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Abstract.  Firms often use both objective/verifiable and subjective/non-verifiable 

performance measures to provide employees with effort incentives.  We study a 

principal/two-agent model in which an objective team-based performance measure and 

subjective individual performance measures are available for contracting.  A problem with 

tying rewards to subjective measures is that the principal may have incentives to understate 

the realization of those measures in order to reduce compensation.  We compare two 

mechanisms for overcoming this credibility problem:  bonus pools and reputation.  While 

reputation is fostered by repeated interactions (a low discount rate), repeated interactions 

create opportunities for agent-agent collusion under bonus pools.  These opportunities for 

collusion can be exacerbated by the team performance measure, to the point that it can be 

optimal to make the size of the bonus pool independent of the realization of the team 

measure.  In general, strong task interdependencies—a strategic complementarity or a 

strategic substitutability of the objective team measure in the agents’ actions—improve the 

effectiveness of reputation-based contracting and reduce the effectiveness of bonus pool 

arrangements. 
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1.  Introduction 

Firms often use both objective/verifiable and subjective/non-verifiable performance 

measures to provide employees with effort incentives (Gibbs, 1995; Gibbs et al., 2004).  

While objective measures usually relate to the output of agents’ productive actions—and thus 

reflect agents’ effort only with noise—subjective measures often capture agents’ effort input 

more precisely.  At the same time, tying compensation to subjective measures creates 

credibility problems as the principal has incentives to claim the (non-verifiable) measure is 

low even though it is high.  The key mechanisms suggested by the prior literature to mitigate 

this problem are reputation (in repeated relationships) and bonus pools (in multi-agent 

settings).
1
   In this paper we study both these mechanisms in a multi-period/multi-agent 

setting and show that the presence of multiple agents working in a team makes reputation 

more effective, whereas repeated interactions make bonus pools less effective as a means to 

sustain implicit incentives. 

Consider a team of agents collaborating to produce a joint output over an infinite 

horizon.  In each period, the agents’ actions can exhibit either strategic complementarity or 

strategic substitutability in that the marginal productivity of an agent’s effort (i.e., the change 

in the probability that the team output is a success) is higher—or lower, respectively—if the 

other agent also chooses high effort.
 2

 Aside from verifiable team output, compensation can 

also be based on subjective performance measures that are agent-specific.   

Under a bonus pool, the principal commits to an amount to be paid out to a group of 

agents and uses her subjective assessment of the agents’ performance only in deciding how to 

divide the bonus pool among the agents.  While, by construction, such an arrangement lends 

                                                 
1
 See, among others, Baker, Gibbons, and Murphy (1994), Levin (2002, 2003), MacLeod (2003), Rayo (2007) 

on the role of reputation; and Baiman and Rajan (1995), Rajan and Reichelstein (2006, 2009), and Ederhof 

(2007) on the role of bonus pools. 
2
 An example of a team setting in which the agents’ actions are strategic complements is a cross-functional team 

in which effort from each team member is necessary to pull off a success, since each team member provides a 
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credibility to implicit contracts, it has features of relative performance evaluation and 

therefore is susceptible to collusion.  Such agent-agent relational contracting becomes a 

concern in particular for repeated interactions:  the agents then can credibly commit to 

implicit side contracts to undermine the effort choices desired by the principal.  As far as we 

are aware, ours if the first study to analyze bonus pools under repeated interactions.   

In the most commonly encountered form of bonus pools, the total amount to be 

distributed among the agents is contingent on the objective performance measure.
3
  

Moreover, the payout tends to be symmetric in that agents who have been observed 

subjectively to have chosen the same effort level will receive the same bonus portion.
4
  We 

show that the threat of collusion under such a bonus pool arrangement takes one of two 

forms.  If their actions are strategic complements, the agents will side-contract on always 

choosing low effort in each period (―Shirk‖); if their actions are strategic substitutes, the 

agents will conspire to alternate between one agent choosing high effort and the other agent 

choosing low effort and vice versa (―Cycle‖).   We characterize the contracting cost to the 

principal associated with a collusion-proof contract and show that this cost is particularly 

high if the discount rate is small and if the tasks are either strong complements or strong 

substitutes.   

To illustrate the role of task interdependency, consider the case of strongly 

complementary efforts. In that case, the principal’s ―bribe‖ to an agent to get him to 

(unilaterally) deviate from Shirk is very costly because the associated increase in the 

                                                                                                                                                        
unique input.  An example of a team setting in which the agents’ actions are strategic substitutes is one in which 

agent effort is interchangeable and there are decreasing returns to total effort. 
3
An example is described in Reuters, February 21, 2007: ― A maximum bonus pool of $165 million has been 

established for a group of five senior executives that includes Bear Stearns Chief Executive James Cayne, the 

company said.  Payout will be pegged to the company’s return on equity.  No executive can get more than 30 

percent of the total pool, which can be as little as zero.  Bear Stearns’ compensation committee also approved 

the performance goals for a second bonus pool for seven other top executives.  The maximum amount will be 

$140 million, with awards based on pretax return on equity, departmental income and expense controls.  Bear 

Stearns did not disclose the exact performance targets."  
4
 We also show that such a symmetric payout policy can be improved upon by favoring one agent off the 

equilibrium path. 
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probability of the bonus pool being paid out is small (the marginal productivity of unilateral 

effort is small for strong complements).  Similar arguments demonstrate that the cost to the 

principal of breaking a collusive agreement of the Cycle variation is particularly high if the 

agents’ tasks are strong substitutes.  In summary, the cost of relational side contracting under 

bonus pools is particular high if (i) the technological interdependency between the agents is 

high and (ii) the discount rate is small (or, equivalently, their expected collaborative time 

horizon is long). 

As an alternative to bonus pools, the principal could write individual (relational) 

contracts, one with each agent.
6
  To make the principal’s implicit promises credible, the 

agents threaten to insist on purely objectively determined rewards in all future periods (or to 

quit), should the principal ever renege on her promises.  It is well known that the smaller the 

discount rate, the more credible the principal’s promises as future punishments by the agents 

then would be more costly.  A more subtle result that emerges from Baker, Gibbons, and 

Murphy (1994) is that a poor quality (less informative in the sense of Holmstrom, 1979) 

objective performance measure may be desirable.  The threat of having to rely on such a poor 

quality performance measure in future periods makes it more credible for the principal to 

honor his promises in the current period.  In our team setting, the production technology 

(whether the agents’ efforts are substitutes or complements with regard to team output) plays 

a key role in determining the quality of the fallback contract and, thereby, the principal’s 

ability to commit to implicit contracts. 

If the agents’ actions are strategic complements, they can punish the principal for 

reneging on the implicit contract by insisting that in all future periods the contract be based 

only on the (objective) team performance measure and that the contract ensure that working 

hard is the only equilibrium.  A naïve fallback incentive contract with complementary efforts 
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however would produce both a working and a shirking equilibrium.  To eliminate the 

shirking equilibrium, higher-powered incentives are needed.  The associated cost of deterring 

off-equilibrium ―bad‖ play helps the principal commit to honoring implicit contracts.  If 

instead the agents’ actions are strategic substitutes, then high effort will be the unique 

equilibrium under the naïve fallback contract.  As a result, the optimal contract turns out to be 

a stark one.  It uses either only the subjective individual performance measures (for low 

discount rates) or only the objective team performance measure (for high discount rates).  

