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Abstract—The growing popularity of multimedia streaming varying display capabilities of each user, we consider me-
applications brings a growth in diversity of media clients (aptops, dia packets with Multiple Distortion Measures [1]. Muligpl

PDAs, cellphones). Effectively serving this heterogenesugroup ; ; ; ; R
of users is highly desirable. Scalable media codecs such asDIStortlon Measures capture the varying display capasiit

H.264/MPEG-4 SVC help make this adaptation possible. To ac- of each user. Suppose we simultaneously stream an image or

count for the various capabilities and requests of each usesuch Video to users with Iarge displays_, such as laptop monitors,
as varying spatial or temporal resolutions, Multiple Distation as well as to users with small displays, such as cellphone

Measures (MDM) are considered [1]. Rather than consider a screens. The amount of distortion incurred with the loss of a
homogeneity in users, the MDM framework considers multiple packet will depend on the type of user. For instance, the loss

different distortion values for each media packet for each ger f ket which tains hiah f inf fi h
type. We consider the scenario of simultaneously broadcasg a of a packet which contains high frequency intormation, suc

video stream to multiple users over wireless links. The objeive @S texture in a sweater or grass in a field may result in high
is to design a scheduling algorithm which achieves the higse distortion incurred for a user with a large display. However

aggregate Quality-of-Service, measured by distortion andlelay, the loss of this packet may be negligible to a different user

over all different user types. We cast the problem as a stoclséic  pacayse the high frequency information cannot be displayed
shortest path problem and use Dynamic Programming to find the .
on the smaller display.

optimal policy. For statistically static channels, the optmal policy = o -
is shown to be of threshold type. For time-varying channels,  BY considering the viewing capabilities of each user when
a quasi-static policy is introduced. Experimental resultsshow making a scheduling decision, up4dB gains can be achieved

that our policy reduces distortion by up to a factor of 2 over in Multiple Distortion Measure aware embedded schedules
conventional approaches which do not consider MDM. [1]. Embedded schedules are schedules which incrementally
Index Terms—Multiple distortion measures, wireless schedul- add packets so that all packets in the schedule at Rate
ing, dynamic programming, multimedia streaming. are also included in the schedule at rate > R;. Embedded
schedules are useful because they make rate reductiotlgossi
by simply truncating the bitstream. It is most surprisingtth
distortion values associated with each packet vary greatly
In current media streaming systems, media is often simalepending on the type of consumer. A packet that is very
taneously streamed to users with various display capasilitimportant to a high resolution user can be virtually usetess
over different network conditions. Scalable media, such asdow resolution user. The disparities between packet gadfie
JPEG2000 [2] for images and H.264/MPEG-4 SVC [3] fogach user makes scheduling packets with Multiple Distortio
video, allows content providers to transmit and adapt miedia Measures an interesting problem.
different types of receivers by simply discarding packeese- In this paper, we examine a different streaming media
Distortion optimized scheduling has attracted a significascenario. We consider the case of a single wireless trans-
amount of attention (see [4] and related references) evenniitter broadcasting the same content to multiple receivers
the case of scalable media [5]. By prioritizing the diffedrerEach receiver may have a different distortion measure due
packets in an intelligent manner, the needs of all clients ct his display capabilities. In each time slot, the servesimu
be addressed to supply the best media content possible. determine whether to transmit the Head of Line (HOL) packet
Scalable media can be quickly and easily adapted to differ drop it. Dropping the packet will lead to incurred distont
ent user types. How to evaluate performance of a scalableeach user who has not yet received the packet and the
media system is examined in [1], [6]. To account for thamount of distortion will depend on the user type. Transngjtt
the packet may only benefit a subset of the users, depending
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munity has examined broadcast scheduling [7], [8], and [9]. [I. PROBLEM FORMULATION AND SETUP

This work focuses on generating near-optimal approximatio The problem we study is how to schedule media packets
algorithms for throughput maximization in wireless broasic given the diverse needs of individual users, which can be
scenarios. One significant distinction between these wamkis q;antified via Multiple Distortion Measures. We considez th
ours is that we consider stochastic channels where transny$eless broadcast scenario depicted in Fig. 1. A pre-eetod
sions are not guaranteed to be successful. Furthermore, Wgso stream is stored in a transmission buffer. In each time
account for differing prioritization of each packet to eacBjot ¢, the transmitter broadcasts a packet over a single channel
user, whereas these works consider the case where therﬁ‘eiéuency or CDMA code. All/ users are tuned to the same
no prioritization of packets or users. frequency/code and can potentially receive the broaddaste
Our model is closely related to existing models for cekacket. However, due to varying path loss and fading to each
tain broadcast scheduling applications; as an example [{ffer, the channel quality differs at each receiver. Theeefo
considers a multimedia broadcast problem where many USg{§ probability of successful reception may be different to
wish to simultaneously consume the same media streagdch usen c U = {1,2,...,U}. At the beginning of each
As is the case with many multimedia applications, latengyme sot, the transmitter must make a decision about thelHea
is an important Quality of Service aspect to address. Loyf | jne (HOL) packet: transmit or drop. That is, packets are
latency broadcast scheduling has been examined in [11] gaghsmitted according to a FIFO discipline and in each time
[12] among others. Our work differs from these in thadjot the dilemma is whether to serve the HOL packet by
we consider the uniq_ue properties o_f media Communicaﬂofé’iransmitting it or to service the following packet by dpy
where packet/frame importance varies between frames gt is possible to consider other service disciplinesyauer,
even across users. This work is similar in flavor to [13] angle will assume a First-In-First-Out discipline in our dission
[14]. In [13], backlog is used as a measure of the time Unf{ order to focus on the distortion versus delay tradeoff.
the transmission session completes and the transmissff@r buransmitting or retransmitting the packet makes it possiot
is emptied. However, backlog is a very coarse measure {pfers who have not yet received the HOL packet to receive
delay because two systems with the same backlog size, Rutjowever, retransmissions will induce delay for all athe
with dn‘_fergnt medla Importance, may result in very diffete ackets waiting in the transmission queue. By dropping the
transmission times and delays. For instance, a backlog oy packet, the next packet in the queue can be transmitted
packet can have zero delay if the distortion of that pack8t isang delay can be reduced. However, dropping a packet comes
and it is immediately dropped. On the other hand, a backlgg 5 cost. All users that have not received the packet that is
of 1 can have very high delay if the distortion of that packet iyropped will suffer an increase in media distortion. Theve i
extremely high and requires complete reception by all Usegfearly a tradeoff between incurring distortion versusagielt

