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Abstract

We study scheduling of multimedia traffic on the downlink of a wireless communication system. We

examine a scenario where multimedia packets are associated with strict deadlines and are equivalent to

lost packets if they arrive after their associated deadlines. Lost packets result in degradation of playout

quality at the receiver, which is quantified in terms of the “distortion cost” associated with each packet.

Our goal is to design a scheduler which minimizes the aggregate distortion cost over all receivers. We

study the scheduling problem in a dynamic programming (DP) framework. Under well justified modeling

reductions, we extensively characterize structural properties of the optimal control associated with the DP

problem. We leverage these properties to design a low-complexity Channel, Deadline, and Distortion

(CD2) aware heuristic scheduling policy amenable to implementation in real wireless systems. We

evaluate the performance of CD2 via trace-driven simulations using H.264/MPEG-4 AVC coded video.

Our experimental results show that CD2 comfortably outperforms benchmark schedulers like earliest

deadline first (EDF) and best channel first (BCF). CD2 achieves these performance gains by using

the knowledge of packet deadlines, wireless channel conditions, and application specific information

(per-packet distortion costs) in a systematic and unified way for multimedia scheduling.

Index Terms

Wireless networks, video streaming, packet scheduling, dynamic programming.

I. INTRODUCTION

The advent of the third generation (3G) of cellular wireless communication systems has

sparked an ever increasing interest in mobile wireless multimedia applications like video stream-

ing. Transmission of multimedia traffic over wireless links poses challenging theoretical as well as

practical problems. This is attributed to temporal and spatial variations in wireless channel quality,

stringent availability of resources like bandwidth, and unique characteristics of multimedia traffic

such as packet interdependencies and deadline constraints.



Scheduling algorithms employed at the base station (BS) or access point (AP) play a key

role in determining the performance of wireless systems. The problem of downlink scheduling,

wherein a single transmitter at the BS is shared amongst multiple downlink users, has been

studied extensively (see [1] for an overview). Most initial work in downlink scheduling focused

on maximizing throughput and optimizing system performance for non-real-time delay tolerant

traffic. The unifying thread for all this work was the idea of opportunistic scheduling (see [2] and

references therein), which entails exploiting multiuser diversity inherent in wireless systems due

to fluctuating channel conditions. However, such schedulers, being oblivious to packet deadlines,

perform poorly in the context of delay-sensitive multimedia applications.

A. Related work

More recently, the idea of deadline-aware packet scheduling has received attention in the

wireless community. Georgiadis et. al. [3] showed the optimality of the earliest deadline first

(EDF) scheduling policy for deadline constrained scheduling over wired (error-free) channels.

However, EDF is not well-suited to the wireless scenario, owing to its disregard for channel

variations. In [4], Shakkottai and Srikant modeled the wireless channel as a two-state ON-OFF

Markov chain, and showed that using EDF for ON users in each time-slot is “nearly optimal”

for minimizing the number of packets dropped due to missed deadlines. They were the first to

study a channel-aware version of EDF. Khattab and Elsayed [5] proposed a heuristic channel

dependent EDF policy, and demonstrated its performance gains via simulations.

In [6], Ren et. al. used dynamic programming (DP) for a simulation based study of scheduling

constant bit-rate (CBR) traffic over wireless channels modeled as finite-state Markov chains.

Johnsson and Cox [7] proposed a heuristic cost function, and showed via simulations that a

policy which minimizes this cost function performs well with respect to the number of missed

packet deadlines. Dua and Bambos [8] studied deadline and channel aware scheduling in a

DP framework. They leveraged provable structural properties of the optimal solution to the DP

problem to design low-complexity, near-optimal scheduling policies. Our current work is similar

to [8] in spirit.

Even though schedulers proposed in the work cited above account for both channel conditions

and packet deadlines, none of them take into consideration the unique characteristics of mul-



timedia traffic. Amongst the several authors who have explicitly accounted for characteristics

of multimedia traffic, Chou and Miao [9] studied Rate-Distortion (RD) optimized streaming

of packetized media. In their work, the “importance” of every packet is determined by its

associated distortion value, and packet (re)-transmissions are scheduled in order to minimize

distortion, given the rate constraint of the channel. Wee et. al. [10] focused on networks with

large delay variations, and achieved improvements in video playout quality by maximizing

the probability of on-time delivery of more important packets. Liebl et. al. [11] proposed a

heuristic cost function which incorporates deadline, channel, and distortion information. They

demonstrated via simulations that a scheduler which minimizes this cost yields considerable

performance gains over benchmark schedulers. Apostolopoulos [12] examined low-complexity

RD optimized streaming of multiple encrypted video streams over a shared bandwidth bottleneck.

Chakareski and Frossard [13] studied RD optimized streaming of multiple video streams by

prioritizing re-transmissions based on packet contents. They expressed their optimization problem

in a Lagrangian framework and used sub-gradient methods to solve it. Kalman et. al. [14] used

an expected peak signal-to-noise ratio (PSNR) maximization technique to examine scheduling

of multiple transcoded video streams over a shared wireless link.

B. Our contributions and paper outline

Our goal in this work is to design a scheduling policy which combines knowledge of multime-

dia characteristics with deadline and wireless channel information in a systematic way to enhance

system performance. We consider video transmission over wireless channels with time-varying

reliability. Distortion is incurred at the receiver if a packet misses its playout deadline. Only

one user can be scheduled in each time-slot. The scheduler must decide which user to schedule

and which packet to transmit to the scheduled user in every time-slot to minimize aggregate

distortion incurred over all users.

