantin

(2007). As us, Gorton and Huang consider liquidity supply in a general equilibrium model

and argue that publicly provided liquidity can be welfare enhancing if the private supply of

liquidity involves a high opportunity cost. However, in contrast to our analysis they do not look

at the optimal composition of inside and outside liquidity, nor do they consider the dynamics

of liquidity trading. Parlour and Plantin (2007) consider a model where banks may securitize

loans, and thus obtain access to outside liquidity. As in our setting, the efficiency of outside

liquidity is affected by adverse selection. But in the equilibrium they characterize liquidity

may be excessive for some banks–as it undermines their loan origination standards–and too

low for other banks, who may be perceived as holding excessively risky assets.

Our model is also related to the literature on liquidity and the dynamics of arbitrage by

capital or margin-constrained speculators as in Dow and Gorton (1993) and Shleifer and Vishny

(1997). The typical model in this literature (e.g. Kyle and Xiong, 2001 and Xiong, 2001) also

allows for outside liquidity and generates episodes of fire-sale pricing – even destabilizing price

dynamics – following negative shocks that tighten speculators’ margin constraints. However,

models in this literature do not address the issue of deteriorating adverse selection and the

timing of liquidity trading, nor do they explore the question of the optimal mix between inside

and outside liquidity. The most closely related articles to the present paper, besides Kyle and

Xiong (2001) and Xiong (2001), are Gromb and Vayanos (2002), Brunnermeier and Pedersen

(2009) and Kondor (2007). In particular, Brunnermeier and Pedersen (2009) also focus on the

spillover effects of inside and outside liquidity, or what they refer to as funding and market

liquidity.

3Another feature in Diamond and Rajan (2005) in common with our setup is the idea that financial inter-
mediaries possess superior information about their assets, which is another source of illiquidity.
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III. THE MODEL

III.A Agents

There are two sets of agents, short and long-run investors, each with unit mass. Short run

investors (SRs) have preferences over consumption in period t = 1, 2, 3, Ct ≥ 0, represented

by the following utility function:

u(C1, C2, C3) = C1 + C2 + δC3,(1)

where δ ∈ (0, 1). These investors have one unit of endowment at date 0 and no endowments

at subsequent dates. Long run investors (LRs) have a utility function over Ct ≥ 0,

û(C1, C2, C3) =
∑3

t=1
Ct.

LRs have κ > 0 units of endowment per-capita at t = 0, and no endowments at subsequent

dates. The limit on the aggregate endowment by the LRs reflects our hypothesis that only in-

vestors with sufficient knowledge of the risky projects would stand ready to buy them, although

we do not model here the determinants of κ.

III.B Assets and Information

The two sets of investors have access to different investment opportunity sets. LRs can

hold cash, with a unit gross per-period rate of return, and invest in a decreasing-returns-to-

scale long-maturity asset that returns ϕ(x) at date 3 for an initial investment of x = (κ−M)

at date 0, where M ≥ 0 denotes the LRs’ cash holding. We refer to M as outside liquidity.

As LRs are risk neutral, the assumption that the long run project is riskless is without loss of

generality.

SR investors can hold cash and invest in a risky asset that they originate, a scalable

constant returns-to-scale project with unit returns ρ̃t at dates t = 1, 2, 3, where ρ̃t ∈ {0, ρ}
and ρ > 1. The return on risky assets is the only source of uncertainty in the model and is

shown in Figure I. An aggregate maturity shock affects all risky assets: all risky assets may

either mature at date 1 or at some later date. If risky assets mature at date 1 they all yield

the certain return ρ. If they mature at a later date, the realized return of an individual risky

asset and whether it matures at date 2 or 3 is determined by an idiosyncratic shock.

Formally, an SR chooses a size ν ≤ 1 for the risky project at date 0. The project

then either pays ρν at date 1 (in state ω1ρ) with probability λ, or it pays at a subsequent
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date with probability (1 − λ). In that case, the asset yields either a return ρ̃2 ∈ {0, ρ} at

date 2, or a late return ρ̃3 ∈ {0, ρ} at date 3 per unit invested. After date 1, shocks are

idiosyncratic (i.e. independently and identically distributed across SRs). They are represented

by two independent random variables: (1− θ), the probability that the asset matures at date

3 (the idiosyncratic state ω2L); and η, the probability that the asset returns ρ̃t = ρ when

it matures at either dates t = 2, 3 (in idiosyncratic states ω2ρ and ω3ρ, respectively). Thus,

ρ̃t = 0 with probability (1−η) at t = 2, 3 (in idiosyncratic states ω20 and ω30). The realization

of idiosyncratic shocks is private information to the SR originating the risky asset. We denote

by m the amount of cash held by SRs and by ν = 1−m the amount invested in the risky asset;

m is thus our measure of inside liquidity.

Under our assumptions about asset returns and observability of idiosyncratic states, SRs

and LRs have symmetric information at date 1 but asymmetric information at dates 2 and 3

about expected and realized returns of risky assets. In other words, while there is no adverse

selection at date 1, there will be at dates 2 and 3. This change in information asymmetry is

meant to capture in a simple way the idea that in liquidity crises the extent of asymmetric

information grows over time.

The notion that adverse selection problems worsen during a liquidity crisis is intuitive, as

originators learn more about the quality of their assets over time. It is also broadly consistent

with how the financial crisis of 2007 and 2008 has played out. To be sure, the risk profile and

asset quality of many financial intermediaries became difficult to ascertain as the residential

real estate and mortgage markets’ implosion unfolded in 2007 and 2008 (see Gorton 2007 and

2008). Marking assets to market became more difficult. Determining the extent of unsold

inventory of assets was also difficult, and the value of any insurance or swap agreements was

undermined by growing counter-party risk. The freezing up of the interbank loan market was

one clear symptom of the difficulty of assessing the direct and indirect exposure of financial

institutions to these toxic assets.

III.C Assumptions

We impose assumptions on payoffs to focus the analysis on the economically interesting

situations. First, for the long run asset we assume that:

ASSUMPTION 1.

ϕ′ (κ) > 1 with ϕ′′ (x) < 0 and lim
x−→0

ϕ′(x) = +∞.
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The assumption ϕ′′ (·) < 0 captures the idea that the long assets represent scarce investment

opportunities. The assumption limx→0 ϕ′ (x) = +∞ ensures that LRs always want to invest

some fraction of their endowment in the long asset. The key assumption here though is that

ϕ′(κ) > 1. This implies that LRs incur a strictly positive opportunity cost of carrying cash.

They will only hold cash in equilibrium if they expect be able to acquire assets at dates 1 or

2 with expected returns at least as high as ϕ′(κ). Given our assumption of risk neutrality this

can only occur if asset purchases occur at cash-in-the-market prices. That is, assets must trade

in equilibrium at prices that are below their expected payoff, for otherwise LRs would have no

incentive to hold cash.

Second, for the risky asset we assume that:

ASSUMPTION 2.

ρ [λ + (1− λ)η] > 1 and λρ + (1− λ) [θ + (1− θ) δ] ηρ < 1.

These assumptions imply that SRs would not invest in the risky asset in autarchy, even

though investment in the risky asset may be more attractive than holding cash when the asset

can be resold for it’s expected payoff. Assumption 2 captures the economically interesting

situation where liquidity of secondary markets at dates 1 and 2 affects asset allocation decisions

at date 0.4

Third, we assume that there are gains from trading risky assets for cash at least at date

1 following an aggregate liquidity shock (the realization of state ω1L). This is the case when

ϕ′ (κ) is not so high to make it unattractive for LRs to carry cash to purchase risky assets at

date 1:

ASSUMPTION 3.
ϕ′ (κ)− λ

(1− λ) ηρ
<

1− λ

1− λρ
.

4If we assume instead that
λρ + (1− λ) [θ + (1− θ) δ] ηρ ≥ 1,

then SRs would always choose to put all their funds in a risky asset irrespective of the liquidity of the secondary
market at date 1.
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IV. OPTIMIZATION

Given that all SRs are ex-ante identical, we restrict attention to equilibria that treat

all SRs symmetrically. Similarly, we assume that all LRs get the same (expected) profit in

equilibrium. We also restrict attention to pooling equilibria, in which observable actions cannot

be used to distinguish among SRs with worthless risky assets (in state ω20), and SRs with

valuable assets maturing at date 3 (in state ω2L).

We denote by P1 the price of one unit of risky asset traded at date 1 in state ω1L, and by

P2 the price of one unit of risky asset traded at date 2. Similarly, we denote by Q1 and Q2 the

amount of risky assets demanded by an LR investor at dates 1 and 2, respectively.5 Finally,

we denote by q1 the amount of risky asset supplied by an SR at date 1 (in state ω1L) and by

q2 the amount supplied at date 2. Given that SRs learn at date 2 the realized returns of the

risky asset they have originated, SRs can condition their trading policy on the realization of

their idiosyncratic state ω2. An SR in state ω20 would always sell his risky asset at any price,

as he knows that the asset is worthless. An SR in state ω2ρ has no reason to sell a valuable

risky asset that has already matured. He may as well hold on to the asset and consume its

output. An SR in state ω2L will only sell a positive quantity of the risky asset q2 > 0 if the

price P2 is greater than or equal to the discounted expected value of the asset δηρ. We assume

that SRs always sell their entire risky investment whenever they are indifferent between selling

or holding on to their risky asset.6 For expositional ease, we do allow LRs to buy a fraction of

a risky project, but in section IX.D below we show how to treat the constraint that LRs also

acquire an integer number of indivisible projects.

IV.A The SR Optimization Problem

At date 0, SRs must determine how much of their unit endowment to hold in cash and

how much to invest in a risky asset. At date 1, they must decide how much of the risky asset

to trade at price P1, and at date 2 how much to trade of what they still own at price P2.

Their objective function is as follows:

5More formally, we could have written P1 (ω1L) and P2 (ω1L) to denote the prices of the risky asset at dates
1 and 2 and similarly Q1 (ω1L) and Q2 (ω1L) to denote the quantities acquired by LRs at different dates. Given
that all trading occurs in the “lower branch” of the tree we adopt the simpler notation as there is no possible
ambiguity.

6One interpretation of this assumption is that once a scale is chosen, a risky project is indivisible. This
indivisibility is consistent with our assumption that each risky project has at most one SR owner, who is the
only agent that observes the state of the risky project in period 2.
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π [m, q1, q2] = m + λ (1−m) ρ

+ (1− λ) q1P1

+ (1− λ) θη [(1−m)− q1] ρ(2)

+ (1− λ) θ (1− η) [1−m− q1]P2

+ (1− λ) (1− θ)q2P2

+ δ (1− λ) (1− θ) η [(1−m)− q1 − q2] ρ.

Recall that an SR liquidates his remaining position in the risky asset in state ω20. Also,

in states where the asset yields ρ, SRs hold on to the risky asset and consume ρ.

The SR’s investment program PSR is then given by:

Program PSR

max
m,q1,q2

π [m, q1, q2]

subject to

m ∈ [0, 1]

and

q1 + q2 ≤ 1−m and q1, q2 ∈ {0, 1−m}.

The constraints simply state that SRs cannot invest more in the risky asset than their

endowment and that they cannot sell more than what they hold. The last condition ensures

that when an SR sells his risky asset, he sells everything he owns.

IV.B The LR Optimization Problem

At date 0 LRs determine how much of their endowment to hold in cash, M , and how

much in the long term asset, κ − M . LRs must also decide at dates 1 and 2 how much of

the risky assets to purchase at prices P1 and P2. Given that holding cash involves a strictly

positive opportunity cost LRs will not carry cash that they will never use. That is, in the

states of nature in which trade is profitable LRs will completely exhaust their cash reserves to

purchase risky assets. With this observation in mind we can write the payoff of an LR investor

that purchases Q1 at date 1 and Q2 at date 2, as follows:

Π [M,Q1, Q2] = M + ϕ (κ−M)
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+ (1− λ) [ηρ− P1] Q1(3)

+ (1− λ)E [ρ̃3 − P2| F ]Q2.

The first line in (3) is simply what the LR investor gets by holding an amount of cash

M until date 3 without ever trading in secondary markets at dates 1 and 2. The second line is

the net return from acquiring a position Q1 in risky assets at unit price P1 at date 1. Indeed,

the expected payoff of a risky asset in state ω1L is ηρ. The last line is the net return from

trading at date 2. This net return depends on the expected realized payoff of the risky asset

at date 3, or in other words on the expected quality of assets purchased at date 2. As we

postulate rational expectations, the LR investor’s information set, F , includes the particular

equilibrium that is being played. In computing conditional expectations, LRs assume that the

mix of assets offered at date 2 corresponds to the one observed in equilibrium. We also impose

a standard and weak refinement on LR out-of-equilibrium beliefs, that if they purchase a risky

asset at date 2, in an equilibrium that prescribes no trade at that date, at a price for which

SRs in state ω2L strictly prefer to hold the asset until date 3, then LRs assume that the asset

is worthless.

