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Abstract. Companies are collecting increasing amounts of information about their customers. This effort

is based on the assumption that more information is better and that this information can be leveraged to

predict customers’ behavior in a variety of situations and product categories. For example, information

about a customer’s purchase behavior in one category can be helpful in predicting his potential behavior in

a related category, which in turn could help a firm in its cross-selling efforts.

In this paper, we present a model to better understand and predict a consumer’s purchases and

preferences when we may have limited or no information about him in one or more product categories.

Conceptually this involves leveraging information from purchases of other consumers in multiple

categories as well as partial information (e.g., purchase in one of the categories) of the target consumer.

Our approach builds on the pioneering work of Rossi et al. (1996) who demonstrate the value of purchase

information in the context of a single product category. We present results from an extensive simulation as

well as an application on scanner panel data.

Our simulation shows many interesting and somewhat surprising results. Specifically, we find that

compared to a single-category analysis, a cross-category analysis does not lead to any significant

improvement in data likelihood in most cases. Therefore, the single-category analysis of Rossi et al. (1996) is

even more powerful than previously thought. However, we also find that a cross-category analysis does

improve parameter recovery in many situations as compared to a single-category analysis. It is in these

conditions that retailers can use cross-category information to better implement micromarketing programs.

We demonstrate the transfer of information across categories in an application of two grocery

products—Breakfast Foods and Table Syrup. In spite of a reasonable correlation (0.21) in the price

parameter across these two categories, our simulation guidelines predict very little benefit of cross-category

analysis over single-category analysis. Our empirical results confirm this prediction.
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1. Introduction

Understanding and predicting consumer purchases is one of the main goals of
marketing researchers and marketing managers. Several decades of research has
shown that the best predictor of a consumer’s purchase is his past purchase behavior.
The growing realization that past purchases are important predictors, the ease of
obtaining purchasing data and the advent of sophisticated information technology
has propelled many companies to create enormous databases for customer
relationship management (CRM) and customer targeting.1

Even with these large databases, it is not uncommon, however, to have limited
purchase information about a specific consumer. This may be because of long
purchase cycles for a product, or because of missing information arising out of a
lack of data integration across various information sources (e.g., call centers, web
sites, retail stores, etc.) or owing to less than comprehensive information for
newly acquired customers. Such data scarcity poses challenges in defining a
customer-specific profile (e.g., individual customer’s price sensitivity) for targeting
purposes. Recently researchers, especially Rossi et al. (1996), have made
significant progress in addressing customer targeting when partial data is
available on some customers. This research shows how Bayesian methods can
be used to optimally pool information across consumer purchases within a
product category. Such Bayesian information pooling enables one to estimate an
individual customer’s preference (for example, price sensitivity) with very limited
or no information.
In a related research stream, several researchers have examined the correlation in

consumers’ price sensitivities across multiple product categories (Ainslie and Rossi,
1998; Erdem et al., 2001). This research shows that consumer price sensitivities are
correlated across product categories and that a consumer’s price sensitivity in one
category provides strong indications about his price sensitivity in another category.
Researchers typically arrive at this conclusion by using a combination of customer
demographics and information about previous brand choices and their causal
context (i.e., full information) from multiple product categories.
There are many situations where a company does not have complete information

about consumers’ purchases across multiple categories, thus making it difficult to
directly apply the methods developed in previous research (Ainslie and Rossi, 1998,
and others). For example, in cross-selling situations (Kasulis et al., 1979; Kamakura
et al., 2003) a firm may have significant purchase information about a customer in
one product category but may possess no information about him in a related
category. Clearly methods are needed that can handle such incomplete data
situations across categories. As customer acquisition becomes more and more
expensive, a firm’s ability to better target its customers for cross-selling purposes
gains more importance. Therefore, there is a strong need to better leverage