possibly requiring many retransmissions, before conalgdijs this tradeoff which we will examine throughout this paper
the transmission session. As such, we propose to measure

delay by the average number of retransmissions performed pe
packet. In the case of periodic video traffic, this correglson Rx
to the average delay of each frame. In contrast to [14], we !

provide a more in depth look into the optimal scheduling ?)/

policy and further study the tradeoff between the distortio Rxy

and delay. In this paper, we introduce a knob to tune for a .

precise target frame rate. We include a new simulation study -

of these delay results as well as extend upon the previous

simulation scenarios. ?)/
Rx,,

The rest of the paper is as follows. In Section Il we formally
introduce the problem formulation for the broadcastingprorig. 1. Broadcasting media packets to multiple users.
lem we study. In Section Il we present an offline algorithm
to generate the optimal scheduling policy for a generalsclas
of networks. We cast the problem as a stochastic shortdst pat
problem and use Dynamic Programming to find the optim& \Mreless Channels
policy which is stored in a lookup table the transmitter refe  Wireless channels are generally modeled in one of two
to at each scheduling time slot. In Section IV we examingays—either by a time-varying bit-rate or by a time-varying
the optimal policy in the case of i.i.d Bernoulli packet less probability of successful transmission. We take the second
We show that the optimal policy is of threshold type and caapproach. We assume that in each time siptthe quality
be calculated online. In Section V we compare our Multiplef the wireless channel to each user, is characterized
Distortion Measure aware policy to standard policies whidhy the probability of successful transmission,(t). s.(t)
only consider a single distortion measure. Through sirmardat can be an arbitrary stochastic process. There has been a
results for actual H.264/MPEG-4 SVC encoded videos, vgibstantial amount of work to construct relialbdgnamic
show that up to3dB gains can be achieved by consideringhodels to describe this variability (for instance, see [a5{l
Multiple Distortion Measures when making scheduling decassociated work). Consequently, it is common to model the
sions. Finally, we conclude in Section VI. success probabilities via a Finite-State Markov Chain with



statesc, € C = {1,2,...,C} and transition probabilities Conventional media systems today do not account for
fromc € CY to ¢ € CY as qe. If c.(t) is the state of Multiple Distortion Measures, which leads to the question:
channelu in time slot¢ then the probability of successfulWhere do MDMs come from and how do we calculate
transmission to user is s, (t) = s, (c.(t)). We assume, after them? MDMs introduce multiple benchmarks against which
each transmission, acknowledgements are transmittedtbacko evaluate performance in order to enable more applicable
the server and this feedback is reliable. Therefore, theeserperformance metrics. A block diagram of how to generate
knows which users have and have not yet received the H®ultiple Distortion Measures can be seen in Fig. 2 for a

packet. more detailed description see [1]. We define By(X) a
_ _ _ _ _ transformation operator of media contenk’, for user typeu.
B. Distortion Costs: Multiple Distortion Measures A transformation converts media contekitinto a modified,

The objective of the transmitter is to minimize the totabenchmark version which user typewill view and consume
distortion of all receivers. Distortion can come in two farm the content. For example, this transformation could beiaipat
media (spatial) distortion and play out delay (temporal dislownsampling to convert our original benchmark imagg,
tortion). Hence forth, we will refer to distortion as the nieed into a low resolution benchmark imagdg, (X), if user typeu
distortion which is a measure of the fidelity of the displayewishes to view the image on a low resolution display. The
image or video and play out delay as the disruption due t@nsformation could also be a temporal downsampling or
late packets. We will assume that distortion is additiveoasr framerate conversion operation, such as frame droppinigein t
multiple dropped frames as in [16] and related works. Whileimplest case, to reduce the frame rate for video. Thergfore
there are more complex distortion models (see [17], [18B, t 7.(X) is the reference media against which performance
additive model is a commonly used model which is relativelgvaluation is measured for user Define 7; as the identity
simple and accurate, while also being tractable and weueelidransformation such thaf;(X) = X. There will be multiple
practical. In Section V we show evidence of the performané&nsformation operators—one corresponding to each yser t
of algorithms which use this model. It is also possible to These multiple benchmark images (one for each transfor-
model simple linear dependencies, which can be depictedragtion) are now used to calculate distortion values of recon
a tree structure, as will be seen in Section V. These typgsucted images—hence, Multiple Distortion Measures (DM
of dependencies often suffice in depicting accurate distort Let's defineDz, (X) as the distortion of reconstructed image
models for many video codecs. In conventional media systend compared to the benchmark imagdg, (X). Note that
each packet is assumed to have a single distortion measthe is a function of X' and X as well as the transform
The distortion value associated with each packet is thease 7,, D7, (X) = f(X,7,(X)). The conventional approach in
in incurred distortion which would occur with the loss of thamedia transmission systems is to assume the receiver wishes
packet. Equivalently, the distortion value is the reduttin to consume the data in the original format of encoding, so
distortion with the inclusion of that packet. performance evaluation is done by calculating distortién o