The LR investor’s program is thus:

Program PLR

max
M,Q1,Q2

Π [M, Q1, Q2]

subject to

0 ≤ M ≤ κ(4)

and

Q1P1 + Q2P2 ≤ M and Q1 ≥ 0, Q2 ≥ 0.(5)

The first constraint (4) is simply the LR’s wealth constraint: LRs’ cannot carry more cash

than their initial capital κ and they cannot borrow. The second constraint (5) says that LRs

cannot purchase more risky projects than their money, M , can buy and that LRs cannot short

risky projects.

V. EQUILIBRIUM

We establish the existence of two stable rational expectations equilibria: an immediate-

trading equilibrium, in which all trade takes place at date 1, and a delayed-trading equilibrium,

in which all trade takes place at date 2.
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V.A Definition of Equilibrium

A rational expectations competitive equilibrium is a vector of portfolio policies [m∗,M∗],

supply and demand choices [q∗1, q
∗
2, Q

∗
1, Q

∗
2] and prices [P ∗

1 , P ∗
2 ] such that (i) at these prices

[m∗, q∗1, q
∗
2] solves PSR and [M∗, Q∗

1, Q
∗
2] solves PLR and (ii) markets clear in all states of

nature.

V.B Equilibrium Under Full Information

We begin by showing that when all agents are fully informed about the realization of

idiosyncratic shocks at date 2, then the unique equilibrium is the delayed-trading equilibrium.

Thus, suppose for now that both SRs and LRs can observe whether a risky project is in state

ω2L or ω20. Then the following result holds.

PROPOSITION 1. (Unique full information equilibrium) Assume that both SRs and LRs

observe whether a risky asset is in state ω2L or ω20, that Assumptions 1-3 hold, and that

δ is small enough.7 Then the unique equilibrium is the delayed-trading equilibrium.

We provide a formal proof of when the delayed-trading equilibrium exists in the appendix.

For our purposes now it is sufficient to show that an immediate-trading equilibrium cannot

exist under full information. Note first that the expected payoff of acquiring assets in state

ω2L for LRs is ηρ, the same expected payoff as at date 1. It follows that LRs prefer to purchase

risky assets at date 1 instead of date 2 whenever the price at the earlier date is lower than at

the later date:

P ∗
2i ≥ P ∗

1i.(6)

Similarly, SRs sell their risky asset at date 1 whenever the price they can obtain at date 1 is

higher than the expected utility of holding the asset until date 2, which is the payoff in state

ω2ρ times θη plus the price at which SRs sell the risky asset in state ω2L, P ∗
2i, times (1− θ):

P ∗
1i ≥ θηρ + (1− θ) P ∗

2i.(7)

The conditions (6) and (7) must hold in any putative immediate-trading equilibrium.

But note that these two conditions together imply that P ∗
1i ≥ ηρ, and thus that P ∗

2i ≥ ηρ.

Hence, for an SR, investing in a risky-project and selling it at either period 1 or 2 dominates

holding cash and thus m∗
i = 0. However, given that the expected gross payoff of the asset

at t = 1 is ηρ, the expected return of carrying cash for LRs cannot be greater than one, so
7In the proof of the proposition an exact, strictly positive, bound is given.
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that M∗
i = 0 because by Assumption 1, ϕ′ (κ) > 1. Hence SRs that have projects that will

mature in date 3, cannot find any buyers. In sum, there cannot exist an immediate-trading

equilibrium when LRs are fully informed about the value of risky assets at date 2. We show

next that when instead there is asymmetric information about the true value of risky assets at

date 2, an immediate-trading equilibrium always exists.

V.C Equilibrium Under Asymmetric Information

We now consider the more plausible situation where only the originating SR can observe

whether its risky asset is in state ω2L or ω20. LRs at date 2 can only tell that if an asset is

put up for sale it can be in either state ω2L or ω20.

In what follows and for the remainder of the article we restrict our analysis to this

situation of asymmetric information. In the presence of asymmetric information the following

fundamental result obtains.

PROPOSITION 2. (The immediate-trading equilibrium) Suppose that LRs only observe the

information set {ω2L, ω20} at date 2, while SRs can observe the true state ω2L or ω20.

Suppose also that Assumptions 1-3 hold. Then there always exists an immediate-trading

equilibrium, such that

M∗
i > 0 q∗1 = Q∗

1 = 1−m∗
i and q∗2 = Q∗

2 = 0.

In this equilibrium cash-in-the-market pricing obtains and

P ∗
1i =

M∗
i

1−m∗
i

≥ 1− λρ

1− λ
.(8)

Moreover the cash positions m∗
i and M∗

i are unique.

To gain some intuition on the construction of the immediate-trading equilibrium notice

first that the first order conditions for m and M are respectively:

P ∗
1i ≥

1− λρ

1− λ
and λ + (1− λ)

ηρ

P ∗
1i

= ϕ′ (κ−M∗
i ) ,(9)

when m∗
i < 1 and M∗

i > 0.8 These expressions follow immediately from the maximization

problem PSR when we set q∗1 = 1−m∗
i , and from problem PLR. Note, in particular, that the

8The proof of Proposition 2 establishes that Assumption 3 rules out the possibility of a “no trade” immediate-
trading equilibrium in which M∗

i = 0 and m∗
i = 1.
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LR portfolio must be such that the expected return of holding cash is the same as the return

obtained by investing an additional dollar in the long run asset.

Next, to determine the equilibrium price, let P1i be the unique solution to the equation:

λ + (1− λ)
ηρ

P1i
= ϕ′ (κ− P1i) ,(10)

which, given our assumptions, always exists. Assume first that the solution to (10) is such that

P1i >
1− λρ

1− λ
.

In that case, we can set P ∗
1i = P1i, m∗

i = 0, so that SRs are fully invested in the risky asset,

and also M∗
i = P ∗

1i, which by construction satisfies the LR’s first order condition. Moreover,

by Assumption 1 it must also be the case that M∗
i < κ.

The key step in the construction of the immediate-trading equilibrium then, is that the

price at date 2, P ∗
2i, has to be such that both SRs and LRs have incentives to trade at date 1

and not at date 2. That is, it has to be the case that

P ∗
1i ≥ θηρ + (1− θη) P ∗

2i and
ηρ

P ∗
1i

≥ E [ρ̃3|F ]
P ∗

2i

.(11)

The first expression in (11) states that SRs prefer to sell their risky assets at date 1

for a price P ∗
1i rather than carrying it to date 2: if SRs carry the asset to date 2, then with

probability θη the risky asset pays off ρ, and with probability (1 − θη) the asset is either in

state ω2L or ω20, when SRs choose to sell the asset at price P ∗
2i. Hence, if the price P ∗

2i is low

enough then SRs prefer to sell the asset at date 1.

The second condition in (11) states that LR expected returns from acquiring a risky asset

at date 1 (in state ω1L) is higher than at date 2. To guarantee this outcome it is sufficient to set

P ∗
2i < δηρ for in this case SRs in state ω2L would prefer to carry the asset to date 3 rather than

selling it for that price. This means that only “lemons” (risky assets in state ω20) get traded

at date 2. LRs, anticipating this outcome, set their expectations accordingly to E [ρ̃3|F ] = 0,

and therefore at any price 0 ≤ P ∗
2i < δηρ LRs (weakly) prefer to acquire assets at date 1. Hence

P ∗
2i = 0 clears markets in period 2 and supports the immediate trading equilibrium.

Assume next that the solution to (10) is such that

P1i ≤ 1− λρ

1− λ
,(12)
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and set P ∗
1i equal to the right hand side of (12). At this price, SRs are indifferent on how much

cash m ∈ [0, 1] to carry. Then the solution to the LRs first order condition (9) is such that:

M∗
i < P ∗

1i =
1− λρ

1− λ
.

It is then sufficient to set m∗
i ∈ [0, 1) such that:

M∗
i

1−m∗
i

=
1− λρ

1− λ
,

which is always possible.9 Finally, we may choose again P ∗
2i = 0.

Why does an immediate-trading equilibrium emerge under asymmetric information when

it does not exist under full information? The reason is simply that under full information SRs

get to trade the risky asset at date 2 at a sufficiently attractive price to make it worthwhile

for them to delay trading until that date. By trading at date 1, SRs give up a valuable option

not to trade the risky asset at all. This option is available if they delay trading to date 2 and

has value in the event that the asset matures at date 2 with a payoff ρ. Under asymmetric

information the price at which risky assets are traded at date 2 may be so low (due to lemons

problems) that SRs prefer to forego the option not to trade and to lock in a more attractive

price for the risky asset at date 1. Thus, the expectation of future asymmetric information can

bring about an acceleration of trade which we show in the next section is inefficient.

Under full information the price of the risky asset at date 2 must be bounded below by

the price at date 1. The reason is that the expected gross value of a risky asset to LRs is

always ηρ whether it is traded at date 1 (in state ω1L) or at date 2 (in state ω2L). But the

opportunity cost of trading the risky asset for SRs is higher at date 1 than at date 2, as SRs

forego the option not to trade when they trade at date 1 and SRs can expect to sell their asset

in state ω2L at an even higher price than at date 1. To compensate SRs for these foregone

options the price at date 1 has to be at least P1i ≥ ηρ, but at this price LRs don’t want to

carry cash to acquire risky assets at date 1. In sum, in the presence of asymmetric information

the price at date 2 may be lowered sufficiently to make trade at date 1 attractive for both SRs

and LRs.

While an immediate trading equilibrium always exists under asymmetric information, the

next proposition establishes that a delayed-trading equilibrium exists only if the underpricing
9Notice that Assumption 2 implies that 1− λρ > 0.
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of risky assets in state ω2L due to asymmetric information is not too large.10

PROPOSITION 3. (Delayed-trading equilibrium) Suppose that LRs only observe the in-

formation set {ω2L, ω20} at date 2, while SRs can observe the true state ω2L or ω20.

Assume also that Assumptions 1-3 hold and that δ is small enough11 then there always

exists a delayed-trading equilibrium, where m∗
d ∈ [0, 1), M∗

d ∈ (0, κ), and

q∗1 = Q∗
1 = 0 and q∗2 = Q∗

2 = (1− θη) (1−m∗
d) .

In this equilibrium cash-in-the-market pricing obtains and

P ∗
2d =

M∗
d

(1− θη)
(
1−m∗

d

) ≥ 1− ρ [λ + (1− λ) θη]
(1− λ) (1− θη)

.(13)

Moreover the cash positions m∗
d and M∗

d are unique.

The construction of the delayed-trading equilibrium is broadly similar to the immediate-

trading equilibrium, with a few differences that we emphasize next. First, as stated in the

proposition, δ must be small enough. Specifically, it must be such that δηρ < P ∗
2d. Otherwise

SRs in state ω2L prefer to carry the risky asset to date 3 rather than selling it at date 2.

This would destroy the delayed-trading equilibrium, as only lemons would then be traded at

date 2. Second, a key difference with the immediate-trading equilibrium is that the aggregate

supply of risky assets by SRs is reduced by an amount θη under delayed trading. This is the

proportion of risky assets that pay ρ at date 2. As a result, cash-in-the-market pricing under

delayed trading is given by:

P ∗
2d =

M∗
d

(1− θη)
(
1−m∗

d

) .

The supply of risky assets at date 2 is given by (1− θη) (1−m∗
d), so that delaying asset

sales introduces both an adverse selection effect which depresses prices, and a lower supply of

the risky assets which increases prices.

As under the immediate-trading equilibrium, to support a delayed-trading equilibrium

requires that both SRs and LRs have incentives to trade at date 2 rather than at date 1, which
10Note that we are assuming that q1, q2 ∈ {0, 1 −m}. If instead we let 0 ≤ q1, q2 ≤ 1 −m there would also

be a third equilibrium, which involves positive asset trading at both dates 1 and 2. We do not focus on this
equilibrium as it is unstable.

11The proof of the proposition clarifies the upper bound on δ that guarantees existence, see expression (33)
in the Appendix and the discussion therein.
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entails that

P ∗
1d ≤ θηρ + (1− θη) P ∗

2d and
ηρ

P ∗
1d

≤ E [ρ̃3|F ]
P ∗

2d

,(14)

where now the expected payoff of the risky asset, conditional on a trade at date 2 is given by

E [ρ̃3|F ] =
(1− θ) ηρ

(1− θη)
.(15)

If (14) is to be met, the price P ∗
1d in state ω1L has to be in the interval

[
1− θη

1− θ
P ∗

2d, θηρ + (1− θη)P ∗
2d

]
.

The key step of the proof of Proposition 2 is to show that this interval is non empty.