1 We are using the terms consumers, customers and households interchangeably.
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consumers’ purchase information in one category to make inferences about their
potential purchase behavior in other product categories.
In this paper, we address such situations involving partial information availability

across product categories. Specifically, we propose methods to better understand and
predict a consumer’s purchases when we may have limited or no information about
him in one or more categories. Conceptually this involves leveraging information
from other consumers across the multiple categories as well as information about the
purchase behavior of our target customer in other categories. Therefore, our
approach builds on the work of Rossi et al. (1996) who demonstrate the value of
information within a product category, and Ainslie and Rossi (1998) and Erdem
(1998) who show how complete information about consumer purchases across
multiple categories can be used to estimate cross-category linkages. Unlike Rossi et al.
(1996) we propose a method to leverage information across multiple categories, and
unlike Ainslie and Rossi (1998) we deal with situations, such as cross-selling, where we
have incomplete information about consumer purchases in one or more categories.
Our work is also conceptually related to research on data fusion (Wedel and
Kamakura, 1997) that focuses on combining information from different data sources.
Does it always help a firm to utilize information from multiple categories when

trying to target customers? Intuition would suggest that more information is always
better. However, recent industry reports on CRM suggest that collecting data from
multiple sources and especially integrating these data is both complex and costly. If
the marginal benefit of additional information is limited, then this additional cost
and complexity may not be warranted. To address this issue we use a simulation and
show that there are limits to the value of cross-category information. Specifically, we
show that even when the cross-category correlation between the individual-specific
parameters is high, the value of cross-category information may be insignificant
under some reasonable situations. In other words, in certain situations, information
from a single category is as good as multiple category information in predicting
consumer purchase behavior. This result has several implications. First, it makes the
approach suggested by Rossi et al. (1996) even more important. Second, it suggests
that rather than collecting more data, firms are well advised to identify conditions
under which multiple category information is indeed going to be valuable in
predicting consumer behavior. In our empirical application we show how we can use
the guidelines that emerge from our simulation to anticipate the value of cross-
category information.
The rest of the paper is organized as follows: In Section 2, we present our

conceptual framework for leveraging information across categories under different
Scenarios or levels of available information. In Section 3, we describe our modeling
approach and show how Bayesian methods can be used to make inferences about
specific customers given partial information across categories. In Section 4, we report
the results of a simulation study that identifies the conditions under which
information can be transferred across categories. In Section 5, we apply our
methods on a two-category data set. In Section 6, we show an extension of our model
to multiple categories by considering a three category example. In Section 7, we
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comment on how our findings can be reconciled with previous research on multi-
category data. Finally in Section 8, we conclude.

2. Conceptual framework

We illustrate our conceptual framework with two product categories. An extension
to multiple categories is illustrated in Section 6. We also distinguish between two
groups of customers—the reference group and the target group. The reference group
consists of those customers for whom a firm has complete information on all product
categories. Complete information for this group may be obtained in many ways,
such as by augmenting company’s databases with surveys. For example, a bank’s
database does not provide any information about its customers’ activities with
competing banks. Therefore, it lacks information about its customers’ share of wallet
which is crucial to assess their future potential value for the firm. Kamakura et al.
(2003) show how a survey with a sample of customers can be used to augment a
bank’s database to provide a complete picture for these reference customers. All
remaining customers belong to the target group and the firm has incomplete
information about them in one or more categories. The objective of the firm is to
assess and predict purchase behavior (e.g., price sensitivity) of the target customers
in all product categories. These estimates can then be used for targeting (e.g., who to
cross-sell) as well as customization (e.g., what price to offer) purposes.
Figure 1 shows the intuition for leveraging information across categories. In the

case of a single category analysis, complete information on reference customers in
Category-1 is used to estimate their response parameters (e.g., price sensitivity) and
to infer the parameters of target households in Category-1. A similar analysis can be
done independently for the second category. However, this approach ignores the
linkages across categories. For example, consumers’ price sensitivities may be highly
correlated across product categories. A cross-category analysis attempts to leverage
this correlation.
In a cross-category analysis we have complete information on reference consumers

about their purchases and causal variables in both categories. However, there is
limited information about the target customers. As discussed shortly, there may be
various levels of incomplete information for the target customers. For example, in a
cross-selling situation, we may have complete information about a target customer in
Category-1 but no information about his behavior in Category-2. In order to impute
parameter estimates for the target customer in Category-2, we leverage information
from multiple sources—information from reference customers in Category-2 (akin to
single category analysis), information about the correlation or similarity of purchase
behavior across the two categories from the reference group (akin to Ainslie and
Rossi, 1998), as well as the information, if any, about the purchase of target
customer in Category-1. In the model section, we formalize this intuition under
different Scenarios pertaining to different levels of partial information availability
for the target customers.
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As the details and the complexity of modeling vary with the degree of information
available for target customers, we begin by discussing the different levels of inform-
ation that firmsmayhave about these customers.Note that throughout this analysiswe
assume that the firm has complete information for a reference group of customers.