Compared with strategic complements, the principal’s ability to use implicit incentives is 

more limited under strategic substitutes.  Moreover, with strategic complements, relational 

contracts are feasible even in finite horizon settings, not so for actions that are substitutes. 

The preceding arguments imply that individual contracts (principal-agent relational 

contracts) are the preferred solution for low discount rates (expected long-term relationships) 

and strong interdependencies among tasks.  Bonus pools on the other hand perform well for 

high discount rates (expected short-term relationships) and tasks that are technologically 

largely independent.  So, while relational contracts between the principal and agents can 

enhance efficiency, and should hence be bolstered by cultivating long-term relationships, 

relational contracts among agents tend to undermine bonus pool arrangements.  Job rotation 

might mitigate such problems as it shortens the agent-agent relationship horizon without 

affecting the horizon of the principal-agent relationship.
7
   

We also consider alternative payout policies for bonus pools. In particular, the 

principal may be better off committing to pay out a fixed bonus pool, independent of the 

realization of the objective performance measure (―pay without performance‖).  This seems 

to contradict conventional wisdom that the size of bonus pools should be varied with some 

                                                                                                                                                        
6
 The relational contracting literature has focused for the most part on principal-single-agent models.  Two 

notable exceptions are Rayo (2007), who studies relational contracts in a team setting without a principal (i.e., 

imposing a budget balance constraint), and Levin (2002), who compares bilateral with multilateral contracts. 
7
 A related argument is made by Tirole (1986) in a hierarchical principal-supervisor-agent model. 
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objective measure of performance.  A fixed bonus pool is preferred when the agents’ actions 

are strong strategic complements or strong strategic substitutes in the objective team-based 

measure.  Lastly, we show that the threat of collusion can be reduced (although not 

eliminated) by adopting asymmetric payout policies whereby the principal favors one of the 

agents in the (off-equilibrium) event that both choose low effort.   

The remainder of the paper is organized as follows.  Section 2 presents the basic 

model.  Sections 3 and 4, respectively, address individual contracts and bonus pools in an 

infinitely repeated relationship. Section 5 presents results for a finite-horizon (two-period) 

version of the model, and Section 6 concludes. 

 

2.  Model 

A principal contracts with two agents, i A B     Each agent i  provides personally 

costly effort { }i

ta L H   in period t , where L = 0 < H.  In a joint and stochastic fashion, these 

efforts result in concurrent team output {0 1}tx   .  In particular, let   

 

( 1| )

( 1| )

( 1| )

A B

H t t t

i j

t t t

A B

L t t t

p Pr x a a H

p Pr x a H a L i j

p Pr x a a L

    

        

     

 

 

The team output tx  is commonly observable and contractible.  Aside from output, 

compensation contracts can also depend on signals, }1,0{i
ty , about agent i ’s effort in 

period t .  While these signals are more informative, we assume they are non-verifiable, 

subjective metrics.  Any contractual obligations based on them therefore need to be self-

enforcing.  We consider short-term contracts, only.  At the beginning of period t, the principal 

offers agent i  the compensation contract ( , ( , ))i i j

t t t tw x y y .  Agent i then either accepts the 

contract or leaves the employment relationship and receives a reservation utility of 0 in 

perpetuity.  If an agent quits, the firm will shut down or, equivalently, the principal would 

have to incur prohibitively high search costs in order to find a replacement for the agent. 

For simplicity, we assume the principal observes i

ta  perfectly, i.e., 1i
ty  if and only 
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if Hai
t  .  Because the subjective measures are perfect, the optimal contract can then be 

expressed as an additive contract of the following form: 

 ˆi i

t t tw y H x    

where }1,0{ˆ i
ty  is the principal’s report of the subjective metric regarding agent i ’s effort, 

i

ta .  We adopt this additive representation because of its ease in conveying the intuition. 

Both agents and the principal are risk-neutral and share a common discount rate of r ;  

r can be interpreted as capturing the time value of money or as the probability the relationship 

will end at the conclusion of the current period (or a combination of the two).  The agents are 

protected by limited liability in that 0i

tw   for all i t .  We assume that agent effort is 

sufficiently important that the principal always finds it worthwhile to elicit high effort from 

each agent in each period.  Agent i ’s period- t  payoff is normalized to i i

t tw a , and the 

principal’s period- t  payoff is i

t ti
x w .   

We evaluate the efficiency of any contractual arrangement by the expected periodic 

cost, tC , to the principal of eliciting ( )H H  efforts from the agents.  As a benchmark, in the 

first-best solution agent efforts are contractible, so that the principal would simply direct the 

agents to take high efforts in each period and reimburse them for their disutility.  The 

resulting first-best expected periodic cost to the principal would equal 2FB

tC H .  Another 

useful benchmark is the case of contracts based on only the objective measure (i.e., 0i

t  ), 

so that ( , ( , )) ( )i i j i

t t t t t tw x y y w x .  It is straightforward to see that playing ( )H H  will then be 

a Nash equilibrium for the two agents provided the principal sets 
H

HH H
p p

 


  .  Since 

making this inequality strict would result in excessive rents earned by the agents, the 

expected periodic cost to the principal equals 2 2H

H

pHH

t H p p
C p H


  .  Note also that 

playing ( )L L  is not a Nash equilibrium whenever 
L

LL H
p p

 


  . 

Throughout the paper, we assume the agents perfectly observe each other’s efforts 

and they will play as the principal intends as long as doing so constitutes a subgame perfect 

Nash equilibrium in the overall game, which is not Pareto-dominated by any other subgame 

perfect Nash equilibrium.   

We will distinguish between two cases:  efforts are either strategic complements in 

that H Lp p p p    (equivalently, 2 0H LZ p p p    ), or strategic substitutes in that 
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L Hp p p p    (i.e., 0Z  ).  To illustrate these two cases, consider again the benchmark 

case where contracts are based on only the objective measure, i.e., 0i

t  .  If efforts are 

strategic complements, then HH LL   and, therefore, for any ,HH LL      there exist 

two pure-strategy Nash equilibria, ( )H H  and ( )L L .  For ( )H H  to be the unique (in fact, 

a dominant-strategy) equilibrium, LL   has to hold.  If efforts are strategic substitutes, on 

the other hand, then HH LL   and (absent implicit contracts) the effort profile ( )H H  

constitutes the unique pure-strategy equilibrium for any HH  .
8
  

We consider an infinitely repeated contractual relationship, first assuming the 

principal in each period offers the agents individual contracts and then allowing for bonus 

pool arrangements. 

 

3.  Individual Rewards:  Principal-Agent Relational Contracting 

We first derive the optimal contract offered to the agents individually when both 

objective and subjective measures are available for contracting.  Assuming the principal 

honors the implicit contract, playing ( )H H  constitutes a Nash equilibrium for the agents if 

and only if  

 ( )HH p p H              (1) 

The agent’s periodic expected rent is i

t HU H p H    .  There exists a one-dimensional 

set of incentive coefficients ( ( )) | ( ) (1 ) HH        
 
 

    satisfying (1).  That is, the 

explicit and implicit performance measures are substitutes in providing effort incentives.  

Plugging ( )   into i

tU  yields  

 ( ) ( ( )) (1 )i i

t t

H

p
U U H

p p
        


 

which is decreasing in  .  Because the implicit measure i

ty  is assumed noiseless, the 

principal wants to set   as high as possible so as to reduce limited-liability related rents.  

However, since i

ty  is a non-verifiable measure, there are limits to the principal’s power to 

commit to this measure.   

