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Abstract—As the diversity in end-user devices and networks
grows, it becomes important to be able to efficiently and adaptively
serve media content to different types of users. A key question
surrounding adaptive media is how to do Rate-Distortion opti-
mized scheduling. Typically, distortion is measured with a single
distortion measure, such as the Mean-Squared Error compared
to the original high resolution image or video sequence. Due
to the growing diversity of users with varying capabilities such
as different display sizes and resolutions, we introduce Multiple
Distortion Measures (MDM) to account for a diverse range of users
and target devices. MDM gives a clear framework with which to
evaluate the performance of media systems which serve a variety
of users. Scalable coders, such as JPEG2000 and H.264/MPEG-4
SVC, allow for adaptation to be performed with relatively low
computational cost. We show that accounting for MDM can signif-
icantly improve system performance; furthermore, by combining
this with scalable coding, this can be done efficiently. Given these
MDM, we propose an algorithm to generate embedded schedules,
which enables low-complexity, adaptive streaming of scalable
media packets to minimize distortion across multiple users. We
show that using MDM achieves up to 4 dB gains for spatial scal-
ability applied to images and 12 dB gains for emporal scalability
applied to video.

Index Terms—Embedded packet schedules, H.264/MPEG-4
SVC, JPEG2000, multiple distortion measures, rate-distortion
optimization, scalable streaming.

1. INTRODUCTION

ULTIMEDIA delivery systems encode multimedia con-
M tent into packets that are sent over a network to one
or more receivers, and receivers receive some or all of these
packets depending on network congestion and packet loss. A
critical part of a multimedia delivery system is the scheduling
algorithm that the sender uses to determine which multimedia
packets to prioritize and send over the network. Much prior work
has been done to find scheduling algorithms that optimize the
rate-distortion performance of the delivery system. In much of
this work, each packet has an associated incremental rate (size)
and incremental distortion value (e.g., mean-squared error) that
it contributes to the reconstruction of the multimedia content.
The incremental rate and incremental distortion value of each
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packet can be used to determine the relative importance of the
packets, and scheduling decisions can be made according to this
information.

Traditionally, the incremental distortion value of each packet
is computed in relation to the original multimedia content, and
each multimedia packet has a single distortion value associated
with it. Traditional scheduling algorithms use a single distor-
tion measure, such as mean-squared error in relation to the orig-
inal image. However, multimedia delivery systems are increas-
ingly serving many receivers with a diverse range of character-
istics. For example, display devices for images and video range
from cellphones to PDAs to PCs, each with capabilities for dif-
ferent sizes, resolutions, and framerates. Scalable media, such
as JPEG2000 [1] and H.264/MPEG-4 SVC [2], has the capa-
bility to adapt to different user types and helps address this issue.
However, scalable media tends to give a coarse granularity for
adaptation and, as we will later show in Section III, it does not
necessarily provide optimal performance. In order to account for
each user’s capabilities, it may be appropriate to customize a dif-
ferent distortion measure for each device, e.g., for a low-resolu-
tion display device the mean-squared error should be computed
in relation to a low-resolution version of the original image.

In this paper, we propose using Multiple Distortion Measures
(MDM) to explicitly account for the diversity of receivers in
today’s multimedia delivery systems. Within the MDM frame-
work, each multimedia packet has multiple distortion values
associated with it, one for each chosen distortion measure.
Scheduling algorithms can then be developed using these
MDM, specifically, using the incremental rate and the multiple
incremental distortion values of each packet. To our knowledge,
this class of algorithms has not yet been explored.

Two questions that arise are 1) What is the difference in the
optimal schedule for different distortion measures, and 2) What
is the benefit of using MDM in packet scheduling algorithms?
While one might intuitively expect some difference in the distor-
tion values of multimedia packets, one might expect the relative
importance of packets to be quite similar. A surprising result
we found was that the difference in the relative importance of
packets can be quite large for different distortion measures. We
show these results in Section III. Furthermore, by using MDM
we were able to develop scheduling algorithms that achieve sig-
nificantly improved performance over those that only consider
a single distortion measure. We show results for this in the con-
text of images in Sections IV and in the context of video in Sec-
tion V.

A. Related Work

With the growing diversity of mobile devices, a significant
body of work has been done to develop effective methods to
serve media content to multiple user types.
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When the capabilities of all clients are known a priori, one
can encode a scalable stream to optimally serve them all. A large
body of work has looked at how to adapt frame rate and modify
encoding for different users (see [3]-[8] and related work). In
all of this work, the benchmark for performance (if one exists)
is the original sequence—an approach which may neglect dif-
ferent user types. In [9], the authors look at how to encode for
multiple spatial resolutions. In this case, they use CIF and QCIF
benchmark video sequences to evaluate performance of the scal-
ability. There has been a substantial amount of work focused on
modifying frame rate, image quality, and spatial resolution at the
encoder in order to serve different types of users. It is possible
to encode the media sequence to adhere to the specific needs
of each user type, if they are known. However, when the bitrate
and user type of a particular client is not known at the time of
encoding, how can a service provider adapt the media content
to satisfy these constraints in a visually pleasing manner?

If adaptation is necessary after encoding, it is possible to de-
code and re-encode the media sequence in order to adhere to the
rate constraint and viewing needs of each particular user. Un-
fortunately, this can be extremely expensive in terms of com-
putation time and power. Rather, transcoding can be done to
modify a (non-scalable) coded sequence into a different coded
sequence with different properties, such as bitrate, frame rate,
spatial resolution, etc. An overview of transcoding can be found
in [10]-[12]. In [13], [14], the authors look at how to transcode
pre-encoded video into video with lower spatio—temporal res-
olution. While these works adapt to the various display capa-
bilities of different users, by upsampling and interpolating, they
also focus on the original high, rather than low, resolution dis-
play as the benchmark for performance. In this paper, we will
show that modifying the benchmark image/video leads to sig-
nificant gains.

With the growth of scalable codecs such as JPEG2000 and
H.264/MPEG-4 SVC, transcoding operations can be simplified
to truncations of bitstreams, and discard or truncation opera-
tions of packets. This makes it possible to encode the media
once and adapt it to user demands without expensive re-en-
codings or transcoding operations. We focus on this problem
of developing scheduling algorithms to jointly optimize trans-
mission of packetized scalable media, where the bitstream can
be altered by discarding packets. We assume that we are given
an encoded bitstream and we wish to transmit it to multiple
types of users. We look at how to evaluate performance as
well as how to generate embedded packet schedules given the
new framework. Embedded schedules are schedules which
build upon themselves. They are useful because they reduce
transcoding operations to simple truncations of the codestream,
and also allow for meaningful transcoding even when the code-
streams are encrypted [15]. Optimized packet scheduling is an
important problem and has garnered quite a lot of attention.
Some of the early work includes [16]-[19] and [20], [21] for
embedded scheduling. We refer the reader to the preceding
references and the references therein for more background on
packet scheduling.

Given this prior work, and using the conventional approach
of a single distortion measure, one possible approach is to
generate many schedules—one for each user type. However,
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this could be costly for a number of reasons. First is the
memory required to store all the different schedules, rather
than just one which can serve many. Also, suppose a media
stream were transmitted to a relay node before adapting it
to specific users needs—it is unrealistic to require complex
transcoding operations on a per-user basis at the relay. Finally,
if the media stream is encrypted, using an embedded schedule
jointly optimized for multiple users, given MDMs, allows for
adaptation without requiring access to the unencrypted stream.
We will explore the scheduling dilemmas—specifically in the
case of embedded scheduling—that arise due to the conflicts in
prioritization of packets for each user.