We present our system model in Section II, where we discuss the wireless channel model, the

distortion cost model, and the optimal packet prioritization policy. In Section III, we formulate

the scheduling problem as a dynamic programming (DP) problem [15], under well justified

modeling assumptions. We then propose our Channel, Deadline, and Distortion (CD2) aware

scheduling algorithm, based on a quasi-static approach to scheduling. CD2 has the solution to



the DP problem at its core. In Section IV, we establish key structural properties of the optimal

control for the DP problem. Prominent amongst these are the optimality of a switch-over policy

[16], and the time-invariance of switch-over curves for a two-user system. Next, we show that the

DP problem for a system with more than two users can be solved using a pairwise comparison

approach. This leads to an implementation of CD2 whose complexity grows only linearly with

the number of users in the system. In Section V, we employ trace-driven simulations (using

H.264/MPEG-4 AVC coded video) to demonstrate the efficacy of CD2 and its performance gains

(2-12dB increase in average PSNR) relative to benchmark schedulers like “earliest deadline first”

and “best channel first”. We provide concluding remarks in Section VI.

II. MODEL CONSTRUCTION

We study a time-slotted wireless system with N downlink users and a time-multiplexed

scheduler S at the BS. There is a queue corresponding to each downlink user at the BS, which

buffers video frames the user wishes to receive. The queue for the ith user is denoted Qi. A

schematic of the system is depicted in Fig. 1. Each video frame is divided into multiple network

packets. The video is encoded to achieve a roughly constant quality (measured in terms of PSNR)

for each frame, which leads to a variable number of network packets per frame, depending on

the difficulty in compressing each frame.

In each time-slot, S schedules one packet from the head-of-line (HOL) frame of one of the

N queues for transmission according to some scheduling policy. The HOL frame of Qi consists

of ni packets and is associated with a deadline Di. This deadline reflects the time by which the

frame must be received at the downlink receiver to ensure uninterrupted playout. All packets in

the HOL frame share this common deadline. Any packets in the frame which are not successfully

transmitted before the expiration of the deadline are dropped. This results in a degradation of

video quality at the receiver due to increased distortion. The objective of the scheduler is to

minimize aggregate distortion at the downlink receivers due to missed packet deadlines.

A. Wireless Channel Model

Wireless channels exhibit temporal and spatial fluctuations, which are attributed to user mo-

bility, interference from concurrent transmissions, and signal attenuation due to physical phe-



nomena. Different models have been used in the literature to abstract this behavior of wireless

channels. While some authors model the wireless channel as a reliable “bit-pipe” with time-

varying capacity, others model it as a fixed-size “bit-pipe” with time-varying reliability. We

adopt the latter approach and quantify the channel quality in time-slot t by the probability

of successful transmission of a packet over the channel, if the channel is used in time-slot

t. For Qi, we denote this success probability by st
i. For example, st

i can be modeled as being

modulated by an underlying finite-state Markov chain (FSMC) [17], where each state corresponds

to a different probability of successful transmission. We employ a two-state FSMC model for

performance evaluation in Section V. We further assume that the wireless channels from the BS

to the downlink users are independent of each other.

B. Distortion Costs

If one or more packets in a frame miss their deadline, the decoder is forced to use error

concealment techniques such as “previous frame copy”, and a distortion cost is incurred. We

measure distortion in the mean-squared error (MSE) sense. The distortion cost associated with

each packet, which expresses the packet’s application layer importance, is placed in the packet

header and thereby is accessible to the scheduler [12].

We denote by ωi(ki) the distortion cost incurred if ki packets from the HOL frame of Qi

miss their deadline. We assume that ωi(ki) is a non-negative, strictly increasing, and convex

function of ki ∀ i. While the first two assumptions are consistent with intuition, the convexity

assumption is corroborated by empirical data. Fig. 2 depicts plots of ωi(ki) for four different

frames of the “Foreman sequence” (a test sequence widely used by the video community) in

CIF format encoded using H.264/MPEG-4 AVC with a single leading I-frame followed by 349

P-frames. Observe that the empirical results are in accordance with our assumptions.

We compute ωi(ki) by dropping packets, decoding, and computing the resultant MSE. We

assume that distortion is additive across multiple dropped packets. There are 2K possible ways

(dropping patterns) of dropping packets from a frame comprised of K packets. ωi(1) is defined

as the minimum MSE distortion incurred by dropping only one packet from the HOL frame of

Qi. ωi(ki +1) is defined as the minimum MSE distortion incurred by dropping one more packet,

in addition to the packets dropped to incur ωi(ki). This embedded computation of ωi(ki) imposes



a rank ordering on the packets within a frame, which might be quite different from the ordering

imposed by encoding. These computations are performed offline at the time of encoding, and the

results are placed in the packet/frame headers, so that they are readily available to a distortion-

aware scheduler. The rank of a packet in a frame expresses its priority for transmission by a

distortion-aware scheduler. The number of dropping patterns now reduces to K + 1 from 2K .

III. PROBLEM FORMULATION

In general, the scheduling problem can be formulated within a control/optimization framework

and solved using numerical techniques, given statistical characterizations or actual realizations of

the distortion cost curves and channel conditions for all users. Such an approach, apart from being

computationally prohibitive from an implementation perspective, does not provide insight into

the fundamental trade-offs inherent in the scheduling problem. Moreover, detailed knowledge of

traffic or channel conditions is not available to the scheduler in real wireless systems. We seek

a formulation which encapsulates the fundamental scheduling tradeoffs, is amenable to analysis,

and leads to implementation friendly scheduling policies. To this end, we (sequentially) introduce

two modeling reductions.

• Modeling Reduction R1: To formulate our optimal control problem, we assume that each

queue contains only one frame.

• Modeling Reduction R2: We assume static (in a probabilistic sense) channel conditions in

the control problem formulated under reduction R1.

The ultimate test to determine the validity of the reductions is the “test against nature”, that is,

to test whether policies based on the properties of the solution to the reduced problem perform

better than benchmark policies or not, in real-world scenarios. Our experimental results presented

in Section V show that this is indeed the case for CD2.

A. Single frame offline optimal — problem formulation under R1 only

We first study the optimal control problem which incorporates reduction R1 only. In Section

III-B, we will study a control problem which incorporates both reductions.