V.D Outside and Inside Liquidity in the Immediate and Delayed Trading Equilibria

How does the composition of inside and outside liquidity vary across equilibria? To build

some intuition on this question it is helpful to consider the following numerical example.

EXAMPLE 1. Our parameter values are:

λ = .85 η = .4 ρ = 1.13 κ = .2 δ = .1920 ϕ (x) = xγ with γ = .4

We also set θ = 0.35. In our subsequent numerical examples we leave all parameter

values unchanged except for θ. The parameter θ plays a critical role in our analysis, as it

affects both the expected maturity of the risky assets and the informational rent of SRs

at date 2. To ensure that Assumption 2 holds we always restrict the values of θ to the

interval 0 ≤ θ ≤ θ, where θ is the solution to

1 = ρ
[
λ + (1− λ)ηρ

(
θ + (1− θ)δ

)]
.(16)

Under our chosen parameter values we have θ = .4834. It is immediate to check that

Assumptions 1 to 3 also hold for these parameter values. In particular, we have

ϕ′ (κ) ≈ 1.05 and ρ [λ + (1− λ)η] ≈ 1.03.

In this example both the immediate and delayed-trading equilibrium exist for θ ∈ [0, θ =

.4834). Moreover in the delayed-trading equilibrium we have m∗
d > 0 when θ ∈ [0, θ̂ =
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.4196). For θ ∈ [θ̂ = .4196, θ = .4834] the delayed-trading equilibrium is such that

m∗
d = 0. Finally, for θ ∈ (.4628, .4834] the delayed-trading equilibrium does not exist.

As we explain below, for this range of θ, the discount factor δ is not sufficiently small to

induce SRs in state ω2L to trade their asset at date 2; instead these SRs hold on to their

risky asset until maturity at date 3. 2

Figure II represents the immediate and delayed-trading equilibria in a diagram where

the x axis measures M , the amount of cash carried by LRs, and the y axis m, the amount

of cash carried by SRs. The dashed lines are the isoprofit curves of LRs and the straight

(continuous) lines are the isoprofit lines of SR.12 To see the direction in which payoffs increase

as one moves from one isoprofit curve to another, it is sufficient to observe that LRs prefer

that SRs carry more risky projects for a given level of outside liquidity, M . In other words,

that m is lower. Along the other axis, LRs also prefer to carry less outside liquidity (lower

M) for a given supply of risky projects by SRs. The converse is true for SRs. In the figure

we display the isoprofit lines for both the immediate and delayed-trading equilibrium (this is

why the isoprofit lines appear to cross in the plot; the lines that cross correspond to different

dates). Equilibria are located at the tangency points between the SR and LR isoprofit curves.

Consider first the immediate-trading equilibrium, located at the point marked (M∗
i ,m∗

i ) =

(.0169, .9358). Note that the SR isoprofit curve is for the SR reservation utility, π = 1. In

other words, the gains from trade in the immediate-trading equilibrium go entirely to LRs.

Next, note that the delayed-trading equilibrium at (M∗
d ,m∗

d) = (.0540, .4860) has more outside

and less inside liquidity relative to the immediate-trading equilibrium.

One way of understanding these equilibrium portfolio choices is to note that in state

ω1L the risky asset is of higher ex-ante value to LRs (ηρ) than to SRs (θηρ + (1− θ)δηρ). In

the immediate-trading equilibrium, SRs must be compensated with a relatively high price to

be willing to originate risky assets.13 But this higher price can only come at the expense of

lower returns to holding cash for LRs, who are therefore induced to hold less cash. This, in

turn, makes it less attractive for SRs to invest in the risky asset, and so on. The outcome is

that in the immediate-trading equilibrium most of the liquidity is inside liquidity held by SRs,
12To generate these isoprofit lines note that we can construct an indirect expected profit function for SRs and

LRs as a function of outside and inside liquidity, π [M, m] and Π [M, m] respectively. The lines plotted in Figures
2 and 3 simply give the combinations of m and M such that π [m, M ] = π and Π [m, M ] = Π. Assumption 3
then simply says that the slope of the isoprofit lines at M = 0 at date 1 are such that there are gains from
trade: the LR isoprofit curve is “flatter” than the SR isoprofit line.

13This observation is reflected in the slope of the isoprofit lines in Figure II: The SRs’ isoprofit line in the
immediate-trading equilibrium is flatter suggesting that SRs require a higher price per unit of risky asset sold
at that date.

19



whereas the delayed-trading equilibrium features relatively more outside liquidity than inside

liquidity.

The next proposition formalizes this discussion and characterizes the mix of inside and

outside liquidity across the two equilibria. For the sake of exposition it is convenient to impose

one additional assumption:14

ASSUMPTION 4.
1− λρ

1− λ
> κ.

PROPOSITION 4. (Inside and outside liquidity across equilibria.) Assume that Assumptions

1-4 hold and that δ is small enough that a delayed-trading equilibrium exists for all

θ ∈ (0, θ] then there exists a cutoff θ′ ∈ (
0, θ

]
such that m∗

i > m∗
d and M∗

i < M∗
d for all

θ ∈ (0, θ′].

Thus, for the range θ ∈ [0, θ′] there is more outside and less inside liquidity in the

delayed-trading equilibrium than the immediate-trading equilibrium. In our example θ′ = θ

so that Proposition 4 holds for the entire range of admissible θs.15

Finally, note that under Assumption 4 we do not necessarily have m∗
d > 0. Figure III

shows the immediate and delayed-trading equilibrium when θ takes the higher value θ = .45.

The delayed-trading equilibrium is then (M∗
d ,m∗

d) = (.0716, 0), while the immediate-trading

equilibrium is the same as in example 1, as this equilibrium is independent of θ. Note also that,

unlike in Figure II, gains from trade do not entirely accrue to LRs in this example. In Figure

III the isoprofit line marked IPSR corresponds to the profit level π = 1 for SRs, which is the

same as under autarky. The isoprofit line through the delayed-trading equilibrium, however,

lies strictly to the right of IPSR, which means that SRs now obtain strictly positive profits in

the delayed-trading equilibrium. The reason is that at the corner when m∗
d = 0 SRs are at

“full capacity” in originating risky assets. They may then earn scarcity rents, as LRs compete

for the limited supply of risky assets originated by SRs.

14As we show in the Result in the appendix, under Assumption 4 the immediate-trading equilibrium is such
that m∗

i ∈ (0, 1), ruling out the corner outcome where m∗
i = 0 and thus the situation where m = 0 under both

the immediate and the delayed-trading equilibrium. Assumption 4 holds in all our numerical examples
15Although we have been unable to prove it formally, we have not found an example of an economy that

meets assumptions 1-4 for which θ′ < θ.
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VI. WELFARE

To begin with, note that all equilibria are interim efficient. That is, conditional on trade

occurring at either dates there is no reallocation of the risky asset that would make both sides

better off. Figure II shows that it is not possible to improve the ex-post efficiency of either

equilibrium, as in each case the equilibrium allocation is located at the tangency point of the

isoprofit curves. In our model inefficiencies arise through distortions in the ex-ante portfolio

decisions of SRs and LRs and through the particular timing of liquidity trades they give rise

to. When agents anticipate trade in state ω1L, SRs lower their investment in the risky asset

and carry more inside liquidity mi. In contrast LRs, carry less liquidity Mi as they anticipate

fewer units of the risky asset to be supplied in state ω1L.

When the immediate and delayed-trading equilibrium coexist, an interesting question to

consider is whether the two equilibria can be Pareto ranked. We are able to establish that

indeed the delayed-trading equilibrium Pareto dominates the immediate-trading equilibrium.

But the delayed-trading equilibrium may not exist. When the delayed-trading equilibrium

does not exist we show, however, that a more efficient outcome can be attained under a LR

monopoly.

VI.A Pareto Ranking of the Immediate and Delayed-trading Equilibria

The clear Pareto ranking of the two equilibria is somewhat surprising, as delayed trade

is hampered by the information asymmetry at date 2, and takes place at lower equilibrium

prices. While lower prices clearly benefit LRs it is not obvious a priori that they also benefit

SRs. The next proposition establishes that this is the case. The economic reason behind this

clear Pareto ranking is that SRs are induced to originate more risky assets when they expect

to trade at date 2. This higher supply of risky assets benefits SRs sufficiently to compensate

for the lower price at which risky assets are sold.

PROPOSITION 5. (Pareto ranking of equilibria.) Assume that Assumptions 1-4 hold and

that δ is small enough so that a delayed-trading equilibrium exists for all θ ∈ [0, θ], then

there exists a θ′ ∈ (0, θ] such that π∗i ≤ π∗d and Π∗i < Π∗d for all θ ∈ (0, θ′).

In our numerical example θ′ = θ so that the delayed-trading equilibrium Pareto dom-

inates the immediate-trading equilibrium for all θ ∈ (0, θ]. This is illustrated in Figure VI,

where the expected profits of both SRs and LRs are plotted for a particular range of θs.16 The
16The value θ = .35 is chosen simply to show the figures in a convenient scale.
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top panel shows the SRs’ expected profits. Notice that for all θ ≤ θ̂ = .4196 SRs only obtain

their reservation profits, when they were to be fully invested in cash. The SRs’ risky asset is

a constant returns to scale technology and, a shown in Proposition 4, in this range of θ SRs

are not fully invested in the risky asset. The lower panel shows the LRs’ expected profit. The

flat line corresponds to the LR’s expected profit in the immediate-trading equilibrium, which

is everywhere strictly below the expected profit in the delayed-trading equilibrium.

Somewhat surprisingly, in the range of θ ∈ (0, θ̂) LRs’ expected profits are increasing

in θ. As θ increases, the adverse selection problem at date 2 worsens, yet LRs’ obtain higher

ex-ante expected profits. This is due to the fact that when θ increases, the expected maturity

of risky assets is also shorter, so that risky assets become more attractive investments for SRs.

Therefore SRs originate and distribute more risky assets to LRs at date 2, which can only

make them better off.

For θ > θ̂ SRs are fully invested in the risky asset and acquire equilibrium rents. In this

range π∗d > 1 and increasing with θ, whereas LRs’ expected profits are decreasing in θ. Note

however that Π∗d > Π∗i throughout the relevant range for θ.

In our setup a higher total surplus can be achieved when the aggregate amount of cash

held by investors is lower and when investment in risky and long run projects is increased. But

under Assumption 2, SRs only want to hold cash in autarchy and do not want to originate

risky projects. They are only willing to invest in risky projects if enough outside liquidity is

provided by LRs at either dates 1 or 2. SRs are endowed with an investment opportunity they

don’t want to exploit, unless they can distribute the investment to LRs in exchange for cash in

some contingencies. The SR investment technology is a constant returns to scale technology.

Therefore, from a social point of view efficiency requires minimization of inside liquidity. Thus

the key trade-off is between the efficiency gain from lowering inside liquidity and the efficiency

loss from raising outside liquidity.

In the delayed-trading equilibrium, inside liquidity is lower and the amount of risky

projects originated is larger than in the immediate-trading equilibrium. But, there is also

more outside liquidity. The higher amount of risky projects originated is an efficiency gain,

while the larger amount of outside liquidity is an efficiency loss. However, the efficiency gain

more than offsets the efficiency loss. The reason is that the amount of outside liquidity that

LRs hold in the delayed-trading equilibrium is not that much larger than the amount of cash

they hold in the immediate-trading equilibrium. LRs don’t need to hold much more cash as

they expect to acquire only risky assets in states ω2L and ω20. In other words, they expect

that SRs retain the risky asset in state ω2ρ in the delayed trading equilibrium. In contrast, in
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the immediate trading equilibrium the price of the risky asset must be relatively high, and the

expected returns to LRs relatively low, to compensate SRs for the foregone option that the

asset may pay off at date 2. This lowers the amount of outside liquidity that LRs are willing

to hold to trade at date 1, and this in turn decreases the incentives of SRs to invest in risky

assets.

VI.B Existence of the Delayed Trading Equilibrium

Adverse selection at date 2 plays a fundamental role in our framework and introduces

two sources of inefficiency. The first is the main contribution of this paper: the anticipation of

adverse selection problems at a future date may lead to an inefficient acceleration of liquidity

trades. This acceleration of trade is inefficient from an ex-ante perspective for it induces SRs

to rely less on distribution as a source of liquidity and more on inside cash reserves. The second

source of inefficiency is more standard and is related to the lemons problem in Akerlof (1970):

when the adverse selection discount is too large good risks (SRs in state ω2L) withdraw their

supply leaving only lemons in the market. This then leads to a market breakdown.17 SRs

in state ω2L prefer to hold the risky asset to date 3 whenever the candidate delayed-trading

equilibrium price PC
2d as defined in (13) is small enough that PC

2d < δηρ. In our example this

occurs for the range of economies for which θ ∈ (.4628, .4834).