Typically, distortion is measured as the mean-squared erthe reconstructed image¥, compared to the original, i.e.
compared to the original high resolution, high frame ratkeei D = D, (X) = f(X7X) as in Fig. 2. However, this is still
sequence. However, this ignores the case of different ypest done even if the imageY, is displayed and reconstructed
who measure distortion in various ways—hence, the need thfferently such as on a cellphone screen. It is difficult to
Multiple Distortion Measures [1]. The latter arise due te thmake a comparison betwedhand X since the reconstructed
increase in diversity of multimedia consumers. Intuityed image and benchmark image have different resolutions.i$his
user with a low resolution display will have very differensometimes bypassed by up-sampling the low resolution image
requirements than a user with a high resolution display. Instead of calculating distortion &f compared to the original

We assumel! packets are to be transmitted in soméenchmarkX, we propose to calculate distortion compared
predetermined order to each receiver. Each packet may darthe transformed benchmark imadg,(X). This provides
respond to part or the whole of a single video frame. Packetmore applicable performance evaluation. In the scendrio o
m € {1,2,...,M} is the mth packet to be transmitted.Fig. 2 with a desktop and a cellphone user, there would be two
We denote byd]’ > 0 the amount of distortion incurred distortion measures for each packet: one for the high réealu
by userw if he does not receive packet. The distortion user,Dr,(-), and one for the low resolution usépz, (-).
value is precomputed and stored in the header of pagcket
as in [19] and is available information to the transmitter. |
conventional systemsl;;" = d; for all u, v’ € U, but because C. Delay Costs
of Multiple Distortion Measuresl)]" # d!"; for someu # ' Another form of distortion is the disruption caused by
Note that a packet is only useful to a receiver the first tingelayed packets. We assume that the video sequence has a
it is received, i.e., distortion is not reduced further witie target frame rate. This corresponds to a target pefiod 1
second reception of the same packet. Supposewdees not at which frames will be played out. We assume that the period
receive packets in the s&t. Then his total incurred distortion is normalized to the length of a time slot so that users wish
is: d, = d2 + D okek d* whered! is the base distortion dueto play a new frame every time slots. Suppose packet
to lossy compression assuming all packets are receivedh Tlhe retransmittedr times. If 7 < R , more retransmissions
the media quality of uset. can be measured by the typicabre possible while still allowing the receivers to play o t
metric of PSNR, where PSNR= 10 log; (2552 /d,,). video sequence at the target frame rate. Howeverif R, the
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Fig. 2. Diagram of Multiple Distortion Measures. The cortienal approach assumes all users evaluate performancpacethto the original benchmark
image,77(X) = X. This is often done by upsampling a low resolution versiotthefreceived image;’, to the original image resolution. Multiple Distortion
Measures calculate distortion compared taasformed benchmark image7;, (X ), which accurately captures the display capabilities ofutber in question.
In this case, the low resolution benchmark image= 71, (X) is a downsampled version of the original benchmark image.

receivers must deviate from the target frame rate whileimgit algorithm to resolve this control dilemma in a manner that
for the next frame and incur play out delay. We measure thisaximizes the viewing quality for all receivers.

type of disruption by a delay cosf)(r). D(r) is a non-
decreasing function of, as more transmissions translates to
more delay which should be penalized. However, we make no
other assumption about its functional form and leave thdeun

the control of the system designer. One possible functian is In this section, we model the scheduling dilemma of

step funct_lon whereD(T)_ =0 fpr 7 < RandD(r) =1 ff)r ._transmitting or dropping the Head-of-line (HOL) packet as a
7 > R. This would penalize uniformly for each retransmission . .
that leads to deviation from the target frame rate. stpchasﬂc_ shortest path proble_m. We use Dynamic Progr_am-
ming to find the optimal solution and store the scheduling

If each packet had a single distortion measure, each upestocol in a lookup table [20]. In each time slot, the trans-
would incur the same amount of distortion with the losmitter accesses the system state based on packet reception
of the same packet. By accounting for multiple distortiophformation, channel statistics, and packet distortiotues,
measures, the transmitter can intelligently determinetidre then references this table and determines whether it isnapti
to (re)transmit the HOL packet or drop it and transmit thg transmit or drop the HOL packet.
next one in order to collectively maximize the viewing qtiali  a|| ysers need/want to experience low play out delay
of all users. Suppose a packet has been received by Usg§ high media quality. Unfortunately, these are competing
A, but not userB. Suppose also that this packet is verypjectives and there is a tradeoff between delay and media
important for userA, but not at all for userB. In standard gjstortion. Requiring high media quality can result in high
systems, this packet would be identically prioritized fattb ge|ays, whereas low delay can result in low media quality.
users and a scheduling algorithm may require that both usgyg \weigh the delay cosD(r) by a > 0, which varies
receive the packet. However, if the transmitter is awarenef tyhe importance of distortion cost versus delay costs along
Multiple Distortion Measures, he can drop the HOL packgfs tradeoff. If o = 0, customers are only concerned with
with little loss of performance and spend more resources fitortion and in order to ensure successful reception lof al
future transmissions. It is this scheduling dilemma whigh Whackets by all users, the number of retransmissions by the

wish to examine. transmitter, and subsequently the delay, can be arbjttaigh.

The scheduling problem we will address is precisely foAS a — oo, users are only concerned with costs associated
mulated as follows. Given the Multiple Distortion Measyregvith deviating from the target frame rate, and many packets
the Head-of-Line packet reception information, the channeay be dropped. Implicitlyq is the tradeoff factor between
success probabilities, and channel dynamics, the tramsmiglistortion costs and play out delay.
must determine whether to transmit the HOL packet, or dropWe can now cast the control problem as a stochastic shortest
it and transmit the next packet. Our goal is to find an efficiep@th problem. The state to be tracked in each time slot is

