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1 Introduction

To date, the consumption based asset pricing literature has mostly focused on matching uncondi-

tional features of asset returns: the equity premium, the low risk free rate, and the variability of

equity returns and dividend yields. In terms of conditional dynamics, a great deal of attention has

been paid to time variation in the expected excess return on equities. A number of models have

emerged that can claim some empirical success along these dimensions. Campbell and Cochrane

(1999, CC henceforth) develop an external habit framework where time-varying risk aversion is the

essential driver of asset return dynamics. CC keep the exogenous technology for consumption

growth deliberately simple and linear. Bansal and Yaron (2004, BY henceforth), while working

with different preferences due to Epstein and Zin (1989)), generate realistic asset pricing dynamics

by introducing long-run risk and time-varying uncertainty in the consumption growth process. An-

other recent strand of the literature that also focuses on the technology rather than preferences has

rekindled the old Rietz (1990) idea that fear of a large catastrophic event may induce a large equity

premium (see Barro (2006)). It is important to realize that in such a framework, there cannot be

time variation in risk premiums unless the probability of the “crash” is assumed to vary through

time (see Gabaix (2009), and Wachter (2008)).

At the same time a voluminous literature has focused on explaining the volatility dynamics of

stock returns and the joint distribution of stock returns and option prices [see Chernov, Gallant,

Ghysels and Tauchen (2003)]. This literature is largely reduced-form in nature, assuming stochastic

processes for stock return dynamics, and then testing how well such dynamics fit the data on both

stock returns and option prices. Seminal articles in this vein include Chernov and Ghysels (2000)

and Pan (2002). The current state-of-the art models are very complex featuring stochastic volatility

and jumps in both prices and volatility (see, for instance, Broadie, Chernov and Johannes (2007)).

From one perspective, the distinct development of these two literatures in dynamic asset pricing

is surprising. Successfully modeling volatility and option price dynamics from a more structural

perspective would appear not only economically important, but also statistically very informative.

The empirical evidence on volatility dynamics is very strong, and many features of the data are

without controversy, which is very different from the large uncertainty surrounding the evidence

on return predictability (see e.g. Ang and Bekaert (2007), Goyal and Welch (2008) and Campbell

and Thompson (2008)). From another perspective, however, this dichotomy is not surprising at all:

every single consumption-based model described above would surely fail to generate anything like the

1



volatility and option price dynamics observed in the data. A particularly powerful empirical feature

of the data is the so-called variance premium, which is the difference between the “risk neutral”

expected conditional variance of the stock market index and the actual expected variance under the

physical probability measure. The CBOE’s VIX contract essentially provides direct readings on

the risk-neutral variance; see Carr and Wu (2008) for more details. Not only does the VIX show

considerable time variation, Bollerslev, Tauchen and Zhou (2009) show that the variance premium is

a good predictor of stock returns. Other stylized facts about the risk neutral conditional distribution

include time-varying (but generally negative) skewness, fat tails, and a strong negative correlation

between return realizations and risk-neutral volatility (see, for instance, Figlewski (2009)).

To generate these features of the risk-neutral distribution in the reduced-form literature, struc-

tural models must endogenously generate time-varying skewness in returns. However, most existing

structural models would fail to do so, as the technology for fundamentals is too close to normality,

and the models therefore generate near-Gaussian asset return dynamics.

We set out to integrate the two literatures by proposing a simple, tractable consumption based

asset pricing model, where preferences are as in Campbell and Cochrane (1999), but the consumption

technology is non-linear, following what we call a “Bad Environment — Good Environment” frame-

work, “BEGE” for short. We essentially assume that the consumption growth process receives two

types of shocks, both drawn from potentially fat-tailed, skewed distributions. While one shock has

positive skewness, the other shock generates negative skewness. Because the relative importance of

these shocks varies through time, there are “good times” where the good distribution dominates,

and “bad times” where the bad distribution dominates. An implication of the framework is that

even during bad times, large good shocks can occur persistently and vice versa. Such behavior has

been very apparent in stock return dynamics during the 2007-2009 crisis.

The framework is also reminiscent of regime —switching models, where a Markov variable gen-

erates switches between two normally distributed regimes. In principle, such mixture models can

also generate time-varying skewness and kurtosis. The impact of such models in consumption based

asset pricing was explored by Whitelaw (2000), Kandel and Stambaugh (1990), Bonomo and Garcia

(1994), Epstein and Zin (2001) and Cecchetti, Lam and Mark (1990). We feel that regime switching

models have much of the same economic appeal as the model we propose, but unfortunately, they are

fairly intractable in an equilibrium pricing context. In contrast, we use the gamma distribution for

our shocks resulting in an affine term structure and quasi-closed form expressions for equity prices

and the variance premium. This greatly increases the appeal of the framework as we can obtain
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useful intuition on what drives asset prices, and can easily estimate the structural parameters. Of

course, the model can only be deemed successful if fundamentals indeed exhibit non-linearities in

the data, which, through an acceptable preference structure, lead to realistic asset pricing dynamics.

We formally test the performance of a simple version of our modeling framework with respect to a

large number of empirical features of asset returns and fundamentals.

The remainder of the article is organized as follows. Section 2 introduces the model. We present

simple solutions for the risk free rate, price dividend ratios and the variance premium. Section

3 introduces the data we use and documents that there are indeed time-varying non-linearities in

the consumption growth process. Much of what we do here confirms results in the literature, with

some additions regarding the conditional skewness of consumption growth. Section 4 sets out

the estimation strategy. Section 5 discusses our parameter estimates and the fit of the model.

Apart from most salient asset price features, the model also fits the variance premium and other

stylized facts about option prices. Section 6 discusses some robustness checks and extensions of the

BEGE framework. The final section offers some concluding remarks, and compares our findings to

contemporaneous articles by Bollerslev, Tauchen and Zhou (2009) and Drechsler and Yaron (2008),

that have similar goals but a very different framework. We also provide further motivation for

the BEGE fundamental dynamics using survey-based measures of the conditional distribution of

economic growth.

2 The Bad Environment-Good Environment (BEGE) Model

In this section, we formally introduce the representative agent model. We begin with a discussion

of the assumed data generating process for fundamentals, and then describe preferences.

2.1 Fundamentals

Our model for consumption is given by the following equation:

∆ct+1 = g + σcpωp,t+1 − σcnωn,t+1 (1)

where ∆ct = ln (Ct) − ln (Ct−1) is the logarithmic change in consumption, g is the mean rate

of consumption growth, which we assume is constant, and the parameters σcp and σcn are both
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positive. The shocks, ωp,t+1 are ωn,t+1 zero-mean innovations with the following distributions,

ωp,t+1 ∼ Γ (pt, 1)− pt

ωn,t+1 ∼ Γ (nt, 1)− nt (2)

where Γ (pt, 1) represents the gamma distribution with shape parameter, pt, and size parameter

equal to 1. The shape parameters, pt and nt will be modeled as time-varying (positive) latent

factors, the data generating process for which will be introduced shortly. These factors thus govern

the conditional higher-order moments of ∆ct. Specifically, pt governs the width of the positive tail,

and nt governs the width of the negative tail. Because the mean of the gamma distribution is equal

to its shape parameter (when the size parameter is 1), the terms, −pt and −nt in Equation (2) ensure

that the shocks each have conditional mean 0. To understand what this implies for the conditional

moments of ∆ct+1, we next calculate the conditional moment generating function (MGF) of ∆ct+1.

For a scalar, m,

MGFm (∆ct+1) ≡ Et [exp (m∆ct+1)]

= exp (mg − pt (mσcp + ln (1−mσcp))− nt (−mσcn + ln (1 +mσcn))) (3)

This follows directly from the MGF of the gamma distribution and the fact that ωp,t+1 and ωn,t+1

are independent.3 Next, we solve for the first few conditional centered moments of ∆ct+1 by

evaluating subsequent derivatives of the MGF at m = 0, which provides uncentered moments, and

then translating to their centered counterparts in the usual way. This yields:

Et

h
(∆ct+1 − g)

2
i
= σ2cppt + σ2cnnt ≡ vct

Et

h
(∆ct+1 − g)

3
i
= 2σ3cppt − 2σ3cnnt ≡ sct (4)

Et

h
(∆ct+1 − g)

4
i
− 3Et

h
(∆ct+1 − g)

2
i2

= 6σ4cppt + 6σ
4
cnnt ≡ kct

The top line of Equation (4) shows that both pt and nt contribute positively to the conditional vari-

ance of consumption, defined as vct. They differ, however, in their implications for the conditional

skewness of consumption. As can be seen in the expression for the centered third moment, sct,

skewness, which is defined as sct/vc
3/2
t , will be positive when pt is relatively large, and negative when

3To see this, note that for x ∼ Γ (k, 1), E [exp (mx)] = exp (−k ln (1−m)), and for independent random variables,
x1 and x2, E [exp (m (x1 − x2))] = E [exp (mx1)] /E [exp (mx2)].
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nt is large. This is the essence of the BEGE model: the bad environment refers to an environment

in which the ωn,t shocks dominate; in the good environment the ωp,t shocks dominate. Of course,

in both environments shocks are zero on average, but there is a higher probability of large positive

shocks in a "good environment" and vice versa. Whether good or bad shocks dominate depends on

pt and nt. Finally, the third line of the equation is the excess centered fourth moment, kct. The

conditional excess kurtosis of consumption growth is given by kct/vc
2
t . Both pt and nt contribute

positively to this moment, though in different proportions than they do for vct. Note that there is

a linear dependence among higher moments of ∆ct, all of which are linear in pt and nt.

While we have represented the BEGE distribution as a mixture of two independent shocks for

illustrative purposes, it can, of course, also be represented as a univariate distribution with a density

function that depends on four parameters: pt, nt, σcp, and σcn. A closed-form (but very messy)

analytic solution for the BEGE density function is also available (upon request from the authors).

Figure 1 plots four examples of BEGE densities under various combinations for pt, nt σcp, and σcn.

For ease of comparison of the higher moments, the mean and variance of all the distributions are

the same and σcp = σcn. The black line plots the density under large, equal values for pt and nt.

This distribution very closely approximates the Gaussian distribution. The red line plots a BEGE

density with smaller, but still equal values for pt and nt. This density is more peaked and has fatter

tails than the Gaussian distribution. The blue line plots a BEGE density with large pt but small

nt and is duly right-skewed. Finally, the green line plots a density with large nt and small pt, and

is left-skewed. This demonstrates the flexibility of the BEGE distribution and makes tangible the

role of pt as the good environment variable and nt as the bad-environment variable.

We now turn to the assumed dynamics for pt and nt. We model the latent factor pt as following

a simple, autoregressive process with square-root volatility dynamics,

pt = p+ ρp (pt − p) + σppωp,t (5)

where p is the unconditional mean of pt, ρp is its autocorrelation coefficient, and σpp governs the

conditional volatility of the process. Specifically, the conditional volatility of pt+1 is σpp
√
pt since

the variance of ωp,t+1 is pt. With fine enough time increments, this ensures that 0 is a reflecting

boundary for the process. We model nt symmetrically,

nt = n+ ρn (nt − n) + σnnωn,t. (6)
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Note that the conditional covariances between ∆ct+1 and pt+1 and nt+1 are, respectively,

COVt [∆ct+1, pt+1] = σcpσpppt

COVt [∆ct+1, nt+1] = −σcnσnnnt (7)

so that we have hard-wired a positive conditional correlation between∆ct+1 and pt+1, and a negative

conditional covariance between ∆ct+1 and nt+1. This assumes that positive shocks to consumption

tend to increase the variability of "good" shocks while negative consumption shocks are associated

with a greater negative tail. However, this assumption could be easily relaxed within our general

framework. Moreover, the conditional covariance of ∆ct+1 and its own conditional variance, vct is:

COV [∆ct+1, vct+1] = σ3cpσpppt − σ3cnσnnnt (8)

which can take on either sign and, indeed, can vary through time.