                                                 
8
 With efforts being strategic substitutes, there exist two asymmetric Nash equilibria  ,L H  and  ,H L  for 

LL HH
    , and a unique (dominant-strategy) equilibrium  ,L L  for 

LL
  . 
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We consider the following trigger strategy to support the implicit contract.  As long as 

the principal honors the implicit contract, the agents are willing to play the desired ( )H H  

strategy (provided it constitutes a subgame perfect equilibrium that is not Pareto-dominated 

by any other subgame perfect equilibrium).  If however the principal reneges on the implicit 

contract by claiming that ˆ 0
i

ty   for some i  and t, whereas in fact i

ta H , then both agents 

will not respond to implicit incentives any longer.  Instead they will punish the principal by 

playing ( )L L  indefinitely, unless ( )H H  is a unique equilibrium under the continuation 

contract which is solely dependent on the objective measure.   

 

Strategic Complements 

Recall that with efforts being strategic complements (Z > 0), by setting HH   the 

principal makes ( )H H  a Nash equilibrium, but not a unique one.  As a result, the contract 

offered by the principal has to satisfy the following reneging constraint:  

 
1

( ( ))LL

H HH p H p
r

           

The left-hand side of this constraint gives the principal’s benefit of reneging on the 

implicit contract, in which case she would save H  for each agent.  The right-hand side 

states the principal’s cost of reneging:  to prevent the agents from playing ( )L L  in all future 

periods, the principal will have to raise the explicit bonus from 
H

HH H
p p




  to 
L

LL H
p p




  in 

order to ensure the ( )H H  equilibrium is unique in the stage game, while at the same time 

avoiding the expected ―status quo‖ compensation of ( )HH p   .  By revealed 

preference, the term in square brackets on the right-hand side is strictly positive for any 

0   (otherwise, the principal would not have set a positive   to begin with).  Plugging in 

( )   and rearranging yields: 

 
1 1

H

H L H

p
r p

p p p p p p

   

      
     

      (2) 

  

The right-hand side of (2) is always positive for strategic complements, whereas the 

left-hand sideis negative for 
H

p

p p
r


 .  In the latter case the optimal incentive weights are 

1    and 0   .  For 
H

p

p p
r


  the left-hand side is also positive and we can rewrite the 

reneging constraint as follows:  
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 1 1

L H

H

H p p p p

p

p p

p

r
 

 




  


 

The optimal    in the case of strategic complements therefore case is given by 

min{1 }     and (1 )
H

H
p p

  


  .  It is easy to show that 1   whenever 

L

Z p

p p
r




 . As 

one would expect, the reneging constraint is easier to satisfy if:  (i) the discount rate r  is 

small and (ii) the agents’ actions are strong strategic complements in that the difference 

 1 1

L Hp p p p 
  is large.  If the agents’ actions are strategic complements, the expected cost to 

the principal equals  

 
* * * *2[ ( )] 2comp

t H t

H

p
C H p B C H

p p
     


. 

Note that as *  increases, such an arrangement becomes increasingly efficient and reaches 

first-best benchmark performance for *  = 1.   

Suppose we increase the degree of complementarity by decreasing  p while holding pL 

and pH constant.  By examining C
comp
t  when both the objective and the subjective measures 

are used, one can see that the expected compensation cost is decreasing in the degree of the 

complementarity.  The reason is that as p becomes smaller, the fallback contract, which has to 

ensure the ( )H H  equilibrium is unique while relying on only the objective measure, 

becomes costlier.  Proposition 1 and its corollary summarize the strategic complements case. 

 

Proposition 1.  If the agents’ actions are strategic complements (i.e., Z > 0), then the 

expected per-period compensation cost is 
*( )

2comp H
t

H

p p
C H

p p





.  The weight placed on the 

subjective measure equals: 

*

1 1

(0,1), if  
,

1, otherwise.

H

L H

L

H

p
p p p p Z p

r
p p p

r
p p




  
  

      
  


 



  

 

Corollary 1.  If the agents’ actions are strategic complements, the use of implicit incentives 

is: 

(i) decreasing in the discount rate r and 

(ii) increasing in the degree of strategic complementarity (captured by decreasing p while 
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holding pH and pL constant). 

 

Counting on the agents punishing the principal in a way that also punishes themselves 

is nothing new.  In a repeated Prisoners’ Dilema, one subgame perfect equilibrium is ―tit-for-

tat.‖  The agents threaten to revert to the stage game equilibrium if the other ever defects 

from cooperating.  (A difference between our setting and the repeated Prisoners’ Dilema is 

that the stage game equilibrium is unique in the repeated Prisoners’ Dilema.)  In contrast, 

Bernheim and Whinston (1998) assume that only Pareto-unranked equilibria can be used as 

punishments.  Under that alternative approach, the following analysis for the strategic 

subsitutes case also applies to strategic complements.    

Strategic Substitutes 

If instead the agents’ actions are strategic substitutes (Z < 0), then the same (IC) 

constraint (1) applies in that ( )H H  will be a Nash equilibrium for any 

( ) (1 ) HH       .  In the strategic substitutes case, this equilibrium can be made 

unique by increasing the bonus payment by any arbitrarily small positive amount.  For ease of 

exposition, we ignore this small additional cost throughout the paper.  The principal’s 

reneging constraint for efforts that are strategic substitutes is  

 
1

( ( ))HH

H HH p H p
r

         ,  

which simplifies to  

 

H

p
r

p p
 


          (3) 

This condition is independent of  .  If (3) is not satisfied, then implicit incentives 

will not be sustainable, i.e., 0    and HH   .  If (3) is satisfied, then 1    and 

(1) 0   , i.e., the first-best solution obtains.  As a result, there is a discontinuity at 
H

p

p p
r


 , 

in that the first-best solution is realized if and only if implicit contracts are feasible: 

FB
t

sub
t CC   if (3) holds, and sub

t tC C  otherwise.  In comparison with the reneging 

constraint (2) for the case of strategic complements, (3) is a stronger condition.  Whenever 

(3) is satisfied, then so is (2), and the first-best solution will also be attainable under strategic 

complements.  If (3) is not satisfied but (2) is, then no implicit incentives are feasible under 
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strategic substitutes whereas some positive    can be applied under strategic complements, 

which will make the principal better off. 

Suppose we again increase the degree of complementarity by decreasing p while 

holding pL and pH constant.  By examining C
sub
t , one can see the expected compensation cost 

is discontinuously increasing in the degree of the complementarity.  When 
pp

p
r

H 
  < 0, 

the first-best can be achieved; otherwise only the objective measure can be used.  The reason 

for both the discontinuity and the non-monotonicity (when we put the strategic complements 

and strategic substitutes cases together) is that, under strategic complements, the off-

equilibrium fallback contract uses the objective measure differently (p – pL comes into play) 

than under the on-equilibrium contract (pH – p comes into play).  Under strategic substitutes, 

both the on- and off-equilibrium contracts use the objective measure in the same way (only 

pH – p comes into play).  Proposition 2 and its corollary summarize the strategic substitutes 

case.  

 

Proposition 2.  Suppose the agents’ actions are strategic substitutes.   

(i) If 
H

p
r

p p



, then * 0   and 2sub H

t t

H

p
C C H

p p
 


.   

(ii) If 
H

p
r

p p



, then * 1   and 2sub FB

t tC C H  . 