Ill. GENERAL OPTIMAL OFFLINE ALGORITHM



(v,7,m,c). v is a vector of indicator variables,,, where: in order to minimize the total costs. The tradeoff here is to
either transmit the HOL packet and pay an immediate delay
(1) cost while potentially reducing the distortion costs versu
dropping the HOL packet and pay the immediate distortion
7 is the number of previous transmissions of the HOL packejosts while avoiding the delay cost from retransmitting the
m, and c is the vector of the current channel states sgOL packet.
thats(c) = {si(c1),s2(c2),...,su(cv)} is a vector of the  There areM total packets to be transmitted. Once all the
success probabilities to each userc U. Definez,(c.) as packets are transmitted, no more distortion or delay cambe i
a Bernoulli random variable which represents the succkessfirred; hence, our terminal state cosfigv, r, M +1,c) = 0.
transmission to usew given channel state:,. Therefore Solving the DP recursion in (2) will result in the minimal ¢os
zy(cu) ~ Bernoulli(s,(c.)), (r.(c,) = 1 if the transmission and the transmission policy for each HOL packet corresponds
is successful, and otherwise). For the rest of the discussiono the action which minimizes the cost in each state. The
we suppress the dependence an of z, = z,(c.,) and solution can be found using thalue iteration method [20].
understand that the success of a transmission is dependent ®roposition 1: There exists a stationary optimal control
the channel state. We can then defile’, v,c) = p(v,V) solution to (2) which is obtainable via value iteration.
as the probability of transitioning fronv. — v given the Proof: The Bellman’s recursion terminates when there are
channel state, i.e. o, = vy (1 — z). Let J*(v,7,m,c) be no more packets in the transmission queue left to transmit. i
the minimum expected cost to go associated with initialesta, — A7 + 1. There is no cost for being in this state and the
(v,7,m,c). Then.J*(v,7,m,c) satisfies Bellman's equation optimal policy will never leave this state once it reaches it
which relates the optimal cost in the current state to thgny policy which does not empty the buffer in finite time
expected future costs: will incur infinite cost due to the retransmission costr).
J*(v,7,m,c) There exists a policy which will gmpty the tr_ansm_issi_or_l bu_ff
and cause the Bellman’s recursion to terminate in finite time
(i.e., we can dromll HOL packets and terminate if/ time

o 1, if useru has not yet received packet;
“ 0, if useru has already received packet

= min{aD(T) + E(‘;75|v7c) [J* (\Af7 T+ 1,m, (_:)],

Z vudy' + Ege1,0)J (v, 1,m +1,¢)]} slots.) Therefore, there should exist a stationary optjmdéty
u which is obtainable via value iteration [2(

=min{aD(r) + > > qeep(v,V)J (v, 7+ 1,m,e), Let M be the number of packets to transmif, be the
oz p(v,v) number of users to transmit t¢; be the number of channel

ZvudT n Z Z Geep(1,¥) (¥, 1,m +1,¢)} states per user, and,,,,, be the maximum allowable retrans-

. missions. The state space for this problem is:
gee p(1,v)

@) s-= [(V,T,m,c) cve{0, 1}V, 7€{0,1,..., Rmaz},
The first term in the minimization corresponds to the 1 Ml 0.1 U
decision to transmit the HOL packet. An instantaneous cost, mefl,....M+1}ce{01,....C} }

aD(7), due to (re)transmission is incurred. The expecteghe size of the state space for this problem is exponen-
future cost is given by/*(-) with the system state updatedijg| in the size of some problem parameté&-= (M +

v — Vv is updated based on the (un)successful transmissiqgguCUme Without a restriction on the number of re-
to each user. The decision to transmit the HOL packet resultgnsmissions, the state space is countably infinite. iggor

in the number of transmission attempts to increment by onge vast computation required to calculate the optimalcyoli
Finally, the channel state is updated- ¢ (with probability the memory requirements, itself, to store a lookup tabléef t

Gez)- optimal policy would be intractable. Clearly, the size oéth

~The second term in the minimization corresponds to droptate space precludes the use of this approach in real world
ping the HOL packet and transmitting the next packet in thgstems.

queue,m + 1. By dropping the packet, distortion is incurred
by each user who has not yet received packetfor all u
such thatv,, = 1. At the beginning of this time slot, before
the transmission of packet + 1 occurs,v = 1, because
no users have yet received packet+ 1. Now 1 — v and Due to the potential intractability of the general DP formu-
c — ¢ in a similar manner as before. Notice that each usetation in the previous section, we leverage a key case inrorde
distortion is weighed uniformly. However, as we will laterto develop practical algorithms for real world implemeitat
see, this means that sometimes one user’s Quality-of<@erWVe model the wireless channel to each user by i.i.d. packet
(QoS) is sacrificed for the global good. It is possible to dvoiosses, equivalently, by a single state Markov Chain. The
this and introduce “fairness” to the system by weighing eacuccess probabilities differ for each user, but are fixedszcr
user’s distortion by3, so that the distortion contribution for subsequent time slots. This assumption is justified in tlse ca
each user for the loss of packet is 5,d!". This does not of slowly varying channels. In this case, the optimal contro
significantly alter our discussion and we omit the details fas of threshold type and can be computed online. Based
the sake of space. on this key case, which yields tractable solutions, we later
The optimal decision is to select the action (transmit/Jiromvestigate how to apply these results to develop algosthm

IV. A THRESHOLDPOLICY FOR STATISTICALLY STATIC
CHANNELS



which mimic the optimal policy in the more general case dhe random stopping time such thatv’, 7 + Z, m) = Dr op
dynamic channels. We begin by appropriately modifying thehen,
DP recursion in (2).