2.2 Preferences

We now describe the preferences of the representative agent in our model. Consider a complete

markets economy as in Lucas (1978), but modify the preferences of the representative agent to have

the form:

E0

" ∞X
t=0

βt
(Ct −Ht)

1−γ − 1
1− γ

#
, (9)

where Ct is aggregate consumption and Ht is an exogenous “external habit stock” with Ct > Ht.

One motivation for an “external” habit stock is the framework of Abel (1990, 1999) who specifies

preferences where Ht represents past or current aggregate consumption, which a small individual

investor takes as given, but she then evaluates her own utility relative to that benchmark.4 That

is, utility has a “keeping up with the Joneses” feature. In Campbell and Cochrane (1999), Ht is

taken as an exogenously modelled subsistence or habit level. Hence, the local coefficient of relative

risk aversion equals γ · Ct
Ct−Ht

, where
³
Ct−Ht

Ct

´
is defined as the surplus ratio5. As the surplus ratio

goes to zero, the consumer’s risk aversion goes to infinity. In our model, we view the inverse of the

4For empirical analyses of habit formation models, where habit depends on past consumption, see Heaton (1995)
and Bekaert (1996).

5Of course, this is not actual risk aversion defined over wealth, which depends on the value function. The Appendix
to Campbell and Cochrane (1995) examines the relation between “local” curvature and actual risk aversion, which
depends on the sensitivity of consumption to wealth. In their model, actual risk aversion is simply a scalar multiple
of local curvature. In the present article, we only refer to the local curvature concept, and slightly abuse terminology
in calling it “risk aversion.”
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surplus ratio as a preference shock, which we denote by Qt. Thus, Qt =
Ct

Ct−Ht
. Risk aversion is

now characterized by γ · Qt, and Qt > 1. As Qt changes over time, the representative investor’s

risk tolerance changes.

The marginal rate of substitution in this model determines the real pricing kernel, which we

denote by Mt. Taking the ratio of marginal utilities of time t+ 1 and t, we obtain:

Mt+1 = β
(Ct+1/Ct)

−γ

(Qt+1/Qt)
−γ (10)

= β exp [−γ∆ct+1 + γ (qt+1 − qt)] ,

where qt = ln(Qt).

This model may better explain the predictability evidence than the standard model with power

utility because it can generate counter-cyclical expected returns and prices of risk. The unobserved

process for qt ≡ ln (Qt) follows:

qt+1 = μq + ρqqt + σqpωp,t+1 + σqnωn,t+1 (11)

where μq, ρq and σq and φp and φn are parameters. Here, we have allowed the innovation in

qt to be spanned by the consumption innovations, σcpωp,t+1 and σcnωn,t+1. As in CC, the risk

aversion process is persistent, governed by the parameter ρq, and heteroskedastic, governed by time-

variation in pt and nt. We also follow CC in having the innovation in CC in qt entirely spanned

by the consumption shocks, but there are two such shocks in our framework and these shocks are

heteroskedastic.6 The conditional covariance between risk aversion and consumption is given by:

COVt [∆ct+1, qt+1] = (σcpσqp) pt − (σcnσqn)nt. (12)

The external habit interpretation of the model requires this covariance to be negative: positive

consumption shocks decrease risk aversion. In CC, this correlation was a non-linear process that

was increasing in qt. Our modeling here is different and a bit more flexible. We would expect σqp to

be negative and σqn to be positive. When that occurs, shocks that increase the relative importance

of “good environment” shocks (ωp,t) decrease risk aversion, and shocks that increase the relative

importance of “bad environment” shocks” (ωn,t) increase risk aversion. Moreover, the conditional

6 In this sense, our modeling differs from Bekaert, Engtrom and Grenadier (2005) and Bekaert, Engstrom and Xing
(2009) who let qt depend on a shock not spanned by fundamental shocks.
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covariance between consumption growth and risk aversion is then always negative. We will not,

however, impose this restriction in the estimation stage.

2.3 Asset prices

In this subsection, we present solutions for asset prices in the BEGE framework.

2.3.1 The risk free term structure

We first solve for the real risk free short rate,. rrft, in our framework and then the price of a real

consol. The latter will be useful for comparison with equity prices.

The real short rate To solve for the real risk free short rate, we use the usual no-arbitrage

condition,

exp (rrft) = Et [exp (mt+1)]
−1 . (13)

To simplify this expectation, it will be convenient to define the quantities,

ap = γ (σqp − σcp)

an = γ (σqn + σcn) (14)

These quantities measure of the impact of the two sources of uncertainty on the pricing kernel, as

can be seen in the equation,

mt+1 −Et [mt+1] = apωp,t+1 + anωn,t+1 (15)

For ease of interpretation, we will focus on the case where ap < 0 and an > 0. This corresponds to

a situation where positive ωp,t+1 shocks decrease marginal utility (good news) while positive ωn,t+1

shocks increase marginal utility (bad news). Using Lemma 1 in the appendix, the real short rate

can be expressed as,

rrft =

⎛⎜⎜⎜⎜⎝
− lnβ + γg + γ

¡
1− ρq

¢
(qt − q)

+ (ap + ln (1− ap)) pt

+(an + ln (1− an))nt

⎞⎟⎟⎟⎟⎠ (16)

The first line in the solution for rrft has the usual consumption and utility smoothing effects: to

the extent that marginal utility is expected to be lower in the future (that is, when g > 0 and/or,
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qt > q), investors desire to borrow to smooth marginal utility, and so risk free rates must rise. The

bottom two lines capture precautionary savings effects, that is, the desire of investors to save more

in uncertain times. Notice that because the function f (x) = x+ ln (1− x) is always negative, the

precautionary savings effects are also always negative. A third-order Taylor expansion of the log

function helps with the interpretation of rrft:

rrft ≈

⎛⎜⎜⎜⎜⎝
− lnβ + γg + γ

¡
1− ρq

¢
(qt − q)

+
¡
−12a2p −

1
3a
3
p

¢
pt

+
¡
−12a2n −

1
3a
3
n

¢
nt

⎞⎟⎟⎟⎟⎠ (17)

The first precautionary savings terms,−12a2ppt and −
1
2a
2
nnt capture the usual precautionary savings

effects: higher volatility generally leads to increased savings demand, depressing interest rates. The

cubic terms represent a novel feature of the BEGE model. Consider again the case where ap < 0 and

an > 0. Under this assumption the term, −13a3ppt > 0, mitigates the precautionary savings effect

to the extent that the good-environment variable, pt, is large. This makes perfect economic sense.

When good environment shocks dominate, the probability of large positive shocks is relatively large,

and the probability of large negative shocks is small, decreasing precautionary demand. Conversely,

the −13a3nnt < 0 term indicates that precautionary savings demands are exacerbated with nt is large.

That is, when consumption growth is likely to be impacted by large, negative shocks, risk free rates

are depressed over and above the usual precautionary savings effects. In this way, our model may

generate the kind of extremely low but also very volatile risk free rates witnessed in the 2007-2009

crisis period.

The price of a risk free real consol We now extend the characterization of the real term

structure to a risk-free real consol, that is as asset that pays a real coupon, normalized to 1, each

period. Under standard no-arbitrage arguments, the price of the consol, PCt, must obey:

PCt = Et

⎡⎣ ∞X
i=1

exp

⎛⎝ iX
j=1

mt+j

⎞⎠⎤⎦ (18)

This conditional expectation can also be solved in our framework as an exponential-affine function

of the state vector, as is summarized in the following proposition.

Proposition 1 For the economy described by Equations (1) through (11), the price of a risk free
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real consol paying one unit of the consumption good is given by

PCt =
∞X
i=1

exp (Ai +Bipt + Cint +Diqt) (19)

where the initial values of the parameter sequence are given by

A1 = lnβ − γg + γ
¡
1− ρq

¢
q

B1 = −ap − ln (1− ap)

C1 = −an − ln (1− an)

D1 = −γ
¡
1− ρqq

¢
and the functions providing the coefficients for n ≥ 2 are represented by

Ai = Ai−1 +Bi−1μp + Ci−1μn +Di−1μq

Bi ≡
¡
−ap +Bi−1

¡
ρp − σpp

¢
−Di−1σqp

¢
− ln (1− ap −Bi−1σpp −Di−1σqp)

Ci ≡ (−an + Ci−1 (ρn − σnn)−Di−1σqn)− ln (1− an − Ci−1σnn −Di−1σqn)

Di ≡ D1 +Di−1ρqq

(Proof is available in separate appendix).

The most useful expressions above for gaining intuition about consol pricing are those for B1 and

C1. First, note that B1 and C1 are always positive because the function f (x) = −x− ln (1− x) is

always positive. Moreover, one can easily show that Bi and Ci are positive for all i as well. Hence,

increases in nt and pt always increase real consol prices, another implication of the precautionary

savings channel. Finally, the Dn term captures the effect of the risk aversion variable, qt, which

affects bond prices through utility smoothing channels; therefore increases in qt tend to depress

consol prices.

2.3.2 Equity valuation

Following Campbell and Cochrane (1999), we assume that dividends equal consumption and solve

for equity prices as a claim to the consumption stream. In any present value model, under a no-

bubble transversality condition, the equity price-dividend ratio (the inverse of the dividend yield) is

represented by the conditional expectation,

Pt
Dt

= Et

⎡⎣ ∞X
i=1

exp

⎛⎝ iX
j=1

(mt+j +∆dt+j)

⎞⎠⎤⎦ (20)

where Pt
Dt
is the equity price-dividend ratio and ∆dt represents dividend growth. This conditional

expectation can also be solved in our framework as an exponential-affine function of the state vector,
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as is summarized in the following proposition.

Proposition 2 For the economy described by Equations (1) through (11), the price-dividend ratio
of equity is given by

Pt
Dt

=
∞X
i=1

exp
³ eAi + eBipt + eCint + eDiqt

´
(21)

where the initial values of the parameter sequence are given by

eA1 = lnβ + (1− γ) g + γ
¡
1− ρq

¢
qeB1 = −ap − σcp − ln (1− ap − σcp)eC1 = −an + σcn − ln (1− an + σcn)eD1 = −γ

¡
1− ρqq

¢
where the functions providing the coefficients for n ≥ 2 are represented by

eAi = eA1 + eAi−1 + eBi−1μp + eCi−1μc + eDi−1μqeBi ≡
³
−ap − σcp + eBi−1

¡
ρp − σpp

¢
− eDi−1σqp

´
− ln

³
1− ap − σcp − eBi−1σpp − eDi−1σqp

´
eCi ≡

³
−an + σcn + eCi−1 (ρn − σnn)− eDi−1σqn

´
− ln

³
1− an + σcp − eCi−1σnn − eDi−1σqn

´
fDi ≡ eD1 + eDi−1ρqq

(Proof is available in separate appendix).

First, note that there is no marginal pricing difference in the effect of qt on riskless versus risky

coupon streams: the expression for eDn is the same as Dn. This is true by construction in this

model because the preference variable, qt, affects neither the conditional mean nor volatility of cash

flow growth, nor the conditional covariance between the cash flow stream and the pricing kernel at

any horizon. We purposefully excluded such relationships because, economically, it does not seem

reasonable for investor preferences to affect productivity. The implication is that increases in qt

always depress equity prices. Second, the eB1 and eC1 terms do differ from their consol counterparts.