 

Corollary 2.  If the agents’ actions are strategic substitutes, the use of implicit incentives is: 

(i) decreasing in the discount rate r and 

(ii) discontinuously decreasing in the degree of strategic complementarity.   

 

4.  Bonus Pools:  Agent-Agent Relational Contracting 

As the preceding analysis has shown, a key impediment to relational contracting is the 

principal’s limited ability to commit to honoring implicit contracts.  Bonus pools avoid any 

such commitment issues.  A bonus pool is a contractual agreement by which the principal 

commits to split some total bonus amount among a set of agents, where the total does not 

depend on any subjective signals observed.  That way, the principal is indifferent as to how to 

split the total bonus as it is a sunk cost anyway.  Earlier literature (e.g., Baiman and Rajan 
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1995, Rajan and Reichelstein 2006, 2009) has shown that bonus pools can be powerful 

contracting tools in static settings, but has remained silent on how these arrangements 

perform in dynamic settings.  In this section, we show that the repeated nature of transactions 

can impede the effectiveness of bonus pools as a result of agent-agent relational contracting. 

Within the class of bonus pool arrangements various payout policies are conceivable.  

We refer to a payout policy as symmetric if, given a total bonus pool amount B  to be 

distributed in period t, each agent will receive 2B  , if i j

t ty y ; whereas the entire amount B  

goes to that agent with the higher i

ty  measure, if i j

t ty y .  The payout policy is labeled 

conditional if is it contingent on the realization of the objective signal tx .  We will begin our 

analysis with the most commonly-encountered form of bonus pools in which the payout is 

symmetric and conditional in that neither agent receives any bonus based on i

ty  if 0tx  , 

whereas the full amount B is paid out (to one agent or split evenly, depending on the 

subjective measures) if 1tx  .  Below we will consider alternative payout policies.
9
  

 

4.1 Bonus Pools with Conditional, Symmetric Payout 

We denote by ,C S

klU  an agent’s expected period-t utility from choosing effort i

ta k  

under a bonus pool arrangement with conditional, symmetric payout when the other agent 

chooses effort j

ta l : 

  Agent B 

  L H 

Agent A 

L 
,

2

C S

LL L

B
U p ,   ,

2

C S

LL L

B
U p  , 0C S

LHU  ,   ,C S

HLU pB H   

H 
,C S

HLU pB H  ,   , 0C S

LHU   ,

2

C S

HH H

B
U p H  ,   ,

2

C S

HH H

B
U p H   

 

Table 1:  Payoffs under Bonus Pool with Conditional, Symmetric Payout  

 

 

Under such an arrangement playing ( )H H  will constitute a Nash equilibrium for the 

agents’ stage subgame, if and only if the following incentive compatibility constraint is 

satisfied:   

                                                 
9
 In particular, we show below that asymmetric payout policies can help reduce collusion costs.  While we 

confine attention to these discrete payout policies, it would be desirable for future research to characterize 

optimal payout policies in a more general contracting framework.  
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    , ,C S C S

HH LHU B U B          (4) 

Denote by HHB  the (unique) bonus pool amount that satisfies this incentive constraint (4) as 

an equality.  Using the above expressions for the agents’ payoffs yields 2HH

HB H p  .  Yet, 

other equilibria then may exist and, worse, they may Pareto-dominate ( )H H  for the two 

agents.  We therefore now turn to the issue of collusion — i.e., agent-agent relationship 

contracting — so as to derive the optimal collusion-proof contract.  To that end, we will 

abstract from monetary transfers between agents, as those will be difficult to enforce. 

Given the infinitely repeated nature of the game, even without monetary transfers 

among the agents, the side contracting space for the two agents is very rich.  In general, the 

agents can agree to play any strategy profile    0 0
, , ,A B A

t t tt
a a a L H




 a , provided 0a  

forms a subgame perfect equilibrium.  To support such a side contract, the agents would 

adopt a trigger strategy whereby each agent sticks to the side contract until some agent j 

defects, in which case agent i  will retaliate by choosing ia H t    , indefinitely 

thereafter.  That is, the agents would return to the ( )H H  effort profile (as desired by the 

principal) in each subsequent period.  It can be shown however that attention can be confined 

to two specific and intuitive collusive strategies: 

 

Lemma 1.  In designing a renegotiation-proof bonus pool with symmetric, conditional payout 

it is without loss of generality to consider only the following two collusive strategies:  

(i) ―Shirk‖:  0 0
,SHK A B

t t t
a L a L




  a , i.e., each agent chooses low effort in each period. 

(ii) ―Cycle‖:     0 0,2,4,... 1,3,5,...
, ,CYC A B A B

t t t tt t
a H a L a L a H

 
    a , i.e., the agents 

alternate choosing high and low effort.
10

   

 

Why would the Cycle strategy ever be the ―binding‖ collusion constraint? After all, it 

involves agents incurring disutility of high effort every other period, whereas under Shirk 

effort cost is avoided altogether.  Note however that the relevant constraint regarding 

collusion-proofness depends not on which collusive strategy yields the highest payoff to the 

agents, but on which collusive arrangement is most costly for the principal to break up.  If the 

agents’ actions are substitutes, then the B amount required to prevent side contracting of the 

                                                 
10

 We arbitrarily label Agent A the one to choose high effort in the first period.  This is without loss of 

generality; the agents could toss a coin to determine who chooses high effort first. 
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Cycle type will be high because the probability of realizing a high outcome increases only 

marginally (from p  to Hp ) when the agents’ action profile changes to  ,H H  from  ,L H .  

With complementary actions, on the other hand, it is relatively cheap for the principal to 

prevent collusion via Cycle because an agent who defects from colluding by choosing high 

effort benefits from a steep increase in the probability that 1tx   given that the other agent 

also chooses high effort.  In that case, the binding collusion constraint will be to prevent 

Shirk. 

In light of Lemma 1, we need only consider the following two collusion-proofness 

constraints: to prevent Shirk, B needs to be set high enough to ensure 

  
 

 
,

, ,1
C S

HHC S C S

HL LL

U B r
U B U B

r r


  .       (5) 

At the same time, preventing Cycle requires the following inequality to hold: 

 
 

 
,

0,

1
, ,

C S

HH cyc

i

U Br
U B i A B

r r


  ,       (6) 

where  0,

0 2 4 (1 )

cyc

A t
t

pB H
U B

r   





  and  0,

1 3 5 (1 )

cyc

B t
t

pB H
U B

r   





  are the respective agents’ 

expected utilities in present value terms when abiding to the Cycle side contract. 

In summary, to derive the cost-minimizing collusion-proof bonus pool arrangement, 

the principal needs to ensure that: 

  ,H H  is a Nash equilibrium in the stage game (requires HHB B ); 

  ,L L  is not an equilibrium in the stage game (requires LLB B ); or if it is, it 

must be Pareto-dominated by the  ,H H  equilibrium from the point of view 

of the agents (requires ParetoB B  — both  ParetoB  and LLB  are derived in the 

Appendix); 

 The bonus pool must be collusion-proof. Let SHKB  and CYCB , respectively, 

denote the lower bounds for B defined by (5) and (6).  By the above logic, it is 

easy to show that SHK CYCB B B   holds for complementary actions, whereas 

CYC SHKB B B   for substitute actions. 