Because the success probabilities are fixed, we no longer 2
have to track the state of the channel. We now denote by . ! m
the probability of successful transmission to ugen all time = Bz [g aD(7 +1)+ Z vui]
slots. The DP recursion in (2) can be rewritten as: . N

=N

LE[TF(S(1), 1,m +1)]
J*(v, T, m) z
= min{aD(7) + Egp[J* (v, 7+ 1,m)], = Ez [Z aD(r +t) + Z v, dy']
t=0 u
Y vudy + Egn[J* (v, 1,m + 1)]} FE[J*(S(1),1,m + 1)]
= min{aD(7) + Z p(v,V)J* (v, 7+ 1,m), ) < EZ[Z aD(t+1+1t)+ Zv;dum]
p(v,¥) t=0 u
vadf + 3 p(1,9)J7 (¥, 1,m + 1)} +E[J7(S(1),1,m +1)]
; p(lzv) = J'(v,T+1,m) (4)

Again, the first term in the minimization corresponds twhere the first inequality follows from the optimality df ().
the cost of transmitting the HOL packet and the second terfiie second equality follows from the definition of the
corresponds to the cost of dropping the HOL packet amwlicy. The second inequality follows from the non-decregs
transmitting the next packet. property of D(7). And the last equality follows from the

Suppose a packet is retransmitted, but no new users s@igfinition of the optimal policy. This concludes the prolf.
cessfully receive it, so that = v. Intuitively, the cost in state  Defined;; as the effective distortion of packet to useru
(v,7 4+ 1,m) should result in larger costs thdr,,m) as given the current system state. This is the distortion iresir
the delay is increased, but the distortion is not decreaBeel. by useru if packetm is dropped, given the current state.

following proposition establishes this claim. d,' = 0 if the packet has already been received, ig.= 0,
Proposition 2 (Monotonicity): .J*(v, ,m) is increasing in andd;’ = d; if the packet has not yet been received, i.e.,
. for each fixedv andm. v, = 1. We can now prove the optimal transmission/drop

eoolicy is of threshold type. This policy is analogous to the

Proof: Let's consider2 systems, one starting in stat ) A ) Ao
one in [13] which, instead of comparing transmission versus

(v, 7,m) and the other starting in state, 7+ 1, m). Consider - ) ) ,
a coupling of the systems so that they see that same samCBFéort'o” costs, compares backlog versus distortionscost

paths or realizations of packet transmissions, i.e. theesam 'heorem 1 (Optimal Threshold Policy): The optimal pol-
successful and unsuccessful transmissions. e, denote 'Y for independent i.i.d. packet losses is of thresholdetyp
the optimal policy used by the system starting with 1. Let 1nat is, for each fixed: andm, there exists some;... <
J™t1(v,,m) denote the cost of the system starting in statd» 2:---;00) such that (re)transmitting the Head of Line
(v, 7,m) which tracks the evolution of thev, 7+1,m) system Packetif7 < 7., and dropping it otherwise is an optimal
and uses policyr = 7%, instead of the optimal policy policy; 7ma. depends orv andm.

for this state. More formally, le§(v) be the random evolution Proof: If the optimal policy is to transmit in statev, 7+
of v given a transmission of the HOL packet. Then, 1’7.”)2 then it is al_so optimal to transmit it in sta(e,_r,_m).
This is because, in stalg, 7,m) the cost to transmit is less
w(v,7,m) =7"(v,7+1,m) than the dropping cost; indeed, note that
It is easy to see that iff(v,7,m) = Transm t, then the aD(1) + Egm[/ (¥, 7+1,m)]
(v, 7,m) system evolves tdS(v),7 + 1,m) and the(v, 7 + < aD(7) + Bl (¥, 7 + 2,m)]
1,m) system evolves t¢S(v), T + 2, m). Then, o
S aD(T+1)+E(O|v)[J (VaT+2am)]

S, 7+ 1,m) =7(S(v). 7+ 2,m) < Swdl + Bl (@, 1,m+ 1)) (5)

Alternatively, if 7(v,7,m) = Dr op, then both thev,r,m)

and(v, 7+ 1, m) systems evolve t9S(1),1,m+1). And for ~The first inequality is due to the monotonicity result in Rsep

all subsequent time slots = 7*. sition 2. The second inequality is due to the non-decreasing
Therefore, in each time slot, each system employs the sapteperty of D(-). The last inequality is because it is optimal

transmit or drop decision given by, ;. Once the decision to transmit in staté¢v, 7+ 1, m). Similarly, if we drop in state

is to drop the HOL packet, both systems will be in the sam{&, 7, m), we also drop in statév, 7 + 1, m). Therefore, there

state,(S(v),1,m + 1) and, hence, incur identical costs in alexists 7,,..., such that ifr < 7,,,, the optimal policy is to

future states due to the coupling. Prior to dropping, théesgs (re)transmit packetr, otherwise, the optimal policy is to drop

starting in statgv, 7 + 1, m) incurs larger costs in each timeand transmit packet: + 1. This 7,4, is a function ofd™ and

slot becauseD(7) < D(r + 1). Let J™(v,7,m) denote the will vary for each Head of Line packel

expected cost of policy starting in statev, 7, m). Let Z be We have just established that the optimal transmission



policy for i.i.d. Bernoulli packet drops is of threshold g/p with multiple distortion measures and a target frame ratr ov

We now turn our attention to determining the valuergf,, static channels. The target frame rate can be used to select a

which defines this policy. appropriate functionD(r). These are valuable properties for
Theorem 2 (Value of 7,,,...): In the optimal threshold pol- practical implementations.

icy under i.i.d. Bernoulli packet losses,,... is defined as

Tmas = TAX {T‘OZD(T) <3, sudy ). A. A Heuristic for Quasi-Static Channels

: Proof. Supposer = Tmag, then it is optimal to "ansm't_ In the case of slowly varying channels compared to the
in the cur_rgnt tlme slot and, regardless of t_he transmls_3|péhgth of the transmission horizon, it is reasonable to rassu
outcome, it is optlmal_ to drop the HOL packet in the n_ext_tlmfhe channel is static. However, due to varying path loss,
slot. In the current t!me slotr = T4, the retransmllssmn fading, and mobility, wireless channels are typically dyna
and future costs are incurred. The future costs comprisieeof or statistically varying channels, we leverage the optima

dropping cost in the ngxt time sIo_t. and the expected totdl C%Iicy for static channels, Policy 1, to develop a well-jfist
afterm is removed. With probabilits, = 1 — s, the HOL “quasi-static” heuristic. We assume that in each time slot,