However, the pricing functions are still such that these coefficients are always positive. In other

words, shocks to nt and pt that drive up the variability of cash flows, always increase the price-

dividend ratio. There is a large literature examining the effects of uncertainty on equity prices. The

folklore wisdom is that increased economic uncertainty ought to depress stock prices because it raises

the equity premium (see Poterba and Summers (1986) and Wu (2001)). However, such a conclusion

is by no means general. Pastor and Veronesi (2006) stress that uncertainty about cash flows should

increase stock values (as it makes the distribution of future cash flows positively skewed), whereas

Abel (1988) ‘s Lucas —tree model can generate either effect, depending on the coefficient of relative

risk aversion. In Barsky (1989) and Bekaert, Engstrom, and Xing (2009), similar to this paper,
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the term structure effects of increased uncertainty cause equity prices to (potentially) rise. Let us

maintain the assumption that ap < 0 and an > 0. Because −ap − σcp is less positive than −ap,

an increase in pt raises equity prices less than it raises real consol prices because the equity cash

flow is risky. Similarly, because −an+ σcn is less negative than −an, equity prices rise by less than

real consol prices when nt increases. However, the risky cash flow and pure term structure effects

offset one another. Again, this is only under our maintained assumption of the signs of ap and an,

which are in turn consistent with a counter-cyclical risk aversion process. That equity prices are

so closely tied to consol prices is a quite strong restriction. Nevertheless, it is an artifact of our

desire to follow the simple structure in CC, setting consumption equal to dividends and excluding

time-varying cash flow expectations effects in equity pricing. We consider a simple extension in the

final section that relaxes these assumptions.

2.3.3 Approximations to the exact equity solution

While the above solution for the equity price-dividend ratio is exact, it is a non-linear function

of the state vector. To simplify our subsequent calculations, it is useful to calculate a log-linear

approximation to the price-dividend ratio. It is shown in the appendix that the logarithmic dividend-

price ratio, dpt, is approximately,

dpt ≈ d0 + d01Yt (22)

where Yt = [pt, nt,∆ct, qt]
0 is the state vector and the coefficients d0, d1, etc. are functions of the deep

model parameters with explicit formulae provided in the appendix. Further, we can approximate

logarithmic equity returns as

rt+1 ≈ r0 + r01Yt+1 + r02Yt (23)

with these results also described in detail in the appendix.

2.3.4 The distribution of equity returns

We now examine the implications of the BEGE model for the conditional distribution of equity

returns. We examine the physical and risk-neutral distributions separately.

Physical moments The appendix shows how to calculate the (physical) moment generating func-

tion for any affine function of the state vector. Armed with that, it is possible to calculate any

moment of interest. These calculations are straightforward and similar to those for computing the
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conditional moments of consumption growth as shown in Section 2.1. We begin by calculating the

physical measure of conditional equity return volatility, pvart. Importantly, this computation uses

the approximation in Equation (23). That approximation and Lemma 1, yield:

pvart = (σpprp + σcprc + σqprq)
2
pt + (σnnrn − σcnrc + σqnrq)

2
nt (24)

where rp is the loading of returns onto on pt, in Equation (23), etc. Unsurprisingly, both pt and

nt contribute to return variance in a positive, linear fashion. Similar calculations show that the

conditional (centered) third moment and excess fourth moment, denoted pskt and pkut respectively,

can be expressed as:

pskt = 2 (σpprp + σcprc + σqprq)
3 pt − 2 (σnnrn + σcnrc + σqnrq)

3 nt

pkut = 6 (σpprp + σcprc + σqprq)
4 pt + 6 (σnnrn + σcnrc + σqnrq)

4 nt (25)

The BEGE model is therefore clearly able to generate time-varying skewness which can change sign

over time as well as kurtosis which varies in magnitude. It is worth highlighting that because there

are only two state variables driving these (and all higher) moments, there is a linear dependence

among the moments’ dynamics, which may be counterfactual. Of course, the BEGE system can

always be augmented with additional state variables to break this dependence.

Risk-neutral moments Many stylized facts about the risk-neutral distributions of returns have

emerged in the literature, see Figlewski (2009) for a good survey. We focus our analysis of the

BEGE system on the following empirical regularities:

1. The risk-neutral conditional variance of returns usually exceeds the physical variance of returns.

2. The wedge between risk-neutral and physical variance covaries positively with the equity risk

premium.

3. Negative shocks to returns are associated with contemporaneous increases in risk-neutral vari-

ance that tend to persist.

4. The risk-neutral distribution is negatively skewed and fat tailed.7.

7 This is consistent with the older options pricing literature that focused on implied volatility smirks and smiles
found when using the Black-Scholes option pricing model to back out implied volatilities at various strike prices.
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We now examine the risk-neutral distribution of returns under the BEGE framework to see

whether the framework is likely to be capable of matching the stylized facts. To facilitate the

calculation of the risk-neutral distribution of returns, let us first define the risk-neutral expectation

of any variable, EQ
t [exp (xt+1)] ,as

EQ
t [exp (xt+1)] = Et [exp (mt+1 + xt+1)] (Et [exp (mt+1)])

−1 (26)

Based on this definition, Lemma 2 of the appendix shows how to calculate the risk-neutral moment

generating function for the BEGE system, which renders the calculation of any risk-neutral moment

straightforward, if tedious. For instance, the risk-neutral variance measure, qvart, simplifies to:

qvart =

µ
σpprp + σcprc + σqprq

1− ap

¶2
pt +

µ
σnnrn − σcnrc + σqnrq

1− an

¶2
nt (27)

This expression is intuitive when compared with the solution for pvart, adding a simple de-

nominator term to the parameters multiplying pt and nt in Equation (24). Consider first the

denominator in term multiplying pt. Maintaining our assumption that ap < 0 (that is, that positive

pt shocks lower marginal utility) the denominator is strictly greater than 1. This implies that pt,

the good environment variable, serves to reduce risk neutral variance relative to its physical measure

counterpart. On the other hand, as long as an > 08 (which is consistent with positive nt shocks

raising marginal utility), nt will generally increases the risk-neutral variance relative to its physical

measure counterpart. This is intuitive and suggests that the BEGE system is potentially capable of

matching stylized fact 1: the so-called variance premium, qvart−pvart , which we henceforth denote

vpremt is simply the difference between Equations (27) and (24), and can potentially be positive.

Moreover, if, as expected, increases in nt tend to increase the equity risk premium, then the variance

premium may covary positively with the equity risk premium, consistent with stylized fact 2. If

nt is persistent, then negative return shocks may coincide with higher risk-neutral variance that

persists for several periods, consistent with stylized fact 3.

We now turn to higher risk-neutral moments. Simple calculations using Lemma 2 show that

the risk neutral conditional (centered) third moment and excess fourth moment, qskt and qkut

8We also need an < 2, a technical condition which is always met in our estimations.
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respectively, can be expressed as:

qskt = 2

µ
σpprp + σcprc + σqprq

1− ap

¶3
pt − 2

µ
σnnrn − σcnrc + σqnrq

1− an

¶3
nt

qkut = 6

µ
σpprp + σcprc + σqprq

1− ap

¶4
pt + 6

µ
σpprp + σcprc + σqprq

1− an

¶4
nt (28)

By examining these expressions, we see that qskt will be negative when nt is large and and qkut

will be high to the extent that pt or nt are large. These effects make the BEGE system potentially

consistent with stylized fact 4 .

3 Empirical Implementation

In this section, we introduce the data used in the study and present reduced-form evidence for the

kind of variation in consumption growth implied by our model in Section 1.

3.1 Data

The main data we use are monthly and span the period from January 1990 through March 2009. For

consumption growth, ∆ct, we use real personal consumption expenditures (PCE) on nondurables

and services from the Bureau of Economic Analysis (BEA). To calculate an inflation-adjusted

series, we first sum the two nominal consumption series, calculate the nominal growth rate, and

then deflate using the overall PCE deflator from the BEA. We estimate the real short rate, rrft, as

the 30-day nominal T-bill yield provided by the Federal Reserve less expected quarter-ahead inflation

(at a monthly rate) measured from the Blue Chip survey. In doing so, we implicitly assume that

the inflation risk premium is zero at the monthly horizon and that the term structure of expected

inflation is flat at horizons less than one quarter. For equity prices, we use the logarithmic dividend

yield, dpt, for the S&P 500, calculated as trailing 12-month dividends (divided by 12) divided by

month-end price. The equity return, rett, we use the logarithmic change in the month-end level of

the S&P 500 plus the monthly dividend yield defined above minus PCE inflation over the month.

We use the realized and risk-neutral expected variance data provided on Hao Zhou’s website, and

updated through March 2009. We measure risk-neutral equity conditional variance, qvart, following

Bollerslev, Tauchen and Zhou (2009) as the month-end value of the VIX, squared. We calculate the

physical probability measure of equity return conditional variance, pvart, in two steps. We begin

with monthly realized variance, rvart, calculated as squared 5-minute capital appreciation returns

15



over the month. Then we project rvart onto one-month lags of the variables: rvart, rrft, dpt, and

qvart.9 The fitted values from this regression are used to measure pvart. This procedure is quite

close to that used by Drechsler and Yaron (2009) and others.

Panel A of Table 1 reports some simple statistics for the monthly sample. Note that the

average real return on equity for this sample is only 0.0037 per month, or about 4.4 percent per

year. Given that the real short rate averaged about 1.2 percent per year, the realized average

excess return on equity for the sample is only about 3.2 percent per year. The usual stylized facts

are present: a low risk free rate with low volatility, a volatile dividend yield and volatile equity

returns. In addition, we note the properties of the variance premium, which has a significantly

positive mean. Also note that unconditional higher-order moments of consumption suggest little

departure from normality: Sample skewness and kurtosis are −0.1 and 3.7 respectively, with only

the latter significantly different from its value under normality. Nevertheless, when we examine the

data more carefully for nonlinearities in the consumption process in the next subsection, significant

time-varying departures from normality do emerge.

3.2 Empirical evidence for non-linearities in fundamentals

While the evidence of time-variation in consumption growth volatility is abundant (see Bekaert,

Engstrom, Xing (2009) for a survey), there exists considerably less empirical work on higher-order

moments of consumption growth. The regime switching models in Whitelaw (2000) and Bekaert and

Liu (2004) do imply that US consumption exhibits time-varying skewness. For our main monthly

dataset, we measure conditional higher-order consumption moments in a reduced-form fashion using

asset prices as instruments. Specifically, we estimate the following system of equations:

∆ct+1 = g + u1t

(∆ct+1 − g)2 = m2 + x0tβ2 + u2t

(∆ct+1 − g)3 = m3 + x0tβ3 + u3t (29)

On the left-hand side of the bottom two equations are realized, demeaned consumption growth

raised to the second and third powers. We maintain the assumption of a constant conditional

mean. On the right-hand side are simple linear specifications using a vector of instruments, xt. For

9This regression suggests that cvart loads heavily onto both lagged rvart and qvart. We cannot reject the joint
hypothesis that the loadings on lagged rrft and dpt are zero, but we very strongly reject the hypothesis that there is
no dependence on lagged qvart.
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the monthly dataset, xt is comprised of the real short rate, rrft, the dividend yield, dpt, the physical

and risk-neutral equity return variance measures, pvart and qvart, and exponentially-weighted (with

parameter 0.1) moving averages of squared and cubed demeaned consumption growth. In column

1 of Table 2, the top row reports the p-value for the joint significance of β2 and the second row

reports the joint significance for β3. We strongly reject the null hypothesis that the conditional

variance and centered third moment are constant, as p-values for the joint significance of β2 and β3

are substantially below 0.01.