To illustrate the welfare costs associated with this breakdown in the secondary market

at date 2, Figure VII plots the expected profits for SRs and LRs as a function of θ in the

delayed-trading equilibrium. There are three regions in the plot. The first two correspond to

the cases already discussed. In region A, θ ∈ (0, .4196) and the delayed-trading equilibrium

is such that m∗
d > 0. In region B, where θ ∈ [.4196, .4628), the delayed-trading equilibrium

is such that m∗
d = 0. In region C a delayed-trading equilibrium does not exist, so that the

unique equilibrium outcome is the immediate-trading equilibrium. The dashed line in both

panels of Figure VII shows the additional expected profits that SRs and LRs would obtain if

SRs could commit ex-ante to sell their risky assets at the candidate price PC
2d in state ω2L.

In this case, LRs–anticipating that the pool of assets supplied at date 2 also includes high

quality assets–would be willing to hold more outside liquidity than in the immediate-trading

equilibrium, which is a Pareto improvement as we have shown.

VI.C Monopolistic Supply of Liquidity and Efficiency

Another way of ensuring trade at date 2 in state ω2L is to have a monopoly LR set prices
17We have so far assumed that δ is small enough that good risks prefer to trade at date 2 at the (candidate)

price P ∗2d rather than hold on the risky asset to maturity (date 3).
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instead of an auctioneer in a competitive market. A monopoly LR would internalize the effect

of an excessively low price on the quality of assets exchanged by SRs and may choose to keep

its price PM
2 above δηρ to support the market at date 2. The obvious question then is whether

a monopoly LR may be more efficient ex-ante than a competitive market.

When θ < θ̂, where θ̂ is the lowest value of θ such that m∗
d = 0, SRs carry a strictly

positive amount of inside liquidity m∗
d > 0 and make zero profits. All the surplus then goes

to LRs, whether they behave competitively or not. It follows then that in this range the

competitive and monopoly solutions are identical. In contrast, when θ ≥ θ̂, the level of inside

liquidity in the competitive equilibrium is m∗
d = 0, LRs compete for a fixed supply of the risky

assets, and SRs obtain some of the surplus from trade. In this situation, a monopoly LR would

be able to generate higher returns by restricting its supply of outside liquidity and thereby

raising the price P2d. This can be seen in Figure VIII, where the top panel plots the profits of

a monopoly LR along with the profits under perfect competition, and the bottom panel plots

the respective prices in states (ω20, ω2L).

Notice first that in region A (θ < θ̂) prices and profits under a monopoly are identical

to those under perfect competition. In region B (where m∗
d = 0) the monopoly LR restricts

the supply of outside liquidity so as to fully capture all the gains from trade. Therefore, the

price of the risky asset at date 2 under a monopoly LR is below the competitive price.

When θ exceeds the threshold where the competitive equilibrium ceases to exists, the

monopoly LR sets the price for the risky asset equal to δηρ to guarantee a profitable trade at

date 2. In this parameter region, region C in Figure VIII, a monopoly LR improves ex-ante

efficiency, by avoiding the break down of the delayed exchange market. As shown in the top

panel of Figure VIII, the monopoly’s profits in this region are above those that obtain in the

immediate-trading equilibrium, which is the only one that exists with competitive LRs.18

VII. APPLICATIONS AND MOTIVATION

Although our model is highly stylized and abstracts from many institutional aspects of

financial markets, it does shed light on the unfolding of the current crisis. Our model builds on

the interconnections between the reversal in real estate price growth and the liquidity shock

to financial intermediaries over this period. The central source of uncertainty in our model

comes from SRs’ origination of risky projects. This uncertainty takes the form of both payoff
18It is worth emphasizing than in this region SR profits are such that π > 1. The reason is that the monopolist

has to “leave some rents” to the SRs precisely to elicit trade of quality assets in state ω2L.
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uncertainty and maturity risk. When risky assets mature late this results in a liquidity shock

for SRs.

The analogy with the financial crisis here is that prior to the crisis banks have originated

a growing proportion of loans – subprime mortgages, leveraged buyouts, or commercial real

estate loans – which were structured to be refinanced within a relatively short horizon, on

the expectation that real estate and asset prices would continue to appreciate and thus enable

the borrowers to refinance the initial loan with a new loan collateralized by a more valuable

asset.19 When real estate prices unexpectedly started to decline, loan refinancing was no longer

possible, resulting in both a maturity and liquidity shock for banks. This is what our aggregate

liquidity shock at date 1 represents.

Banks (or SRs in our model) at that point had the choice of quickly selling the loans

they had originated, but at fire-sale prices, or hold on to their assets in the hope that the

decline in real estate prices would not affect much their own portfolio. This is what SRs choice

to trade or wait until date 2 represents in our model. At the same time intermediaries became

aware that the initial valuation of assets by rating agencies was seriously flawed and that it

would pay to invest on learning the quality of the specific securities they held. Some of these

assets, such as CDOs and CDO2, were so complex that they required substantial resources

to determine their value. Strikingly, the financial stability office of the Bank of England has

estimated that the documents underlying a typical CDO2 amounted to over 1,1 billion pages

(Haldane, 2009). Inevitably, in the discovery process of underlying asset values, originators

such as Merrill Lynch and Citi, holding large quantities of a particular CDO2, were expected to

develop an informational advantage, as they would benefit from scale economies in appraising

these assets.20 This informational asymmetry in turn undermined liquidity trading:

In a market that is supposed to roll over billions of dollars of debt each day, a

sudden need to evaluate counterparty collateral can be devastating. These markets

operate on trust, that is, faith that the counter-party is creditworthy, with no time

for detailed evaluations. [Bengt Holmstrom (2008) pp: 3-4]21

19Originating financial institutions also kept super senior tranches of asset backed debt on their balance sheet.
These tranches, as well as the special investment vehicles backed by commercial paper facilities were asset risks
that banks remained exposed to until the securities were sold to third parties.

20The complexity of CDO2 is a necessary but not sufficient condition for asymmetric information problems
to arise, and in fact, common equity is a more complicated security than a CDO2. We are arguing that buyers
worried that originators of certain derivatives were insiders, just as buyers of stocks worry that sellers may have
inside knowledge.

21Echoing Bengt Holmstrom, Martin Hellwig (2008) has drawn attention to the same mechanism: “As the
crisis unfolded, participants in the various relevant markets behaved as one would expect them to behave when
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Thus, the dilemma for bank originators over the summer and fall of 2007 in particular

was whether to immediately respond to the liquidity shock by raising new funds through asset

sales at fire-sale prices, or to take a chance that the liquidity shock might be shortlived at

the risk of having to raise liquidity at a later date under much worse conditions, such as those

prevailing after the collapse of Lehman Brothers. Banks were aware that the longer they waited

in trading assets the more they would be perceived to be trading based on superior information

about asset quality. In september of 2007 the 10 largest US banks attempted to resolve this

dilemma by setting up a superconduit called the Master-Liquidity Enhancement Conduit which

would pool a large fraction of their non-refinanced assets and which would use these assets

as collateral to raise new funds.22 The plan eventually collapsed as the participating banks

could not find a way of avoiding the lemons’ problem in distributing the worst assets to the

superconduit.

As we have shown, the delayed-trading equilibrium in our model Pareto dominates the

immediate-trading equilibrium, even though secondary market prices for risky assets are higher

under early trading. The reason is that while some SRs are forced to sell at even lower prices

in the delayed-trading equilibrium, others are able to hold on to their assets as they learn that

their liquidity needs are only temporary. The delayed-trading equilibrium, thus, economizes

on aggregate liquidity. The important implication of this observation is that lower secondary

market prices do not imply that the liquidity crisis is more severe. On the contrary.

To our knowledge, our model is the first in which origination and the timing of the

resolution of the liquidity crisis are explicitly linked. This is to us a main feature of the present

crisis: It is precisely because the economy was in a delayed-trading equilibrium that banks

were originating a large amount of risky assets (mortgages) to be sold, if necessary, at severely

distressed prices at t = 2. If instead banks were expecting to sell at date 1, at better prices,

this would come at the expense of the expected returns of outside providers of liquidity who

then would bring little cash to the market which in turn would elicit low investment in risky

assets. The reason for the low expected returns is that when selling at date 1, our SRs sell also

the good outcome at t = 2, that is, they sell the contingency when risky assets pay off, in state

ω2ρ. This “expensive” contingency is costly for SRs to let go. In sum, efficient origination can

there is significant apprehensiveness about the quality of the assets, the quality of counterparties, and the
evolution of the financial system in the near future. They withdrew funding and insisted on large discounts on
any assets of unknown quality ... this behaviour can be seen as an instance of Akerlofs lemons problem: In a
crisis situation, in which there is asymmetric information about the quality of assets that are being traded, any
potential investor must fear that the seller is trying to unload his rotten apples while keeping the good ones.”

22See “Rescued Readied By Banks Is Bet To Spur Market”By Carrick Mollenkamp, Deborah Solomon and
Robin Sidel, Wall Street Journal October 15, 2007
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only come at the expense of truly distressed selling. Of course, many factors that our model

ignores also contributed to the current crisis, in particular moral hazard at origination.

Our model also underscores the importance of correctly timing government intervention

and public liquidity provision. If a delayed-trading equilibrium prevails, then public injections

of liquidity at any date are counterproductive: at date 2 they will crowd out liquidity provision

by LRs, and at dates 1 or 3 they may undermine the equilibrium by shifting assets trades to

inefficient states of nature. In contrast, if an immediate-trading equilibrium prevails, then

public intervention in the form of a price support at date 2, helps shift trade to an efficient

state of nature and crowds in liquidity supplied by LRs at date 2. This form of intervention

is welfare improving, as it raises the quality of the average asset for sale at date 2 and thus

increases private liquidity provision by LRs. Just as with the delayed-trading equilibrium,

however, interventions at date 1 or 3 are counterproductive. At date 1 public liquidity would

only crowd out private outside liquidity and at date 3 it would undermine outside liquidity

altogether.

Our model also highlights that by supporting secondary market trading and the reliance

on outside liquidity by banks, monetary authorities can encourage banks to do new lending. In

other words, they can induce banks to originate more assets. Our analysis thus helps put into

context the new forms of intervention by the federal reserve during the crisis, ranging from

the commercial paper funding facility (CPFF), the money-market investor funding facility

(MMIFF), to the public-private investment program for bank legacy assets (PPIP). All these

interventions are aimed at restoring the outside liquidity channel for banks and make new

origination of loans more attractive.

Finally, one natural interpretation of the parameter δ in the model is that it equals 1
1+r

where r is the interest rate faced by SR’s at date 2. Lowering r, that is increasing δ, makes

it more likely that SRs with good projects will choose to hold on to their assets rather than

trade them for outside liquidity at date 2, undermining the delayed trading equilibrium.

In sum, as we emphasize in Bolton, Santos and Scheinkman (2009), our analysis high-

lights that when governments intervene as lenders of last resort–as opposed to market makers

of last resort–they risk crowding out rather than crowding in the private provision of liquidity.

VIII. COMPARATIVE STATICS

We examine next in greater detail how changes in θ affect delayed-trading equilibrium

cash holdings, supply of risky assets and returns, where expected returns on acquiring a risky
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asset at date 2 are defined as

R∗
2d ≡

(1− θ) ηρ

(1− θη) P ∗
2d

.

Several important effects are at work as θ changes, some of which we have already

mentioned. First, SRs’ incentives to hold onto their assets until date 2 are affected. As θ rises

the risky asset is more likely to mature at date 2 and thus becomes more attractive to SRs.

Other things equal, SRs are then both more likely to invest in the risky asset and to carry the

asset from date 1 to date 2. Second, as θ rises SRs are more likely to trade lemons at date 2

and therefore equilibrium prices P ∗
2d are lower. These lower prices in turn reduce SR incentives

to invest in the risky asset and to carry it to date 2. An additional complication is that as θ

increases the supply of risky assets at date 2,

s∗2d ≡ (1−m∗
d (θ)) (1− θη)(17)

diminishes as more risky assets mature early and are then not traded. The next proposition

establishes how these countervailing effects net out and how M∗
d , m∗

d, s∗2d, P ∗
2d and R∗

2d vary

with θ. Throughout we assume that θ ≤ θ, as defined in (16).

PROPOSITION 6. (Comparative statics.) Assume that Assumptions 1-4 hold and that δ is

small enough so that a delayed-trading equilibrium exists for all θ ∈ [0, θ]. Then there

exists a unique θ̂ ∈ [0, θ] such that:

1. The SRs cash position m∗
d: (a) is a (weakly) decreasing function of θ, (b) m∗

d > 0

for all θ ∈ [0, θ̂) and m∗
d = 0 for all θ ∈ [θ̂, θ], and (c) s∗2d is a strictly increasing

function of θ for θ ∈ [0, θ̂) and a strictly decreasing function of θ for θ ∈ [θ̂, θ].