S?CkeF IS not regﬂ?lvEd bzrgs_em_lurmg tzefret(rjansmssmn, ‘f(mdthe transmitter has accurate information about the current
|st_(|)_Lt|on costd,’ = vud,’ IS Incurred for dropping packet ;panne| success probabilities, which may change over time.
m. then, We then use Policy 1 to determine whether to transmit or
aD(Tmaz) drop the Head of Line packet. However, because the channel
. babilities may change in each subsequent tie sl
B [J* 1 success proba ;
FE @ TV Tmaz +1,m)] they are continuously updated to reflect the current success

J* (V7 Tmaxs m)

= aD(Tmas) +Z<§U,Uudzn probabilities. If the channels are static over the horizén o
u transmission of the entire video sequence, this quaséstat
TE@/ (v, 1,m +1)] (6) policy is optimal and coincides with Policy 1. For slowly
= aD(Tmaz) +ZSLJL” varying channels, which are “quasi-static”, this policyllwi
M achieve near optimal performance. More dynamic channels
+E [/ (v,1,m+ 1)] will likely lead to some loss in performance. The quasiistat

transmission policy is as follows:

Policy 2 (Quasi-Satic Policy): For time-varying channels,
(t) = sulcu):

1) Initializez m =1, v = 1.

2) Given the current channel conditiors, and distortion

< > dp+ EgplJ (v, 1,m+1)]

Sy
The first equality is by definition. The second equality is
because it is optimal to drop at = 7,4, + 1. The third
_eq_uallty is by definition pﬂu . The final meq_uallt_y is _b_ecause valuesd™ = v, d™
it is optimal to transmit atr = 7,,,. This simplifies to i v )
aD(Tmaz) < 3. sud™. Therefore, for allT that satisfy (i) Transmit theUHOL packet if

T e ; aD(1) <3 . su(ey)d.
aD(r) <, sudy, itis optimal to transmit the HOL packet. . = Zoy=1"u\"u) %y )
Otherwise, it is optimal to drop it (i) Otherwise, drop HOL packetv = 1 and transmit
We have just shown the optimal policy is of threshold packetm « m+1.

type. Theorem 1 and 2 define the optimal transmission policy3) Update the reception vecterbased on the outcome of
for statistically static channels where packet losses &k i Step 2. N
over time and independent across users. Given the channel) Update the current channel conditioes,
success probabilities,,, the optimal transmission policy can ) Repeat steps 2-4 in every time-slot.

be summarized as: This algorithm has the same simple form as in the case
Policy 1 (Optimal Static Policy): If s,(t) = su, Vt of i.i.d Bernoulli packet losses. It is easy to implement and
1) Initialize m =1, v = 1. independent of packet transmission order. By updating the
2) Given distortion Va|uegum = v, d™: channel success probabilities in each time slot, this élgar
(i) Transmit the HOL packet if can adapt with_ slowly _varying channels. . _
aD(r) < Zgﬂ sch;". In the following section, we will show, via experimental re-

sults, that this heuristic has near optimal performanceeRe
work on this type of “quasi-static” scheduling has shownyver
good results in practice, [21] and [22]. It has also been show
that heuristics based on this approach may have near optimal
performance, with finite bounds on the loss of optimality][23

(i) Otherwise,drop HOL packet.v = 1 and transmit
packetm «— m + 1.
3) Update the reception vecterbased on the outcome of
Step 2.
4) Repeat steps 2-3 in every time-slot.
Therefore, the optimal transmission policy can be inter-
preted as to transmit the HOL packet when the expectBd Measure of Delay
reduction in distortiony sudum, is greater than the expected In this section, we discuss the relationship between play ou
cost of retransmissionyD (7). delay and distortion. In some scenarios, achieving a certai
The threshold policy described in Policy 1 has low comntarget play out rate is the highest priority. We examine how t
plexity and optimal performance for scheduling media ptckeachieve this rate with the minimum incurred media distartio



The distortion costs are easily measured by comparing t8e that
received media to the original. Here we look deeper into

the delay costs and the tradeoff with distortion costs. More  E[r] = f(«a)= ZP(T >t)
precisely, how does the delay cadir) actually correspond t=1
to delay? 2
= 1+) [§§ Lygt—(5 52)‘5‘1}
t=2
1 12
From Policy 1, the optimal policy is to transmit as long as i i < 1t
T < D7Y(L 3, sudT). Now, suppose the target frame rate + Z 51+ Z 51 52
is 1 and thatD(r) = 7. Let 7,,, be the expected number of =tz f=rin
transmissions for packet. Then the average expected number ~ s 57 -5 N 52 -5y T
of transmissions per frame, i.e. the average expectedta®via a $181 $989
from the target frame rate, is: (5152)T1+1 + (5152)T2+1
1 5152(1 — 5152)
E[T] - = T 152 152
M zm: (5152)% + (5150)7 ! 9)
< i [D—l(lzsucz;n)] 5152(1—5152)
M oy o= Then given a target frame rat&®, one can determine the
B 1 g 7 which satisfiesk = f(«). In summary, through this approach
T aM ZZS“ u 7 for selectingar we have the ability to operate the system in a
g y p Yy

) ) manner which would provide the desired average target frame
The last equality follow from the assumption th@{7) = 7. (ate at the clients.