Recall that we denote Et (∆ct+1 − g)2 by vct and E3t (∆ct+1 − g)3 by sct. Columns 2 through

4 of Table 2 report some univariate statistics for vct and sct, revealing significant variability and

autocorrelation in both. These conditional moments also correlate in the expected manner with

asset prices. The dividend yield, the physical conditional variance of returns, and the risk-neutral

conditional variance of returns all vary strongly and positively with the conditional variance of

fundamentals, and negatively with the conditional third moment. The signs of correlations with

the real short rate follow the opposite pattern. Hence, when consumption shocks are negatively

skewed, equity prices, the VIX and the conditional variance of equity returns are relatively high and

real short rates are low.

Of course, our short sample period is not well suited to detect strong non-linearities in con-

sumption growth. For example, relaxing the restriction of a constant conditional mean weakens

the evidence in Table 2 for time-varying skewness. We nevertheless believe that the evidence for

these non-linearities is strong. In Section 6, we consider a longer sample using data going back to

the Great Depression, to estimate consumption moments. In the conclusion, we show how such

non-linearities are more apparent in survey data reflecting expectations of economic conditions. If

anything, the estimation conducted here will underestimate the importance of consumption growth

non-linearities.

4 Structural Model Estimation

In this section, we outline our estimation strategy for the structural model. We use classical

minimum distance (CMD) for estimation, which relies on the matching of sample statistics.10

10 See Wooldridge (2002), pg. 445-446 for a good textbook exposition on CMD.
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4.1 Reduced form statistics to be matched

We begin by calculating a vector of sample statistics, bp, with estimated covariance matrix bV to

be matched by the structural model. For bp, we use all the statistics reported in Table 1 and
Panel A of Table 2. In doing so, we ask the model to match the conditional means, volatilities

and autocorrelations of consumption growth, ∆ct, the real short rate, rrft, the dividend yield, dpt,

real equity returns, rett, the conditional variance of returns under the physical and risk-neutral

measures, pvart and qvart respectively, and the conditional second and third centered moments

of consumption growth, vct and sct respectively.11 Further, we require that the model match

the unconditional sample skewness and kurtosis of consumption growth. We also seek to fit the

unconditional correlation between changes in pvart and the variance premium, vpremt ≡ qvart-

pvart. We find that this statistic is useful in helping to identify the correlation between risk aversion,

qt, and the pt and nt processes more precisely. In all, we ask the model to match 26 reduced-form

statistics. By any measure, this represents an extremely challenging set of moments for a relatively

parsimonious structural model. We use a heteroskedasticity and autocorrelation consistent (HAC)

estimator for bV employing the Newey-West (1987) methodology with 20 Newey-West lags. The

sample statistics are related to the population statistics, p0, by

√
T (bp− p0) ∼ N

³
0, bV ´ . (30)

4.2 Objective function and distribution of structural parameters

Under the model to be estimated, the sample statistics of the endogenous variables are nonlinear

functions of the deep model parameters. The mapping is described in the appendix. We denote

the true structural parameters by the vector, θ0. The structural parameters to be estimated are,

θ =
£
g, σcp, σcn, p, ρp, σpp, n, ρn, σnn, q, ρq, σqp, σqn, ln (β) , γ

¤0
(31)

Under the null hypothesis that our model is true,

p0 = h (θ0) (32)

11We do not attempt to match the consumption growth autocorrelation, which our model implicitly fixes at 0.
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where h (θ) is a vector-valued function that maps the structural parameters into the reduced-form

statistics. To form estimates of the structural parameters, bθ, we minimize an objective function of
the form,

min
θ∈Θ

{bp− h (θ)}0cW−1 {bp− h (θ)} (33)

where cW−1 is a symmetric, positive semi-definite, data-based weighting matrix. Efficient CMD

suggests bV −1 for the weighting matrix, but we instead use a diagonal weighting matrix , cW =

diag
³bV ´−1. We do this because because vct and sct are very nearly exact linear combinations of

the other variables,12 rendering bV nearly singular.

Standard CMD arguments lead to the asymptotic distribution of bθ and a test of the overidenti-
fying restrictions (see appendix).

5 Results

In this section, we report on the estimation of the structural model parameters and then explore the

model’s implications for a variety of asset pricing phenomena.

5.1 Model estimation results

We only estimate 13 of the 15 parameters listed above in θ because we fix two parameters ex-ante.

First, because the scale of the latent factor qt is not well identified using our set of reduced-form

parameters, we fix q = 1. Note that this does not restrict the level of risk aversion in the economy

because γ is freely estimated. Second, we also fix ln (β) = −0.0003 to aid in identification. This

parameter is also only weakly identified using our estimation strategy, and fixing it does not seem

to materially impact our ability to fit the moments of interest. Table 3 reports on the remaining

parameters’ estimates. Of the three state variable process, nt and qt are highly persistent, whereas

pt’s autocorrelation coefficient is only 0.6. Of particular interest are the parameters σqp and σqn

which govern the correlation between consumption shocks and risk aversion. As expected, positive

“good environment” consumption shocks reduce risk aversion, but positive “bad environment” shocks

lead to higher risk aversion. Both coefficients are significantly different from zero.

Note that the test of the over-identifying restrictions rejects at the 1 percent level, but the model

12Because vct and sct are spanned in part by lagged (exponentially-weighted) moving averages of squared and cubed
consumption growth in addition to the other instruments, there is no exact dependence with the other variabels used
in estimation. However, in practice the regression places very low weights on these variables, so that vct and sct are
almost perfecetly linearly dependent on the other variables.
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does have an overall satisfactory fit with the moments used in the estimation. To make this more

concrete, Table 4 compares some basic moments for a number of critical variables in the model

with the data. The model moments are in square brackets above the data moment; the number in

parentheses is a data-based standard error.

Let’s first focus on the fitted consumption growth statistics. The fit is nearly perfect. Not only

do we fit the mean and volatility exactly, we also nearly perfectly fit the near-zero skewness and

mild kurtosis of consumption growth. Of course, the autocorrelation of consumption growth in the

model is by definition zero, whereas the monthly data show slight negative autocorrelation. In Panel

B, we also look at the conditional variance and centered third moment of consumption growth, vct

and sct respectively, and the model fits the first three moments of vct near perfectly, but has trouble

matching the volatility of sct.

For the real short rate, the dividend yield and equity returns, we also match the first three

moments, producing moments comfortably within one standard error of the data moment. Hence,

the model fits the standard moments that are the focus of articles such as Bansal and Yaron (2004)

and Campbell and Cochrane (1999). However, the model generates a correlation between equity

returns and consumption growth of 0.7, while that moment in the data is only 0.2, estimated with

a standard error of 0.1. While the model-implied correlation is thus too high, it is lower than the

correlation implied by some other popular consumption-based models (for instance, Campbell and

Cochrane (1999)). If we add this statistic to the set being matched during estimation, we find that

we can lower this correlation somewhat without dramatically worsening the fit elsewhere. Moreover,

the model extension we propose in Section 6 can easily break the strong correlation by introducing

a dividend process that is not perfectly correlated with consumption.

Finally, we report some characteristics of the conditional variance of equity returns and the

variance premium. While the model generates a good fit for the mean of the physical volatility of

returns and the variance premium, the volatility of the physical volatility of returns is somewhat too

low. In section 6, we show how this miss owes to the mild consumption data we have used in the

study. To preview those results: when we taker a longer view of consumption growth dynamics, not

surprisingly we find stronger nonlinearities in consumption. If we then allow the model to “see” the

stronger consumption dynamics, the estimation procedure can then match all the moments of pvart

and vpremt almost perfectly.
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5.2 The conditional distribution of consumption growth

We now examine the dynamics of the conditional distribution of consumption growth in more detail.

The mean of pt is estimated at around 26. At this value, shocks to ωpt are fairly close to being

normally distributed. In contrast, nt has a very low mean of about 0.06, suggesting a strongly

nonlinear distribution of ωn,t shocks on average.13 However, the mean contribution of the ωp,t

shocks to the consumption growth variance is
¡
σ2cpp

¢
is an order of magnitude larger then the

contribution of ωn,t shocks,
¡
σ2npn

¢
. The distribution of consumption growth that emerges is one

that is close to Gaussian over much of the range of ∆ct, but with a longer negative tail, suggesting

occasional sharp declines in consumption. To illustrate this, Figure 2 shows the density of demeaned

consumption growth under various configurations for pt and nt. To facilitate the visibility of the

tails of the distribution, the logarithms of the densities are plotted. The top left panel shows that

when nt and pt are at their median values, the distribution of consumption growth does indeed have

fatter tails than a corresponding Gaussian density with the same variance. Moreover, the left tail of

the distribution is much fatter than the right tail relative to normality. The top right panel shows

the density of consumption growth when pt is at its 95th percentile value. At this configuration, even

though the variance of consumption growth is high, its distribution is actually closer to the normal

distribution. This is because the gamma distribution approaches the normal distribution for large

values of the shape parameter (holding the variance constant). Nevertheless, it is clear that elevating

pt raises the right tail much more than the left tail, so that pt is indeed a "good environment" state

variable. The bottom left panel shows that when nt is at its 95th percentile value, the distribution

of consumption growth is still highly non-Gaussian, and the left tail is moderately thicker compared

to the upper right panel, justifying nt ’s role as a "bad environment" state variable. Finally, when

both nt and pt take on their 95th percentile values (which happens very infrequently since they are

independent), the distribution of consumption growth is again closer to normality due to the very

high level of pt and its large contribution to the overall variance of consumption growth. In summary,

at the point estimates presented in Table 2, pt basically serves to govern the overall variance of the

distribution of consumption growth and the thickness of the positive tail, while nt determines the

size of the negative tail with less of an impact on overall consumption growth variance.

13For a Γ (26, 1) random variable, skewness is 2/
√
26 ∼ .4 and excess kurtosis is 6/26 ∼ 0.2. For a Γ (0.06, 1)

random variable, skewness is about 8 and excess kurtosis is about 33.
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5.3 The dynamics of asset prices

Table 5 reports the dependence of the various endogenous variables on the state vector. We first

focus on Panel A, which reports the factor loadings on the three state variables (pt, nt and qt).

Not surprisingly, positive shocks to pt and nt lower real interest rates through precautionary savings

effects, while a positive shock to qt increases the interest rate through a consumption smoothing

effect. These effects are also present with the same sign for the dividend yield. This parity arises

because our model lacks interesting equity cash flow dynamics–the main effects of the state variables

for all long-lived assets work through the term structure. Positive shocks to nt increase the equity

premium, eqpremt, with the effect of the other variables being negligible. The conditional variance

of equity returns is increasing in all three state variables, but the variance premium only loads

positively on nt. It is shocks to nt that should cause a positive correlation between the equity risk

premium and the variance premium.

Figure 3 plots impulse response functions of some of the asset prices to ωp,t and ωn,t. Recall

that qt is spanned by the two fundamental consumption shocks. Hence, a positive ωp,t shock not

only increases pt but also decreases qt. Consequently, the effect of ωp,t on interest rates is negative.

For ωn,t shocks, increases in risk aversion are so severe that the desire of investors to borrow to

smooth consumption dominates and short rates rise. Both shocks increase the conditional variance

of equity returns but the effect of an ωn,t shock dies out much more slowly than that of an ωp,t shock.