2. The LRs cash position: M∗
d is a strictly increasing function of θ for θ ∈ [0, θ̂) and a

strictly decreasing function of θ for θ ∈ (θ̂, θ].

3. Expected returns at date 2: R∗
d is an increasing function of θ for θ ∈ [0, θ̂) and a

decreasing function of θ for θ ∈ (θ̂, θ].

We illustrate the comparative statics results in Proposition 6 in Figures IV and V.

Consider first Figure IV. As expected, the amount of cash carried by SRs is a decreasing

function of θ, and m∗
d = 0 for θ ≥ θ̂ = .4196. It is less obvious how cash carried by LRs varies

with θ. Consider first the case where θ ≤ θ̂. The amount of cash carried by LRs is then an

increasing function of θ. This is surprising: the more severe the lemons problem at date 2 the

more cash is carried by LRs. What is the logic behind this result?
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Although an increase in θ worsens the lemons problem and would push LRs to reduce

their supply of liquidity other things equal, there is the countervailing effect of the increase in

θ on the higher origination and greater supply of risky assets by SRs at date 2. As Proposition

6-1-(c) establishes, s∗d is an increasing function of θ in the range where θ ≤ θ̂.23 This higher

supply of risky assets makes LRs want to increase their holdings of outside liquidity. The latter

effect dominates and thus results in an increasing M∗
d as a function of θ in the range θ ≤ θ̂.

Instead, when θ > θ̂ the supply effect is reversed and s∗d is a decreasing function of θ. Both the

supply side and the adverse selection effect then reduce the benefits for LRs of carrying cash.

This is why M∗
d is a decreasing function of θ over the range where θ > θ̂.

Figure V illustrates that the price P ∗
2d is a decreasing function of θ. Note that the

decline is more pronounced when θ < θ̂ due to the increased supply of risky assets by SRs

when θ increases. When θ ≥ θ̂ SRs hit a corner solution, m∗
d = 0, and there can be no further

investment in the risky asset. At that point the price P ∗
2d keeps falling as θ increases, but at a

lower rate since now only adverse selection is present.

The pattern of returns is revealing about LRs incentives to carry outside liquidity in the

delayed-trading equilibrium. For θ < θ̂, R∗
2d is an increasing function of θ. The expected payoff

of the risky asset at date 2 is given by (15), which is a decreasing function of θ. But the price

P ∗
2d is falling faster, so that returns R∗

2d are increasing in θ. This is why LRs want to carry

more cash when θ increases. Instead when θ > θ̂, the expected payoff is still decreasing in θ

but the price P ∗
2d is falling more slowly so that R∗

2d is a decreasing function of θ in this range.

In sum, for θ ∈ [0, θ̂] the more severe the lemons problem, as measured by θ, the higher

the amount of outside liquidity brought to the market by LRs and the lower the amount of

inside liquidity carried by SRs. This counterintuitive result is due to the fall in prices, P ∗
2d,

which makes the risky asset more attractive to LRs at date 2. The larger the liquidity discount

at date 2, the more attractive it is for LRs to carry cash and trade opportunistically.

IX. ROBUSTNESS

IX.A Trading of Risky Assets at Date 0

We have so far only allowed for the distribution of risky assets originated by SRs at dates

1 (in state ω1L) and 2 (in states ω20 and ω2L). A natural question is whether distribution could

23There are two effects on s∗2d when θ ≤ bθ. When θ increases, SRs carry more risky projects; that is m∗
d

decreases as the risky project is more likely to pay off at date 2. On the other hand, the higher θ, the lower the
fraction of risky projects carried by SRs that is supplied at date 2. Note that the second term in (17), 1 − θη,
is a decreasing function of θ. Proposition 4-I shows that the first effect dominates the second over this range.
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also take place instantaneously at date 0 and whether this might not be welfare improving.

We show next that, in fact, if a market is open, no trading will occur at date 0.

To see that instantaneous trading cannot be supported in a competitive equilibrium,

suppose to the contrary that there is a profile of equilibrium prices
[
P̂0, P̂1, P̂2

]
that supports

instantaneous-trading. In an instantaneous-trading equilibrium it must the case that SRs and

LRs weakly prefer to trade at date 0 rather than at date 1, that is,

P̂0 ≥ λρ + (1− λ) P̂1 and
[λ + (1− λ) η] ρ

P̂0

≥ ηρ

P̂1

.(18)

When the first inequality in (18) holds SRs weakly prefer to sell their risky asset at date 0

rather than date 1; under the second condition the expected return of acquiring the risky assets

for LRs are not lower at date 0 than at date 1. Trivial manipulations of these inequalities then

imply that

P̂0 ≥ [λ + (1− λ) η] ρ.

As ϕ′ (κ) > 1, LRs then strictly prefer to invest their capital in the long-run asset to purchasing

any risky assets at price P̂0 at date 0. It follows from this argument that neither the immediate-

trading equilibrium, nor the delayed-trading equilibrium is unraveled by the introduction of

possible trading of risky assets at date 0.

In summary, LRs prefer to hold cash to acquire assets opportunistically at depressed

prices at dates 1 and 2. The gains from trade between SRs and LRs occur in states of nature

ω1L and ω2L when SRs suffer a negative maturity shock. Not surprisingly, therefore, this is

when LRs want to be in the market for risky assets. In other words, our model represents a

particular form of modern banking: origination and contingent distribution of assets in the

presence of liquidity shocks.

IX.B General Investment Opportunity Sets for Both LRs and SRs

If instantaneous distribution of risky assets cannot be supported as an equilibrium, the

next question is whether LRs would want to invest in risky assets directly at date 0 if they

could? So far we have ruled out this possibility by assuming that asset markets are segmented:

only SRs can invest in a risky asset, and only LRs can invest in the long-maturity asset.

Interestingly, this separation in investment opportunity sets is less restrictive than it seems.

Consider first LRs. Even if LRs can invest in risky assets at date 0, they may still choose

not to hold these assets if the return on risky assets is low relative to the return on holding

cash, as is the case for a large subset of our parameter values in our model. If, however, the
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supply of risky assets by SRs is so low that SRs earn a scarcity rent from investing in risky

assets, then LRs may also invest a positive amount of their endowment in risky assets at date

0. In this case SRs are fully invested in risky assets and hold no cash. Even in this case, LRs

will continue to hold cash sufficient to equalize the return on the marginal dollar held in cash

with the expected return on risky assets at date 0. The prospect of purchasing risky assets

from SRs at distressed prices at dates 1 or 2 provides a sufficiently high expected return on

cash to LRs to induce them to hold positive amounts of cash.

Consider next SRs. If they are allowed to invest in the long-maturity asset, they may

still choose not to invest in these assets if the discounted return on the long-maturity asset

from their point of view is sufficiently low. If they buy and hold long-run assets, a sufficient

condition for SRs to prefer not to fully invest in the long run asset is δϕ′(1) < 1.

Similarly, even if SRs buy long-run assets to sell them to LRs at date 1 or 2, as a

substitute for holding cash, they may still choose to only hold cash and originate risky assets

if the shadow cost of cash for LRs ϕ′ (κ−M) is very large. Indeed, in this case SRs have to

sell their long-run assets at such discounts at dates 1 or 2 that holding only cash and risky

assets is preferred to holding long run assets that they sell at dates 1 or 2.

If however, the shadow cost of cash for LRs is not too high then SRs may choose to buy

long-run assets to sell them to LRs at date 1 or 2, as a substitute for holding cash. In this

case our analysis with respect to SRs demand for liquidity with respect to the risky assets they

originate would still go through virtually unchanged. In this case, cash is a dominated asset

for SRs but not for LRs, as the latter continue to benefit from buying risky assets in secondary

markets at distressed prices. Also, the Pareto dominance of the delayed-trading equilibrium

would still obtain. The only difference is that liquidity for SRs is held in the form of a tradable

long-run asset instead of cash.

The basic point is that what makes an investor an SR or LR is almost by definition the

investor’s preferences for short versus long-maturity assets. These preferences in turn drive

portfolio choices whether or not we assume that asset markets are segmented.

IX.C Arbitrage Contagion: The Price of the Long Run Asset

In the main analysis of the model we have only considered secondary markets for risky

assets at dates 1 and 2. We now briefly discuss the implications of also opening secondary

markets for the long-run asset at those dates. We show that cash-in-the-market pricing in

one market then translates into cash-in-the-market pricing in other markets with potentially

large “balance sheet” effects for LRs. Consider first the immediate trading equilibrium. In this
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equilibrium the price at dates 1 and 2 for claims to date 3 output from the long run asset are

S∗1i =
P ∗

1i

ηρ
< 1 and S∗2i = 1,

respectively. As LRs are risk neutral, the expected returns of all the assets they may hold have

to be equated otherwise there would be an arbitrage gain. If for instance S∗1i = 1 then LRs

could sell claims to date 3 output from the long run asset to obtain the cash and then acquire

the risky assets at date 1, which offer higher expected returns. Similarly, in the delayed trading

equilibrium secondary market prices for date 3 consumption are

S∗1d =
P ∗

1d

ηρ
and S∗2d =

P ∗
2d (1− θη)
(1− θ)ηρ

.

Similarly, claims to date 3 output from the long-run asset also trade at depressed prices at

date 1, even if fire sales of risky assets only take place at date 2.

In sum, a unit of output from the long-run project at date 3 has to trade at a discount at

dates 1 and 2 because of arbitrage. Thus, in our setup cash-in-the-market pricing is necessarily

transmitted in the form of arbitrage contagion across different secondary asset markets, even if

no trading of the long-run asset actually occurs in equilibrium. In other words, liquidity events

affect prices of assets other than the ones where distressed sales are taking place. Liquidity

crises thus cannot be contained across markets and time when these markets are linked via

arbitrageurs.

IX.D Trading of Indivisible Risky Projects

In this subsection we explore the consequences of restricting LRs to buying an integer

number of indivisible projects. This restriction parallels the constraint we imposed on SRs

and is similarly motivated by the fact that assets may in practice be physically indivisible, and

more importantly, that information about each risky project is itself indivisible.

Consider for example the delayed-trading equilibrium. If only indivisible assets can be

traded then only a fraction (1− θη) of LRs will be acquiring risky assets (recall that there is a

unit mass of SRs and LRs). These risky assets will be purchased with their own cash reserves

M∗
d , and with the cash reserves of the other θη fraction of LRs, obtained by exchanging a share

of long-run assets held by the fraction (1− θη) of LRs. If there is such a feasible exchange of

cash for long-run assets then there is no difficulty in supporting a delayed-trading equilibrium

with indivisible risky projects.

Thus, we need to verify that the value of long-run assets (1− θη)S∗2dϕ(κ−M∗
d ) held by
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LRs acquiring risky assets is greater than or equal to the value of cash held by LRs who do

not acquire risky assets: θηM∗
d . In other words, we need to verify that the following inequality

holds:

(1− θη)
P ∗

2d (1− θη)
(1− θ)ηρ

ϕ(κ−M∗
d ) ≥ θηM∗

d ≡ θηP ∗
2d(1−m∗

d)

or:
(1− θη)2

(1− θ)ηρ
ϕ(κ−M∗

d ) ≥ θη(1−m∗
d).(19)

Note that inequality (19) holds for theta sufficiently small. In addition it can be verified that

inequality (19) holds for all our numerical examples for the delayed-trading equilibrium.

Alternatively, we can also interpret the decreasing returns to scale of the long run asset

as due to a pecuniary externality that depends on the average amount invested by all LRs.

That is, the output produced at date 3 with x units invested at date 0 equals xφ(x̄), where x̄

is the average LR investment and φ is a concave function. Under this interpretation, every LR

is indifferent between holding cash or investing in the long run project in equilibrium. Besides

capturing an important aggregate economic effect, this formulation also makes it easier to

accommodate the discreteness of long-run projects.

X. LONG-TERM CONTRACTS FOR LIQUIDITY

X.A Long-term Contracts

As Section VI.C highlights, a commitment by LRs to purchase risky assets at date 2

at a pre-determined price can improve ex-ante welfare in situations where a delayed-trading

equilibrium fails to exist due to severe lemons problems. A natural question therefore is what

form of long term contract between an SR and LR at date 0 can improve on the allocations

obtained in the immediate and delayed-trading equilibria?

Allowing for bilateral contracts between an SR and LR expands the set of allocations

that can be attained as transfers can be made contingent on the realization of ω2ρ, ω20, and

ω2L. It therefore seems to follow that ex-ante contracting will always give rise to more efficient

outcomes than under the immediate and delayed-trading equilibria. A key and surprising

observation of this section, however, is that optimal incentive-compatible, ex-ante contracts do

not generally give rise to strict efficiency improvements over the equilibrium allocations in the

delayed-trading equilibrium.