Most closely related to our work, [22] examines temporal and
spatial adaptation of scalable video and how to evaluate perfor-
mance of scalable media. Thus far, it has been difficult to eval-
uate the relationship between scalable operations and viewer
utility of the resulting stream. In their work, the authors propose
using a user/classification-based performance metric for quality
assessment. Through subjective tests and a machine-learning,
predictive framework, they are able to evaluate performance
of scalable video systems. In our work, an extension to [23],
we propose a general framework in which to evaluate the per-
formance of scalable systems and how to optimize embedded
schedules of scalable media packets. Our goal is to minimize
the associated distortion for each user. In the remainder of this
paper, we discuss how to customize new distortion measures
which accurately capture the specific needs of each user and how
to schedule packets given these measures. Our contribution is
the introduction of a framework which we call Multiple Distor-
tion Measures (MDM). The main distinction between our work
and [22] is the generality of our work—we can incorporate their
utility functions determined through subjective studies—as well
as our study of how to do multi-objective scheduling given these
multiple user types. We introduce a clear framework which is ro-
bust and independent of highly variant user opinions and allows
the use of the standard measure of mean-squared error (MSE)
distortion. Customizing a distortion measure for each user type
leads to substantial gains, due to the surprising variance in media
packet importance depending on the user and device type.

The rest of the paper is organized as follows. In Section II,
we present the general framework in which Multiple Distor-
tion Measures is formally defined. In Section III, we apply the
MDM framework to a specific instance of images where dis-
tortion measures are defined by spatial resolution. We use this
instance to gain insight about MDM. In Section IV, we look at
the scheduling problem of generating embedded schedules in-
volving media packets with MDM defined by resolution. We
develop a scheduling algorithm and use the framework from
Section II-B to evaluate performance via empirical experimen-
tation. In Section V, we discuss the generality of our framework
with an extension to temporal scalability of video. Finally, we
conclude in Section VI.

II. MULTIPLE DISTORTION MEASURE FRAMEWORK

This section formally introduces the Multiple Distortion
Measure framework. Packetized scalable media allows for
adaption beyond the original high resolution image or original
high resolution, high frame rate video by simply discarding
select packets of the encoded bitstream. Typically, each user is



CHAN et al.: MULTIPLE DISTORTION MEASURES FOR PACKETIZED SCALABLE MEDIA

1673

Benchmark Img

Rec Img: X

® .
o

Di(X) = f(X,X)

[}
Orig Img: X
®]
Rec Img: Y
DY) = f(V, Ty(X))
Fig. 1. Diagram of Multiple Distortion Measures. Multiple benchmark images (or videos) are generated: the original, 7;(X) = X, and a transformed one,

T (X). Distortion of reconstructed images is compared to these multiple benchmarks which are able to accurately capture the display capabilities of the particular
user in question. In this case, the low resolution benchmark image Y~ = 77, (X') is a downsampled version of the original benchmark image.

TABLE I
SUMMARY OF SOME POTENTIAL APPLICATIONS OF
MULTIPLE DISTORTION MEASURES

Application Types of MDM
Resolution
PSNR fidelity
Color fidelity
Resolution
PSNR fidelity
Color fidelity
Frame Rate
Bandwidth
# of channels (mono/stereo)
Shape
Texture

Image

Video

Audio

Graphics

most concerned with metrics that impact his own performance.
For instance, a low resolution viewer cares about distortion
and PSNR compared to a low resolution image, rather than the
original high resolution image—a resolution he cannot view.
However, if a single metric is used based on the high resolution
image, then the needs of the low resolution viewer could be
ignored. For this reason, we introduce Multiple Distortion
Measures to account for and measure performance relative to
multiple user types.

With the growing diversity in multimedia devices, it is gen-
erally the case that users will view content on different types
of displays. Therefore, we generate multiple benchmark im-
ages/videos which incorporate the various display capabilities
of each user type and which are used to measure the distor-
tion of a reconstructed image or video sequence. For instance,
a benchmark image/video could be a downsampled, low reso-
lution version of the original; a grayscale version of the orig-
inal, three color component image/video; a temporally down-
sampled version of the original video sequence; or a highlighted
Region-of-Interest (ROI). Table I summarizes a few potential
application areas and capabilities which MDM could help ac-
count for multiple user types.

A. Defining MDM

A key aspect of MDMs is calculating the different distortion
measures. This involves selecting a distortion metric, such as

mean-squared error or mean-absolute difference, and an appro-
priate reference. The reference can be an appropriate transfor-
mation of the original content. We define the transformation and
distortion metric in this section.

We define by 7,,(X) a transformation operator of media con-
tent, X, for user type u. A transformation converts media con-
tent X into a modified, benchmark version which user type u
will view and consume the content. For example, this transfor-
mation could be spatial downsampling to convert our original
benchmark image, X, into a low resolution benchmark image,
T.(X), if user type u wishes to view the image on a low res-
olution display. The transformation could also be a temporal
downsampling or framerate conversion operation, such as frame
dropping, to reduce the frame rate for video. Therefore, 7,,(X)
is the reference media against which performance evaluation is
measured for user 7. Define 77 as the identity transformation
such that 77(X) = X. There will be multiple transformation
operators—one corresponding to each user type.

These multiple benchmark images/videos (one for each
transformation) are now used to calculate distortion values of
the reconstructed media—hence, Multiple Distortion Measures
(MDM). Let’s define D,,(X) as the distortion of reconstructed
media X compared to the benchmark media 7,(X). Note
that this is a function of X and X as well as the transform
7., Du(X) = f(X,7,(X)). When the received media, V', is
displayed and reconstructed differently, it may be difficult to
make a comparison to the original content, X, since the recon-
structed media and benchmark media have different resolutions
or frame rates. This is sometimes bypassed by up-sampling
a low resolution/low frame rate image/video. Instead of cal-
culating distortion of Y compared to the original benchmark
X for all users, we propose to calculate distortion compared
to a transformed benchmark media, 7,(X), specialized for
each user type. This provides a more applicable performance
evaluation across multiple users. In the scenario of Fig. 1 with
a low and high resolution user, there would be 2 distortion
measures defined by 2 benchmark images: one high resolution
benchmark, 7;(X) = X, and one low resolution benchmark,
(X)) =Y.

These distortion measures may be applied at different levels
of granularity. For example, distortion values may be computed
for packets of packetized multimedia content such that multiple
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Fig. 2. System diagram for scheduling problem. We want to design the Multiple Distortion Measure (MDM) scheduler to order scalable media packets to serve
multiple types of users over multiple rate constraints. The rate constraints and user types can be known deterministically or probabilistically.

distortion values are calculated for a single packet. Furthermore,
the distortion values may be calculated with respect to different
benchmarks, e.g., for image or video, a packet’s value can be
calculated in relation to the low resolution and high resolution
reconstructions.

B. Embedded Scheduling for Packetized Media With MDM

A schedule is an ordering of packets that indicates how they
should be sent over a network. Embedded schedules have the
characteristic that all packets included at rate R; are also in-
cluded at rate R» > R;. That is, embedded schedules incre-
mentally add packets for increased rates.

Given a single distortion measure, an embedded schedule can
be determined in a rate-distortion optimized manner [21], [20].
The extension of this algorithm to packetized scalable media
with MDM is not obvious. Our scheduling goal is to generate
embedded schedules in the context of MDM.