R1 is a reasonable assumption if the frames are being generated periodically by a real-

time media source, so that a new frame arrives to a queue only after the current frame has



been transmitted. This assumption is also consistent with the principles of low-latency media

system design. We consider a finite time-horizon of T time-slots starting at t = 1, where

T = max(D1, . . . , DN) and Di is the deadline associated with the HOL frame of Qi. The

deadlines on all HOL frames expires by the end of the time-horizon T . Any residual packets at

the end of the horizon are dropped and a cost is incurred, as described in Section II-B.

Our objective is to design a scheduling policy which minimizes the sum, over all users, of

expected dropping costs at the end of time-horizon T . The scheduler is assumed to know the

channel statistics in terms of success probabilities for all users in time-slots t = 1, . . . , T . We call

this problem the single frame offline optimal and the associated optimal control policy P�(N).

We adopt the methodology of dynamic programming (DP) to compute P�(N). Let n =

(n1, . . . , nN) denote the state of the system∗, where ni is the number of remaining packets in

the HOL frame of Qi at the beginning of the current time-slot. If Qi is scheduled in time-slot t,

the state in time-slot t+ 1 changes to n− ei with probability (w.p.) st
i (transmission successful)

and n w.p. s̄i
t � 1−st

i (transmission fails). Here ei is the standard ith unit vector in R
N , that is,

ei = (0, . . . , 0, 1, 0, . . . , 0) with the 1 in the ith location. Without loss of generality, we assume

0 < D1 ≤ . . . ≤ DN = T . The assumption implies that Qi is not a scheduling candidate after

t = Di < T , since the deadline on its HOL frame expires in time-slot t = Di.

Denote by V t(n) the expected cost-to-go in time-slot t, starting in state n. By definition, V t(n)

is the minimum expected cost incurred by the optimal policy P�(N) over time-slots t, . . . , T ,

starting in state n in time-slot t. V t(n) is computed from the following recursive DP equations:

V t(n) = min
i=1,...,N

{
αt

i(n)
}

+ V t+1(n), t = 1, . . . , T, (1)

and the boundary conditions V T+1(n) =
N∑

i=1

ωi(ni), where

αt
i(n) =




st
i[V

t+1(n − ei) − V t+1(n)], ni > 0, t ≤ Di

0, else.
(2)

Setting αt
i(n) = 0 when ni = 0 or t > Di eliminates Qi from consideration as a scheduling

∗All vectors are denoted in boldface.



candidate when Qi is empty, or the deadline on its HOL frame has expired.

Solving the DP equations to compute P�(N) requires non-causal knowledge of channel

conditions over a period of T time-slots, which is unavailable to the scheduler in real wireless

systems. Thus, the single frame offline optimal (based on R1 alone) does not immediately lead

to implementable scheduling policies.

B. A quasi-static approach to scheduling — CD2

Motivated by the foregoing discussion, we now introduce reduction R2 into the our formula-

tion, in addition to R1. Under R2, the probability of successful transmission is fixed for each user

over a horizon of T time-slots. Equivalently st
i = si for t = 1, . . . , T, ∀ i. This is a reasonable

assumption for slowly varying channels. We denote the optimal control in this case by P�
s (N),

which is computed via (1) and (2), with st
i replaced by si. Thus, P�

s (N) is a special case of

P�(N) where the success probability for each user is constant over the horizon T of interest.

How does P�
s (N) translate into an implementable scheduling policy? To answer this question,

we propose a quasi-static approach to scheduling. We name our proposed policy CD2, since it

is a Channel, Deadline, and Distortion aware scheduling policy. The key steps in CD2 are:

1) Given a system characterization in terms of instantaneous channel conditions, HOL frame

deadlines, and number of packets in the HOL frame of each queue in the current time-slot,

compute P�
s (N) by solving (1) and (2) under the assumptions imposed by R1 and R2.

2) Schedule a packet in the system based on the decision of P�
s (N) computed in Step 1.

3) Update the system parameters based on the outcome of Step 2 and most recently acquired

channel knowledge (through receiver feedback or measurements made by the BS).

4) Repeat steps 1-3 in every time-slot.

Thus, the scheduling decision of CD2 in each time-slot is based on the static channel assumption

(R2). However, the static operating point is updated in each time-slot as wireless channels evolve

over time. This justifies the nomenclature quasi-static. Note that CD2 requires only instantaneous

channel knowledge, rather than non-causal channel knowledge or a detailed statistical charac-

terization of the channel behavior.

We reiterate that CD2 is based on P�
s (N), which is the optimal control policy for the

scheduling problem formulated under modeling reductions R1 and R2. The gains provided by



CD2 relative to benchmark policies (Section V) provide ample justification for our reductions,

both from a modeling and an implementation perspective.

IV. STRUCTURAL PROPERTIES OF P�
s (N)

In this section, we present important structural properties of P�
s (N), which is at the core of

CD2. We initially focus on a two-user scenario (N = 2), and show in Section IV-B that P�
s (N)

for N > 2 can be computed by using P�
s (2) multiple times in a pairwise fashion.

A. Key properties of P�
s (2)

To make the static channel assumption (R2) explicit, we suppress the superscript t from the

successful transmission probabilities and simply denote them by s1 and s2. Once again, we

assume without any loss of generality that D1 < D2. Thus, Q1 is a scheduling candidate for

t = 1, . . . , D1 provided n1 > 0, while Q2 is a scheduling candidate over the entire time-horizon

provided n2 > 0. We employ the notation n = (n1, n2), e1 = (1, 0), and e2 = (0, 1). Since

no scheduling decision needs to be made after t = D1 (Q2 is scheduled, if non-empty), we

reformulate our control problem for a time-horizon of length T = D1 (instead of D2, as in

Section II). The DP equations can be re-written as

V t(n) = min
{
αt

1(n), αt
2(n)

}
+ V t+1(n), t = 1, . . . , T, (3)

along with the boundary conditions V T+1(n) = ω1(n1) + φ2(n2, D2 −D1), where

αt
i(n) =




si[V
t+1(n − ei) − V t+1(n)], ni > 0

0, else,
(4)

and φ2(·, ·) is computed via the recursion

φ2(y, t) =




0, y = 0

s2φ2(y − 1, t− 1) + s̄2φ2(y, t− 1), y, t > 0

ω2(y), t = 0.