2.1. Information sets

Following Rossi et al. (1996), we assume that within a single product category a firm
may have four levels of information about target customers:2

1. Base information: In this situation, firms possess no specific information about
customers within a product category. They may, however, possess aggregate
information about the distribution of demographics in the market place.

2. Demographics: In this situation, firms possess no information about choices made
by customers, but have information about the demographics of individual
customers. This is very common in direct marketing where firms buy lists of
customers with a known demographic profile.

Figure 1. Information transfer between categories.

2 Details regarding the situations in which such information sets may arise and the rationale for

considering them are discussed in Rossi et al. (1996).
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3. Choice only: Here, firms have information about the previous brand choices of
customers as well as their demographics, but have no information about the
causal environment. Many CRM and direct marketing applications can be
characterized by this situation.

4. Full purchase history: Full purchase history involves knowledge about the
choices, demographics and the causal variables for all purchase observations for
all customers. This represents the case with complete information.3

Rossi et al. (1996) discussed these information sets for one product category.
When considering multiple categories, information sets for each category can be
combined to form cross-category information sets for a target customer. For
example, for two categories, the combined information sets or Scenarios can be
represented in an information matrix as shown in Table 1. It is evident that some
Scenarios are infeasible and these are represented with a ‘‘—’’ in Table 1. For
example, once we know the demographic information for a target customer, it is
available for both categories and therefore, the Scenario involving Base information
in Category-1 and Demo information in Category-2 is infeasible.
In Scenario-1 we have only aggregate level information, which makes it difficult to

customize offers or target specific customers. On the other extreme is Scenario-7
where we have complete information about all customers in both product categories.
Ainslie and Rossi (1998) examine this Scenario to estimate the degree of correlation
in parameters across categories. The intermediate Scenarios 2–6 represent varying
degrees of information for each of the two product categories. They also represent
typical situations in CRM and database marketing. For example, Scenario-4 is a
cross-selling situation where we have complete information about a target customer
in one category but no information (except his demographics) in the other category.
Scenario-3 is an incomplete version of Scenario-4 where the firm did not collect
causal information (e.g., what catalogs or offers were sent to target customers).
Note, while Rossi et al. (1996) deal with only one product category and Ainslie and

Table 1. Information matrix.

Category-2

Category-1 Base Demo Choice Full

Base Scenario 1 — — —

Demo — Scenario 2 Scenario 3 Scenario 4

Choice — Scenario 3 Scenario 5 Scenario 6

Full — Scenario 4 Scenario 6 Scenario 7

3 Rossi et al. (1996) also consider the case of one observation, which is very similar to the case of full

information (or multiple observations), both in terms of concept and modeling. Therefore, we omit this

case.
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Rossi (1998) and Erdem (1998) deal with only Scenario-7, we develop a model for all
information Scenarios and thereby assess the value of additional information for
prediction and targeting in this cross-category context. We now develop a formal
model and show how Bayesian methods can be used to leverage information across
categories for different Scenarios.

3. Model

We use a brand choice context, as in Rossi et al. (1996), to illustrate how information
can be leveraged across different product categories. We begin by describing a
hierarchical Bayesian cross-category choice model for the reference households for
whom we have full information across the different categories. Next, we show how
various posterior predictive distributions from this full model can be used to estimate
household-specific coefficients for the target households under different information
Scenarios.