Embedded schedules allow for simple transcoding operations
with a simple truncation of the bitstream. With a single dis-
tortion measure, the optimal embedded schedule can be found
via the fused-greedy algorithm, described in Section II-C.
However, MDM introduces different quality measures for
different devices and users. The media packet importance
varies depending on the distortion measure used. This creates
a conflict when simultaneously serving multiple users with
different distortion measures. The fused-greedy algorithm is
not applicable for MDM, thus alternative scheduling algorithms
for MDM are presented in Section I'V. This section will discuss
the framework for embedded scheduling with MDM.

The goal is to build the MDM-aware scheduler in the system
depicted in Fig. 2. We want to adapt a precoded scalable media
stream to serve multiple user types at various rate constraints.
Let U be the set of user types. In Fig. 2, we depict low and
high resolution user types—each with N,, users. Each user type,
u, will consume the media at some rate 0 < R, < R.x. In
this case, 7, ( - ) is the transformation benchmark for user type
u € U. Let p be the probability distribution function for media
consumption, so that p(u, R) is the probability that user type u
views the image/video at rate R. Our goal is to design the MDM
scheduler to schedule the packets of the scalable media in order
to minimize the distortion over the diverse set of clients.

A natural performance metric to optimize over is expected
weighted distortion, or expected distortion where all the weights
are equal to 1. These weights are useful to allow varying prior-
itization of different user types. For instance, if one user type is
willing to pay more for better viewing quality, it may be useful
to weight his distortion contribution more heavily in order to
ensure it is small. A schedule defines, for each rate, a subset of
packets of the encoded bitstream which adhere to the rate con-
straint. Let S denote a schedule and S(R) is the reconstructed
content of the schedule with rate constraint, R. Then, given
weights w,, g, the expected weighted distortion for schedule S
is:
> Z u, R)wy, g Du(S(R)). (1)

u€U R=0

Eu[D| 8] =

Given this performance metric, we have a framework in which
to compare schedules. If E,,[D | S1] < Fy[D|S2], then we can
say schedule S is better than schedule S5.

We focus on the scheduler part in Fig. 2, which we examine
more closely in Fig. 3. The scheduler is given the distribution
of user types and rate constraints, p(u, R), as well as the
transforms, 7,, which define the MDM to make scheduling
decisions. Conventional systems incorporate only a single
distortion measure, d;, to make scheduling decisions. They
assume that there is only one user type, so that p(u, R) = p(R).
By introducing multiple benchmarks defined by transforms,
1,7s,...,7,, we generate multiple lists of distortions,
d;,ds,...,d,, which define the importance of each packet to
each user type. The list d,,, generated by transform 7, consists
of values, d, ;, which is the amount of distortion incurred by
the loss of packet ¢ when distortion is measured against the
benchmark image defined by 7,,. Now, instead of each packet
having a single distortion value, d;, each packet has multiple
distortion values (d1,,d2;,...,d, ;) corresponding to each
user type and associated transformation operator, 7,,. Note that
these distortion lists can be generated during or after encoding.
Our goal is to design the scheduler which incorporates the
MDM information provided by the analysis to generate an
ordered set of packets from the original set of packets provided
by a scalable encoder.

Define Sy, as the schedule optimized for low resolution
viewing. Let R,.x be the highest possible viewing rate; for
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Fig. 3. Our scheduling problem focuses on the MDM scheduler. The scheduler
is given multiple transforms to define benchmark images/videos for each user
type as well as the channel and user type distributions. Given this information, it
orders the packets into a MDM-aware schedule. Note that the original sequence
may not be available, so it may be estimated as the decoded sequence at the
highest possible quality.

instance, the size of the original coded image. In this case,
we assume only 1 type of user, Y = {L}, and a uniform
distribution of rates, p(L, R) = 1/Rax, i.e., the probability
of viewing the image at rate € [1, Ry,ax] is uniform and all
users have low resolution displays. If we let S be the set of all
possible embedded schedules, then S}, can be defined as:

= in K,,| D
St arg min w[D|S]

Rmax

= arg min
& Ses R
R=0

1

DL(S(R)). @

max

This optimal schedule can be determined using the fused-greedy
algorithm of [20]. Analogously, we can define Sp, the optimal
schedule for high resolution viewing.

C. Fused-Greedy: Embedded Scheduling for A Single
Distortion Measure

We now briefly review the algorithm to generate embedded
schedules developed in [20]. This algorithm generates the op-
timal embedded schedule for a single distortion measure, as-
suming a uniform distribution of weights. This algorithm is sim-
ilar to that in [21] which looks at different distributions of rates.

This algorithm assumes distortions are additive across mul-
tiple dropped packets, but allows for simple precedence con-
straints that can be depicted as trees. A precedence constraint of
packet k to packet j means that packet k£ must precede packet
7 in the schedule. That is, packet j cannot be decoded cor-
rectly without the inclusion of packet k. Precedence constraints
can be represented by a simple tree structure where all parent
nodes must precede their children. In JPEG2000, we can as-
sume that across different tiles, resolutions, color-components,
and precincts, packets are independent. However, within the
same tile, resolution, color-component, and precinct, packets
are dependent across quality layers. Distortion is additive across
quality layers only if the preceding layers are also included. Fig.
4(a) shows the tree structure for the precedence constraint for
JPEG2000 packets within the same tile, resolution, color-com-
ponent, and precinct. In H.264/MPEG-4 SVC with hierarchial
B frames, there is a clear dependency between B frames. We can
map these dependencies to a tree structure where each frame’s
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Fig. 4. Precedence constraints for JPEG2000 packets and SVC hierarchical B
frames. For JPEG2000, within the same Tile, Resolution, Color Component,
and Precinct, packets are dependent in a linear fashion. Packets corresponding
to Layer ¢ must be included prior to packets j > ¢. For hierarchical B frames, the
hollow circles correspond to anchor I or P frames. The dependency structure can
be mapped to a simple tree structure where each frame’s parent is the most junior
parent. We assume that all I/P frames are successfully transmitted and received,
and therefore the dependencies on I/P frames are not listed. (a) JPEG2000, (b)
B Frames.

parent is the most junior parent, as in Fig. 4(b). The most ju-
nior parent is the lowest parent in the precedence tree. For in-
stance, B3 has two parents: B, and B,. However, By is a parent
to By so the precedence constraint of B4 on Bj is captured by
a single precedence constraint of By on B3. We assume that
all I and P frames are successfully transmitted and received—I
and P frames can be scheduled first and transmission only oc-
curs if there is enough bandwidth to ensure successful reception
of them all. Therefore, the only relevant precedence constraints
occur between B frames. Finding the Rate-Distortion optimal
subset of packets with these precedence structures is an instance
of the Precedence Constraint Knapsack Problem [24], which can
be solved optimally using dynamic programming.

While dynamic programming will give the optimal subset of
packets given a rate constraint, the schedules are not embedded.
Therefore, we proposed a fused-greedy algorithm to generate
embedded schedules. This algorithm can be shown to give the
optimal embedded schedule [21]. The algorithm takes in the
distortion values, d;, and sizes, s; of each packet and returns the
embedded schedule. Let k; = d;/s;, be the distortion-to-size
ratio. Let P be a set of integer pairs which represents the set
of precedence constraints. If (z,7) € P, then packet j must
precede packet 7. The fused-greedy algorithm is as follows:

FUSED-GREEDY (d, s)

1 ki = %,Vi
2 Check ﬁrecedence constraints V(i, j) € P
3 if k; > k;: Violation between packet ¢ and j
4 then Fuse packets:
5 .
6
7

L = fig _ ditd;
v Sij s;i+s;

Sort packets in descending order by k;

Fusing packets ¢ and j corresponds to generating a virtual
packet consisting of packets ¢ and j. This packet has a new dis-
tortion value and size equal to the sum of the two packets fused
within it. By fusing packets ¢ and j, an empty virtual packet is
left behind. Note that fusing does not affect the contents of the
packets; rather it serves as a way to view packets when making
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scheduling decisions. Certainly, fused packets can be separated
during truncation and viewed as unique packets as long as the
precedence constraints are satisfied.