Our next result summarizes the contracting cost under this arrangement: 
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Proposition 3.  The expected per-period compensation cost using a bonus pool with 

conditional, symmetric payout equals , ,C S C S

HC p B , where: 

 ,

2
,

2

2(1 )
, ,

2 (1 ) 2 2

2(1 )
,

(2 ) 2 2

Pareto H

H L

C S SHK H H L

H L

CYC H L

H

pH
B p

p p

p p pr H
B B p

p rp r p

p pr H
B p

r p p


  


   

        
 

 
 

 

 

Proof:  See Appendix. 

 

For strongly complementary actions ( / 2Hp p ) the threat of the agents colluding on 

Shirk is very costly to the principal.  In response, the principal has to raise B to the point 

where  ,H H  becomes the Pareto-dominant equilibrium.  There is no need to increase B 

beyond that level, and hence ParetoB  constitutes an upper bound on the contracting cost for 

complementary actions.  If efforts are mild complements (  / 2,( ) / 2H H Lp p p p  ), the 

binding constraint is to prevent the agents from colluding on Shirk.  For substitute efforts 

( ( ) / 2H Lp p p  ), on the other hand, the relevant collusive strategy for the principal to 

combat is Cycle.  Note that SHKB  is decreasing in p, whereas CYCB  is increasing in p.
11

  

Therefore: 

  

Corollary 3.   

(i) The expected per-period compensation cost is non-monotonic in p: (weakly) 

decreasing in p for complementary efforts, and strictly increasing in p for substitute 

efforts. 

(ii) Bonus pools with conditional, symmetric payout never achieve first-best performance.   

(iii) ,C SC  is weakly decreasing in r. 

 

                                                 
11

 With symmetric payout and substitute tasks ( 0Z  ), the payoffs for the agents of the stage game when 

colluding via Cycle cannot be Pareto-ranked with their respective payoffs from obeying the principal’s intention 

by playing  ,H H .  The agent whose turn under Cycle it is to exert high effort always receives a higher payoff 

than under  ,H H , but the reverse holds for the agent who is supposed to lie low.  Hence, for substitute tasks 

there does not exist an upper bound on B akin to the upper bound 
Pareto

B  in the case of complements. 
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Proof:  Parts (i) and (ii) are trivial.  As for part (iii), ParetoB  is independent of r, whereas 

differentiating SHKB  and CYCB  shows each term to be decreasing in r, if and only if 

/ 2Hp p .  Given the cutoffs for p in Proposition 3, part (iii) of the Corollary follows.  

 

For a bonus pool to achieve first-best performance, the binding constraint has to be 

that  ,H H  be a Nash equilibrium (because HH FB

H tp B C ).  Proposition 3 and its corollary 

however show that the specter of side contracting always prevents the principal from 

attaining this benchmark.  Depending on the production technology, the principal always has 

to worry about the agents colluding via one of the two strategies defined in Lemma 1.  From 

the viewpoint of the agents, the effectiveness of colluding via Shirk decreases as task 

complementarity becomes smaller (i.e., as p  approaches 
2

H Lp p
 from below).  Similarly, 

collusion via Cycle becomes less effective as the degree of task substitutability decreases 

(i.e., as p  approaches 
2

H Lp p
 from above).  As a result, the principal’s contracting cost 

will reach its lowest level when tasks are ―technologically independent,‖ i.e., when 0Z  .  

See Figure 1 for illustration (the effective bonus pool amount ,C SB  is depicted in boldface).
12

 

Lastly, recall that the preceding section has confirmed the intuition that when the 

principal contracts individually with each agent, efficiency will improve as the discount rate 

goes down, because the principal will then find it easier to commit to honor his promises.  In 

the case of bonus pools, by the same logic, implicit contracts again perform better as r 

decreases.  Now, however, the implications for the principal’s welfare are reversed: the more 

patient all players, the more effectively the agents can side-contract and thereby obstruct the 

principal’s intentions — this gives rise to part (iii) of Corollary 3. 

 

                                                 
12

 It is easy to show that preventing  ,L L  is never a binding constraint.  For / 2,
LL SHK

H
p p B B  , but at the 

same time, 
LL Pareto

B B . 
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B

 

 

Figure 1:  Bonus Pool with Conditional, Symmetric Payout for 

( .2, .8, 1, .4L Hp p H r    ) 

 

We are now in a position to compare the performance of individual contracting and 

bonus pools — the latter in their most common form with conditional and symmetric payout.   

Individual contracts perform particularly well for low discount rates and for settings that 

exhibit either strong complementarity or strong substitutability among the agents’ actions.  

The reverse holds for bonus pools where high discount rates and technologically 

―independent‖ actions (Z close to zero) make it harder for the agents to collude. 

 

Corollary 4.   Let  ,indiv sub comp

t t tC C C  denote the principal’s per-period cost under 

individual contracting for efforts that are substitutes or complements, respectively (and recall 

that ,C S

tC  is the per-period cost under conditional-symmetric- bonus pools). 

(i) If efforts are substitutes (
2

H Lp p
p


 ), then ,indiv C S

tC C  if and only if 

( )i

H

p
r r

p p
 


.  

(ii) If efforts are strong complements (
2

Hp
p  ), then ,indiv C S

tC C  if and only if 
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( )2

( )

( )

H
ii

L

p p p
r r

p p


 


.    

(iii) If efforts are weak complements ( ,
2 2

H H Lp p p
p

 
 
 

), then ,indiv C S

tC C  if and only 

if 

2 3 4 4 2 2 2

( )

2 16 ( ) 12 4 ( 5 ) 4 ( )

2( )(3 )

L L H L L H H L L H H L L

iii

L H L

pp p p p p p p p p p p pp p p p p
r r

p p p p p

         
 

  

.    

(iv)  Furthermore, if the technological interdependence between the agents’ tasks becomes 

stronger, the relative performance of individual contracting improves—i.e., ( )ir  is 

increasing in p , whereas ( )iir  and ( )iiir  are decreasing in p . 

 

Proof:  Parts (i)-(iii) follows from straightforward comparison of the per-period costs given 

in Propositions 1-3.  Equating sub

tC  with CYC

Hp B  yields ( )ir  for substitutes; equating comp

tC  

with Pareto

Hp B  yields ( )iir  for strong complements; and equating comp

tC  with SHK

Hp B  yields 

( )iiir  for weak complements.  Part (iv) is established by taking derivatives of  ( )ir  and ( )iir  with 

respect to p ; the result that ( )iiir  is decreasing in p  follows from the facts that comp

tC  is 

increasing p  (Corollary 1) while SHKB  is decreasing in p .  

     

Since bonus pools perform poorly if agents are sufficiently patient and anticipate 

repeated team transactions with each other, this suggests job rotation as a way to reduce the 

cost of collusion to the organization.   

 

4.2 Alternative Payout Policies  

Unconditional Payout Policy 

While in most firms the total financial reward to be distributed among employees by 

means of a bonus pool is contingent on some verifiable outcome such as income, EPS, or 

sales, we now allow for the possibility that the principal commits to paying out B  

irrespective of the realization of tx .  A priori, from an agency perspective, this is a plausible 

construction as we assume here that the principal can observe the agents’ efforts perfectly, 
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while the objective output measure tx  is observed with noise.  Under such a bonus pool 

arrangement with unconditional, symmetric payout (“U,S”), the agents’ payoffs are 

independent of the success probabilities for high output; instead they read:  

  Agent B 

  L H 

Agent A 

L 
,

2

U S

LL

B
U  ,   ,

2

U S

LL

B
U   , 0U S

LHU  ,   ,U S

HLU B H   

H 
,U S

HLU B H  ,   , 0U S

LHU   ,

2

U S

HH

B
U H  ,   ,

2

U S

HH

B
U H   

 

Table 2:  Payoffs under Bonus Pool with Unconditional, Symmetric Payout  

 
  

The requirement that ( )H H  be a Nash equilibrium now reduces to 2B H , which 

also rules out  ,L L  as an equilibrium.  But the principal again faces a collusion problem.  