3.1. Model for reference households

Consider h ¼ 1; . . . ;H households of the reference group who provide t ¼ 1; . . . ; nhk
observations for each of k ¼ 1; . . . ;K categories. Each observation in category k
yields yhtk, a vector of binary indicators fyh1tk; . . . ; yhjtk; . . . ; yhpktkg that identify the
brand chosen in that category at time t. A random utility framework can be used to
model the cross-category choices in terms of brand utilities as follows:

uhtk ¼ Xhtkbhk þ ehtk; ð1Þ

where Xhtk denotes the pk6qk matrix containing causal variables in category k; pk
represents the number of utility equations and qk represents the number of coefficients
(intercepts and response coefficients) to be estimated. We assume that the errors
within a category ehtk are independent and are distributed Nð0;RkÞ where Rk

represents the block diagonal covariance matrix for the unobserved factors. This
yields a multinomial probit specification within each category. We also assume that
the errors are independent across the categories. The link in the utilities across the
categories is achieved by assuming that the household-specific coefficients,
bh ¼ fbh1; bh2; . . . ; bhKg, are jointly distributed multivariate normal. Specifically,

bh ¼ Zhaþ kh; ð2Þ

where Zh is a matrix containing the demographic variables for household h, a
represents the population mean, and kh, which contains the unobserved sources of
consumer heterogeneity, is assumed to be distributed multivariate normal, Nð0;KÞ.
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Note that the Kmatrix captures the covariance among the parameters across product
categories. Specifically,

K ¼

K11 K12 K13 . . . K1K

K22 K23 . . . K2K

. . .
KKK

2
664

3
775; ð3Þ

where Kkk0 is the covariance matrix between the parameters of product category k and
k0. An independent single category analysis implicitly assumes that each Kkk0 ¼ 0

where k 6¼ k0. The link between the latent utilities and the observed outcome is
specified in the following manner:

yhjtk ¼ 1 if max ðuhtkÞ ¼ uhjtk
0 otherwise,

�
ð4Þ

where, j ¼ 1; . . . ; pk and k ¼ 1; . . . ;K.
As the origin and scale of the utilities are unknown, identification is achieved by

constraining one intercept to zero and by setting one of the variances in Rk to one for
each product category. Bayesian analysis can be performed by specifying priors over
all unknowns and by using MCMC methods for simulating from the posterior
distribution. Details regarding the priors and the full conditional distributions for
the unknowns are provided in Appendix A. It can be seen in Appendix A that a
cross-category analysis involving two categories requires posterior conditional
distributions of bh1 given bh2 and bh2 given bh1. Here, bh1 and bh2 refer to the
household-specific parameters for Category-1 and Category-2. These posterior
computations explicitly connect the household-specific parameters of the categories
and reflect the effect of any cross-category covariance between the parameters, an
important aspect that is ignored by a single category analysis. Also, note that there is
no restriction in the length of parameter vectors of the two categories—the
parameter vector in Category-1 can be of a different length than that in Category-2.
This difference can be due to either unequal number of brands in the two categories
or different marketing mix elements across the two categories. For instance, consider
three brands in Category-1 and four brands in Category-2 with price as the only
marketing mix element in both categories. Then, the length of the parameter vector
in Category-1 would be three (two brand intercepts and one price parameter).
Similarly, the length of the parameter vector in Category-2 would be four (three
brand intercepts and one price parameter). Given these parameter vectors, K11 would
be of size 363 and K22 would be a 464 matrix. The cross-category covariance, K12,
however, would be of size 364. All elements of the cross-category covariance matrix
can be estimated. Thus, there is no restriction that the parameter vectors in the two
categories have to be of equal length.
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Once the above model is estimated on a reference set of individuals, various
posterior predictive distributions can be computed to obtain household-specific
coefficients for the target households about whom we have only partial information.

3.2. Model for target households

We now show how inferences can be made for the household-specific coefficients bh
for the target group, under different information Scenarios. For each Scenario,
inferences about bh are obtained by combining information from a full information
set analysis on a reference group of households with other sources of information
that are specific to the target household h. In the main body of the paper, we describe
how such inferences can be made for two Scenarios. These two Scenarios represent
cases which are either typical (e.g., cross selling as in Scenario-4) or involve sparse
information (e.g., Scenario-5 represents a situation where a firm lacks information
about causal variables for the target households). Complete mathematical details
regarding the computation of bh under the other Scenarios are available in
Appendix B.