The fused-greedy algorithm we have briefly described gen-
erates optimal embedded schedules for a single distortion mea-
sure; however, the extension to packets with MDM is not imme-
diate. As we further the discussion of MDM, we will continue to
reference this algorithm. Furthermore, in Sections IV and V, we
develop MDM-aware embedded scheduling algorithms which
stem from the fused-greedy algorithm.

III. SPATIAL RESOLUTIONS: AN INSIGHTFUL INSTANCE OF
MULTIPLE DISTORTION MEASURES

In this section, we demonstrate, through quantitative and
qualitative results, some of the gains that can be achieved by
accounting for MDM. Specifically, we look at an insightful
instance of MDM as applied to multiple-low and high-display
resolutions for images. By accounting for MDM when making
scheduling decisions, up to 4 dB gains can be achieved, as
well as noticeable subjective improvements in image quality.
In Section V, we show these gains in the case of temporal
scalability—low and high frame rates—for video.

We consider the case where we have low and high resolution
viewers. This would be the case if some users wish to view the
content on a cellphone or PDA and others wish to view it on a
laptop. We examine this scenario in the context of JPEG2000
encoded images and gain insight into the value of MDM.

In our experiments, the high resolution benchmark is the orig-
inal image, 7 (X) = X, and the low resolution benchmark,
T.(X), is a 4 x 4 downsampled version of the original high
resolution image. In some cases, the original image may not
be available, so the benchmark image 7y (X) would be the
decoded image at the original high resolution. JPEG2000 is a
packetized scalable image coding standard, where subsets of
packets are independently decodable. To calculate the distor-
tion values associated with each media packet, we incrementally
drop packets along the dependency structure, decode, and cal-
culate the resulting mean-squared error (MSE). Instead of com-
paring the decoded image to just the original high resolution
image, X = Ty (X), we also compare to the low resolution
benchmark image, 77,(X). Therefore, each packet has multiple
(2) distortion values associated with it: one for each resolution.

A. Transformation: Spatial Downsampling

The downsampling captured by transformation, 7; can be
done via one of the many different downsampling methods
which exist. It is important to note that the rest of our results
and analysis are independent of the downsampling method
and only utilize the fact that multiple distortion values exist.
In our experiments, we examine two linear methods for 2 x 2
downsampling: a basic block filter to do 2 x 2 pixel-averaging
as well as the 13-tap downsampling filter developed by the
Scalable Video Coding effort, which we denote by “SVC”. We
apply each 2 x 2 downsampling filter twice in order to achieve
4 x 4 downsampling.

Many scalable coders allow for images to be scaled down by
resolution. Suppose one wanted to reduce the rate of the encoded
bitstream with the goal of minimizing distortion of the low res-
olution image. This would result in selecting the JPEG2000
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TABLE II
SPATIAL SCALABILITY: COMPARISON OF PSNR FOR 6 IMAGES WHEN
INCLUDING ALL OF THE LOW RESOLUTION PACKETS DEFINED BY
THE WAVELET DECOMPOSITION AS COMPARED TO SELECTING THE
OPTIMAL PACKETS AT THE SAME RATE. DOWNSAMPLING IS DONE USING
PIXEL-AVERAGING AND THE SVC DOWNSAMPLING FILTER

Image Rate LowRes PSNR opt PSNR
(bytes) | Pix-Avg | SVC | Pix-Avg | SVC
Actor 20386 | 30.52 | 36.43 | 32.72 | 36.70
Aerial 16344 | 3222 | 3797 | 3446 | 38.74
Barboo | 16119 28.85 | 34.23 | 29.81 34.28
Bike 17583 28.10 | 34.24 | 31.36 | 35.27
Cafe 17270 | 2538 | 31.09 | 26.76 | 31.24
Woman | 16983 36.21 | 41.10 | 38.71 | 41.47

packets which minimize the resulting low resolution distortion.
Typically, as in the case of the JPEG2000 codec, the resolutions
are determined by the wavelet decomposition. It is therefore
possible to reconstruct a low resolution image (downsample by
2k x 2k 'k € N) by extracting only the packets which correspond
to the low resolution wavelet packets. This would be identical
to downsampling via the low resolution wavelet filter. However,
while the wavelet decomposition is very effective for compres-
sion, it does not necessarily correspond to the most visually ap-
pealing low resolution version of the image. Also, by allowing
for other downsampling methods, we generalize to user types
where downsampling does not correspond to projecting onto a
subspace defined by the wavelet filter. Because we obtain the
low resolution image by downsampling the image via some
method other than by the wavelet decomposition, often times
the high resolution packets improve the low resolution image
more than the low resolution packets. It is particularly surprising
to see how much gain can be achieved by considering the high
resolution packets. Table II summarizes comparisons of PSNRs
evaluated for low resolution viewing for 6 different standard test
images for JPEG2000. The benchmark images against which
distortion is calculated are the downsampled images via pixel-
averaging and using the H.264/MPEG-4 SVC filter. We first ex-
amine the PSNR when the image is reconstructed using all of the
low resolution packets as defined by the wavelet decomposition.
We compare this to an image reconstructed using packets opti-
mally selected to minimize distortion given the same rate con-
straint. By allowing the selection of non-low resolution packets,
we have 1-2 dB gains when using pixel-averaging, and 0—1 dB
gains when using the H.264/MPEG-4 SVC downsampling filter.
Clearly, if downsampling were done via the wavelet decompo-
sition filter, there would be no gap.

B. Differences in Optimal RD Tradeoff

Scalable media allows for adaptation for various user types;
however, as shown in the previous section, this is not always
optimal. Another drawback to relying solely on the levels of
scalability defined by the scalable codec is that it only defines
a coarse granularity for scalability. For instance, a low resolu-
tion user type may have a rate constraint that does not allow for
all low resolution packets to be transmitted. In this case, which
packets should be discarded to generate the optimal Rate-Dis-
tortion tradeoff?

Again, define a schedule as the operator which, given a rate
constraint and a set of packets, generates a subset of packets
which adhere to the rate constraint. The optimal schedule is then
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Fig. 5. Spatial Scalability: PSNR versus Rate (in bytes) for schedules optimized for low and high resolutions measured at both low and high resolution metrics.
Thicker lines correspond to the performance of the High-Optimal Schedule. (Left) Downsampling by pixel-averaging and (right) SVC filter.

the subset of packets which minimizes distortion while adhering
to the rate constraint. Typically, schedules are optimized for high
resolution viewing even when the viewer has a low resolution
display. We can see in Fig. 5 the PSNR versus Rate curves for
schedules optimized at low and high resolutions. The solid lines
correspond to the schedules optimized and evaluated at the low
and high resolution distortion measures. The dashed curves cor-
respond to the schedules optimized to minimize the low reso-
lution distortion measure, but measured at the high resolution
distortion measure, and optimized for high viewing, but mea-
sured at low. There is up to a 2 dB gain in the low resolution
PSNR when the packet selection is optimized for low resolu-
tion viewing rather than the original high resolution viewing and
downsampling is done via pixel-averaging. This gain increases
to 4 dB when using the H.264/MPEG-4 SVC downsampling
filter.