Finally, the variance premium persistently increases with an ωn,t shock, and decreases slightly with

an ωp,t shock.

5.4 Endogenous predictability

Much of the asset pricing literature focuses on equity return predictability. Nevertheless, as we

stress again, the return predictability evidence is rather weak. In Table 6, Panel A, we present some

univariate statistics for regressions of excess equity returns on the short rate, the dividend yield and

the variance premium. Neither the short rate, dividend yield nor the variance premium are significant

predictors of future stock returns. The short rate in fact is the strongest predictor. Bollerslev,

Tauchen and Zhou (2009) report that the variance premium is a highly significant predictor of

equity returns. However, their main measure of the variance premium is simply uses rvart the

measure of conditional variance, pvart. In contrast, we use a projection of rvart onto lagged several

variables to identify pvart. The last column of Panel B show that the variance premium measured
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as in Bollerslev, Tauchen and Zhou (2009) indeed significantly predicts equity returns for our sample.

Our structural model generates a modest amount of return predictability. We report the model-

implied projection coefficients in brackets above the sample coefficients. All the signs are the same,

but the magnitudes are somewhat smaller than in the data.

Panel B reports the expression for the equity premium in terms of the fundamental state variables

and the model implied R2, which is very modest at 25 basis points. Given the lack of strong

predictability in the data, this would appear to be realistic. Nevertheless, the conditional Sharpe

ratio for equity, the ratio of the conditional expected excess return to the conditional volatility, does

vary substantially through time. Figure 4 plots the Sharpe ratio as a function of nt and pt. The

Sharpe ratio is not very sensitive to pt, and mostly remains well below an annualized 28 percent.

However, the conditional Sharpe ratio is very sensitive to shocks to nt and can become as high as

45% when nt exceeds 0.13, about twice its unconditional mean. Because this happens infrequently

and in relatively bad times, the BEGE model’s implications for the Sharpe ratio are potentially

consistent with recent evidence on the counter-cyclical and rare occurrence of return predictability

(see Henkel, Martin and Nardari (2009)).

5.5 Higher order risk-neutral return moments

We have already shown in Table 4 that our model generates a positive variance risk premium,

perhaps the most celebrated stylized fact about the risk-neutral distribution of equity returns. In

Table 7, Panel A, we report some descriptive statistics for the higher order moments as well. These

are the return distribution statistics under the model when the state vector is at its unconditional

mean. Note that none of these moments were fit as part of the estimation. Moreover, the sample

data to which we compare our model’s implications are estimated by Figlewski (2009) from another

data source. Figlewski uses option price data to empirically identify the complete risk-neutral

distribution of returns for the S&P 500 over a time span similar to ours.14 The model’s implied

risk-neutral skewness and kurtosis both suggest unrealistically large departures from normality when

the state vector is at its unconditional mean. It is conceivable that this poor fit arises because the

model tries to simultaneously explain quite benign consumption growth data and fairly dramatic

asset price movements. We revisit these statistics when we re-estimate the BEGE model using

alternative consumption statistics that are based on a longer consumption sample in Section 6.1.

14However, Figlewski uses 90-day options whereas we model 30-day options. We ignore the potential difference
implied by the maturity difference for risk-neutral skewness and kurtosis.
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In panel B, we report the correlation of changes in the risk neutral variance of returns with

realized equity returns. The contemporaneous correlation in the data is significantly negative,

which is matched quite well by the model. Further, because the change in risk-neutral variance

is persistent, returns do not significantly forecast any subsequent changes in risk-neutral volatility.

This feature of the data is also well-matched by the model.

Overall, Table 7 suggests a good fit between the BEGE model and the most salient stylized facts

about the risk-neutral distribution of returns from the options pricing literature.

6 Robustness checks and model extensions

In this section, we first consider the problem that while sample only starts in 1990 because of the

availability of the VIX data, consumption nonlinearities, the heart of the BEGE model, are much

more evident in earlier time periods. Then, we describe a relatively straightforward extension to

the current model that may further improve the fit with the data along some dimensions that are

not the primary focus of this article.

6.1 A Longer-term perspective on consumption nonlinearities

Our main monthly data set, which extends from January 1990 through March 2009, covers a rela-

tively mild period for consumption growth. Even the last twelve months of consumption growth,

in the thick of the financial crisis of 2008 and 2009, show consumption falling only by about 4 basis

points per month on average with volatility for the last 12 months of 33 basis points — just a bit

higher than the overall sample volatility. Meanwhile, the upheaval in asset prices in 2008 and

2009 is more reminiscent of return dynamics during the Great Depression. Of course, it is possible

that asset prices are simply foretelling more dramatic consumption dynamics (yet to come). It is

reasonable, however, to ask whether our model results would differ materially if we instead took a

longer view of consumption dynamics (it is not possible to examine asset price dynamics used in this

paper over a longer sample given the limited availability of the VIX). For example, investors may

have long placed some probability, albeit small, on the return of a regime like the Great Depression,

but that belief is surely not represented by the statistics about vct and sct reported in Table 2 since

they are based on very modest consumption dynamics exhibited in the 1990’s. It follows that the

preference parameters we estimate in Table 3 may also not be representative of investors’ true pref-

erences. This might also explain why the model has some trouble generating enough volatility in
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pvart under the physical measure (see Table 3) and why the model-implied skewness and kurtosis of

the risk-neutral return density is so extreme in Table 7. To explore this issue, we first characterize

consumption dynamics over a much longer time-span that encompasses the Great Depression. We

then inject these consumption dynamics into our framework, and ask whether our structural model

estimates differ materially from our main estimation.15

The monthly consumption source data used in this study extends back only to 1959. However,

annual consumption data is available back to 1929 from the BEA in the NIPA accounts. To estimate

monthly consumption dynamics back to the Great Depression era, we must interpolate intra-year

consumption growth using another data source. The appendix shows how we use a bootstrapping

procedure to sample from monthly consumption dynamics back to 1926 using the monthly growth

rate of industrial production (which is available back to 1919) as an instrument. Based on these

draws, we calculate bootstrapped statistics for ∆ct, vct, and sct in the same manner as we did for

the short sample.

The median outcome for these statistics and standard errors over 10,000 draws are reported in

Panel A of Table 8. The unconditional sample statistics for consumption growth are not too different

from those for the short sample reported in Table 2, except that, not surprisingly, the volatility of

consumption growth is higher in the longer sample. However, the properties of vct and sct are

much more extreme. The column labeled pvals reports the median p-value for the significance of

the regressions estimating vct and sct. The mean and volatility of vct are about three times higher

for the long sample than the short one. For sct we find a much more negative unconditional mean

and nearly fives times as much volatility. Figure 5 plots the median draw of vct and sct for the full

sample. Not surprisingly, the more extreme consumption dynamics arise from the inclusion of the

Great Depression in the long sample. However, the recent values taken on by vct and sct are more

dramatic than any other economic downturn since the 1930’s.

In Panel B of Table 8, we report results for the structural parameter estimates once we have

replaced the sample statistics for ∆ct, vct and sct for those reported in Panel A of Table 8 using the

long sample. All the other sample statistics to be matched remain the same (as reported in Tables 1

and 2). The structural model parameters are qualitatively similar to those in Table 3. In particular,

the qt dynamics are quite similar. Moreover, we find that pt still has a large mean, indicating that

ωp,t shocks are typically quite Gaussian. However, nt has significantly higher variance under the

15This is similar in spirit to the efforts of Barro, Nakamura, Steinsson and Ursua (2009) to obtain better estimates
for the fundamentals of a rare disasters model using a large panel of cross-country data.
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new parameters so that it is a more important driver of asset prices, and its mean is larger, suggesting

it features less severe departures from normality than it did in the main estimation Unfortunately,

we no longer find σqp < 0, suggesting that positive consumption shocks sometimes do not reduce

risk aversion, which is inconsistent with the notion of habit. However, σqn is still quite large and

positive, as before. The model retains the ability to fit all the asset price data quite closely and

we do not report detailed statistics. Notably, with the more dramatic consumption dynamics, the

model is now able to match the volatility of pvart much more closely. One notable failure of this

estimation is that the model does not match the correlation between changes in pvart and vpremt.

This is occurring because nt is the overwhelming driver of both pvart and vpremt. In Panel A of

Table 8, we also report the model statistics for consumption dynamics. The model also fits the sct

statistics somewhat more closely, but it still cannot generate enough volatility in sct. The other

characteristics of vct and sct are fit near-perfectly.

For brevity, we do not reproduce the full set of model-implied dynamics analysis as we did for the

main model in Tables 5 and 6. The results for the alternative estimation are quite similar. However,

we do report the model’s implications for the risk-neutral density of returns under the alternative

estimation in Table 7. Note that under the alternate estimation, the model generates more modest

mean risk-neutral conditional skewness and kurtosis of returns of −3.5 and 27.5 respectively. These

values are quite close those reported by Figlewski (2009). However, the model does generate too

much (negative) correlation between returns and changes in qvart in the alternate estimation.

In summary, some of the few unrealistic features of the BEGE model reported for the main

estimation are ameliorated when taking a longer view of consumption dynamics. In particular, the

model matches option price data more closely. This is indirect evidence that the Great Depression

and other periods of severe economic stress leave a lasting imprint on asset prices.

6.2 Model Extension

In presenting the BEGE model, we tried to stay as close as possible to the set-up in Campbell and

Cochrane (1999), but introduced nonlinearities to allow the model to better fit option price dynamics.

While the model is clearly successful in that dimension, it is too restrictive to match other salient

features of the equity and risk free rate data. Specifically, we did not allow for conditional mean

dynamics in the consumption growth process, and to model equity prices we priced a consumption

claim as opposed to modelling equity dividends. This makes it harder to generate “flight-to-safety”

effects, where bad consumption shocks cause interest rates to drop through a precautionary savings
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effect, while simultaneously making equities riskier and decreasing equity prices. With the current

specification, we have essentially precluded the latter channel, as our equity claim is a claim to

consumption, and there are no intricate cash flow dynamics present in the model.

It is rather straightforward to incorporate a more realistic dividend process, as shown by the

following example. Instead of assuming that dividends equal consumption, assume that the loga-

rithmic dividend-consumption ratio depends on pt and nt:

dt − ct = dc+ κdppt + κdnnt (34)

where dt is the log level of dividends, and dc, κdp, and κdn are parameters. Clearly, the dividend-

consumption ratio is stationary under this specification, but may vary over the business cycle. The

following lemma describes equity prices with this extension

For the economy described by Equations (1) through (11), and (34) the price-dividend ratio of
equity is given by

Pt
Dt

=
∞X
n=1

exp
³ bAi + bBipt + bCint + bDiqt

´
(35)

where the initial values of the parameter sequence are given by

bA1 = [κdpp+ κdnn] + lnβ + (1− γ) g + γ
¡
1− ρq

¢
qbB1 = £κdp ¡ρp − 1− σpp

¢¤
− ap − σcp − ln (1− [κdpσpp]− ap − σcp)bC1 = [κdn (ρn − 1− σnn)]− an + σcn − ln (1− [κdnσnn]− an + σcn)bD1 = γ

¡
ρqq − 1

¢
where the functions providing the coefficients for n ≥ 2 are represented by

bAi = bAi−1 + bBi−1μp + bCi−1μc + bDi−1μqbBi ≡
³£
κdp

¡
ρp − 1− σpp

¢¤
− ap − σcp + bBi−1

¡
ρp − σpp

¢
− bDi−1σqp

´
− ln

³
1− [κdpσpp]− ap − σcp − bBi−1σpp − bDi−1σqp

´
bCi ≡

³
[κdn (ρn − 1− σnn)]− an + σcn + bCi−1 (ρn − σnn)− bDi−1σqn

´
− ln

³
1− [κdnσnn]− an + σcp − bCi−1σnn − bDi−1σqn

´
bDi ≡ bD1 + bDi−1ρqq

The terms that are new relative to the equity pricing result in Section 2 are highlighted in brackets.