We consider long-term bilateral contracts between one SR and one LR such that SR

transfers to LR both his risky investment opportunity and unit of endowment at date 0 in
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exchange for the commitment by LR to offer SR a state-contingent consumption stream Ct(ω),

where t = 1, 2, 3 and ω ∈ {ω1ρ, ω1L, ω2ρ, ω20, ω2L, ω30, ω3ρ}. In other words, the contract sets

up a fund with total assets (1 + κ) managed by LR and invested in a portfolio of assets that

may comprise the long-run asset, a risky asset, and cash.24 As LR is managing the fund, LR

can observe the realized idiosyncratic states of nature for the risky asset, but not SR. The fund

manager LR therefore faces incentive compatibility constraints, which limit the efficiency of

the long-term contract.25

Finally we assume throughout that δϕ(κ) < 1, so that LR would not simply invest the

whole endowment (1 + κ) in the long asset and repay the SR at date 3.

X.B Feasibility, Participation and Incentive Compatibility Constraints

We begin with date 3 incentive compatibility constraints, in situations where LR has

previously announced the state of nature ω2L. Incentive compatibility at date 3 then requires

that

C3 (ω3ρ) = C3 (ω30) ,(20)

for otherwise LR simply announces the state which involves the lower payment to SR.

Given this constraint, date 2 incentive compatibility in turn requires that:

C2 (ω2L) + C3 (ω30) = C2 (ω20) + C3 (ω20) = C2 (ω2ρ) + C3 (ω2ρ) .(21)

Otherwise, again, LR would simply announce the state at date 2 which involves the lowest

total payout.

Turning next to feasibility constraints, we can without any loss in generality impose the

restriction that C1 (ω1ρ) = C1 (ω1L) = 0 given that SR is indifferent between consumption at

24Note that we do not allow for more general multilateral contracts such that, for example, a giant financial
intermediary contracting with all LRs and SRs simultaneously. In the absence of any organizational frictions
in managing such a large institution, this arrangement is bound to achieve a better outcome, as it can pool all
the idiosyncratic risks and thereby virtually eliminate asymmetric information between the parties.

It is clearly unrealistic, however, to suppose that such an institution can be run without a hitch, and that it
can magically overcome all existing informational constraints. In other words, such an institution in practice
would be constrained by the same informational problems present in competitive bilateral exchange, but this
time inside the organization. Explicitly modeling these informational frictions and solving for the optimal
informationally efficient multilateral organization is beyond the scope of this paper.

25If SR can also observe the realization of idiosyncratic shocks then the asymmetric information problem
in the delayed-trading equilibrium would not be present, so that the long-term contract at date 0 clearly
yields a superior outcome. The more consistent and interesting situation, however, is when the observation of
idiosyncratic shocks is private information to the manager of the risky asset.
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date 1 and 2. Under this restriction the feasibility constraints in state ω1ρ are as follows:

C2ρ (ω1ρ) ≤ αxρ + Mx and C2 (ω1ρ) + C3 (ω1ρ) ≤ αxρ + Mx + ϕ (yx) ,

where αx ≤ 1 is the amount that LR invests in the risky project, Mx the cash position and

yx = κ+1−αx−Mx the amount invested in the long project. Note that since αx, Mx and yx are

all observable to SR and LR and verifiable, the long term contract between the two parties will

specify a particular portfolio allocation. The other feasibility constraints follow along similar

lines and in the interest of space we write them out explicitly only in the Appendix.

Finally, participation constraints at date 0 must also be met. Without loss of generality

we give LR all the bargaining power. He can make a take-it-or-leave-it offer to SR, who in turn

accepts the contract if and only if she gets at least the same payoff as under the delayed trading

equilibrium. The long-term contract then dominates the allocation under the delayed-trading

equilibrium if and only if the surplus under the long term contract to LR, Π∗x, exceeds LR’s

expected payoff under the delayed-trading equilibrium, Π∗d.
26

X.C Long-term Contracts Versus Market Liquidity

When SR expects the delayed-trading equilibrium, then the long-term contract cannot

always replicate the allocation under delayed trading. The reason is that under delayed trading,

SR is constrained by different incentive constraints at date 2 than those faced by LR under

the long-term contract. Under delayed-trading SR must trade the risky asset at the same price

in both states ω20 and ω2L, and in state ω2ρ there is no trade between SR and LR. Under

the long-term contract, however, LR promises transfers Ct(ω) to SR which must satisfy the

incentive compatibility constraints (20) and (21). It is immediate from these constraints that

LR cannot replicate the delayed-trading equilibrium allocation under a long-term contract.

Given that the delayed-trading equilibrium allocation is not in the feasible set for the

long-term contract it is not obvious a priori which allocation is superior. To be able to answer

this question we must first characterize the optimal long-term contract. Solving the long-term

contracting problem is a somewhat tedious constrained optimization problem, as it involves

two investment variables (α, M) and seven state-contingent transfers to SR. This problem can

be simplified to some extent, as the next proposition establishes, since the combination of
26When SR expects the immediate-trading equilibrium, then any pair of LR and SR are weakly better off

writing a long-term contract at date 0. At worst the contract simply replicates the allocation under immediate
trading. But, the contract can also implement other allocations that are not feasible under the immediate-
trading equilibrium. Therefore, the optimal long-term contract weakly (and sometimes strictly) dominates the
equilibrium allocation under immediate trading.
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all the incentive and feasibility constraints reduce the long-term contracting problem to the

determination of optimal values for only: i) the amount α ∈ [0, 1] invested in the risky SR

project, ii) the amount M of cash held by the fund, and iii) payments to SR in states ω1ρ, ω2ρ

and ω30.

PROPOSITION 7. (Characterization of the long term contract)

1. Without loss of generality, any feasible, incentive-compatible long-term contract

between LR and SR takes the form:

ω1ρ ω2ρ ω20 ω2L, ω30 ω2L, ω3ρ

C2(ω) M + αρ C2(ω2ρ) M M M

C3(ω) C3 (ω1ρ) C3(ω2ρ) C3 (ω30) C3 (ω30) C3 (ω3ρ)

2. Suppose that δ is close to zero and that

η(1− λ)ρ + ϕ(0) ≤ ϕ(κ),(22)

then the optimal long-term contract is such that C3(ω1ρ) = C3(ω2ρ) = 0.

As SR discounts date 3 consumption by δ it seems inefficient to offer any date 3 con-

sumption to SR. Still, we cannot rule out that C3 (ω) > 0 for either ω ∈ {ω1ρ, ω2ρ, ω30, ω3ρ}
since a date 3 transfer in one state may be required for LR to satisfy all incentive constraints

he faces. To be able to credibly disclose that the realized state is ω20, for example, LR may

have to promise a high transfer C3 (ω30) at date 3. Nevertheless, intuition suggests that if δ is

very small, λ is sufficiently large, and the opportunity cost of holding cash for LR is bounded,

then the optimal contract ought to specify C3(ω1ρ) = C3(ω2ρ) = 0. This is what Proposition

7.2 establishes.

With this characterization we are able to numerically solve for the optimal contract and

to compare LR payoffs under the contract and under the delayed-trading equilibrium. The

numerical solution is such that the long-term contract is dominated by the delayed-trading

equilibrium for high values of θ, but not for low values of θ. The economic logic behind this

result is that when θ is high the risky asset is likely to mature at dates 1 or 2. The added value

of additional liquidity to SR offered by LR through a long-term contract is then not that high.

In addition, when θ is high LR also faces high costs of meeting incentive constraints under the

long-term contract. To be able to credibly claim that the risky asset did not yield a return ρ

at either dates 1 or 2, LR must commit to wasteful date 3 payments C3(ω3ρ) = C3(ω30) > 0,
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which SR does not value much. The deadweight cost of these distortions then exceeds the

benefit of extra liquidity insurance when θ is high.

EXAMPLE 2. In our example we keep θ as a free parameter and fix the other parameters

to the following values:

λ = .7 η = .4 ρ = 1.25 k = .12 δ = .1 and ϕ (x) = xγ with γ = .19.

Note that all our assumptions are then met as long as θ ≤ .8148. Accordingly our plots

below are restricted to the interval θ ∈ [0, .8148]. The payoffs of SR and LR under the

long-term contract are given by respectively:

π∗x = λ[M + αρ + δC3(ω1ρ)]

+ (1− λ)[θη(C2(ω2ρ) + δC3(ω2ρ)) + (1− θη)(M + δC3(ω30))]

and

Π∗x = M + ϕ[κ + (1− α)−M ] + λ[αρ− (C2(ω1ρ) + C3(ω1ρ))]

+ (1− λ)[ηαρ− (M + C3(ω30))].

We set π∗x = π∗d, the SR payoff in the delayed-trading equilibrium. The numerical solution

for the chosen parameter values is such that C3(ω1ρ) = C3(ω2ρ) = C3(ω30) = 0, and

therefore that C2(ω2ρ) = M .

Note that for these parameter values a delayed-trading equilibrium always exists. In

the top panel of Figure IX we plot the expected utility of SR in the delayed-trading

equilibrium and in the bottom panel we plot the expected utility of LR in the delayed-

trading equilibrium, Π∗d, together with LR’s expected payoff under the long-term contract,

Π∗x. For θ > θ̃ this payoff is less than what LR gets in the delayed-trading equilibrium.

The bottom panel of Figure X shows that when θ increases, the amount of cash carried

by LR to fulfill his commitments under the long-term contract increases, making the

contract less efficient, in sharp contrast with the total amount of cash m∗
d + M∗

d carried

by both LR and SR in the delayed-trading equilibrium, shown in the top panel of the

same figure. This increase in cash under the long-term contract is due to the incentive

constraints LR faces, which restrict the difference in payments in states ω2ρ and ω20. As
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payments at date 3 are highly inefficient, the contract specifies higher payments at date

2, which requires carrying more cash. 2

XI. CONCLUSIONS

This paper is concerned with two questions. First, what determines the mix of inside

and outside liquidity in equilibrium? Second, does the market provide an efficient mix of inside

and outside liquidity? In addition we asked whether the provision of market liquidity can be

Pareto improved upon by long term contracts between those with potential liquidity needs and

those who are likely to supply it.

Our model departs from the existing literature by considering the endogenous timing

of asset sales and the deterioration of adverse selection problems over time. Financial inter-

mediaries face the choice of raising liquidity early before adverse selection problems set in,

or in the midst of a crisis at more depressed prices. The benefit of delaying asset sales and

attempting to ride through the crisis is that the intermediary may be able to entirely avoid

any sale of assets at distressed prices should the effect of the crisis on its portfolio be mild. We

show that when the adverse selection problem is not too severe there are multiple equilibria,

an immediate-trading and a delayed-trading equilibrium. In the first equilibrium, intermedi-

aries liquidate their positions in exchange for cash early in the liquidity crisis. In the second

equilibrium, liquidation takes place late in the liquidity event and in the presence of adverse

selection problems.

We show that, surprisingly, the latter equilibrium Pareto-dominates the former because

it saves on cash reserves, which are costly to carry.27 However, the delayed-trading equilibrium

does not exist when the adverse selection problem is severe enough. The reason is that in this

case prices are so depressed as to make it profitable for the agents holding good assets to carry

them to maturity even when it is very costly to do so. We show that if they were able to do

so, intermediaries would be better off committing ex-ante to liquidating their assets at these

depressed prices in the distressed states. We also show that a monopoly supplier of liquidity

may be able to improve welfare.

We argued in Bolton, Santos and Scheinkman (2009) that the role of the public sector

as a provider of liquidity has to be understood in the context of the competitive provision

of liquidity by the private sector. In particular the public provision of liquidity can act as

a complement for private liquidity in situations where lemon’s problems are so severe that
27This Pareto dominance must be qualified by the fact that we ignore the greater moral hazard problems at

origination that may arise in the delayed-trading equilibrium.
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the market would break down without any public price support. For the intervention to be

effective, the public liquidity provider needs to know whether the crisis is at date 1 or 2. An

important remaining task is then to analyze the benefits of public policy in our model under

the assumption that the public agency may be ignorant about the true state of nature in which

it is intervening.

Another central theme in our analysis is the particular timing of the liquidity crisis that

we propose. Liquidity crises tend in our view to be triggered by real shocks. In our framework

the onset of the liquidity event starts with a real deterioration of the quality of the risky

asset held by financial intermediaries. The assumption that adverse selection problems worsen

during the liquidity crisis is a feature of our analysis that, as we have argued, seems plausible

in the context of the current crisis. Our model captures the fact that intermediaries were

holding securities which had a degree of complexity that made for a costly assessment of the

actual risk that they were exposed to (see Gorton (2008) for an elaboration of this point).