Fig. 6 provides a visual example of the benefits of MDM.
Here, images are decoded at one-fifth the original bitrate. The
image on the right is optimized for high resolution viewing and
the image on the left for low. There is noticeable color degra-
dation in the image on the right. Many of the cafe patrons in
the middle of the image as well as detailing on the buildings
have lost their color content. This is because when the image is
optimized for high resolution viewing, edges become more im-
portant. So, edges are much more well defined for full resolu-
tion viewing on the right. However, once the image is reduced in
size for low resolution viewing, these edges cannot be displayed
in such a pronounced manner and are no longer as important.
Therefore, bytes have been wasted on edges that cannot be seen
on a low resolution display rather than on improving the color
quality of the low resolution image. This is a key factor about
why accounting for MDM is important.

C. Correlation Between Schedules

By examining some properties of schedules optimized for dif-
ferent distortion measures, we can gain some important insight
into the causes for the drop in performance when optimizing
for the wrong measure. Define a schedule S, (R) as the optimal

Fig. 6. Spatial Scalability: Decoded images at one-fifth of the original bit-rate.
The image on the left is optimized for low resolution viewing and the image on
the right is optimized for high resolution viewing. Each image is decoded to the
high resolution size of 512 X 640 pixels, then downsampled, using pixel-aver-
aging, for low resolution viewing at 128 X 160 pixels. The image on the right is
missing color quality for some of the cafe patrons in the middle of the image as
well as on the building sides. This is due to the inclusion of high resolution de-
tail, such as sharp edges, which cannot be displayed at low resolution viewing.

subset of packets which minimize distortion according to dis-
tortion measure defined by 7,,( - ) and given rate constraint R.
Define the correlation between the low and high resolution
optimized schedules, Sy, and Sy, as the fraction of packets from
the low resolution schedule that are also in the high resolution
schedule at the same rate constraint. Therefore C'(Sg, Sy) =
%. Correlation is a good way to measure the similari-
ties between schedules. Fig. 7, shows the correlation between
schedules optimized for different resolutions is fairly varied. At
rates 25—45 kbytes, the correlation is very low, which means the
optimal packet selection for low and high resolution viewing
is very disparate. This large discrepancy between schedules is
why there are the PSNR gaps in Fig. 5 around the same rates.
At very high and very low rates, the schedules are quite cor-
related. Clearly, at high rates, most packets are included in the
schedule and the few that are not are negligible for both types
of users. Also, at low rates, so few packets are selected that the
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same packets will create the foundation for the image, regard-
less of the viewing resolution.

It is quite surprising how different the low and high resolution
optimized schedules are from each other. Because the two pri-
oritizations of the packets differ so greatly, it is actually impos-
sible for a single embedded schedule to jointly minimize distor-
tion for the low and high resolution users. Therefore optimized
PSNR versus Rate performance in the previous section acts as
an upperbound for any schedule.

In this section, we examined the use of MDM in the context
of multiple viewing resolutions. By taking MDM into consider-
ation, up to 4 dB gains can be achieved with spatial scalability.
In Section V, we look at the gains in the context of temporal
scalability. Systems which incorporate MDM need to determine
how to generate schedules given these multiple measures. We
examine this question in the rest of the paper.

IV. AN ALGORITHM FOR EMBEDDED SCHEDULING WITH
MULTIPLE DISTORTION MEASURES

To examine the benefits of considering MDM when making
scheduling decisions, we examine an instance with U user
types. We turn our focus to a special, insightful case where
rates are uniformly distributed along the non-overlapping sup-
port for each user type. Therefore, at each rate, the distortion
is measured using only one distortion measure. The goal is to
generate an embedded schedule which minimizes the expected
distortion. In this case, there are only U transformation opera-
tors and U associated distortion lists in Fig. 3.

We consider the scenario where we switch between distor-
tion measures at distinct switching rate Rs(u): i.e., for rates
0 < R < R4(1), all distortion is measured according to 7y, for
rates R;(1) < R < R,(2), all distortion is measured according
to 7o, and for all rates Rs(u — 1) < R < Rs(u), all distor-
tion is measured according to 7,,. We assume there is a uniform
distribution of rates, so that with probability 1/(Rmax), a user
will view the content at rate R. This is a special case of a more
general distribution of user types and rate constraints.

Even with 2 user types (a single switching rate, Ry), there is
a conflict between objectives: minimizing F[D] versus mini-
mizing E[D-]. In fact, the vast discrepancies, even in this simple
scenario, are surprising and help validate the need to incorporate
MDM. One way to examine this conflict is to look at the similar-
ities and disparities between packet selection for each schedule.
Suppose that the low rate users wish to view an image at low res-
olution, so 77 (X)) corresponds to downsampling. Also suppose
that the high rate users wish to view the image at the original
high resolution so that 75(X) = 77(X) = X. For simplicity,
assume that the switching rate is half the bitrate of the entire
image, Ry = Ry,.x/2. In order to understand the (dis)similar-
ities of packet rank/importance across the two distortion mea-
sures, we examine the packets chosen before and after R to see
how many are similar. If the low and high resolution optimized
schedules were equal, S7 = S, then all the packets would be
identical. In this case, half of the total number of bytes in the bit-
stream would be prior to Ry and half would be after. Table III
shows that approximately 35% of the bytes are common before
and after R;. It is the discrepancy of the remaining 30% of the
bitstream which causes the significant drops in PSNR when op-
timizing for the wrong distortion measure, as shown in Fig. 5.
Examining the discrepancies in terms of bitrate is more intu-
itive than looking at the discrepancies in terms of packets. How-
ever, scheduling is done on a packet-level basis, rather than on
a bit/byte-level basis. Table IV summarizes the fraction of total
packets which are common between the low and high resolu-
tion schedules before and after the switching rate, . A large
percentage of packets are the same after the switching rate; how-
ever, their contribution, in terms of bitrate, is approximately
35%. For both the high and low resolution user, the least im-
portant packets tend to be small in size. While it may seem in-
significant that the low and high resolution optimal schedules
disagree on the importance of about 30% of the bitstream, it is
these discrepancies which lead to loss in performance when ig-
noring MDM.

Acknowledging these competing objectives, we aim to find
an embedded schedule to minimize the expected distortion. As
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TABLE III
SPATIAL SCALABILITY: FRACTION OF TOTAL PACKETS, MEASURED BY
THEIR SIZE IN BYTES, THAT ARE COMMON TO BOTH THE Low, Sr,,
AND HIGH, Sz, RESOLUTION OPTIMIZED SCHEDULES BEFORE AND
AFTER THE SWITCHING RATE, IR, . IF THE SCHEDULES WERE IDENTICAL,
S1, = Sz, THEN THE FRACTION OF BYTES BEFORE AND AFTER R,
WOULD BE .5 SINCE R, = Ruax/2

Image Total # Frac. bytes Frac. bytes
of bytes before R after R,
Pix-Avg [ SVC [ Pix-Avg [ SVC
Actor 64046 0.3661 | 0.3615 | 0.3683 | 0.3569
Aerial 52514 0.3762 | 0.3706 | 0.3811 | 0.3777
Barboo 51567 0.3674 | 0.3607 | 0.3678 | 0.3627
Bike 65736 0.3937 | 0.3439 | 0.4010 | 0.3450
Cafe 66477 0.3544 | 0.3473 | 0.3513 | 0.3547
Woman | 66216 0.3126 | 0.2989 | 0.3301 | 0.3227
TABLE IV

SPATIAL SCALABILITY: FRACTION OF TOTAL PACKETS THAT ARE COMMON TO
BOTH THE Low, S, AND HIGH, Sz, RESOLUTION OPTIMIZED SCHEDULES
BEFORE AND AFTER THE SWITCHING RATE, R,