(5)

Here, ω1(n1) is the distortion cost associated with dropping n1 packets from Q1 at the end of the

time-horizon, while φ2(n2, D2 −D1) is the expected distortion cost incurred in transmitting n2



packets from Q2 over a static channel with success probability s2 during time-slots T+1, . . . , D2.

Lemma 1: † φ2(y, t) =

min{y,t}∑
j=0

(
t

j

)
ω2(y − j)sj

2(1 − s2)
t−j .

Lemma 2: φ2(y, t) is a non-increasing and convex function of y for fixed t.

Now, define the decision function γt(n) by

γt(n) � αt
1(n) − αt

2(n), t = 1, . . . , T. (6)

Clearly, P�
s (2) schedules Q1 in state n in time-slot t if γt(n) ≤ 0, and schedules Q2 else. Thus,

P�
s (2) is completely determined by the sign of γt(n). We now state a key property of γt(n).

Lemma 3: γt(n) is a non-increasing function of n1 and a non-decreasing function of n2.

An immediate and important consequence of Lemma 3 is the optimality of a switch-over type

policy in each time-slot. We first formally define a switch-over type policy.

Definition: A scheduling policy is of switch-over type if in every time-slot t, the policy can be

characterized by a non-decreasing switch-over curve ψt : N �→ N ∪ {0}, such that the policy

schedules Q2 in time-slot t if n2 > ψt(n1), and schedules Q1 else (see Fig. 3).

Theorem 1 (Optimality of Switch-over Policy): The policy P�
s (2) is of switch-over type.

The scheduling decision of P�
s (2) in the current time-slot (t = 1) is determined by ψ1. Since

our problem (3)-(5) is formulated as a backward recursion, one expects that ψT , . . . , ψ2 must be

computed prior to computing ψ1. Interestingly, our next result shows that this is not the case.

Theorem 2 (Time-invariance): The switch-over curves ψt which characterize P�
s (2) are time-

invariant, that is, ψt = ψ,∀ t = 1, . . . , T .

Since the switch-over curves are time-invariant, computing the desired switch-over curve ψ1

is equivalent to computing ψT . However, ψT is determined by the sign of γT (n), which was

computed as a function of ω1(·) and φ2(·) in the proof of Lemma 3 (see Section VII-C). We

reproduce the expression here for convenience:

γT (n) = −s1[ω1(n1) − ω1(n1 − 1)] + s2[φ2(n2, D2 −D1) − φ2(n2 − 1, D2 −D1)]. (7)

†Proofs of all structural/theoretical results are available in the Appendix.



Also, recall that φ2(·, ·) was computed as a function of ω2(·) in Lemma 1. In summary, ψT , and

hence ψ1 can be explicitly computed in terms of the distortion cost functions ω1(·) and ω2(·),

which are available to the scheduler from the packet headers. The implication is that we have

the optimal two user policy for the scheduling problem formulated under reductions R1 and

R2 in closed form. Note that the foregoing analysis is valid under the assumption D2 > D1.

Analogous results for the case D1 > D2 are gotten by interchanging the roles of Q1 and Q2.

B. Optimality of pairwise comparisons, and CD2 re-visited

How do the above results generalize to P�
s (N), the optimal control for a system with N > 2

users? To answer this question, we define the pairwise decision functions:

γt
ij(n) � αt

i(n) − αt
j(n), t = 1, . . . , T. (8)

P�
s (N) “prefers” Qi over Qj in time-slot t in state n if γt

ij(n) ≤ 0, and prefers Qj else. Now

consider another decision rule, namely ΠPW(N)(N), which discriminates between Qi and Qj

in time-slot t in state n based on the sign of γt
ij(n

ij) instead of the sign of γt
ij(n), where nij

agrees with n in the ith and jth locations, and is zero elsewhere. ΠPW(N) is therefore a pairwise

comparison rule which solves the N -user problem as a sequence of two-user problems. Clearly,

P�
s (N) = ΠPW(N) for N = 2. Does P�

s (N) = ΠPW(N) ∀ N? Yes!

Theorem 3: For the scheduling problem formulated under reductions R1 and R2, the pairwise

comparison rule ΠPW(N) is optimal, that is, P�
s (N) = ΠPW(N).

Pairwise CD2: Recall from Section III-B that CD2 computes P�
s (N) in each time-slot (Step

1) and schedules a packet in the system based on the decision of P�
s (N) (Step 2). Theorem 3

provides an alternative way of implementing Step 2 of CD2, based on computing P�
s (N) by

using the pairwise comparison rule ΠPW(N). In Step 2 of pairwise CD2, users are grouped

randomly into pairs. Users within a pair are compared using policy P�
s (2), which is computable

in closed form, as shown in Section IV-A. The winner of each pair is promoted to the next

round. The process continues till only one user survives. This user is scheduled in the current

time-slot. Implementation details of Step 2 of pairwise CD2 are enumerated in Table I. Steps

1,3, and 4 are identical to CD2.



Pairwise CD2 based on ΠPW(N) requires at most N − 1 pairwise comparisons to make a

scheduling decision and hence has a computational complexity O(N)‡, since the complexity

of each pairwise comparison based on P�
s (2) is O(1) (due to the time-invariance property). In

contrast, CD2 based on solving the DP equations directly has a computational complexity of

O(nND) if ni = O(n) and Di = O(D) ∀ i.

V. SIMULATION RESULTS

In this section, we experimentally examine the performance of our proposed CD2 scheduling

policy. We compare CD2 to the following benchmarks: Round Robin (RR), which schedules

users in periodic fashion; Earliest Deadline First (EDF), which schedules the user with the

most imminent deadline; and Best Channel First (BCF), which schedules the user with the best

instantaneous channel condition. CD2 jointly accounts for channel conditions, deadlines, and

distortion costs in its scheduling decision. We consider two versions of each of the benchmark

schedulers — a basic version which ignores packet distortion costs and transmits packets within

a frame in sequential order, and a distortion-aware version which uses distortion information

to reorder packets within a frame according to the prioritization rule described in Section II-B.