They reflect pure cash-flow effects, and to the extent that pt and nt affect cash-flow expectations,

they will drive a wedge between equity prices and the price of the real consol. We defer estimating

such a model to future work.
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7 Conclusion

We have presented a new framework to model economic shocks. In our BEGE framework, there are

two types of shocks: good environment shocks, which are positively skewed, and bad environment

shocks, which are negatively skewed. Using this simple device and the convenience of gamma distrib-

utions, we can generate non-linear dynamics in a very tractable fashion. In this paper, we appended

the BEGE technology to the well-known Campbell—Cochrane (1999) model. We demonstrate that

the model fits the data very well, and fits features of the data that the Campbell-Cochrane model

cannot fit, such as the conditional variance dynamics of equity returns, the variance premium, and

other features of the risk-neutral distribution of returns which have received a lot of recent attention.

We do not want to propose the particular model explored in this paper as the new paradigm.

Many realistic features are missing. The recent crisis reinforces the potential importance of Knightian

uncertainty (see Drechsler (2009) and Epstein and Schneider (2007) for recent efforts) and learn-

ing (see Veronesi (1999) for example) for understanding the joint dynamics of asset returns and

fundamentals. Nevertheless, we feel that the technology introduced here can be very helpful to

make headway in formulating models that break the curse of Gaussianity in a tractable fashion.

In particular, a very useful extension of our model would be to add a time —varying mean to the

consumption growth process as in Bansal and Yaron (2004). The main advantage of such a model

is that it allows expectations about the future state of the economy to be priced in financial mar-

ket data. The current crisis again shows that anticipation of future bad economic conditions has

marked implications on asset prices, yet, in our Campbell-Cochrane specification, fundamentals are

only driven by ex-post shocks. That said, recent work by Beeler and Campbell (2008) shows that

a Campbell-Cochrane specification may be more consistent with the joint dynamics of stock prices

and consumption growth than a "long-run risk" model as in Bansal and Yaron (2004).

Moreover, the sample used in this article only witnessed a few mild recessions, with the current

crisis likely not yet fully reflected in the data. A richer picture of the distribution of economic con-

ditions can be gleaned using longer consumption growth data as is in the previous section, or from

contemporaneous survey data. From the Survey of Professional Forecasters we can estimate the

entire conditional distribution of real GDP growth. To do so, we combine information about proba-

bilities from the survey with long-term data on GDP growth to compute the first three uncentered

moments of real GDP growth (see the appendix for more details). Shaliastovich (2009) uses similar

data to model expected consumption growth in a long-run risk model. Figure 6 plots the centered
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conditional moments of fundamentals growth based on the survey data using the methodology de-

scribed in the appendix. While they refer to GDP, it is likely that the conditional distribution

of real consumption growth follows similar patterns. The top panel plots the time series for the

conditional mean of GDP growth. While the conditional mean typically fluctuates in a narrow band

between 2 and 4 percent, low expected growth is evident around the recessions in the early 1990s,

early 2000s and in early 2008. Moreover, in an exercise similar to that conducted for Table 2, we

project these conditional moments on asset prices (the dividend yield, VIX, etc). The regressions

overwhelmingly reject the null that there is no dependence between of the conditional second and

third moments of GDP growth and asset prices. The middle panels plot the time-series of the

conditional variance and volatility of growth. The decline in volatility previously referred to as

the Great Moderation from the early 1980’s through 2007 is clearly evident. However, the recent

spike in volatility is near the all-time high for the series. The bottom two panels plot the uncen-

tered third conditional moment of growth and conditional skewness. The conditional skewness plot

shows interesting variation, with long periods of both positive and negative skewness. In particular,

positive skewness which emerged in the early 2000s has given way to deeply negative skewness in

2008 and 2009. Overall, we interpret these results as consistent with strong time-variation in the

higher-order moments of fundamentals growth over the business cycle. This is exactly the kind of

variation we hope to capture with he BEGE model developed in this article. In the future, we hope

to incorporate the survey data into a similar BEGE framework.

Our work is related to but quite different from Drechsler and Yaron (2009) and Bollerslev,

Tauchen and Zhou (2009). Both articles feature equilibrium economies to attempt to explain the

variance premium and its dynamics. Drechsler and Yaron essentially add jumps to the consumption

growth technology in Bansal and Yaron (2004), whereas Bollerslev, Tauchen and Zhou introduce

stochastic volatility of volatility of consumption growth in an Epstein-Zin (1989) framework. Neither

article estimates structural parameters or comes as close as the BEGE model to fitting such a wide

set of stylized facts.
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8 Appendix

8.1 The General Model

We can write our model is general terms as follows

Yt+1 = μ+AYt +ΣHεt+1 +ΣFωt+1 (36)

Where Yt(nx1) is the state vector, μ(nx1) is the associated mean parameter vector, A(nxn) is a
transition parameter matrix, ΣH(nxq) is the conditional volatility matrix for normally-distributed
shocks, εt+1(qx1), and ΣF (nxp) is the conditional volatility matrix for the gamma-distributed shocks,
ωt+1(px1). The specific distributional assumptions for the shocks are

εit+1 ∼ N (0, 1) , i = 1, ..., q

ωit+1 ∼ Γ
¡
kit, 1

¢
− kit, kt = ΦYt, i = 1, ..., p (37)

and all the shocks are independent. The additive term in the ωit+1 definition, −kit, sets the mean
of the shock to zero. The parameter matrix Φ(pxn) is comprised of only zeros and ones and selects
which elements of Yt determine the "shape" parameter of each ωit+1 shock.

16 Let v be a (nx1)
parameter vector. For our main model, Yt = [pt, nt,∆ct, qt]

0, and the system matrices are:

μ =
£¡
1− ρp

¢
p, (1− ρn)n, g,

¡
1− ρq

¢
q
¤0

A = diag
¡£
ρp, ρn, 0, ρq

¤¢
,ΣH = 0

ΣF =

⎡⎢⎢⎣
σpp 0
0 σnn
σcp −σcn
σqp σqn

⎤⎥⎥⎦ ,Φ = ∙ 1 0 0 0
0 1 0 0

¸
(38)

The moment generating function of Yt+1 is given by Lemma 1.

Lemma 1 For the random variable Yt in Equation (36) the conditional expectation of an exponential-
affine function of the state vector,Et [exp (v

0Yt+1)],where v is a vector of constants (that is, the
moment generating function under the physical probability measure), is given by

Et [exp (v
0Yt+1)] = exp (v0μ+ v0AYt)Et [exp (v

0ΣHεt+1)]Et [exp (v
0ΣFωt+1)]

= exp

µ
v0μ+ v0AYt +

1

2
v0ΣHΣ

0
Hv − (v0ΣF + ln (1− v0ΣF ))ΦYt

¶
The physical measures of the expectation and variance of v0Yt+1 are defined, respectively, as

d

ds
[Et [exp (sv

0Yt+1)]]s=0

d2

ds2
[Et [exp (sv

0Yt+1)]]s=0 (39)

And are given by:

Et [v
0Yt+1] = v0μ+ v0AYt

Vt [v
0Yt+1] = v0ΣHΣ

0
Hv + (v

0ΣF )
·2
ΦYt

16 For a Γ (k, 1) distribution, the mean equals k, the variance equals parameter, k, the skewness is 2/
√
k, and the

kurtosis is 6/k. The moment generating function is: MGFm = Et [exp (mΓ (k, 1))] = exp (−k ln (1−m)). The
MGF is undefined for m > 1.

30



where a·n denotes the element-by-element exponentiation. For the third and fourth centered mo-
ments, straightforward calculations yield,

Et

h
(v0Yt+1)

3 −Et [(v
0Yt+1)]

3
i
= 2 (v0ΣF )

·3
ΦYt

Et

h
(v0Yt+1)

4 −Et [(v
0Yt+1)]

4
i
− 3Vt [v0Yt+1]2 = 6 (v0ΣF )

·4
ΦYt

Lemma 2 For the random variable Yt in Equation (36), and a real pricing kernel, mt, that is affine
in current and lagged values of Yt:

mt = m0 +m0
1Yt +m0

2Yt−1, (40)

the conditional risk-neutral expectation of an exponential-affine function of the state vector is defined
as

EQ
t [exp (v

0Yt+1)] ≡ Et [exp (mt+1)]
−1Et [exp (mt+1 + v0Yt+1)] (41)

and is given, using Lemma 1, by

EQ
t [exp (v

0Yt+1)]

= exp

µ
v0μ+ v0AYt +

1

2
v0ΣHΣ

0
Hv +m0

1ΣHΣ
0
Hv −

µ
v0ΣF + ln

µ
1− · v0ΣF

1−m0
1ΣF

¶¶
ΦYt

¶
(42)

where ·ab denotes element-by-element division. Moreover, EQ
t [exp (sv

0Yt+1)] is the risk-neutral
moment generating function for v0Yt+1. The risk neutral first and second moments of v0Yt+1 can
be found, respectively, by evaluating

d

ds

h
EQ
t [exp (sv

0Yt+1)]
i
s=0

d2

ds2

h
EQ
t [exp (sv

0Yt+1)]
i
s=0

(43)

Upon evaluation, these reduce to:

EQ
t [v

0Yt+1] = v0μ+ v0AYt +m0
1ΣHΣ

0
Hv +

µ
−v0ΣF + ·

v0ΣF
1−m0

1ΣF

¶
ΦYt

V Q
t [v0Yt+1] = v0ΣHΣ

0
Hv +

µ
· v0ΣF
1−m0

1ΣF

¶·2
ΦYt

For the third and fourth centered moments, straightforward calculations yield,

EQ
t

h
(v0Yt+1)

3 −EQ
t [(v

0Yt+1)]
3
i
= 2

µ
· v0ΣF
1−m0

1ΣF

¶·3
ΦYt

EQ
t

h
(v0Yt+1)

4 −EQ
t [(v

0Yt+1)]
4
i
− 3V Q

t [v0Yt+1]
2
= 6

µ
· v0ΣF
1−m0

1ΣF

¶·4
ΦYt

8.2 Unconditional moments of the state vector and endogenous variables

To calculate the unconditional moments of Yt, we proceed as follows using the law of iterated
expectations,

E
£
Y n
t+1

¤
= E

£
Et

£
e0Y n

t+1

¤¤
(44)

where e is a vector selecting the appropriate element of Yt. The inner expectation can be solved by
recalling that Lemma 1 provides the moment-generating function for elements of Yt. That is, by
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evaluating derivatives of Et [exp (tYt+1)] :

Et

£
Y n
t+1

¤
=

∂n

∂mn
Et [exp (me0Yt+1)] |m=0 (45)

Brute force algebra yields,

Et

£
e0Y 1

t+1

¤
= e0μ+ e0AYt

Et

h
e0 (Yt+1 − EtYt+1)

2
i
= e0ΣHΣ

0
He+ (e

0ΣF )
·2
ΦFYt ≡ V e2t

Et

h
e0 (Yt+1 − EtYt+1)

3
i
= 2 (e0ΣF )

·3
ΦFYt

Et

h
e0 (Yt+1 −EtYt+1)

4
i
− 3V e2t = (e0ΣF )

·4
ΦFYt (46)

all of which are linear in the state vector. To calculate unconditional moments, we simple condition
down, replacing Yt with Y in the above equations. All the asset prices and other endogenous
variables in the model are linear functions of Yt This is trivially true for ∆ct, and be seen in
equations 4,16,22,53,24, and 27 for the other variables. For any endogenous variable affine in Yt,
it’s unconditional moments follow trivially from the above equation. It follows that the unconditional
moments of all the endogenous variables are nonlinear functions of the deep model parameters.