Image | Total # Frac. pkts Frac. pkts
of pkts before R after Ry
Pix-Avg [ SVC [ Pix-Avg [ SVC
Actor 540 0.2426 | 0.2392 | 0.4574 | 0.4527
Aerial 432 0.1740 | 0.1717 | 0.5940 | 0.5777
Barboo 432 0.1921 | 0.1852 | 0.5417 | 0.5255
Bike 540 0.2338 | 0.2245 | 0.5436 | 0.4842
Cafe 540 0.2189 | 0.2134 | 0.4787 | 0.4378
Woman 540 0.2356 | 0.2352 | 0.4601 | 0.4426

defined in SectionII, D, (S(R)) is the distortion measured, with
benchmark 7,,(X), for schedule S evaluated at rate R. Let d,, ;
denote the distortion incurred by user type u if he does not re-
ceive packet ¢, excluding the additional distortion incurred due
to the inability to decode all packets which packet ¢ must pre-
cede. Equivalently, d,, ; denotes the amount distortion is reduced
if user type u receives packet ¢, assuming all packets preceding
packet ¢ have been received. A schedule, S, can also be defined
by {r;}, the rate at which packet  is included in the schedule.
Then, given a schedule S, the expected distortion (w, r = 1)
is given by:

E[D(S)]
1 [Rmax U
=5 > Du(S(R) LR, (u-1)<r<r, )
max | p=0 u=1
[ U R(u)-1

D duilirer) 3)
1)\ i

where 14, is an indicator such that 1;4; = 1if A is true and
0 otherwise.

Define s; as the size in bytes of packet 7. As defined in Sec-
tion II-C, P is the set of packets with precedence constraints
between them. For instance, if packet ¢ and j corresponded to
By and By, respectively, of the same GOP, then (4, j) € P, since
Bs precedes Bq, as seen in Fig. 4(b). And Rj is the switching
rate at which we switch from distortion measure defined by 77,
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Fig. 8. Block diagram of our MDM-aware schedule. The fused-greedy algo-
rithm is performed on the low and high distortion metric to generate low and
high optimal schedules, S, and Sy . The combining of schedules can be done
in multiple ways. We propose to fix a changing rate to change between the op-
timal low schedules, S, to the optimal high schedules, S . One can also iterate
over changing rates to find the optimal one, R*.

to distortion measure defined by 7x. The optimization problem
is to find schedule S* over all possible schedules that satisfies:

1 U Rs(u)-1
rsnég Roax Z Z Z du,il{r<r;}
u=1R=R,(u-1) \ i
st. m>r, (i,§)€P
> silg<ry <R, VR )

where R,y is the total number of bytes in the image. The first
constraint corresponds to the precedence constraint. The second
constraint is the rate capacity constraint.

The objective and last constraint of the optimization problem
are nonlinear, which makes this problem hard. There are n! pos-
sible permutations of n packets; hence n! possible schedules.
An exhaustive search of all possible schedules to find the min-
imum expected distortion would be computationally infeasible.
We want to find a less computationally expensive algorithm that
achieves high performance.

A. MDM-Fused Scheduling Algorithm

We present an algorithm which runs in ©(UnY) by using
what we call a changing-rate. The basis of this algorithm is the
fused-greedy algorithm of Section II-C, which we unite with
MDM. We refer to this algorithm as the “MDM-fused” algo-
rithm.

We relay the key idea behind this algorithm by focusing on
the case of U = 2 users types: L and H. Intuitively, for small
R all packets should be prioritized based on their low rate dis-
tortion measure, dy, ;. Likewise, for high I, all packets sched-
uled are prioritized based on their high rate distortion measures,
d ;. For intermediate values of R, there should be a balance
between the high, Sg, and low, Sp, schedules. Fig. 8 is a block
diagram of an algorithm of this nature where the “Combine
Schedule” block specifies how to balance these two schedules.
We propose an algorithm which utilizes a changing-rate, R.., to
define this block. R, is the rate at which we change from low
to high rate scheduling, i.e., for R < R. packets are sched-
uled according to its low rate distortion measure, dy, ;, and for
R > R, the remaining packets are scheduled according to its
high rate distortion measure, dgr ;. The changing rate allows
the schedule to switch from focusing on low to high rate users.
Given a switching rate R., packet distortion information dy, ;
and dg ;, and packet sizes s;, the changing-rate scheduling al-
gorithm is (Note that steps 3 and 4 make up the “Combine
Schedule” block in Fig. 8).
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CHANGING-RATE-SCHEDULING (d, ,d g, s, R.)

S; = FUSED-GREEDY(dy,s)

Sy = FUSED-GREEDY(d, s)

Fill S according to Sy, until S has R. bytes
Fill remaining packets into S according to Sy
return S

DN W~

In Fig. 9, the PSNR versus Rate curves for various R, values
are plotted where 77, corresponds to downsampling to a low res-
olution benchmark image and 7y corresponds to the original
high resolution image. There is clearly a tradeoff between the
competing objectives of optimizing for low versus high resolu-
tion viewing. The curves vary significantly as the changing rate,
R,, varies for a fixed switching rate, R = 33 kbytes. For low
values of R.., packets are scheduled according to high resolution
distortion measures starting at low rates. Therefore, the perfor-
mance of the high resolution users improves significantly, while
the performance of the low resolution users degrades signifi-
cantly. Likewise, for large R., the low resolution performance
is very high while the high resolution performance takes a hit.

Every value of R, corresponds to a schedule whose expected
distortion, E[D] can be evaluated. Fig. 10 shows the expected
distortion as a function of the changing rate, R., with a fixed
switching rate, Rs;. Empirically, there is a unique R. that
corresponds to the minimum expected distortion. This optimal
changing rate, R}, depends on the switching rate, R, as well
as the packet distortion values and sizes, d,, dg, and s. Note
also that these results are for uniform probability distributions
and uniform weights and the actual value for 2} will differ as
these change. Given a coded sequence of media packets and a
fixed switching rate, we can search over R. to find R} which
minimizes the expected distortion.

We can modify the changing-rate scheduling algorithm to in-
corporate the search to find the optimal R};. We call this algo-
rithm the “MDM-fused” algorithm as it is based on the fused-
greedy algorithm, but it is MDM-aware by searching for R} to
optimize the tradeoff between users. Without loss of generality,

index packets by the optimal low resolution schedule, Sy. Let
R; correspond to the rate at which packet 7 is included in Sp.
Therefore, Ry = 0, Ry = sy, R3 = s1 + $o, etc. where s;
corresponds to the size of the ith packet of S;. We have just
modified the “Combine Schedule” block in Fig. 8 to incorpo-
rate the search for the optimal R in steps 4 through 9 of the
new scheduling algorithm:

MDM-FUSED (dz,dg,s)

S, = FUSED-GREEDY(d ,.s). Set S* = S,
Sr = FUSED-GREEDY (d s, s)
fori — 1ton
do R. — R;
Fill S according to S, until S has R. bytes
Fill remaining packets into .S according to Sy
if E[D|S] < E[D|S"]
then S* — S
return S*

O 00N B~ W~

Thus far, this algorithm has focused on two user types, but
the extension to more user types is trivial. Instead of employing
a single changing rate between users 1 and 2, we require U —
1 changing rates-one (R.(1)) between users 1 and 2, (R.(2))
users 2 and 3, etc.

1) Complexity Analysis: Here we analyze the run-time of the
changing-rate algorithm with search for R}. The search space
has been reduced from an exhaustive search over all n! possible
schedules to a special subset of n¥ ~! schedules. Each schedule
takes ©(n) time to evaluate, which gives a total run-time of
o(UnY).