So, if we wanted to guarantee a certain average transmission
rate, we could appropriately scate to achieve that target.
For other invertible functionsD(7), an appropriatex can be
determined for the target transmission rate. In this section, we present experimental results which
highlight the performance of Policy 1 and 2. We present our
results for 200 CIF frames of the standard Soccer test seguen
In order to determine the appropriatefor the target trans- encoded using H.264/MPEG-4 SVC JSVM 8.6. Each media

mission rate, we need to know what the expected transmissﬁﬁfket corresponds to a single, whole frame. We encode with
rate is as a function of: E[r] — f(a). For simplicity, we a.smgle Ieadmg I-frame and an | or P frame evet¥y frame
consider a scenario with users. The case for more users will/it! B frames in betvyeen. The GOP structure def!nes_how
follow similarly. the video sequence is encoded and is depicted in Fig. 3.
We assume there are two user types, a low frame rate user
and a high frame rate user, and there aresers of each
type for a total of4 users. The high frame rate users wish
to consume the video at the original 60 frames per second.
. The low frame rate users wish to consume the video at 30
HIOL pgacket ifv; ; vz =0. There_zfore there ar&lthresholds, frames per second in order to save battery power. Therefore,
Tmaz: Tmaz 8NA7,,,, corresponding to the maximum numbel:s‘very other B frame of the original video sequence can be

of re_tragswss:gi glvelf us\% 2, C')IT thl g;d2 hg\;]e ?]Ot discarded without any incurred distortion to the low frame
received the packet. We will drop thear with the .o user, but with some incurred distortion to the high rate

knowledgg that theses correspond to thresholds. Without IOS%lser. Lost frames are reconstructed using frame copy error
of generality, assume that > 7, equivalentlyd;" > d3'. concealment techniques. If no frames are lost, the maximum
achievable PSNR is 40.31dB for the low frame rate users and

39.74dB for the high. We calculate the distortion values of

Now for each HOL paCket, we can calculate the diStribUtiqﬂames by dropping one at a time and Ca|cu|ating the res}“tin
of the number of retransmissions, mean-squared error. In order to account for the precedence

V. PERFORMANCEEVALUATION

For each packet, there aré scenarios: (vq,v2)
{(1,1),(1,0),(0,1),(0,0)}. Clearly, it is optimal to drop the

Ploy=1Uwn=1), 72<t constraints, we calculate the distortion of a packets the

Plor = 1) T ; b 72 distortion incurred with the loss of packet and all of its
P(r>t)= =2 712— ’ L children frames. For instance, the distortion Bf is that

Py =1Nvy=1), 72=2t>7 distortion incurred with the loss of framé , B, andB;. Our

0, t> 72 8 algorithm relies on these distortion values for each paakelt

T R | 2 (8) the additive model presented in Section II-B. However, fbr a

51 4+ 8, = (5182) 1, <t . o . AR

1 1S g g2 results the quoted distortion is the actual distortion ined

= ‘2_1’4_1 712— T ) by dropping all the lost packets, decoding, and calculating
81 S TEZ2t>T the resulting distortion. In order to focus the distorticersus

0, t > 712 delay tradeoff under MDM, these experimental results only



utilize the temporal scalability of the video; however, é i Periodic performs very poorly, performing over 20dB worse.
certainly possible to consider SNR and spatial scalabdiy Clearly, utilizing feedback information is very important
well. Persistent achieves the highest PSNR, but because of the
We compare our algorithm to 3 different benchmark polkottleneck to the low resolution user, the average number of
cies. If lossless transmission is required, a persistelitypo retransmissions is very highdDM achieves the same PSNR
which transmits each packet until all users successfutlgive as Persistent, but with, on average, 3 fewer retransmission
it must be used. We refer to this policy as fPeesistent policy. attempts every 4 frames. The effect due to the poor channel
Unfortunately, this policy can lead to arbitrarily long dgé to the low frame rate users is most noticeable in Fig. 5,
if there is a single poor channel that causes a bottlenewkyich plots the PSNR performance for the same experiment
preventing further transmission of waiting frames. We aldaut for the high and low frame rate viewers separately. The
consider a periodic policy where each packet is allotted tlehannel quality is so great to the high frame rate users, that
same number of retransmissions. This policy ignores tlader a single retransmission it is highly likely that botavi
reception acknowledgements and blindly transmits packeeceived the packet. However, the low success probabdity t
at a fixed, periodic rate. We refer to this repetition codinthe low frame rate users causes a bottleneck and requires
policy as thePeriodic policy. A more intelligent transmitter multiple retransmissions before the PSNR impro8&sv and
could employ an optimization framework, such as the oddDM can overcome the blocking effect caused by the poor
discussed in Section IV. Conventional approaches assumehannel—incurring some distortion, but reducing the ayera
single distortion metric, so for this policy we assume thet t number of retransmissions. However, becaivieM is Mul-
scheduler believes all users are high frame rate viewers, itiple Distortion Measure aware, the performance of the low
d = d”, Vu,u’. We refer to this policy as theDM (Single frame rate user is improved. Instead of retransmitting &am
Distortion Measure) policy. We refer to Policy 1 and 2 from which do not help the low frame rate useMDM can drop
Section IV which incorporates multiple distortion measurehem without incurring distortion whil&DM and Persistent
as theMDM (Multiple Distortion Measure) policy. For static will not. As such,MDM can achieve the same PSNR with
channels we use Policy 1; for dynamic channels we use Polieyver retransmissions per frame. Also, with the same aeerag
2. number of retransmission®DM, achieves gains up to 3dB
We present performance results in terms of the standandaverage PSNR .
metric for media quality, PSNR 1010g(%), where D is
distortion in mean-squared error over all frames. Note that
our algorithm is optimized to minimize distortion which has
a non-linear transformation into PSNR. In Fig. 4, we see the
performance, in terms of average PSNR of all users, versu:
the average number of transmissions per packet. For the sim

ulations, we assume the probability of successful trarsioris I
is static over subsequent time slots. We examine the case ¢ +=0-Periodic
dynamic success probabilities later. As an illustrativaregle, 40 o_Persistent

we assume the probability of success to the high frame rate
users is.9 and.85. For the low rate users i$ and.55. We (% 30
look at other values of, later. We also assume a linear delay o
costD(r) = 7. 20