Table II summarizes the decision criteria of all scheduling policies considered here.

We examine a system with four downlink users. Video frames for users arrive periodically to

their respective queues at the BS, and get associated with a deadline equal to the period of arrival.

A frame is comprised of multiple network packets. Any packets within a frame which are not

successfully transmitted before deadline expiration are dropped, resulting in degradation of video

quality at the corresponding downlink receiver. The received video quality is characterized by its

PSNR (peak signal-to-noise ratio), defined as PSNR� 10 log10(2552/Distortion). Distortion is

measured in terms of mean-squared error. We use average PSNR (averaged over all four users)

as a performance metric to compare different schedulers. PSNR is the most widely used metric

for quantifying video quality. Typically, a 0.5dB difference in PSNR is noticeable, while a 2dB

improvement in PSNR translates to significant improvement in perceived video quality.

In our simulation setup, each users wishes to receive 300 frames of the “Foreman sequence”

‡Let mN be the number of pairwise comparisons required by ΠPW(N). Then, mN = N/2 + mN/2 if N is even and
mN = (N − 1)/2 + m(N+1)/2 if N is odd. It is now easily verified that mN = (N − 1) ∀ N .



(a commonly used test video sequence) at 352x288 pixels/frame (CIF format), 30 frames/sec,

encoded using the new H.264/MPEG-4 AVC video compression standard [18] with a leading

I-frame followed by 299 P-frames. All P-frames were chosen in order to produce a homogeneous

stream of coded frames, in the sense that the coded frames (and associated packets) were a priori

of approximately equal importance. The video was coded using H.264 reference software version

JM10.2 [19]. Each coded frame was divided into independently decodable network packets of

size 1500 bytes or less. This resulted in three to seven packets per frame, depending on the video

content encoded in the frame. For example, a frame which captures a sudden scene change is

likely to contain more packets than a frame which encodes a relatively static scene. “Frame

copy error” concealment techniques were used to estimate missing information when one or

more packets in a frame missed their decoding deadlines. A perfectly received copy of the

Foreman sequence corresponds to a PSNR of 40.7dB. This establishes an upper-bound on the

performance achievable by any scheduler. Note that this upper bound is finite because of the

distortion introduced by lossy compression of the original video stream.

We used a two-state Gilbert-Elliot model for simulating bursty downlink wireless channels. The

two states, GOOD and BAD, were associated with success probabilities sG and sB respectively,

with sG > sB. The probability of transition (in every time-slot of duration ∼ 1.3ms) from

the GOOD to BAD state, as well as from the BAD to GOOD state, was fixed at 0.05. The

success probabilities for users 2,3, and 4 were fixed at sB = 0.75 and sG = 0.95, 0.97, and

0.99, respectively. Also, sG = 0.9 was fixed for user 1, while sB was varied from 0.1 to 0.9, in

steps of 0.1. For our choice of parameters, the stationary probability of being in either channel

state is 0.5. Thus, the average success probability is computed as savg = 0.5(sG + sB). Under

the assumption of additive distortion across multiple packets [12], we simulated 100 channel

realizations for each policy and for 9 different success probabilities, for a total of 7200 channel

realizations. We contrasted the performance of CD2 to other benchmark policies over identical

channel realizations.

Fig. 4 depicts the average PSNR (averaged over all users) as a function of the average success

probability for user 1 (savg
1 ), keeping savg

2 = savg
3 = savg

4 fixed. CD2 comfortably outperforms

the basic versions of RR, EDF, and BCF by several dB of PSNR. CD2 also achieves significant



gains of 0.5-2dB over the distortion-aware versions of RR, EDF, and BCF. The improvement is

largest over PSNR ranges where viewing is desired — 35dB. As the PSNR falls below 35dB,

the perceived video quality falls quickly, and when it falls below roughly 30dB the quality

can become unacceptable. Note that CD2 achieves an average PSNR of 35dB at savg
1 ≈ 0.65,

whereas basic versions of benchmark schedulers do not achieve that performance level even at

savg
1 = 0.9. There is a significant improvement in the performance of benchmark schedulers when

they are allowed to prioritize packet transmissions based on per-packet distortion information.

For instance, EDF with and without reordering drop an identical number of packets for each

corresponding frame. However, EDF with reordering drops packets which cause the least amount

of distortion, leading to 4-5dB gains. The results emphasize the importance of the preprocessing

required to compute per-packet distortion information to include in packet headers to enhance

system performance.

Fig. 5 shows the performance of the worst-case user for each policy. CD2 achieves up to 4dB

gains over the next best benchmark policy (distortion aware EDF). The gains are greater relative

to average PSNR performance because the disparity between all users in the benchmark policies

is quite large. However, for CD2 the variance in PSNR across users is fairly small — the PSNR

of the best user drops slightly in order to increase the PSNR of the worst user. Thus, CD2 has

better fairness properties than benchmark policies. CD2 achieves a worst case PSNR of 35dB

for savg
1 ≈ 0.73, while none of the benchmarks (basic or distortion aware) achieve that mark

even for savg
1 = 0.9. This clearly demonstrates the superiority of CD2 under disparate channel

conditions, a situation very likely to arise in real wireless systems where users far from the BS

are more likely to experience poor channels.

Fig. 6 depicts the average number of packets dropped under each policy. Interestingly, in

some cases CD2 drops more packets than EDF and BCF, but the average PSNR for CD2 is still

significantly higher. This is attributed to the fact that EDF and BCF (both basic and distortion-

aware versions) ignore channel conditions and frame deadlines respectively while making their

scheduling decisions. In contrast, CD2 jointly utilizes all available information to make more

“intelligent” scheduling decisions.