Once problems in the mortgage market were widely reported in early 2007 banks turned to

an assessment of the actual risks buried in their books. As emphasized by Holmstrom (2008)

the opacity of these securities was also initially the source of their liquidity. Once the crisis

started though, banks and intermediaries started the costly process of risk discovery in their

books, which immediately led to an adverse selection problem. Financial institutions here

faced a choice of whether to liquidate early or ride out the crisis in the hope that the asset

may ultimately pay off. This trade-off is unrelated to the incentives that may force institutions

to liquidate at particular times, due to accounting and credit quality restrictions in the assets

they can hold, that have featured more prominently in the literature. Understanding the effect

that these restrictions have on the portfolio decisions of the different intermediaries remains

an important question to explore in future research.

Finally, in our model LRs are those agents with sufficient knowledge to be able to value

and absorb the risky assets for sale by financial intermediaries. Only their capital and liquid

reserves matter for equilibrium pricing to the extent that they are the only participants with the

knowledge to perform an adequate valuation. Other, less knowledgeable, capital will only step

in at steeper discounts. Our current research attempts to understand how different knowledge-

capital gets “earmarked” to specific markets. What arises is a theory of market segmentation

and contagion that may shed new light on the behavior of financial markets in crisis situations.
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APPENDIX

Proof of Proposition 1. First define P2 to be the solution to28

λ + (1− λ)
ηρ

P2
= ϕ′ (κ− (1− θ)P2) ,

which always exists, is unique, and immediately implies that P2 < ηρ by Assumption 1.

Define next

P fi =
1− ρ [λ + (1− λ)θη]

(1− θ) (1− λ)
,

where fi stands for full information. We have two cases.

• Case 1: P2 < P fi; then set P ∗
2 = P fi and set M∗ to be the unique solution to

λ + (1− λ)
ηρ

P ∗
2

= ϕ′ (κ−M∗) ,(23)

the LR’s first order condition, which now takes into account the fact that the ac-

quired assets have expected payoff ηρ as there is no asymmetric information (com-

pare this with the conditional expected payoff under asymmetric information, ex-

pression (15)). Clearly M∗ < (1− θ)P ∗
2 . Then, set m∗ ∈ (0, 1) to solve

P ∗
2 =

M∗

(1− θ)(1−m∗)
,

which, obviously exists, is unique, and satisfies the SR’s first order condition. SRs

and LRs postpone trading to date 2 as long as

P ∗
1 ∈ [P ∗

2 , θηρ + (1− θ)P ∗
2 ] ,(24)

which is non-empty by Assumption 2. Finally we show that M∗ > 0. Notice that

the LR’s first order condition (23) can be written as

ψ (θ) = ϕ′ (κ−M∗) where ψ (θ) = λ + (1− λ)2
(1− θ) ηρ

1− ρ [λ + (1− λ) θη]

and notice that again, Assumption 3 can be written as ψ (0) > ϕ′ (κ). Differenti-

ating, rearranging and by Assumption 2 we obtain that ψθ > 0, which proves that

M∗ > 0.
28Throughout we drop the subscript d to emphasize that now the only equilibrium is a delayed one.

40



• Case 2: P2 ≥ P fi; then set P ∗
2 = P2, M∗ = (1 − θ)P ∗

2 and m∗ = 0, which by

construction satisfy the LR’s and SR’s first order condition, respectively. Notice

that given that P ∗
2 ≤ ηρ, it immediately follows that the interval in (24) is non-

empty. Finally, to support the equilibrium at date 2 it has to be the case that δ ≤ δ

where δ = P ∗
2 /ηρ, which concludes the proof. QED

Proof of Proposition 2. We proceed by constructing an immediate-trading equilibrium with

prices P ∗
1i and P ∗

2i. We show that under those prices SRs prefer to sell the risky asset at

date 1, rather than selling at date 2 or alternatively carrying the asset to date 2, taking

the chance that the asset may payoff in ω2ρ, or to date 3 if in ω2L, or swapping the risky

asset for units of the long asset (trading at S∗1i).

The first order condition of the LR is

λ + (1− λ)
ηρ

P1i
≤ ϕ′ (κ−M) .(25)

First we establish that it is not possible to support an equilibrium with M∗
i = 0 and

m∗
i = 1. Indeed if m∗

i = 1 it has to be the case that the price in state ω1L is such that

P ∗
1i ≤

1− λρ

1− λ

but by Assumption 3 this implies

λ + (1− λ)
ηρ

P ∗
1i

> ϕ′ (κ) ,

and thus M∗
i > 0 a contradiction.

Having ruled the no trade immediate-trading equilibrium we proceed next as follows.

Start by solving the following equation in P1i

λ + (1− λ)
ηρ

P1i
= ϕ′ (κ− P1i) ,

and define

P =
1− λρ

1− λ
,

a positive number by Assumption 2.
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• Case 1: Assume first that P1i ≥ P , then set P ∗
1i = M∗

i = P1i and m∗
i = 0, which

meets the first order condition of the SRs as can be checked by inspection of ex-

pression (2).

• Case 2: Assume next that P1i < P , then set P ∗
1i = P and M∗

i to be the solution to

λ + (1− λ)
ηρ

P
≤ ϕ′ (κ−M∗

i ) ,

which by Assumption 3 is such that M∗
i > 0 and clearly it has to be such that

M∗
i < P . Because, given these prices, the SRs are indifferent on the level of cash

carried set m∗
i so that

P ∗
1i =

1− λρ

1− λ
=

M∗
i

1−m∗
i

As for prices at date 2 they have to be such that both the SRs and the LRs prefer to

trade at ω1L. For this set P ∗
2i = 0. Given this price the LR investors expect only lemons

(assets with zero payoff) in the market at t = 2 and thus the demand is equal to zero

Q∗
2 = 0. As for the SRs notice that if they wait to liquidate at t = 2 they obtain

θηρ <
1− λρ

1− λ
≤ P ∗

1i,

where the first inequality follows from Assumption 2. Thus SRs set q∗2 = 0 and q∗1 =

1−m∗
i = Q∗

1.

Notice as well that under these prices SRs prefer to liquidate rather than carry the asset

to date 2 or 3. Indeed, given that we have established that SRs do not want to sell at

t = 2, if instead they were to carry the asset to dates t = 2 (where the asset pays with

probability θη) or take its chances at date t = 3 (in which case the asset is worth δηρ in

ω2L) it must be because:

P ∗
1i < θηρ + (1− θ)δηρ(26)

Recall that

P ∗
1i ≥

1− λρ

1− λ
.(27)

Then substitution yields
1− λρ

1− λ
< θηρ + (1− θ)δηρ(28)
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which, once rearranged, yields

1 < λρ + (1− λ) [θ + (1− θ)δ] ηρ,(29)

a contradiction with Assumption 2. Finally, it is obvious that the SRs do not want to

trade into the long asset. Indeed, assume they do. In this case the number of units of

the long asset that they can acquire is ηρ, which are only worth δηρ to them which is

clearly below P ∗
1i, by Assumption 2. QED

Proof of Proposition 3. We first construct a candidate delayed-trading equilibrium and then

establish the conditions on δ under which the candidate delayed-trading equilibrium is

indeed an equilibrium.

First notice that since ϕ′ (κ) > 1 in any delayed-trading equilibrium there must be cash-

in-the-market pricing thus

M∗
d = P ∗

2d (1− θη) (1−m∗
d)

Define P2d to be the solution to

λ + (1− λ)
(1− θ) ηρ

(1− θη) P2d
= ϕ′ (κ− (1− θη) P2d)

This equation always a unique solution which in addition satisfies

P2d ∈
(

0,
κ

1− θη

)
.

There are two cases to consider:

• Case 1: P2d is such that

P2d <
1− ρ [λ + (1− λ) θη]

(1− λ) (1− θη)
= P .(30)

In this case set

P ∗
2d = P ,
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and set M∗
d to be the solution of

λ + (1− λ)
(1− θ) ηρ

(1− θη) P ∗
2d

= ϕ′ (κ−M∗
d ) ,(31)

which from the strict concavity of ϕ(·) is

M∗
d < (1− θη)P ∗

2d.

By Assumption 3 M∗
d > 0. Indeed, define

ψ (θ) = λ + (1− λ)2
(

(1− θ)ηρ

1− ρ [λ + (1− λ)θη]

)
,

which is the left hand side of the LR’s first order condition as shown in (31). Notice

that Assumption 3 can be simply written as ψ(0) > ϕ′ (κ). Straightforward algebra

shows that

ψθ ∝ ρ [λ + (1− λ)η]− 1 > 0,

by Assumption 2.

Then choose m∗
d such that

P ∗
2d =

M∗
d

(1− θη)
(
1−m∗

d

)

Notice that because P ∗
2d = P the SRs are indifferent in the level of cash held. Both

types of traders would prefer to wait to trade at date 2 provided that P ∗
1d is in the

interval [
(1− θη) P ∗

2d

1− θ
, θηρ + (1− θη) P ∗

2d

]
,

which is non empty if and only if

P ∗
2d ≤

(1− θ) ηρ

1− θη
= P .(32)

Clearly, given Assumption 1, specifically the fact that ϕ′ (κ) > 1, and equation (31),

equation (32) is trivially met. Clearly, given Assumption 1, specifically the fact that

ϕ′ (κ) > 1, and equation (31), equation (32) is trivially met.
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Notice that P ∗
2d is independent of δ and for δ ≤ δ, where

δ =
P ∗

2d

ηρ
,(33)

the SR (weakly) prefers to trade at date 2 for a price P ∗
2d than carrying the asset to

date 3.

• Case 2: P2d ≥ P , then choose

P ∗
2d = P2d M∗

d = P ∗
2d (1− θη) > 0 and m∗

d = 0.

Except for establishing inequality (32), the remainder of the proof follows as in the

previous case. To establish that P ∗
2d meets (32) it is enough to substitute P in (32)

and appeal to Assumption 2. QED

Before proceeding it is useful to establish the following

Result. Let Assumptions 1-4 hold. Then the immediate-trading equilibrium is such that

m∗
i ∈ (0, 1).

Proof. By the SR’s first order condition if the price at date 1 is given by

P ∗
1i =

1− λρ

1− λ

then the SR investor is indifferent about the cash position carried. Let M∗
i be the solution

to

λ + (1− λ)2
ηρ

1− λρ
= ϕ′ (κ−M∗

d ) ,

which by Assumption 3 exists and is unique. By Assumption 4,

1− λρ

1− λ
> κ > M∗

i .

Then set m∗
i ∈ (0, 1) so that

1− λρ

1− λ
=

M∗
i

1−m∗
i

.

The construction now of the immediate-trading equilibrium follows as in the proof of

Proposition 1. QED
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We prove Proposition 6 first. The proofs of Propositions 4 and 5 following trivially after

that.

Proof of Proposition 6. First notice that by the result above, the immediate-trading equi-

librium is such that m∗
i > 0 (and, obviously, M∗

i > 0). Thus because the delayed-trading

equilibrium specializes to the immediate-trading equilibrium when θ = 0, it follows that

there exists a neighborhood (0, θ̃) such that m∗
d > 0. Then from the LR’s and SR’s

first order conditions, combined with cash in the market pricing, M∗
d and m∗

d are fully

determined by

ψ(M) = λ + (1− λ) R∗
d (θ)− ϕ′ (κ−M∗

d ) = 0(34)

ψ(m) = (1−m∗
d) (1− ρ (λ + (1−) θη))− (1− λ) M∗

d = 0(35)

Expression (34) is the LR’s first order condition. Expression (35) is the SR’s first order

condition combined with the cash-in-the-market pricing equation. These two equations

determine M∗
d and m∗

d. In the above expression

R∗
d =

(1− θ) ηρ

(1− θη) P ∗
2d

,

where P ∗
2d is given by P (see expression (30). Then basic algebra shows that

R∗
d,θ =

∂R∗
d

∂θ
∝ ρ [λ + (1− λ) η]− 1 > 0,

by Assumption 2.

∂xψ =

(
ψ

(M)
M ψ

(M)
m

ψ
(m)
M ψ

(m)
m

)
and ∂θψ =

(
ψ

(M)
θ

ψ
(m)
θ

)
,(36)

where

ψ
(M)
M = ϕ′′ (κ−M∗

d ) < 0

ψ(M)
m = 0

ψ(m)
m = − [1− ρ (λ + (1− λ)θη)] < 0

ψ
(m)
M = −(1− λ)

ψ
(M)
θ = (1− λ)R∗

d,θ > 0
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ψ
(m)
θ = −(1−m∗

d)(1− λ)ηρ < 0,

First,

|∂xψ| = − [1− ρ (λ + (1− λ)θη)]ϕ′′ (κ−M∗
d ) > 0

Second, by an application of the implicit function theorem

M∗
d,θ =

∂M∗
d

∂θ
= −[ 1 0 ] (∂xψ)−1 ∂θψ and m∗

d,θ =
∂m∗

d

∂θ
= −[ 0 1 ] (∂xψ)−1 ∂θψ.