10

45 ‘ ‘ ‘ ‘ 1 2 3
Elr]
QO e -
Fig. 5. Static Channels: Transmitting to four users wittfedént channel
351 qualities. Average PSNR versus average number of transmssfor high rate
users (top) and low rate users (bottom).
% 30
n .
QL ] The poor channel quality to the low frame rate users can
‘‘‘‘‘ ) cause delays. However, only half of the video frames are
20f —~wvom important to this user type because he is viewing at half the
. ---SDM original frame rate. As such, a Multiple Distortion Measure
e Ee”‘?dt'c . aware transmitter could drop the packets which are not usefu
3 : . : o to the low frame rate users to help avoid the bottleneck
' ~ EI7] ' they causes. In Fig. 6, we examine the average number of

transmissions necessary to achieve minimum distortiorwé\s
Fig. 4. Static Channels: Transmitting to four users witlfedént channel jncrease the probability of success to the low rate user with
qualities. Average PSNR versus average number of trangmsss - .
the worse success probability, the bottleneck effect isiced
and theMDM and SDM policies perform similarly. Because
MDM outperforms the other benchmarks by over 3dRne of the low rate users still has a low probability of susces
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81 Bg B7

Fig. 3. For hierarchical B frames, the hollow circles cop@®d to anchor | or P frames. The dependency structure carabped to a simple tree structure
where each frame’s parent is the most junior parent. The jno&r parent corresponds to the lowest parent in the pexgaltree. For instancé?s has2
parents:B2 and B4. However, By is a parent toBs so the precedence constraint Bfi on Bs is captured by a single precedence constrainBefon Bs.
We assume that all | and P frames are successfully transiatid received, and therefore the dependencies on | and R<frare not listed.

(.55) some bottleneck effect still remains. Not surprisinghg t is transmitted until it is received by both users. Because of
SDM policy requires the same number of retransmissions #e quality of the channel, the number of transmissionsss le
Persistent to achieve the highest viewing quality because than the target frame rate. Once all users receive the regess
is not aware that some frames are useless to the low frafreme, the HOL packet is dropped, even if the target frame rat
rate user and transmits them until all users have receiveld e&s higher. Clearly, by delaying the play out at the receiver,
frame. MDM can reduce the number of retransmissions kihie target frame rate can be achieved exactly if the number
nearly a factor of 2 by realizing some packets do not benefit retransmissions is lower than this rate. Alternativehge
the low frame rate user. transmitter can idle during some time slots in order to achie
the desired rate at the receiver.
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Fig. 6. Static Channels: Expected number of transmissimashieve highest
PSNR quality versus channel quality to low rate user. Fig. 7. Selectx to achieve a target frame rafe. R,y selectsa based on
all frames whileRgo p selectsa every 8 frames.

It may be impractical to assume the scheduler has access to

A. Delay all frames at once in order to determinéR). If we modify

In Section IV-B, we presented a method to determine eacha for each frame, the different distortion values of each
to achieve a target frame rat&, given the channel successrame would be ignored and the algorithm would reduce to the
probabilities and distortion values of the frames. We agaperiodic strategy which we have seen perform quite poorly.
consider the scenario of static channels. This time with off@r real-time applications, we propose determiningodr)
high frame rate user with channel success probabiiiyand for each Group-of-Pictures (GOP), so that knowledgelbf
one low frame rate user with channel success probabflity frames is not required, but that there is enough diversithén
We search for thex which satisfies Eqn. 9 for our target ratedistortion values of the frames to be able to tradeoff tragsm
R. The empirical rate? is plotted versus the target rate Bfin  sion for a low distortion frame to allow high retransmission
Fig. 7. The empirical frame rate is quite close to the desirédr a high distortion frame. The empirical rakg;o p is plotted
frame rate. Because the channels are so good, the expewesdus the target rate & in Fig. 7. We see that by modifying
frame rate saturates at the expected number of transmissianfor each GOP, the frame rate deviates slightly from target,
(1.252) until all packets are received. For largle each packet although minimally. The frequent update®fs also beneficial



for the case of time-varying channels.

11

consider MDM. Leveraging the optimal policy for statistlga

static channels, a quasi-static heuristic for general ©blan

B. Dynamic (non-Quasi-Satic) Channels

Thus far, we have examined statistically static channalg. D
to user mobility and other physical phenomenon, it is often t
case that the channel quality is varying. We model the cHann
as 2-state Markov Chains. To stress and assess our qu
static heuristic policy, we examine the following challargy
channel. The probability of success to the high rate user is
or .6. The probability of success to the low rate usepisr .1.
We assume that the transition probabilities areTherefore,

Iir_]
this

dynamics was proposed. This heuristic was experimentally
shown to have near optimal performance. In this work, we have
shown that accounting for MDM can significantly improve

goS of multimedia users. Furthermore, we have shown that
imple, high performing algorithms can be developed within

framework.
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performance of the quasi-static algorithm. We use the quasi
static heuristic presented in Section IV-A. We compare the
performance of this heuristic to the optimal policy which we
find using Dynamic Programming. In order to ensure that the,
state space is sufficiently small that Dynamic Programming
techniques are possible, we introduce a sufficiently Iargﬁ]
maximum possible number of retransmissiof%,,. = 50, [3]
and consider only users—a low and high rate user. One may
expect the quickly varying channel to cause the heuristicyo [4]
of Policy 2 to fail, but this is not the case. Fig. 8 shows thgs)
average PSNR versus the average number of retransmissions.
We can see that the heuristic policy is within 1dB of optimal[e]
and outperforms the conventiordM approach by over 5dB.
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Fig. 8. Dynamic Channels: Transmitting to two users withrote qualities
modeled ag-state Markov Chains. Average PSNR versus average number[&#]
transmissions.

[15]

VI. SUMMARY [16]

In this paper we have examined the problem of broadcasting
multimedia packets with Multiple Distortion Measures. kvit [17]
the growth in diversity of mobile multimedia users, MDM
can satisfy the diverse needs of each user. Using Dynarflig
Programming techniques, a simple, optimal transmissidn po
icy for broadcasting packets with Multiple Distortion Meass |19
over statistically static channels was presented. Thisypwlas
shown to be of threshold type, so that the decision to trans
or drop a packet can be calculated online. We gained insi
into the fundamental tradeoff between delay and distortigm
presented an algorithm which minimizes aggregate distorti
given a target frame rate. Experimental results showed t
this policy outperforms current media systems which do not

Jt

[21]
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