3.2.1. Scenario-4: Full-Demo. This Scenario represents typical cross-selling
situations where a firm has complete information about target households in one
category (without loss of generalization, say, Category-1) but has no information,
except for demographics in another category (Category-2). Inferences about the
response coefficients bh2 in Category-2 can be obtained by combining information
from a reference set of households on whom full information in both categories is
available, with information about the target household h in Category-1. Specifically,
we have

bh1 ¼ Zh1a1 þ kh1;

bh2 ¼ Zh2a2 þ kh2;
ð5Þ

where kh ¼ fkh1; kh2g*Nð0;KÞ. The reference households provide information
about the population parameters a and K. Note that

K ¼ K11 K12

K21 K22

� �
; ð6Þ

where K11 and K22 capture the covariances among the parameters of Category-1 and
Category-2 respectively, and K12 ¼ K21 capture the cross-category covariances
among the parameters of the two categories. If both categories are modeled
independently or if we assume no correlation across the parameters of the two
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categories, then K12 ¼ 0. In this case, parameters of one category provide no
information about the parameters in the other category. In other words, there is no
information leverage from one category to the other.
If K12 6¼ 0 then we can derive the conditional distribution of bh2 given bh1, which

can then be used to make inferences about bh2. Specifically,

bh2 j bh1*NðEðbh2 j bh1Þ;Varðbh2 j bh1ÞÞ;
Eðbh2 j bh1Þ ¼ Zh2a2 þ K21K

�1
11 ðbh1 � Zh1a1Þ

Varðbh2 j bh1Þ ¼ K22 � K21K
�1
11 K12:

ð7Þ

Note that if there is no correlation in parameters across categories, then the mean of
this conditional distribution reduces to Zh2a2, and its variance becomes K22.
Inference about bh2 can be based on random draws obtained from the conditional
distribution in equation (7). In obtaining the bh2 draws, the MCMC draws for a and
K obtained from the reference set analysis are used in combination with the bh1
draws obtained from the single category analysis on the target group of households.
This procedure ensures that inferences for bh2 are based on its posterior predictive
distribution.

3.2.2. Scenario-5: Choice-Choice. Increasingly firms are creating loyalty programs
to reward and retain their valuable customers. These programs typically keep
detailed information about customers’ purchases (e.g., airline tickets, hotel stays, or
product purchases). This information is needed to reward loyal customers and
encourage their patronage with the firm. However, in many of these situations, firms
do not keep track of the causal variables that may have affected a consumer’s choice.
For example, while an airline may keep track of a customer’s ticket purchase for its
frequent flier program, it may not record the price he paid for that ticket. Similarly, a
catalog company may have an extensive customer database that keeps account of all
customers’ purchases for RFM analysis, but it may not track information about
e-mails, catalogs or other promotional items sent to each customer at each point in
time. Scenario-5 represents these situations where firms have information only about
consumers’ choices in both product categories.
As Rossi et al. (1996) show in the context of a single category purchase, lack of

information about causal variables poses a significant challenge. Essentially, we have
to estimate a consumer’s price sensitivity without knowing the prices faced by this
consumer. This complexity is further exacerbated in the context of two or more
product categories because we also need to capture the correlation in response
sensitivities across product categories. We achieve this by extending the procedure
developed by Rossi et al. (1996) to two categories. Specifically, utilities for a
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complete data model (given in equation (1)) can be rewritten as

uht1 ¼ Xht1bh1 þ eht1 ¼
0

ch1

� �
þ Xcht1dh1 þ eht1;

uht2 ¼ Xht2bh2 þ eht2 ¼
0

ch2

� �
þ Xcht2dh2 þ eht2;

ð8Þ

where Xcht1 and Xcht2 are matrices containing the causal variables and ch1 and ch2 are
brand-specific constants for Category-1 and Category-2 respectively. For identifica-
tion purposes, the first brand-specific constant in each category is forced to zero.
Note that the parameters across the two categories, ch1, ch2, dh1 and dh2 are
correlated.
While complete information is available for reference households, only choice

information is available for the target households. Therefore, for the target group we
can only specify a cross-category intercept-level model, i.e.,

uht1 ¼
0

lh1

� �
þ eht1;

uht2 ¼
0

lh2

� �
þ eht2;