After some algebra:

m∗
d,θ = −|∂xψ|−1

[
−ψ

(m)
M (1− λ) R∗

d,θ − ψ
(M)
M (1−m) (1− λ) ηρ

]

= −|∂xψ|−1
[
(1− λ)2 R∗

d,θ − ϕ′′ (κ−M∗
d ) (1−m∗

d) (1− λ) ηρ
]

(37)

< 0

and

M∗
d,θ = −|∂xψ|

[
ψ(m)

m ψ
(M)
θ − ψ(M)

m ψ
(m)
θ

]

= −|∂xψ|ψ(m)
m ψ

(M)
θ

> 0

Because m∗
d is strictly decreasing in θ if m∗

d = 0 for some θ̂, then m∗
d = 0 for all θ ≥ θ̂.

For θ ≥ θ̂ the LR’s first order condition is given by

λ + (1− λ)
(1− θ) ηρ

M∗
d

= ϕ′ (κ−M∗
d ) ,

where we have made use of the fact that cash-in-the-market pricing obtains and m∗
d = 0.

Then a basic application of the implicit function theorem shows that M∗
d,θ < 0 for θ > θ̂.

As for the behavior of expected returns when θ > θ̂, notice that the LR’s first order

condition is written as

λ + (1− λ) R∗
d = ϕ′ (κ−M∗

d ) ,

and thus given that M∗
d,θ < 0 for θ > θ̂, it follows that R∗

d,θ < 0 for that range.
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We turn now to the properties of the aggregate supply of the risky asset at date 2 in the

delayed-trading equilibrium s∗d. Using (37),

s∗d,θ = |∂xψ|−1 (1− λ)2 R∗
d,θ (1− θη)

− |∂xψ|−1ϕ′′ (κ−m∗
d) (1−m∗

d) (1− λ) ηρ (1− θη)− η (1−m∗
d)(38)

Tedious algebra shows that (38) is equal to

(1−m∗
d) η

[
ρ− 1

1− ρ (λ + (1− λ)θη)

]
,

which is positive by Assumption 2. This completes the proof of Proposition 3. QED

Proof of Proposition 4. That m∗
i > m∗

d follows immediately from the fact that m∗
i =

m∗
d (θ = 0) and Proposition 3. Clearly for θ ≤ θ̂ where θ̂ was defined in the proof of

Proposition 3, M∗
i < M∗

d . For θ > θ̂ M∗
d is a decreasing function of θ and thus, by

continuity there exists a (unique) θ′, possibly higher than θ, for which M∗
d

(
θ′

)
= M∗

i ;

for any θ < θ′, M∗
i < M∗

d . QED

Proof of Proposition 5. Under Assumption 4, m∗
i > 0 and thus π∗i = 1 ≤ π∗d. As for the

expected profits of the LR investors, firs notice that

∂Π∗d
∂θ

= Π∗d,θ = (1− λ)R∗
d,θM

∗
d .

Given that Π∗i = Π∗d (θ = 0) and the characterization of expected returns in Proposition

3 the result follows immediately. QED

Proof of Proposition 7.

1. Given a choice M of cash carried by LR and αinvested in the SR risky project

0 ≤ α ≤ 1, the feasibility constraints on transfers to SR are given by:

C1 (ω1ρ) ≤ αρ + M,

C1 (ω1ρ) + C3 (ω1ρ) ≤ αρ + M + ϕ [κ + (1− α)−M ] ,

C1 (ω1L) + C2 (ω20) ≤ M,

C1 (ω1L) + C2 (ω2L) ≤ M,

C1 (ω1L) + C2 (ω2ρ) ≤ αρ + M,
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C1 (ω1L) + C2 (ω2ρ) + C3 (ω2ρ) ≤ αρ + M + ϕ [κ + (1− α)−M ] ,

C1 (ω1L) + C2 (ω20) + C3 (ω20) ≤ M + ϕ [κ + (1− α)−M ] ,

C1 (ω1L) + C2 (ω2L) + C3 (ω30) ≤ M + ϕ [κ + (1− α)−M ] .

Consider next the following observations concerning equilibrium contracts:

(a) State ω1ρ is observable and since there is no discounting between periods 1 and

2 we may assume without any loss of generality that C1(ω1ρ) = C1(ω1L) = 0.

(b) If C3(ω1ρ) > 0 then C2(ω1ρ) = αρ+M . For if C2(ω1ρ) < αρ+M , both agents

can be made better off by increasing C2(ω1ρ) and decreasing C3(ω1ρ).

(c) Incentive compatibility requires that C3(w30) = C3(w3ρ). Hence any feasible

and incentive compatible payment in histories that follow from ω2L is also fea-

sible in histories that follow ω20. Incentive compatibility also requires that

C2 (ω2L) + C3 (ω30) = C2 (ω20) + C3 (ω20) .

Therefore any payment prescribed for the histories starting at ω2L must also

be prescribed for histories starting at ω20:

C2(ω2L) = C2(ω20),

and

C3(ω30) = C3(ω20).

(d) If C3(ω30) > 0 then C2(ω2L) = M. For if C2(ω2L) < M SR can be made

better off, while keeping LR indifferent, by increasing the payment at date 2 and

decreasing by the same amount the payments in states ω30 and ω3ρ at date 3.

The same reason, together with observation 3, implies that if C3(ω20) > 0 then

C2(ω20) = M . We can also use the same reasoning to show that if C3(ω2ρ) > 0

then C2(ω2ρ) = M + αρ.

(e) Since (λ + (1− λ)) ρ > 1 and ϕ′(κ) > 1, if cash is carried by the LR it must

be distributed in some state (at either dates 1 or 2). Hence either C2 (ω1ρ) =

M +αρ, or C2(ω2ρ) = M +αρ or C2(ω20) = C2(ω2L) = M . Note furthermore

from observation 4 and incentive compatibility that we must have C2(ω2ρ) > 0
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and C2(ω20) > 0 unless SR consumption is zero in all histories starting at ω1L.

However, in the latter case, because of discounting and δφ′(k) < 1 the ex-ante

contract is dominated by autarky. Hence we may assume that C2(ω2ρ) > 0 and

C2(ω20) > 0 . In an analogous fashion we can establish that C2(ω1ρ) > 0.

(f) Suppose, that C2 (ω1ρ) ≤ M + αρ− µ for some µ > 0, and let γ > 0 be small

enough that γ < µ
2 and γ λ

1−λ < min{C2(ω2ρ);C2(ω20)}. Consider the payment

Ĉ2 (ω1ρ) = C2 (ω1ρ) + γ

and lower date 2 payments for all realizations following ω1L by γ λ
1−λ . This

new contract, leaves SR indifferent and economizes in cash. This cash can be

invested in the LR project, which has a marginal product above one, and yield

extra utility for LR at date 3. Hence the initial contract cannot be optimal.

(g) Suppose that C2(ω2L) < M , then from observation 4, C3(ω30) = 0. Hence

C2(ω20) < M and C2(ω2ρ) < M + αρ. Using the same logic as in observation

6 we may then show that this contract is not optimal.

(h) Incentive compatibility requires that

C2(ω2ρ) + C3(ω2ρ) = M + C3(ω30).

Since C2(ω2ρ) = M satisfies the LR budget constraint, it follows that

C3(ω2ρ) ≤ C3(ω30).

2. Under assumption (22) LR’s opportunity cost of holding cash, ϕ′(κ +(1−α)−M),

is bounded. To see this, note first from lemma 7 that LR must pay SR at least M

following the realization of state ω1L. LR’s date 0 expected payoff therefore cannot

exceed:

η(1− λ)αρ + ϕ(κ + (1− α)−M).

Since participation by LR requires that

η(1− λ)αρ + ϕ(κ + (1− α)−M) ≥ ϕ(κ),
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we must have κ + (1− α)−M > 0, by assumption (22). It follows that

ϕ′(κ + (1− α)−M) < B, for some B > 0.

Now, suppose by contradiction that C3(ω1ρ) ≥ ε > 0. Then lowering C3(ω1ρ) by ε

and increasing M by δλε keeps SR indifferent, but makes LR strictly better off if

Bδ < 1. Similarly, if min{C3(ω2ρ);C3(ω30)} = C3(ω2ρ) ≥ ε, a decrease of C3(ω30)

and C3(ω2ρ) by ε and an increase of M by (1 − λ)δε, again keeps SR indifferent

but makes LR better off (provided that Bδ < 1). QED
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FIGURE II

Immediate and delayed-trading equilibria in Example 1 for the case θ = .35. The

graph represents cash holdings, with the cash holdings of the LRs, M , in the

x-axis and the cash holdings of the SRs, m in the y-axis. The dashed curves

represent isoprofit lines for the LR and the straight continuous lines represent the

SR’s isoprofit lines, for both when the exchange occurs in state ω1L and in date 2.

The isoprofit lines for the SR correspond to its reservation profits π∗i = π∗d = 1. The

immediate and delayed-trading equilibrium cash holdings are marked (M∗
i ,m∗

i ) and

(M∗
d ,m∗

d), respectively.
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FIGURE III

Immediate and delayed-trading equilibria in Example 1 when θ = .45. The graph

represents cash holdings, with the cash holdings of the LRs, M , in the x-axis and

the cash holdings of the SRs, m in the y-axis. The dashed curves represent isoprofit

lines for the LR and the straight continuous lines represent the SR’s isoprofit lines,

for both when the exchange occurs in state ω1L and in date 2. As opposed to the

case in Figure II now the delayed-treading equilibrium, marked (M∗
d ,m∗

d), has the

SRs commanding strictly positive profits, π∗d > 1. The line marked IPSR denotes

the SR’s reservation isoprofit line in states (ω20, ω2L).
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FIGURE IV

Cash holdings as a function of θ for Example 1. Panel A represents the SR’s cash

holdings in the delayed-trading equilibrium, m∗
d as a function of θ and Panel B does

the same for the LR, M∗
d . The dashed vertical line, which sits at θ̂ = .4196 delimits

the set of θs for which m∗
d > 0 and the one for which m∗

d = 0.
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FIGURE V

The top panel shows the expected return of the risky asset, R∗
2d, as a function

of θ at date 2 in the delayed-trading equilibrium. The bottom panel shows the

price of the risky asset at t = 2, P ∗
2d, as a function of θ at date 2 in the delayed-

trading equilibrium. The dashed vertical line corresponds to θ̂ = .4196. Both

panels correspond to the case considered in Example 1.
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FIGURE VI

Expected profits for the SR, π∗, (top panel) and the LR (bottom panel), Π∗, as a

function of θ in the delayed-trading equilibrium for the case considered in Example

1. The dashed vertical line corresponds to θ̂ = .4196.
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FIGURE VII

Expected profits for the SR, π∗, (top panel) and the LR (bottom panel), Π∗, as

a function of θ for the case considered in Example 1. The first dashed vertical

line corresponds to θ̂ = .4196. The continuous line plots the expected profits

when the Pareto superior equilibrium is chosen. In regions A and B, the delayed-

trading equilibrium exists and it is the Pareto superior equilibrium. In region C,

which corresponds to θ ∈ (.4628, .4834], the delayed-trading equilibrium no longer

exists as P ∗
d < δηρ and the sole equilibrium is the immediate-trading equilibrium.

The dashed line corresponds to the expected profits when the SRs can commit to

liquidate assets in state ω2L.
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FIGURE VIII

Top panel: Expected profits of the monopolist (the thick line) and the competitive

LR (the thin line) as a function of θ. Bottom panel: Prices at date 2, P ∗
2d, in

the monopolist (the thick line) and the competitive (the thin line) LR case. Both

panels correspond to the case considered in Example 1.
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FIGURE IX

Top panel: Expected profits for the SR in the ex-ante contract when the outside

value is the expected profit associated with the delayed-trading equilibrium. Bot-

tom panel: Expected profits of the LR in the ex-ante contract, Π∗x, when the outside

value of the SR is the expected profit associated with the delayed-trading equilib-

rium (π∗d). Also included are the expected profit of the LR in the delayed-trading

equilibrium, Π∗d, and in the immediate-trading equilibrium, Π∗i . Both panels corre-

spond to the case considered in Example 2.
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FIGURE X

Top panel: Total cash position, m∗
d + M∗

d in the delayed-trading equilibrium as a

function of θ. Bottom panel: Cash position of the LR in the ex-ante contract case

as a function of θ when the outside opportunity of the SR is the expected profit in

the delayed-trading equilibrium. Both panels correspond to the case considered in

Example 2.
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