Since now the payout is independent of the project success probabilities, the only relevant 

collusive strategy is Shirk  (note that Cycle now is dominated from the agents’ point of view 

by Shirk as the former involves positive effort costs without altering the total monetary 

rewards). To prevent the agents from colluding on Shirk, the principal needs to set B high 

enough so that the collusion-proofness condition (5) holds (with superscript ― ,U S ‖ 

substituted for ― ,C S ‖).  It is easy to show that this requirements boils down to 1 2r
r

B H .  

Thus, with unconditional payout, the collusion-proofness constraint is always the binding 

one.  Since the bonus is now paid out with probability one, the resulting cost to the principal 

of securing high effort from the agents is , 1 2U S r
t r

C H .  A comparison with the contracting 

cost under conditional bonus pool payout ,C S

tC  — characterized  in Proposition 3 — yields 

our next result (the proof follows from straightforward algebra and is hence omitted).   

 

Proposition 4.  If efforts are strategic complements, an unconditional-symmetric payout 

policy dominates conditional-symmetric payout if and only if r is sufficiently high. For 

substitute efforts, conditional-symmetric payout dominates unconditional-symmetric payout 

for any r.   

 

To illustrate, write out the collusion-proofness conditions in (5) for unconditional and 

conditional payout, respectively: 
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,
, ,

,
, ,

1 12 ,
2

1 12 .
2

U S
U S U SHH
HL LL

C S H
C S C SHH
HL LL L

B
H

U r r B
U B H U

r r r r

B
p H

U r r B
U pB H U p

r r r r


 

     


 

     

 

Rearranging terms shows how breaking away from Shirk affects the deviating agent’s payoff 

in the current and in all future periods: 

 

 T t+1 … t+n 

Unconditional 

Payout (―U,S‖) 2

B
H  H  … H  

Conditional 

Payout (―C,S‖) 2
L

B
pB p H   ( )

2
H L

B
H p p    … ( )

2
H L

B
H p p    

 

Table 3:  Effect on the Payoff of an Agent who Deviates from Shirk 

 
  

With efforts being strategic complements, the contemporaneous reward from defecting is 

smaller with conditional than with unconditional payout because there is a positive 

probability that the bonus pool will not be paid out—namely in case 0tx   (note that 

2 1Lp p   if Z > 0).  At the same time, the future punishment from triggering a reversal 

back to ( )H H  indefinitely is reduced under conditional payout by the fact that the 

probability of the bonus pool being paid out increases by  H Lp p  in each period.  Thus, if 

agents are sufficiently impatient, then it will be cheaper for the principal to entice them to 

deviate from Shirk by using an unconditional payout policy.  This is the intuition behind the 

first part of Proposition 4. 

For the second part of the proposition, when efforts are substitutes, the relevant 

collusion-proofness constraint under the conditional payout policy is to prevent Cycle, while 

it remains Shirk for the unconditional policy.  Since Cycle forces each agent to incur the 

disutility of high effort every other period, it is less costly for the principal to induce them to 

break away from this side contract.
13

  Figure 2 illustrates Proposition 4, with part a) depicting 

                                                 
13

 An interesting open question is what the optimal payout policy would look like. Proposition 4 indicates that it 

will not always pay out zero if 0
t

x   (as does our ―conditional‖ payout policy), but also not always the same 

amount regardless of the realization of 
t

x  (as does our ―unconditional‖ payout policy).  In a more general 

formulation, there are two bonus pool amounts, 0 1
k

B k     to be distributed between the agents conditional on 
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the case of r sufficiently high so that for strong complements (p small) the contracting cost 

under unconditional payout (dashed horizontal line) is less than with conditional payout.  Part 

b) depicts the case of low r in which case conditional payout is always the dominant policy. 

 

U n co n d i ti o n a l  
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Figure 2a:  High r 
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Figure 2b:  Low r 

Figure 2: Compare Conditional and Unconditional Payout Policies (Proposition 4) 

                                                                                                                                                        

t
x k .  Such a formulation method would nest the two symmetric payout regimes considered here.  A 

conceptual challenge to the modeler, however, is that the agents’ collusive strategies depend endogenously on 

the payout policy. 
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Asymmetric Payout Policy 

Bonus pools with conditional payout suffer from two qualitatively different threats of 

collusion, Shirk and Cycle.  The Shirk strategy in particular capitalizes on the fact that with 

complementary effort there may be multiple equilibria in the stage game, specifically ( )H H  

and ( )L L . In a multi-agent adverse selection setting Demski and Sappington (1984) have 

shown that (some) undesirable equilibria can be eliminated by treating agents 

asymmetrically. That way, dominant-strategy incentives can be created for the disadvantaged 

player to comply with the principal’s preferred action. The other player then chooses his best 

response.   

Similar logic can be applied to our setting.  Suppose without loss of generality that the 

principal discriminates against agent B by allocating the entire bonus pool amount to agent A 

if he observes (subjectively, but perfectly) that both agents have chosen low effort.  The 

agents’ expected payoffs under such a conditional, asymmetric payout policy then are as in 

Table 1 except for the ( )L L  cell: 

 

  Agent B 

  L H 

Agent A 

L 
,

,

C A

LL A LU p B ,   
,

, 0C A

LL BU   , 0C A

LHU  ,   ,C A

HLU pB H   

H 
,C A

HLU pB H  ,   , 0C A

LHU   ,

2

C A

HH H

B
U p H  ,   ,

2

C A

HH H

B
U p H   

 

Table 4:  Payoffs under Bonus Pool with Conditional, Asymmetric Payout  

 

 

It is easy to see that agent A now has dominant-strategy incentives to choose high 

effort provided HHB B .  Agent B will respond by choosing high effort also, because 

( )H H  is a Nash equilibrium.  It is easy to see that such an asymmetric payout policy deters 

collusion by the agents using the Shirk strategy.  At the same time, the threat of agent side 

contracting via Cycle remains unmitigated, as this strategy is unaffected by the manipulation 

of the agents’ payoffs in the ( )L L  cell.  Therefore, the bonus pool amount to be paid out in 

case 1tx   equals  , max ,C A HH CYCB B B .  Solving for the cutoff p-value that equates HHB  

and CYCB — and noting that the outcome of an analogous unconditional-asymmetric is 
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identical to the unconditional-symmetric outcome described above
14

 — yields: 

 

Corollary 5.  Bonus pools with conditional, asymmetric payout policy result in periodic 

contracting cost of , ,C A C A

HC p B , where: 

,

,
2

,
2

HH H

C A

CYC H

p
B p

B
p

B p




 
 


, 

and therefore  , , , ,min ,C A C S U A U SC C C C  , i.e., this payout policy dominates all other 

bonus pool arrangements considered. 

In summary, an asymmetric payout policy dominates symmetric ones as it costlessly 

eliminates the undesired ( )L L  equilibrium. It also removes the indeterminacy regarding the 

ranking of conditional and unconditional payout.  It is beyond the scope of this paper to 

address the question why asymmetric contracts favoring some agents over others are rarely 

seen in practice.  Aside from obvious fairness problem, such contracts could suffer from 

excessive risk premiums in case agents are risk averse and subjective measures are observed 

with noise. 