There are n total media packets. The fused-greedy algorithm
takes ©(nlogn) to find the optimal schedules for each user
type, S.. To generate the schedule for a given set of changing
rates, we incrementally add packets from S, until rate R.(u).
Then we scan through S, 1 and add remaining packets that
have not yet been added until rate R.(u+ 1). This process takes
©(Un) to generate the resulting schedule as we step through
S, packet by packet. The expected distortion is a summation
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Fig. 11. Spatial Scalability: Expected distortion versus switching rate for various algorithms. Downsampling by (left) pixel-averaging and (right) SVC filter .

of n terms corresponding to the expected distortion contribu-
tion of each of the n packets. Therefore, it takes ©(n) to cal-
culate the expected distortion. For each switching rate, there
are n distinct changing rates which will give different sched-
ules: one after the first packet in .S,,, after the second packet in
S, after the third packet in S, and so on. Therefore, to eval-
uate the expected distortion for all n¥~! changing rates takes
O((U+1)nY). We can find the best changing rate in linear time
while we evaluate the expected distortion. This gives a total run
time of O((U + 1)nY 4+ Unlogn) = O(UnY). This can be
costly for a large number of user types, but is very manageable
for 3 or less types. Even considering just two user types will
prove to have large gains.

B. MDM-Switch Heuristic

For a very large number of user types, MDM-fused can be
quite computationally intensive. Rather than searching for the
optimal R, another option is to set R. = R,. This is a nat-
ural heuristic with complexity ©(Un logn) since there is only

one changing rate per switching rate. We call this scheduling al-
gorithm the “MDM-switch” algorithm since the changing rate
is equal to the switching rate. This policy is MDM-aware in
the sense that it tries to balance between the optimal sched-
ules, given by the fused-greedy algorithm, for each of the U user
types. However, it is easy to see that MDM-fused will perform
better than MDM-switch as R. = R is a possible solution to
R%. As we will see in the following discussion, in some cases
the gap in performance will be significant, whereas in others, it
is minimal.

C. Results

In this section we present results for the performance of
MDM-fused and the MDM-switch heuristic in the context of
U = 2 user types. We compare the performance of this algo-
rithm to the conventional approach which generates schedules
using the fused-greedy algorithm of Section II-C assuming a
single distortion measure of the high resolution measure. For
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completeness, we also compare to the fused-greedy algorithm
performed on just the low resolution distortion measure.

In each algorithm, schedules are determined based on em-
pirically calculated distortion values which can be stored in the
packet headers as in [25]. Distortion is assumed to be additive
across multiple packet drops. If a precedence constraint is vi-
olated, i.e., a packet is included but a packet corresponding to
its lower quality layer is not, the packet’s inclusion does not re-
duce distortion. While all schedules are generated according to
this model, their performance is evaluated via decoded images.
We present the results for the Cafe image, although the trends
and performance gains are similar for the other images.

Fig. 11 shows the expected distortion, F[D], versus the
switching rate, R. For low switching rates, the high resolution
optimal schedule, Sy, performs very well. This is because
the high and low schedules are nearly identical at low rates,
which results in little loss in performance for the low resolution
viewers, and optimal performance to the majority of users who
are high resolution viewers. However, as R, increases, the
performance of the high resolution schedule drops because it
ignores the low resolution users and their different distortion
metric. Likewise, the low resolution schedule performs well
for high R, but very poorly for low R;. Setting R. = R, can
outperform the low and high resolution schedules because it
tries to account for MDM by switching between the low and
high distortion metrics. However, we can see that if we optimize
R., we can achieve even higher performance. MDM-switch
may be more favorable in situations with many user types
as the complexity of MDM-fused may limit is practicality.
However, MDM-switch is easy and quick to implement, while
out performing scheduling algorithms based on one distortion
measure.

Fig. 12 shows the PSNR versus Rate curves for the different
scheduling algorithms given switching rate, R, = 35 kbytes.
The MDM-switch policy ignores the high resolution schedule
for too long, and switches to Sy much too late. Therefore, its
performance is quite similar to the low optimized schedule.
However, because it does account for the high resolution user
for rates above R, it outperforms the optimal low resolution
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metrics. Thicker lines correspond to performance of the schedule optimized for
30 frames/s.

schedule, S, which completely ignores all high resolution
users. The proposed MDM-fused policy clearly outperforms
the others. There is a very slight drop in PSNR, at most .1 dB,
from the high optimal schedule just after the switching rate.
However, at rates R < R, MDM-fused performs nearly 2
dB better than the standard approach of the high optimized
schedule, and nearly as well as the low optimized schedule.
When downsampling using the H.264/MPEG-4 SVC filter,
over 3 dB gains are achieved.

Intuitively, as the switching rate increases, so will the
changing rate. It is interesting to note that R} < R, since
once the user type switches, there is no benefit to scheduling
according to the incorrect distortion measure. Thus far, we
have assumed a uniform distribution of rates at which users
will consume the media. As we increase the weight for the low
resolution user (wr, r), or equivalently, increase the probability
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of a low resolution user (p(L, R)), the optimal changing rate,
R? will increase. By increasing the weight or probability of
the low resolution users, the performance of the low resolution
users contributes more to the expected weighted distortion.
Hence, the performance of the low resolution user is more
important, and that of the high resolution user is sacrificed by
changing to high resolution scheduling at a later rate. Con-
versely, if the weight, or probability of the high resolution users
were increased, R} would decrease. Certainly, R} depends
on the distribution of user types as will the performance of
the different scheduling algorithms. The question of how to
schedule with arbitrary distributions of user types remains an
interesting research problem which we are currently exploring.

V. TEMPORAL SCALABILITY

MDM can be applied in a number of settings. Thus far, we
have presented experimental results for the case of still images
and spatial scalability. To emphasize the generality of the MDM
framework, we now present experimental results of MDM for
temporal scalability in the case of video encoded using H.264/
MPEG-4 SVC!. An example of such a scenario is two mobile
devices, where one is very power constrained and thus chooses
to consume the video at a lower frame rate, while the other
prefers the highest quality and chooses to consume the video
at the original high frame rate. SVC has spatial, temporal, and
quality scalability. We focus on temporal scalability to highlight
the gains that can be achieved when accounting for users with
different frame rates; however, we stress that MDM can be used
in conjunction with multiple forms of scalability, including a
combination of spatial and temporal scalability.

In this scenario, we wish to transmit 240 frames of the
Soccer sequence in CIF format with an original frame rate of 30
frames/s. This sequence has periods of low background motion
and minor foreground motion as well as periods with large
background and foreground motion. We encode using a GOP
structure of eight frames and an intra-refresh every 16 frames.
In Fig. 4(b), we map the dependencies of the hierarchical B
frames into a tree capturing the precedence constraints. We only
allow rate reduction and scalability by discarding B frames,
so we assume all I and P frames are successfully transmitted
and received. If a frame is dropped, we use frame copy error
concealment to reconstruct the missing frame.

Suppose there are three users types. One type of user wishes
to view the video at the original high frame rate of 30 frames/s,
another type wishes to view the video at a lower frame rate of
15 frames/s, and the final type wishes to view the video at the
lowest frame rate of 7.5 frames/s. In this scenario, the transfor-
mation operation is a straightforward frame dropping operation.
The distortion measure for the 30 Hz user is the standard average
MSE per frame compared to the original sequence. The distor-
tion measure for the 15 Hz user is the average MSE per frame
compared to every other frame in the original sequence-the orig-
inal sequence temporally downsampled by a factor of 2. Like-
wise, the distortion measure for the 7.5 Hz user is the average
MSE per frame compared to every forth frame of the original
sequence—a temporal downsampling by a factor of 4.