8.3 Log Linear Approximation of Equity Prices

In the estimation, we use a linear approximation to the price-dividend ratio. From Equation (??),
we see that the price dividend ratio is given by

Pt
Dt

=
∞X
i=1

q0i,t

=
∞X
i=1

exp
¡
b0i + b0iYt

¢
(47)

where Yt = [pt, nt, qt] , b0i = eAi and bi =
h eBi, eCi, eDi

i
with the coefficient sequences given in the text.

We seek to approximate the log price-dividend ratio using a first order Taylor approximation of Yt
about Y , the unconditional mean of Yt. Let

q0i = exp
¡
b0i + b0iY

¢
(48)

and note that
∂

∂Yt

Ã ∞X
i=1

q0i,t

!
=
∞X
i=1

∂

∂Yt
q0i,t =

∞X
i=1

q0i,t · b0i (49)

Approximating,

pdt ' ln
Ã ∞X
i=1

q0i

!
+

1P∞
i=1 q

0
i

Ã ∞X
i=1

q0i · b0i

!¡
Yt − Y

¢
= d0 + d01Yt (50)
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where d0 and d0 are implicitly defined. Similarly,

gpdt ≡ ln
µ
1 +

Pt
Dt

¶
' ln

Ã
1 +

∞X
i=1

q0i

!
+

1

1 +
P∞

i=1 q
0
i

Ã ∞X
n=1

q0i · b0i

!¡
Yt − Y

¢
= h0 + h01Yt (51)

where h0 and h0 are implicitly defined. Note also that the dividend yield measure used in this study
can be expressed as follows

dpt ≡ ln
µ
1 +

Dt

Pt

¶
= gpdt − pdt (52)

so that it is also linear in the state vector under these approximations. Also, log equity returns can
be represented follows. Using the definition of excess equity returns,

rett+1 = −pdt +∆ct+1 + gpdt+1

∼ (h0 − d0) + (e
0
c + h01)Yt+1 − d01Yt

= r0 + r01Yt+1 + r02Yt (53)

where r0, r01 and r02 are implicitly defined.

8.4 CMD Asymptotics

First note that the first order condition for our optimization is,

bH 0cW−1 nbp− h
³bθ´o = 0. (54)

where bH = ∇θh
³bθ´ is the Jacobian of h (θ) estimated at bθ. Second, using a standard mean value

expansion,

h
³bθ´ = h (θ0) +H0

³bθ − θ0

´
. (55)

where H0 = ∇θh (θ0) is the gradient of h (θ) at the true parameter value. Combining Equations
(54) and (55), we have,

√
TH 0

0
cW−1H0

³bθ − θ0

´
=
√
TH 0

0
cW−1 ³bθ − p0

´
(56)

so that under the usual arguments, the limiting distribution of the structural parameters is,

√
T
³bθ − θ0

´
∼ N

³
0,cVθ´ (57)

where cVθ = ³cM−1 bH 0cW−1 bVcW−1 bHcM−1´, and cM = bH 0cW−1 bH.
8.4.1 Overidentification Test

Under efficient CMD, a simple overidentification test is available,

T
nbp− h

³bθ´o bV −1 nbp− h
³bθ´o ∼ χ2ns−np (58)

where ns and nθ are the size of bp and bθ respectively. Under an alternative weighting matrix such as
ours, a similar test statistic is available, but its distribution is different. To establish the distribution
of nbp− h

³bθ´ocW−1 nbp− h
³bθ´o , (59)
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for cW−1 6= bV −1, we follow Jagannathan and Wang (1996, JW henceforth). From the previous
subsection,

√
T
nbp− h

³bθ´o =
√
T bp−√T ³h (θ0) +H0

³bθ − θ0

´´
(60)

=
√
T

µ
I −H0

³
H 0
0
cW−1H0

´−1
H 0
0
cW−1¶ (bp− p0) (61)

substitution into the objective function and rearrangement yields,

T ·Obj =
√
T (bp− p0)

0
µcW−1 −cW−1H0

³
H 0
0
cW−1H0

´−1
H 0
0
cW−1¶√T (bp− p0) (62)

= Z0
µcW−1 −cW−1H0

³
H 0
0
cW−1H0

´−1
H 0
0
cW−1¶Z (63)

where Z is an ns dimensional random vector of normal distribution with zero mean and covariance
matrix bV . Defining Z = bV 1/2z where bV 1/2 is the lower triangular Cholesky decomposition of we bV
and z ∼ N (0, I), we obtain,

T ·Obj = z0Az (64)

where A = bV 1/2cW−1/2µI −cW−1/20 bH ³ bH 0cW−1 bH´−1 bH 0cW−1/2¶cW−1/20 bV 1/20. JW show that A

has (np− ns) positive eigenvalues. Moreover, z0Az is easily simulated to derive critical values for
T ·Obj.

8.5 Sampling monthly consumption data from 1926-1959

To begin, using the full monthly sample of consumption data spanning 1959-2008, we first demean
both consumption and IP growth rates by their respective year-by-year average growth rates, denoted
∆cat and ∆ipat respectively. Then, we regress the demeaned consumption series on leads and lags
of the demeaned IP series . Specifically, we use the following regression model:

(∆ct −∆cat) = b0 (∆ipt −∆ipat) +
lagsX
i=1

blagi (∆ipt−i −∆ipat−i) +
leadsX
i=1

bleadi (∆ipt+i −∆ipat+i) + εt

(65)
We examined lead and lag lengths up to 4 months, but the usual BIC and AIC criteria both select one
lag and no leads. Adopting this recommendation, estimation of this regression yields bb0 = 0.0556
and bblag1 = −0.0380, with only the former statistically different from zero. While the R2 from the
model is modest (1.5 percent), it is only used to model the intra-year consumption growth variations
pattern is available in the IP data. Specifically, we create draws for the monthly consumption series
from 1929-1958 as follows

∆cdrawt = ∆cat +bb0 (∆ipt −∆ipat) +bblag1 (∆ipt−1 −∆ipat−1) + εdrawt (66)

where we draw εdrawt from a normal distribution with zero mean and variance equal to the sample
variance of the residual, εt. Given a draw ∆cdrawt , we splice it with the actual consumption data
from 1959-2008, and proceed to calculate vcdrawt and scdrawt using the same methods as outlined in
Section 2 for the shorter consumption series.17 Finally, for each draw, we calculate sample statistics
(and standard errors) for ∆cdrawt , vcdrawt and scdrawt exactly as in Section 2.

17The available asset prices for the vct and sct projections are different, however, for the longer sample. We use the
dividend yield, AAA and BAA corporate bond rates, and a measure of rvart that is based on squared daily returns.
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8.6 Survey data

We utilize survey data available from the Survey of Professional Forecasters currently conducted by
the Federal Reserve Bank of Philadelphia. The data is available at the quarterly frequency. First,
we use the one-quarter ahead GDP deflator inflation forecast from the SPF to deflate rft to form
a measure of the risk free rate, rrft, maintaining the assuming that the inflation risk premium is
zero at the quarterly horizon. The expected inflation data is available from the start of the SPF
in 1968Q4. We also use the conditional distribution of four-quarter real GDP growth . Since
1981Q3, the SPF has asked respondents to fill in probabilities for histograms over real GDP growth
outcomes for the coming year.18 For instance, respondents are asked to fill in the probability that
real GDP growth over the next year will fall into the "zero-to-one percent" bin. Unfortunately,
the bins’ boundaries have not been stable over the history of the SPF. To deal with this, we create
"uber-bins" to which we can consistently assign probability from all the surveys. For instance, if a
particular survey asked for separate probabilities for "zero-to-one" and "one-to-two" percent growth,
we sum these probabilities for the "zero-to-two" uber-bin. For each uber-bin, we calculate the first,
second and third uncentered empirical moments using historical US annual real GDP growth data
from 1930-2008. For instance, conditional on GDP growth being less than −0.02, the first, second
and third uncentered moments of historical GDP growth are −0.09 , 0.102 and −0.103 respectively.
The below table summarizes these statistics for all the uber-bins.

(−∞,−0.02] (−0.02, 0.00) [0.00, 0.02) [0.02, 0.04] (0.04, 0.06) [0.06,∞)
Et [gt+1] −0.09 −0.01 0.01 0.03 0.05 0.10

Et

£
g2t+1

¤1/2
0.10 0.01 0.01 0.03 0.05 0.10

|Et

£
g3t+1

¤
|1/3 0.10 0.01 0.01 0.03 0.05 0.11

We use these conditional expectations together with the cross-sectional mean probabilities attached
to each of the uber-bin to calculate the first three uncentered moments for the full distribution as:

Et

£
git+1

¤
=

4X
b=1

probt (bin = b) ·Et

£
git+1|bin = b

¤
(67)

where the summation runs over the six uber-bins shown in the above table and probt (bin = b) is
the cross-sectional mean probability attached to bin b in the survey dated t.

18 In actuality, the SPF asks for separate histograms for the current and following calendar years. To avoid
seasonality and to roughly maintain a 1-year-ahead forecast horizon, we use a weighted average of the probabilities in
the current and next calendar year. For first quarter surveys, we assign the full weight to the current year forecast.
For second quarter surveys, we assign three-quarters weight to the current calendar year and one-quarter to the next
calendar year, etc.
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Table 1: Key Sample Statistics

Basic monthly series
∆ct rrft dpt rett pvart qvart qvart − pvart

mean 0.0025 0.0010 −6.3948 0.0037 0.0021 0.0038 0.0017
(0.0002) (0.0003) (0.0941) (0.0042) (0.0005) (0.0006) (0.0002)

std 0.0028 0.0012 0.3375 0.0433 0.0028 0.0037 0.0013
(0.0002) (0.0001) (0.0410) (0.0045) (0.0008) (0.0009) (0.0001)

ac(1) −0.1947 0.9839 0.9830 0.0612 0.7584 0.7599 0.8008
(0.0941) (0.1666) (0.2214) (0.0976) (0.0869) (0.0635) (0.0909)

skew(∆ct) −0.1116 kurt(∆ct) 3.7293
(0.1924) (0.2964)

Data are monthly from January 1990 through March 2009. All variables are expressed at a monthly
rate. The variables include real nondurables and services consumption growth, ∆ct, the real short rate,
rrft, the logarithmic dividend yield, dpt, equity returns, rett, the conditional variance of returns under the
physical and risk-neutral measures, pvart and qvart respectively, and the variance premium, qvart−pvart.
GMM standard errors using 20 Newey-West (1987) lags are reported in parentheses.
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Table 2: Estimating Higher Order Consumption Growth Dynamics

Panel A: Spanning higher ∆ct conditional moments

pvals mean std ac(1)
vct

¡
×104

¢
(0.0002) 0.0784 0.0330 0.7791

(0.0062) (0.0063) (0.0971)
sct

¡
×108

¢
(0.0002) −0.1851 3.1936 0.7599

(0.5420) (0.6286) (0.0537)