 

5.  Finite Horizon Model 

To illustrate the effects of a finite horizon, we now consider a two-period model.  For 

simplicity, we set the discount rate, r, equal to zero as it plays less of a role now.  This is 

clearly an extreme situation because in practice, while planning horizons are finite, they are 

usually subject to an uncertain ending date, which is conceptually equivalent to the above 

infinite horizon specification.   

The scope for relational contracts is severely impaired in finite horizon settings due to 

the well-known unraveling problem.  As a result, bonus pools become very effective because 

the agents will find it hard or impossible to collude.  In fact, it is easy to show that bonus 

pools can then achieve first-best performance even their simplest and most common form 

(with conditional and symmetric payout).  The reason is that, by backward induction, the 

two-period contracting problem collapses to a twofold repetition of a static bonus pool, in 

                                                 
14

 As for conditional payout, introducing asymmetric payouts in case the principal observes  ,L L  eliminates 

the Shirk strategy for agent side contracting. Yet the agents again can collude via Cycle.  Now, for unconditional 
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which the principal only needs to ensure ( )H H  is a Nash equilibrium and, as such, is not 

Pareto-dominated from the agents’ point of view by ( )L L .  Thus, conditional-symmetric 

bonus pools achieve first-best if and only if the agents’ efforts are strategic substitutes.  To 

close, we reconsider the alternative payout policies analyzed in Section 4.2.  It is easy to see 

that in the two-period model both the unconditional (symmetric) payout policy, as well as the 

asymmetric, conditional payout policy will achieve first-best performance for any p.  Under 

either of these alternative policies, by setting HHB B  the principal not just makes ( )H H  a 

Nash equilibrium in each period, but also precludes ( )L L  as an equilibrium.
15

 

Using similar logic one would also expect that relational principal-agent contracting 

will become infeasible, again by backward induction.  Surprisingly, however, this logic turns 

out to be incomplete.  Suppose that principal contracts with each agents individually. Then in 

the second period implicit contracting is not credible since there are no future cooperation 

benefits to the relationship.  So, the principal pays each agent a bonus of 2

HH

H

H

p p
 


 if 

and only if 2 1x  .  Under strategic substitutes, the ( )H H  equilibrium is unique in Period 2, 

so the agents have no threat to use against any promise by the principal in Period 1.  Hence, 

under strategic substitutes, the principal uses only the objective performance measure in both 

periods, with a total (over two periods and two agents) expected compensation cost of 

2 4H
t

H

p
C H

p p



.  That is, our earlier intuition holds for efforts are strategic substitutes: 

introducing a definitive end to the relationship at some future point rules our implicit 

incentives altogether. 

Under strategic complements and the above contract, ( )L L  is also an equilibrium in 

Period 2.  Hence, the agents can threaten to play this equilibrium if the principal does not 

honor the implicit promise he made for Period 1.  In response to the agents’ threat, the 

principal would increase the bonus to ensure that the ( )H H  equilibrium is unique.  This 

enables the principal to make a promise to pay a subjective performance measure-based 

reward in Period 1that is bounded by the following reneging constraint: 

                                                                                                                                                        
payout it is easy to show that the bonus pool amount required to prevent Cycle again just equals [(1 ) / ]2r r H . 
15

 Bonus pools couples with either of the alternative payout policies analyzed in Section 4.2 achieve first-best 

performance for any p.  Under either of these alternative policies, by setting 
HH

B B  the principal not just 

makes ( )H H  a Nash equilibrium in each period, but also precludes ( )L L  as an equilibrium. 
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 H

L H

H H
H p

p p p p


 
  

  
, 

in analogy with the infinite horizon model.  Denote by 
1  that value of   at which this 

period-1 reneging constraint is binding.  Then the optimal period-1 weight on the subjective 

measure equals  *

1 1min ,1   and the total expected compensation cost (over two periods 

and two agents) equals 
*

1 2 2H H
t

H H

p p p
H C

p p p p

 
  

  
, as *

1  will be strictly positive.  

Moreover, it is easy to see that as p decreases, *

1  will increase and eventually reaches one, in 

which case period-1 contracting cost achieve the first-best level and total contracting cost 

(across two agents and two periods) equals FB

t tC C .  Hence, once again, if the agents’ 

actions are strategic complements, increasing the complementarity facilitates implicit 

contracting.   

To summarize, under strategic substitutes, the problem behaves largely as a single-

agent one because of the uniqueness of the equilibrium.  With a finite horizon, relational 

contracts between the principal and a single agent unravel by backwards induction.  Under 

strategic complements, the multiple equilibria that emerge in the last period facilitate implicit 

contracting in the first period.
16

  Introducing a definitive end to the contracting relationship 

thus sharpens our predictions of Section 3 that effort complementarity is a key factor in 

facilitating implicit contracts.  These findings are summarized in our next result. 

 

Proposition 4.  In the two-period setting: 

(i) If the agents’ actions are strategic substitutes, the subjective measure will not be used 

in a finite horizon setting.   

(ii) If the agents’ actions are strategic complements, the subjective measure will be used, 

and the use of implicit incentives is increasing in the degree of the complementarity.   

 

` 

  

                                                 
16

 Arya, Fellingham, and Glover (1997) study implicit side contracting and mutual monitoring among agents in 

a two-period model.  The principal intentionally creates multiple equilibria in the agents’ second-period 

subgame to facilitate the implicit side contracting, whether the actions are strategic complements or strategic 

substitutes.   
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6.  Conclusion 

Contracting relationships within firms are dynamic in nature, and they often involve 

technological interdependencies in that the firm (or division) output depends on a vector of 

actions taken by a number of productive agents.  The expectation that the employment 

relationship endures creates scope for implicit incentives.  While the prior literature has 

focused on the bright side of relational contracts (between principal and agents), this paper 

argues that there is a dark side too:  agent-agent side contracting.  As we have shown, the 

effectiveness of bonus pools is severely adversely affected by such collusion due to the 

tournament-like structure of such arrangements.  If all parties are sufficiently patient and, 

thus, expect significant future gains to be had from current cooperation, then bonus pools will 

be dominated by individual contracting arrangements whereby the principal contracts with 

each agent unilaterally and replies on her reputation to pay out rewards tied to nonverifiable 

performance measures. 

We also show that the greater the technological interdependencies among agents’ 

productive efforts, the stronger the principal’s preference for individual contracts, all else 

equal.  Such individual contracts are particularly effective if the agents’ actions are strategic 

complements because then the agents can credibly threaten to play the shirking equilibrium in 

case the principal reneges on her promises.  The cost this punishment would impose on the 

principal serves as a useful commitment device for the latter to remain truthful. 