Because we are only using the temporal scalability of SVC, this video is also
compatible with H.264/MPEG-4 AVC.
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Fig. 13 shows the PSNR versus Rate curves for embedded
schedules optimized for frame rates of 30 Hz and 15 Hz. This is
the analogous figure to Fig. 5 for temporal scalability. The two
solid lines correspond to the schedules which are both optimized
and evaluated at the same frame rate distortion measures, e.g.,
optimized at 15 Hz and evaluated at 15 Hz. The dotted curves
correspond to the schedules optimized to minimize the 15 Hz
distortion measure, but measured at the 30 Hz distortion mea-
sure, and optimized for 30 Hz viewing, but measured at 15 Hz.
There is a 12 dB improvement in the 15 Hz frame rate PSNR
when the frame selection is optimized for 15 Hz viewing rather
than the original 30 Hz viewing. All of the odd numbered B
frames in the original 30 Hz frame rate sequence are dropped
during the temporal downsampling to generate the 15 Hz frame
rate sequence. As a result, these frames have zero associated
distortion to a 15 Hz user and the transmission of these frames
cannot improve the PSNR of the 15 Hz video sequence. How-
ever, if these frames correspond to a section of the video with
very high motion, they may be very important (large associated
distortion) to a user viewing the content at 30 Hz. This vast dis-
crepancy in distortion values of the same frames across multiple
users results in the multiple dB gains in PSNR when optimizing
transmission specifically for the correct user type. Analogous re-
sults hold for embedded schedules optimized for 7.5 Hz frame
rates.

Frame selection is directly correlated with the amount and
temporal location of motion in the video sequence. Fig. 14
shows just how dependent the frame selection is on motion. We
express the amount of motion by the per-pixel mean-squared
error between adjacent frames. Therefore, the motion at frame
i is Motion(i) = E[|F; — F;_1]?], where F; corresponds to
frame :. The top plot corresponds to the amount of motion
in the original sequence at 15 Hz and 30 Hz as a function
of the original frame number. Because the 15 Hz video is an
integer downsample of the original, every other frame has zero
motion. The three other plots correspond to the frame selection
given increasing bitrate constraints which are identical for each
user type. For low bitrates, not all frames can be transmitted.
The ones that are transmitted correspond to sections of large
motion in the video sequence. As the rate constraint increases,
more frames can be added. For the bottom plot, the 15 Hz user
receives all packets which benefit him. However, his packet
selection is quite different from that of the 30 Hz user. Instead
of receiving frames at a periodic rate, it is optimal for the 30 Hz
user to lose some frames which correspond to low motion areas
in order to transmit at a higher frame rate in high motion areas.

Clearly, the optimal frame selection for users with different
frame rates conflicts with each other. We apply the changing-
rate scheduling algorithm to the case of temporal scalability.
In [22], the authors found that there exists distinct switching
rates at which the preferred frame rate changes, which bolsters
the validity of this type of scheduling scenario. In this case,
we assume 73 and 75 correspond to the temporally downsam-
pled benchmark video to be viewed at 7.5 and 15 frames/s, re-
spectively, and 7; is the original video sequence to be viewed
at 30 frames/s. Now that there are three levels of scalability,
we have two switching rates-one between 7.5 Hz and 15 Hz
viewers and another between 15 Hz and 7.5 Hz users. So for



1684
1500 T T T T T T T T T T
c *
g 1000 - P xx)g(x Xae 4
o E X X X e
L " J
S 500f el ot sl g pall 550 ‘
>
20 40 60 80 100 120 140 160 180 200 220 240
106 ] ] ]
0.5F q-)
N
o
2 <
) S
5
0.5 ‘:
0 O‘D
80 o v
N T
o
©
o 0.5M Jﬂ
el
£
0 s
20 0 60 0 00 2 4 60 80 00 220 240
Frame #

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 8, DECEMBER 2008

1000 - - - - : : T : - - :
c &
S ol Ao e ]
5] W X% X e
= w fal ™ LT}
0 L ! T ? | | L | L %w. ]
20 40 60 80 100 120 140 160 180 200 220 240
05+
0
05}
0
— G
5]
©
Qos
B
£
0 SO
20 40 60 80 0 120 140 160 180 200 220 240
Frame #
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rates, R < R(1) all users view the video at 7.5 frames/s; for
Rs(1) < R < Rs(2), all users view at 15 frames/s; and for
Rs(2) < R, all user view at 30 frames/s. Fig. 15 shows the
expected distortion as a function of R,(2), the switching rate
from 15 to 30 Hz viewing, for two different values of R,(1),
the switching rate from 7.5 to 15 Hz viewing. Again varying the
switching rates modifies the relative performances of the single
distortion measure schedules (30 Hz opt, 15 Hz opt, and 7.5
Hz opt). In some cases, MDM-switch performs identically to
MDM-fused (as when Rs(1) = 1200 kbytes). As more user
types are considered, this may prove to be a very effective and
efficient scheduling algorithm. However, we can see that op-
timizing for the best changing rate can vastly improve perfor-
mance (as when R(2) = 1600 kbytes). In the case of temporal
scalability, we see that accounting for MDM has a significant
impact.

In Fig. 16, we plot the PSNR versus Rate curves for fixed
switching rates of Rs(1) = 1260 kbytes and R;(2) = 1600

kbytes as well as the Distortion versus Rate curves. We can
see that with little loss in performance prior to the switching
rates, our scheduling algorithm, MDM-fused, is more than 10
dB better than the conventional approach of optimizing for 30
Hz viewing. Note that the optimization goal is to minimize the
expected distortion. PSNR is the standard objective metric for
evaluating the performance of video systems, so we also present
the results in terms of PSNR. However, because we are min-
imizing the expected distortion, and because of the nonlinear
mapping to PSNR, the PSNR can be somewhat misleading. By
looking at the results in terms of distortion, one can see our
policy successfully balances the tradeoff between 30 Hz, 15 Hz,
and 7.5 Hz viewing and nearly achieves the optimal distortion
for all rates.

VI. CONCLUSION

In this paper, we presented a new framework to evaluate the
performance of multimedia systems which serve multiple types
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Fig. 16. Temporal Scalability: (Top) PSNR and (bottom) distortion versus rate
with R,(1) = 1260 kbytes and R, (2) = 1600 kbytes for various algorithms.

of users. With the growing diversity in multimedia users, MDM
will allow service providers to efficiently serve multimedia
streams in a manner that accounts for the various needs of
each user. We showed that quality measures used for streaming
media are highly dependent on user types. In fact, in the case of
packetized media, a packet’s importance can be quite different
depending on which user consumes it. These differences cause
conflicts when simultaneously scheduling media packets to
multiple user types. We also presented a framework in which
to evaluate embedded scheduling algorithms for systems with
MDM. We developed an MDM-aware embedded scheduling
algorithm based on our prior work which assumed only a single
distortion measure. We applied our framework and sched-
uling algorithm to two cases where MDM is relevant: spatial
scalability for various resolutions and temporal scalability for
various frame rates. These examples are illustrative of the gains
which can be achieved by accounting for MDM, but are by no
means exhaustive. MDM is a general framework which can be
applied to any type of benchmark images or videos. Spatial
scalability was explored in the case of still images through
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the JPEG2000 standard. Temporal scalability was studied in
the case of video streaming with H.264/MPEG-4 SVC. In our
experiments, for spatial scalability with JPEG2000, accounting
for MDM resulted in up to 4 dB gains and for temporal scal-
ability with H.264/MPEG-4 SVC, gains of up to 12 dB. By
accounting for the diverse needs of its clients, a multimedia
server can significantly improve the provided service by using
and accounting for MDM.
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