Panel B: Correlations with higher ∆ct moments

rrft dpt pvart qvart
vct −0.3412 0.0145 0.8602 0.9268

(0.1228) (0.1904) (0.0247) (0.0244)
sct 0.4325 −0.4174 −0.7199 −0.6984

(0.1077) (0.1036) (0.1686) (0.1742)

In this table, we present results for the following system of regressions:

∆ct+1 = g + u1t+1

(∆ct+1 − g)2 = m2 + x0tβ2 + u2t+1

(∆ct+1 − g)
3
= m3 + x0tβ3 + u3t+1

and we take the fitted conditional variance and centered third moment to be, respectively,

vct = m2 + x0tβ2 (68)

sct = m3 + x0tβ3

The top row of Panel A reports the p-value for the joint significance of β2 and the second row reports the joint
significance for β3. The standard errors use 3 Newey-West (1987) lags. xt includes the real short rate, rrft,
the dividend yield, dpt, physical and risk-neutral variance measures, pvart and qvart, and exponentially-
weighted (with parameter 0.1) moving averages of squared and cubed (demeaned) consumption growth. The
subsequent columns report some sample statistics for vct and sct with GMM standard errors in parentheses.
These standard errors use 20 Newey-West (1987) lags, but do not correct for first-stage estimation error in
the β0s. Panel B reports correlations of vct and sct with some of the instruments.
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Table 3: Structural Model Estimates

pt p 26.4742 ρp 0.6445 σpp 2.2556
(15.6575) (0.1138) (1.1517)

nt n 0.0659 ρn 0.9955 σnn 0.0190
(0.0132) (0.0055) (0.0141)

∆ct g 0.0026 σcp 0.0005 σcn 0.0033
(0.0002) (0.0001) (0.0003)

qt q 1.0000 ρq 0.9948 σqp −0.0018 σqn 0.1438
(fixed) (0.0017) (0.0006) (0.0288)

mt ln (β) −0.0003 γ 2.3241
(fixed) (0.7056)

Jstat 45.91
pval (0.0044)

The model being estimated is summarized by the equations

∆ct+1 = g + σcpωp,t+1 − σcnωn,t+1

pt = p+ ρp (pt − p) + σppωp,t

nt = n+ ρn (nt − n) + σnnωn,t

qt = q + ρq (qt−1 − q) + σqpωp,t + σqnωn,t

mt+1 = ln (β)− γ∆ct+1 + γ∆qt+1

Estimation uses the Classical Minimum Distance method using our monthly sample from Jan 1990 through
March 2009. Standard errors are in parentheses. The parameters matched by CMD are those in Table 1
and Panel A of Table 2. The Jstat statistic is the test of over-identifying restrictions, the distribution of
which is described in the Appendix.
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Table 4: Model Performance

Panel A: Key sample statistics
∆ct rrft dpt rett pvart qvart − pvart

mean [0.0026] [0.0009] [−6.4227] [0.0042] [0.0016] [0.0017]
0.0025 0.0010 −6.3948 0.0037 0.0021 0.0017
(0.0002) (0.0003) (0.0941) (0.0042) (0.0005) (0.0002)

std [0.0028] [0.0013] [0.3594] [0.0398] [0.0010] [0.0013]
0.0028 0.0012 0.3375 0.0433 0.0028 0.0013
(0.0002) (0.0001) (0.0410) (0.0045) (0.0008) (0.0001)

ac(1) [0.0000] [0.9726] [0.9944] [−0.0029] [0.9954] [0.6508]
−0.1947 0.9839 0.9830 0.0612 0.7584 0.6986
(0.0941) (0.1666) (0.2214) (0.0976) (0.0869) (0.1644)

skew(∆ct) [0.1254] kurt(∆ct) 3.9318 corr (∆pvart,∆vpremt) [0.5180]
−0.1101 3.7293 0.1529
(0.1924) (0.2964) (0.1922)

Panel B: Sample statistics for higher ∆ct moments
mean std ac(1)

vct
¡
x104

¢
[0.0774] [0.0408] [0.6508]
0.0784 0.0330 0.7791
(0.0062) (0.0063) (0.0971)

sct
¡
x108

¢
[0.2704] [0.5476] [0.7922]
−0.1851 3.1936 0.7599
(0.5420) (0.6286) (0.0537)

This table reports on the ability of the structural model and parameter estimates shown in Table 3 to
match the reduced-form statistics used in the CMD estimation. The model-implied statistics are shown in
square brackets. The sample statistics and corresponding standard errors are reproduced from Tables 1 and
2. Panel B reports on the model-implied versus sample statistics for the conditional variance and centered
third moment of consumption growth, vct and sct, respectively.
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Table 5: Factor Loadings

rrft dpt eqpremt pvart qvart − pvart
pt −0.0001 −0.00004 0.0001 0.0001 −0.00003
nt −0.0765 −5.1607 0.0448 0.0192 0.0252
qt 0.0120 1.6244 −0.0010 0.0000 0.0000

This table reports the loadings of various endogenous variables on the state vector, Yt = [pt, nt, qt]
0 for

the model and point estimates reported in Table 3.
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Table 6: Equity Return Predictability

Panel A: Return predictability in the model and data sample
rrft dpt qvart − cvart qvart − rvart

[0.4052] [0.0047] [1.5018] —
3.8341 0.0077 2.4373 3.3484

(2.4051) (0.0085) (2.2651) (1.3376)
sample R2 0.0110 0.0036 0.0051 0.0267

Panel B: Equity risk premium dynamics under the model

Et (rett+1 − rrft) V ARt (rett+1 − rrft)
V AR(Et(rett+1−rrft))
V AR(rett+1−rrft)

analytic 0.0011 + 0.0001pt + 0.0448nt − 0.0010qt 0.12e−4pt + 0.19
e−1nt

Yt = Y 0.0033 0.0016 0.0024

Panel A reports the univariate predictability of one-period head excess equity returns with respect to
instruments listed in columns. The coefficient implied by the model is listed first in square brackets; the
corresponding coefficient in the data sample, along with its OLS standard error (in parentheses) and the
associated R2 statistics are listed below. Panel B reports the dependence of the conditional mean and
variance of excess equity returns implied by the structural model at the parameters estimated in Table 4.
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Table 7: The Conditional Distribution of Equity Returns

Panel A: Univariate statistics for risk-neutral return moments

qvar
1/2
t qskt qktt

BEGE main estimation [0.20] [−6.6] [78.1]
Data 0.20 −2.4 20.5
BEGE long cons estimation {0.20} {−3.5} {27.5}

Panel B: Correlations: ∆qvart
rett rett−1

BEGE main estimation [−0.5141] [0.0027]
Data −0.6291 0.0748

(0.0759) (0.1000)
BEGE long cons estimation {−0.9991} {0.0024}

Panel A reports on the univariate properties of the higher order moments of returns under the risk-
neutral measures when the state vector is at its unconditional mean. The row labeled "Data" in Panel A
(only) reproduces results from Table 3 of Figlewski (2009). The bottom row reports BEGE model-implied
moments estimated using long-term consumption growth data as described in Section 6. Panel B reports
on the correlations with changes in the risk neutral variance and realized returns. In both panels, model-
implied moments are in brackets. Sample data are reported with GMM standard errors, when available,
(20 Newey West lags) below in parentheses.
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Table 8: Long-Term Perspective of Consumption Growth Dynamics

Panel A: Sample statistics for consumption growth

pvals mean std ac(1) skew kurt
∆ct [0.0027] [0.0047] [0.0000] [−0.1334] [4.2188]

0.0027 0.0046 0.0153 −0.1305 4.0214
(0.0003) (0.0002) (0.0714) (0.1569) (0.2847)

vct
¡
×104

¢
[0.2200] [0.1205] [0.9847]

(< 0.0001) 0.2155 0.1183 0.9865
(0.0168) (0.0202) (0.0212)

sct
¡
×108

¢
[−1.3771] [4.7607] [0.9859]

(< 0.0001) −1.2999 14.0113 0.9757
(1.8820) (3.2215) (0.0191)

Panel B: Point Estimates

pt p 30.2652 ρp 0.9884 σpp 0.6069
nt n 0.2374 ρn 0.9859 σnn 0.0903
∆ct g 0.0027 σcp 0.0008 σcn 0.0044
qt q 1.0000 ρq 0.9898 σqp 0.0003 σqn 0.0783
mt ln (β) −0.0003 γ 2.6114

Panel A reports on the properties of monthly consumption growth based on a sample extending back to
1929. The text describes our methodology for sampling consumption data for this sample. The variables
vct and sct refer to the conditional second and third centered moments respectively. The statistics in square
brackets are the model-implied moments, computed using the structural parameters reported in Panel B.

This table reports results from calibration of the structural model using the longer-term consumption
data reported in Table 8. The model estimated is the same as reported in Table 3. In Panel A, we report
the calibrated statistics for the model.
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Figure 1: Examples of the BEGE distribution
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This figure plots BEGE densities under various configurations for pt, nt, σcp and σcn. All the distri-
butions have zero mean and standard deviation 0.0029. The parameter configurations for the lines are as
follows.

pt nt σcp σcn
black 40 40 0.0003 0.0003
red 2 2 0.0014 0.0014
green .4 3 0.0016 0.0016
blue 3 .4 0.0016 0.0016
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Figure 2: Estimated Log Density of ∆ct
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This figure plots the log density of (demeaned) monthly consumption growth under the BEGE model
estimates presented in Table 3. Each panel presents the log density at a different configuration of pt and
nt with each either at its model-implied median value, or its 95th percentile value. The quantiles of pt and
nt are determined by simulation. Also plotted are normal log densities with the same mean and variance
as the BEGE density for at each configuration of pt and nt.
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Figure 3: Impulse Responses under the Structural Model
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This figure shows the impulse response of rrft, dpt, pvart, and qvart − pvart to shocks to pt and
nt. For all variables, the units on the vertical axis are unconditional standard deviations. In all panels,
the shocks occur at month 1 and the horizontal axis runs from 0 months (prior to the shock) through 36
months. In the left column, impulse responses to 90th percentile shocks to pt and nt are reported. In the
right column, response to 99th percentile shocks are reported. For pt, the 90th and 99th percentile shock
values are 3.16 and 6.88 respectively. For nt the 90th and 99th percentile shock values are 0.025 and 1.074
respectively. Note that the scale in the bottom left panel has been expanded for visibility. The response of
each endogenous variable in j periods, izt+j , is given by

izt+j = hz

⎡⎣ ρp 0 0
0 ρn 0
0 0 ρq

⎤⎦j−1 ⎡⎣ σpp 0
0 σnn
σqp σqn

⎤⎦∙ ωp,t+1
ωn,t+1

¸

where hz is the loading of the variable on Yt = [pt, nt, qt] .
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Figure 4: Dependence of the Equity Conditional Sharpe Ratio
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This figure reports the monthly Sharpe ratio for one-month ahead equity returns under the structural
model and point estimates in Table 4 calculated as

Sharpe ratio =
Et [rett+1 − rrft]

V ARt [rett+1]
1/2
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Figure 5: Long-term perspective on Conditional Consumption Moments
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This figure presents the median draws of vct and sct as described in Section 6.
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Figure 6: Conditional Moments of real GDP Growth from Survey Data
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This figure presents the conditional expectation of four-quarter GDP growth from survey data in the
SPF. Data are quarterly from 1981Q1 through 2009Q1. The appendix describes the construction of these
series.
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