A simplifying assumption throughout this paper is that all players observe the 

nonverifiable performance measure equally and without noise.  Arguably, in many settings 

the principal will observe the agents’ effort only with noise, even though the agents can 

observe each other’s effort perfectly.  While analyzing this extension is beyond the scope of 

this paper, it turns out that such observation noise reduces the relative performance of bonus 

pools even further.  The reason is that the additional noise will strengthen the agents’ 

incentive compatibility constraints without at the same time relaxing their collusion-

proofness constraint (because they observe each other’s efforts perfectly).  A formal analysis 

of imperfect measurement, both for bonus pools and individual contracts, seems an 

interesting avenue for future work. 
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Appendix 

Proof of Lemma 1:  Consider any generic collusive strategy 0a .  Denote by  ,A B

t t
a a  




a  

the continuation strategy at date t, and by  cont

t tU B a  the attendant continuation payoff for a 

representative agent in present value terms at date t.  Under the collusive strategy 
0a , one of 

two cases can arise in any period t: (i) A B

t ta a L   or (ii) i

ta L  and ,j

ta H j i  .  In 

case (i), collusion will be prevented, if and only if 

  
,

, ,

1 1

( )
( ) ( )

C S
C S C S contHH
HL LL t t

U B
U B U B U B

r
    a .     (7) 

Denote by ( )iB  the value of B at which this requirement holds with equality. 

In case (ii), collusion-proofness requires B to be high enough such that  

  
,

, ,

1 1

( )
( ) ( )

C S
C S C S contHH
HH LH t t

U B
U B U B U B

r
    a .     (8) 

Evaluating this condition at ( )iB B , we find that (8) will be satisfied at ( )iB , if and only if 

 
, , , ,

( ) ( ) ( ) ( )( ) ( ) ( ) ( )C S C S C S C S

HH i LH i HL i LL iU B U B U B U B   . 

Simple algebra shows that this condition is equivalent to 0Z  .  That is, if 0Z  , then the 

bonus pool amount required to prevent collusion in period t is higher if the agents collude on 

( )L L ; whereas for 0Z   it is higher if the agents in that period collude asymmetrically on 

( )L H  (or ( , )H L ).  

In a last step, proceed recursively by applying similar arguments to period t-1 with 

  1,A B

t t t ta a a a  where, by the preceding arguments,    , ,A B

t ta a L L  if 0Z  , and 

   , ,A B

t ta a L H  (or  ,H L ) if 0Z  .  Thus, if 0Z  , the binding collusion-proofness 

constraint is (7) (i.e., the agents adopt the Shirk strategy 0

SHK
a  as defined in the Lemma).  For 

0Z  , on the other hand, the binding collusion-proofness constraint is (8).  The last step 

required to establish that the agents will adopt the Cycle strategy 0

CYC
a  for 0Z   is to note 

that all (infinitely many) collusive strategies in which i

ta L  and ,j

ta H j i  , yield the 

same  aggregate payoff to the agents in present value terms.  To break this collusive 

arrangement, the principal needs to set B high enough to induce that agent to break away who 

has the lowest payoff in present value terms, the agents will settle on that collusive strategy 

which yields the most symmetrical payoffs in present value terms, among those described by 

i

ta L  and ,j

ta H j i  , i.e., they choose Cycle.  
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Proof of Proposition 3:  As shown in the main text, for ( )H H  to be an equilibrium B has to 

exceed 
2HH

H

H
B

p
 .  At the same time ( )L L  will not be an equilibrium, if and only if 

, ,C S C S

HL LLU U , which is equivalent to 
2

2

LL

L

H
B B

p p
 


.  If LLB B , so that ( )L L  is an 

equilibrium, then this equilibrium has to be Pareto-dominated by ( )H H .  Given the inherent 

symmetry among the agents, this amounts to: 

 
, , 2C S C S Pareto

HH LL

H L

H
U U B B

p p
   


. 

Collusion-proofness with regard to the Shirk strategy in Lemma 1 requires that 

,
, ,( ) 1 2(1 )

( ) ( )
2 (1 )

C S
C S C S SHKHH
HL LL

H L

U B r r H
U B U B B B

r r p rp r p

 
    

  
. 

Lastly, consider agent-agent side contracting via the Cycle strategy in Lemma 1.  Taking 

Agent A to be the one to choose high effort in period 0 (without loss of generality), the 

respective agents’ expected utilities in present value terms read: 

 

 

 
 

2

0,

0 2 4

0,

0,

1 3 5

(1 )
( ),

(1 ) (2 )

.
(1 ) 1

cyc

A t
t

cyc

Acyc

B t
t

pB H r
U B pB H

r r r

U BpB H
U B

r r

   

   

 
  

 


 

 





 

Agent B realizes a lower payoff than Agent A due to time value of money-reasons.  

To prevent such Cycle collusion, the principal has to entice the ―weak link‖ — i.e., Agent B 

— to break away from the side contract: 

    0,

1 2(1 )

(2 ) 2

cyc cyc

HH B

H

r r H
U B U B B B

r r p p

 
   

 
. 

In the last step, it is a matter of straightforward algebra, holding constant  ,H Lp p , to 

derive cutoffs for p that permit a ranking of the relevant B-values; the three cases in 

Proposition 3 then follow.   

 



29 

References 
Arya, A., J.  Fellingham, and J.  Glover, ―Teams, Repeated Tasks, and Implicit Incentives,‖ 

Journal of Accounting and Economics, 1997, 7-30.   

Baiman, S.  and M.  Rajan, ―The Informational Advantages of Discretionary Bonus 

Schemes,‖ The Accounting Review, 1995, 557-579. 

Baker, G., R.  Gibbons, and K.  Murphy, ―Subjective Performance Measures in Optimal 

Incentive Contracts,‖ Quarterly Journal of Economics, 1994, 1125-1156. 

Bernheim, B.D. and M.D Whinston ―Incomplete Contracts and Strategic Ambiguity,‖ 

American Economic Review 88, 1998, 902-932 

Che, Y.  and S.  Yoo, ―Optimal Incentives for Teams,‖ American Economic Review, 2001, 

525-541. 

Demski, J. and D. Sappington, ―Optimal Incentive Contracts with Multiple Agents,‖ Journal 

of Economic Theory 33 (June), 1984, 152-171. 

Ederhof, M., ―Discretion in Bonus Plans,‖ Working Paper, Stanford, 2007. 

Gibbs, M., ―Incentive Compensation in a Corporate Hierarchy,‖ Journal of Accounting and  

Economics 19 (March-May), 1995, 247-277 

Gibbs, M., K. Merchant, W. Van der Stede, and M. Vargus, ―Determinants and Effects of 

Subjectivity in Incentives,― Accounting Review 79(2), 2004, 409. 

Holmstrom, B., ―Moral Hazard and Observability,‖ Bell Journal of Economics 10(1), 1979, 

74-91 

Levin, J., ―Multilateral Contracting and the Employment Relationship,‖ Quarterly Journal of 

Economics 117 (3) 2002, 1075-1103. 

Levin, J., ―Relational Incentive Contracts,‖  American Economic Review 93 (June), 2003, 

835-847. 

MacLeod, W.B., ―Optimal Contracting with Subjective Evaluation,‖ American Economic 

Review 93 (March), 2003: 216-240. 

Rajan, M.  and S.  Reichelstein, ―Subjective Performance Indicators and Discretionary Bonus 

Pools,‖ Journal of Accounting Research, 2006, 525-541. 

Rajan, M.  and S.  Reichelstein, ―Objective versus Subjective Indicators of Managerial 

Performance,‖ Accounting Review 84(1), 2009, 209-237. 

Rayo, L., ―Relational Incentives and Moral Hazard in Teams,‖ Review of Economic Studies 

74, 2007, 937–963. 

Tirole, J., ―Hierarchies and Bureaucracies: On the Role of Collusion in Organizations,‖ 

Journal of Law, Economics and Organization, 1986, 181-214. 