VI. CONCLUSIONS

This paper examined the problem of scheduling multiple video streams across a shared wireless

channel. We proposed the Channel, Deadline, and Distortion (CD2) aware scheduling algorithm

to provide a unified and systematic way to enhance system performance. CD2 determines the

best schedule based on channel characteristics, packet delay deadlines, and packet importance,

and prioritizes transmission of packets within a stream as well as across multiple streams, in order

to minimize the expected aggregate distortion across all of the video streams. Our experimental

results show that CD2 provides significant gains vis-à-vis benchmark schedulers.

REFERENCES

[1] H. Fattah, and C. Leung, “An overview of scheduling algorithms in wireless multimedia networks”, IEEE Wireless

Communications, vol. 9, no. 5, pp. 76-83, Oct. 2002.

[2] X. Liu, E. K. P. Chong, and N. B. Shroff, “A framework for opportunistic scheduling in wireless networks”, Computer

Networks, vol. 41, no. 4, pp. 451-474, Mar. 2003.

[3] L. Georgiadis, R. Guerin, and A. Parekh, “Optimal multiplexing on a single link: delay and buffer requirements”, IEEE

Transactions on Information Theory, pp. 1518-1535, vol. 43, no. 5, Sept. 1997.

[4] S. Shakkottai and R. Srikant, “Scheduling real-time traffic with deadlines over a wireless channel”, Wireless Networks, vol.

8, no. 1, pp. 13-26, Jan. 2002.

[5] K.M.F Elsayed and A.K.F Khattab, “Channel-aware earliest deadline due fair scheduling for wireless multimedia networks”,

Springer Wireless Personal Communications, vol. 38, no. 2, pp. 233-252, 2006.

[6] T. Ren, I. Koutsopolous, and L. Tassiulas, “QoS provisioning for real-time traffic in wireless packet networks”, Proceedings

of IEEE GLOBECOM, Taipei, Taiwan, pp. 1673-1677, Nov. 2002.

[7] K.B. Johnsson and D.C. Cox, “An adaptive cross-layer scheduler for improved QoS support of multi-class data services on

wireless systems”, IEEE Journal on Special Areas in Communications, vol. 23, no. 2, pp. 334-343, Feb. 2005.

[8] A. Dua and N. Bambos, “Downlink wireless packet scheduling with deadlines”, IEEE Transactions on Mobile Computing,

to appear.

[9] P. Chou and Z. Miao, “Rate-Distortion optimized streaming of packetized media”, IEEE Transactions on Multimedia, vol.

8, no. 2, pp, 390-404, Apr. 2006.

[10] S. Wee, W.T. Tan, J. Apostolopoulos, and M. Etoh, “Optimized video streaming for networks with varying delay”,

Proceedings of IEEE ICME, Laussane, Switzerland, Aug. 2002.

[11] G. Liebl, M. Kalman, and B. Girod, “Deadline-aware scheduling for wireless video streaming”, Proceedings of IEEE

ICME, Amsterdam, Netherlands, July 2005.

[12] J. Apostolopoulos, “Secure media streaming & secure adaptation for non-scalable video”, Proceedings of IEEE ICIP,

Singapore, Oct. 2004.

[13] J. Chakareski and P. Frossard, “Rate-distortion optimized distributed packet scheduling of multiple video streams over

shared communication resources”, IEEE Transactions on Multimedia, vol. 8, no. 2, pp. 207-208, Apr. 2006.



[14] M. Kalman, P. van Beek, and B. Girod, “Optimized transcoding rate selection and packet scheduling for transmitting

multiple video streams over a shared channel”, Proceedings of IEEE ICIP, Genoa, Italy, Sept. 2005.

[15] D. Bertsekas, Dynamic Programming and Optimal Control, vol. 1 & 2, 2nd. Ed., Athena Scientific, 2000.

[16] J. Walrand, An Introduction to Queuing Networks, NJ:Prentice Hall, 1988.

[17] M. Hassan, M.M. Krunz, and I. Matta, “Markov-based channel characterization for tractable performance analysis in

wireless packet networks”, IEEE Transactions on Wireless Communications, vol. 3. no. 3, pp. 821-831, May 2004.

[18] “Advanced video coding for general audiovisual services”, ITU-T Recommendation H. 264, Mar. 2005.

[19] ITU H.264/MPEG-4 AVC reference software, ver. JM10.2, http://iphome.hhi.de/suehring/tml/

VII. APPENDIX

A. Proof of Lemma 1

Denote β(x, y, s) �

(
x

y

)
sy(1 − s)x−y. Two distinct cases arise:

1) y ≥ t: At least y − t packets get dropped. Additionally, t − j packets get dropped w.p.

β(t, j, s2). Thus, a total of y − j packets get dropped w.p. β(t, j, s2), implying φ2(y, t) =
t∑

j=0

ω2(y − j)β(t, j, s2).

2) y ≤ t: Consider each channel use as equivalent to a coin toss with bias s2. If y or more

tosses result in success, no packets are dropped. If j < y tosses result in success, y− j packets

get dropped. Thus, φ2(y, t) =

y∑
j=0

ω2(y − j)β(t, j, s2).

Combining the two cases, we get the desired result.

B. Proof of Lemma 2

For y ≥ t, φ2(y, t) = EJ [ω2(y − J)], which is a non-negative linear combination of non-

increasing and convex functions, and hence inherits the same properties. For y < t, we have

φ2(y + 1, t) − φ(y, t) =

y∑
j=0

ω2(y − j + 1) − ω2(y − j)︸ ︷︷ ︸
≥0 from monotonicity of ω2(·)

] β(t, j, s2)︸ ︷︷ ︸
≥0

≥ 0, (9)

φ2(y + 1, t) − 2φ2(y, t) + φ2(y − 1, t) =

y−1∑
j=0

[ω2(y − j + 1) − 2ω2(y − j) + ω2(y − j − 1)︸ ︷︷ ︸
≥0 from convexity of ω2(·)

]β(t, j, s2) + ω2(1)β(t, y, s2)︸ ︷︷ ︸
≥0

≥ 0,
(10)

implying the desired result.



C. Proof of Lemma 3

The proof is based on inductive arguments.

1) Base Case (t = T ): From (4), (6), and the boundary conditions for the two-user problem

it follows that γT (n) = −s1[ω1(n1) − ω1(n1 − 1)] + s2[φ2(n2) − φ2(n2 − 1)]. Since ω1(·) is

convex (by assumption) and φ2(·) is convex (by Lemma 2), the desired result follows.

2) Inductive Step (t < T ): We will show that γt(n) is a non-decreasing function of n1. The

proof for monotonicity of γt(n) as a function of n2 is similar. We assume that the hypothesis

of the lemma is true in all states n in time-slot t + 1, for some t < T . We introduce the

following notation for the sake of compactness: ∆if
t(n) � f t(n) − f t(n − ei) and ∆t

ij(n) �

∆if
t(n) − ∆if

t(n − ej) for i, j = 1, 2 and any function f t(n). Now, by definition

γt(n) = −s1∆1V
t+1(n) + s2∆2V

t+1(n)

γt(n + e1) = −s1∆1V
t+1(n + e1) + s2∆2V

t+1(n + e1)

γt(n + e2) = −s1∆1V
t+1(n + e2) + s2∆2V

t+1(n + e2) (11)

We want to show that ∆1γ
t(n + e1) ≤ 0. From (11),

∆1γ
t(n + e1) = −s1∆11V

t+1(n + e1) + s2∆12V
t+1(n + e1)

∆2γ
t(n + e2) = −s1∆12V

t+1(n + e2) + s2∆22V
t+1(n + e2). (12)

Five different cases arise, depending on whether P�
2 (2) schedules Q1 or Q2 in states n− e1, n,

n− e2, n + e1, and n + e1 − e2 in time-slot t+ 1. Due to space constraints, we present details

only for two representative cases. The remaining three cases can be treated in similar fashion.

• Case 1: P�
2 (2) schedules Q1 in states n−e1, n, n−e2, n+e1, and n+e1−e2 in time-slot

t+ 1. In this case, we have the following sets of equalities:

∆1V
t+1(n + e1) − ∆1V

t+1(n) = s1∆11V
t+2(n) + s̄1∆11V

t+2(n + e1)

∆1V
t+1(n + e1) − ∆1V

t+1(n + e1 − e2) = s1∆12V
t+2(n) + s̄1∆12V

t+2(n + e1).

∆1γ
t+1(n) = −s1∆11V

t+2(n) + s2∆12V
t+2(n)

∆1γ
t+1(n + e1) = −s1∆11V

t+2(n + e1) + s2∆12V
t+2(n + e1).



Combining the above with (12) we get,

∆1γ
t(n + e1) = s1 ∆1γ

t+1(n)︸ ︷︷ ︸
≤0

+s̄1 ∆1γ
t+1(n + e1)︸ ︷︷ ︸

≤0

≤ 0, (13)

where the non-negativity of the terms on the right follows from our inductive assumption.

• Case 2: P�
2 (2) schedules Q2 in states n−e1, n, n−e2, n+e1 and n+e1 −e2 in time-slot

t+ 1. In this case, we have the following set of equalities:

∆1V
t+1(n + e1) − ∆1V

t+1(n) = s2∆11V
t+2(n + e1 − e2) + s̄2∆11V

t+2(n + e1)

∆1V
t+1(n + e1) − ∆1V

t+1(n + e1 − e2) = s2∆12V
t+2(n + e1 − e2) + s̄2∆12V

t+2(n + e1)

∆2γ
t+1(n + e1) = −s1∆12V

t+2(n + e1) + s2∆22V
t+2(n + e1)

∆2γ
t+1(n + e1 − e2) = −s1∆12V

t+2(n + e1 − e2) + s2∆22V
t+2(n + e1 − e2).

Combining the above with (12) we get,

∆1γt(n + e1) = s2 ∆1γ
t+1(n + e1 − e2)︸ ︷︷ ︸

≤0

+s̄2 ∆1γ
t+1(n + e1)︸ ︷︷ ︸

≤0

, (14)

where the non-negativity of the terms on the right follows from our inductive assumption.

The hypothesis of the lemma now follows from the principle of mathematical induction.

D. Proof of Theorem 1

Recall that P�
s (2) is fully characterized by the sign of γt. For fixed t, it follows from Lemma

3 that γt changes sign at most once from negative to positive as n2 increases for fixed n1. Thus,

for fixed n1, ∃ n2 = ψt(n1) such that the optimal decision switches over from Q1 to Q2 in state

(n1, ψ
t(n1)). Since γt is a non-increasing function of n1, it follows that γt(n′

1, n2) can change

sign only later than γt(n1, n2) for fixed n′
1 > n1 as n2 increases, implying ψt(n′

1) > ψt(n1).

The desired result follows from the definition of a switch-over policy.

E. Proof of Theorem 2

We will show that sgn[γt+1(n)] = sgn[γt(n)] ∀ t < T, ∀ n, where sgn[x] = 1 if x ≥ 0 and

sgn[x] = −1 if x < 0.Since the optimal decision in time-slot t is completely determined by the



sign of γt, the implication is that the decisions of P�
s (2) are identical in time-slot t and time-slot

t+ 1 for every state. Since t is arbitrarily chosen, the claim of the theorem follows.

We first assume that γt+1(n) ≤ 0. Lemma 3 implies that γt+1(n−e2) ≤ 0. However, γt+1(n−

e1) could be negative or positive. Accordingly, we have two cases:

• γt+1(n − e1) ≤ 0: In this case,

V t+1(n) = s1V
t+2(n − e1) + s̄1V

t+2(n)

V t+1(n − e2) = s1V
t+2(n − e1 − e2) + s̄1V

t+2(n − e2)

V t+1(n − e1) = s1V
t+2(n − 2e1) + s̄1V

t+2(n − e1). (15)

From (15), γt(n) = s1 γ
t+1(n − e1)︸ ︷︷ ︸

≤0

+s̄1 γ
t+1(n)︸ ︷︷ ︸
≤0

≤ 0.

• γt+1(n − e1) > 0: In this case,

V t+1(n) = s1V
t+2(n − e1) + s̄1V

t+2(n)

V t+1(n − e2) = s1V
t+2(n − e1 − e2) + s̄1V

t+2(n − e2)

V t+1(n − e1) = s2V
t+2(n − e1 − e2) + s̄1V

t+2(n − e1). (16)

From (16), γt(n) = s̄1γ
t+1(n) ≤ 0.

Using Lemma 3 and the definition of γt(n), we can establish analogous results under the

assumption γt+1(n) > 0. In conclusion, sgn[γt(n)] = sgn[γt+1(n)].

F. Proof of Theorem 3

For ease of exposition, we outline the proof for the case N = 3. The proof presented here

extends in a natural way to N > 3. By definition,

γt
12(n) = s1V

t+1(n − e1) − s2V
t+1(n − e2) + (s2 − s1)V

t+1(n). (17)

We want to show that sgn[γt
12(n)] = sgn[γt

12(n
12)] for t = 1, . . . , T , where n = (n1, n2, n3) with

n3 > 0 and n12 = (n1, n2, 0). In words, the result of the comparison between Q1 and Q2 is

unaffected by the presence of Q3. The proof is based on inductive arguments.



1) Base Case (t = T ): From (17) and the boundary conditions, γT
12(n) = s1[ω1(n1)−ω1(n1−

1, 1)] + s2[ω2(n2) − ω2(n2 − 1)], which is independent of n3, thereby completing the proof.

2) Inductive Step (t < T ): We assume that the hypothesis of the theorem is true in time-slot

t + 1. Several cases arise, depending on the decision of P�
s (3) in states n − e1, n − e2 and n

in time-slot t + 1. Due to space constraints, we only treat three representative cases. All other

cases can be treated in similar fashion.

• P�
s (3) schedules Q1 in states n − e1, n − e2 and n in time-slot t + 1: In this case, we

can show γt
12(n) = s1γ

t+1
12 (n − e1) + (1 − s1)γ

t+1
12 (n) ≤ 0, where the inequality follows

because γt+1
12 (n− e1) ≤ 0 and γt+1

12 (n) ≤ 0 by assumption. Also, our inductive assumption

implies that ΠPW(N) schedules Q1 in states n12 − e1 and n12 in time-slot t+ 1, implying

γt+1
12 (n12 − e1) ≤ 0 and γt+1

12 (n12) ≤ 0. It follows, γt
12(n

12) = s1γ
t+1
12 (n12 − e1) + (1 −

s1)γ
t+1
12 (n12) ≤ 0. We conclude sgn[γt

12(n)] = sgn[γt
12(n

12)] = −1, as desired.

• P�
s (3) schedules Q2 in states n − e1, n − e2 and n in time-slot t + 1: In this case, we

can show γt
12(n) = s2γ

t+1
12 (n − e2) + (1 − s2)γ

t+1
12 (n) > 0, where the inequality follows

from our assumption. Also, our inductive assumption implies that ΠPW(N) schedules Q2 in

states n12 − e2 and n in time-slot t+ 1, implying γt+1
12 (n12 − e2) ≤ 0 and γt+1

12 (n12) ≤ 0. It

follows, γt
12(n

12) = s2γ
t+1
12 (n12 − e2) + (1 − s2)γ

t+1
12 (n12) ≤ 0. We conclude sgn[γt

12(n)] =

sgn[γt
12(n

12)] = +1, as desired.

• P�
s (3) schedules Q2 in states n− e1, n− e2 and n in time-slot t+ 1: In this case, we can

show γt
12(n) = s3γ

t+1
12 (n − e3) + (1 − s3)γ

t+1
12 (n). Now, our inductive assumption implies

that sgn[γt+1
12 (n − e3)] = sgn[γt+1

12 (n)] = sgn[γt+1
12 (n12)]. Thus, we conclude sgn[γt

12(n)] =

sgn[γt+1
12 (n12)] = sgn[γt

12(n
12)], where the last equality follows from Theorem 2.

We have established that sgn[γt
12(n)] = sgn[γt

12(n
12)]. Using similar analysis, we can establish

synonymous equalities for γt
23 and γt

31, and also extend the results to N > 3.



Repeat:
• If Qt = ∅†, quit.
• If Qt = {k}, schedule Qk and quit.
• Set U = ∅ and Q = Qt. Repeat:

– If Q = ∅, quit.
– If Q = {k}, set U = U ∪ {k}, Q = ∅.
– If |Q| ≥ 2, select k �= l randomly from Q.
– Use P�

s (2) to choose one of either Qk or Ql.
– If Qk is chosen, set U = U ∪ {k}, else set U = U ∪ {l}. In both cases,

set Q = Q \ {k, l}.
• Set Qt = U .
† Qt denotes the set of scheduling candidates (non-empty queues) in time-slot t.

TABLE I

IMPLEMENTATION OF STEP 2 OF PAIRWISE CD2

Policy Channel Deadline Distortion
Round Robin (w/o reordering)
Round Robin (w/ reordering) �

Earliest Deadline First (w/o reordering) �

Earliest Deadline First (w/ reordering) � �

Best Channel First (w/o reordering) �

Best Channel First (w/ reordering) � �

CD2 � � �

TABLE II

DECISION CRITERIA FOR DIFFERENT SCHEDULING POLICES

Frame

Scheduler

Wireless Transmitter

Packet

Q1

Q2

QN

S

R1

R2

RN

s1

s2

sN

︸ ︷︷ ︸
n1

︸ ︷︷ ︸
n2

︸ ︷︷ ︸
nN

Fig. 1. Schematic of the wireless downlink with N parallel queues and a single time-multiplexed scheduler S at the base-station.
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