ð9Þ

where lh1 and lh2 are assumed to be jointly distributed multivariate normal across
households and, therefore, capture the underlying cross-category correlation.
To leverage information from the reference group analysis appropriately, we

first need to map the posterior distribution for lh ¼ flh1; lh2g into a distribution
for the full set of parameters bh ¼ fbh1; bh2g. The identification restrictions in the
cross-category model with complete information are different from those required
for the intercepts-only model for the target households. In particular, the first
intercept is set to zero in both categories in the intercept-only model and this
necessitates taking utility differences in the complete model so as to make the
parameters across the two models comparable (see Rossi et al., 1996 for an
extended discussion). After making adjustments for these differences in identifica-
tion conditions for the above two sets of equations, and after taking iterated
expectations E½u� ¼ Ex½E½ujX�� ¼ Ex½Xb� we arrive at the following equalities for
the parameters within the two models

ch1 þ R1dh1 ¼ lh1;

ch2 þ R2dh2 ¼ lh2;
ð10Þ
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where,

R1 ¼

x02 � x01
x03 � x01

..

.

x0n � x01

2
6664

3
7775

and x0j is a vector of the means for the causal variables of the jth brand in
Category-1. The matrix R2 is defined analogously for Category-2.
These two sources of information can be combined using the following matrix

equality

lh
dh

� �
¼ A11 A12

A21 A22

� �
bh1
bh2

� �
; ð11Þ

where, lh:ðl0h1; l0h2Þ
0; dh:ðd0h1; d

0
h2Þ

0; bh1:ðch1; dh1Þ
0; bh2:ðch2; dh2Þ

0 and,

A11 ¼
I R1

0 0

� �
; A12 ¼

0 0

I R2

� �
;

A21 ¼
0 I

0 0

� �
; A22 ¼

0 0

0 I

� �
:

ð12Þ

The reference group provides estimates of the population parameters a and K.
These estimates allow us to write the following

lh
dh

� �
*NðM;QÞ; ð13Þ

where,

M ¼ A11Zh1a1 þ A12Zh2a2
A21Zh1a1 þ A22Zh2a2

� �
ð14Þ

and

Q ¼ Q11 Q12

Q21 Q22

� �
: ð15Þ
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In the above equation,

Q11 ¼ A2
11K11 þ A2

12K22 þ A11A12ðK12 þ K21Þ;
Q22 ¼ A2

21K11 þ A2
22K22 þ A21A22ðK12 þ K21Þ;

Q12 ¼ A11A21K11 þ A12A22K22 þ A11A22K12 þ A12A21K21;

ð16Þ

and

Q21 ¼ Q0
12:

Given the above setup, the conditional distribution for the causal coefficients dh, is a
normal NðdhjlhÞ and can be written as:

dhjlh*NðEðdhjlhÞ;VarðdhjlhÞÞ;
EðdhjlhÞ ¼ A21Zh1a1 þ A22Zh2a2 þQ21Q

�1
11 ðlh � ðA11Zh1a1 þ A12Zh2a2ÞÞ;

VarðdhjlhÞ ¼ Q22 �Q21Q
�1
11 Q12:

ð17Þ

It can be seen from the above expressions that K12, the cross-category covariance
between the parameters, contributes to both the mean and variance of the
conditional distribution for dh.

4. Simulation study

At this point, we could simply present an empirical application to illustrate how our
model works (we provide such an application in the next section). However, it is
difficult to draw broader and generalizable results from any single application. Even
analyzing multiple data sets has limitations since (a) we do not know the ‘‘truth’’ that
generated these data and (b) the underlying factors that make these data different are
not varied systematically. For example, industry reports suggest that cross-selling
works in some cases but not in others. By simply examining these cases, it is not
obvious under what conditions cross-selling works. Therefore, to gain a better
understanding of the conditions that are necessary for transfer of information across
categories, we conduct a detailed simulation.
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4.1. Factors

Based on the literature and our understanding of the phenomena, we chose three key
factors for generating the simulation data sets. These factors and their levels are
briefly described below.

1. Correlation in response parameters ðrÞ: As mentioned in our model section, if the
correlation among the parameters of the two categories K12 is zero, then there is
no information transfer from one category to the other. Clearly, the higher this
correlation, the greater is the information leveraged. Although we allow all
parameters to be correlated, we focus on the correlation between the price
parameter of the two product categories. Previous studies have shown varying
levels of this correlation. For example, Ainslie and Rossi (1998) examined five
product categories and found the mean correlation of 0.28 in the price sensitivities
across these categories. Erdem et al. (2001) investigated three product categories
and found correlation among price coefficients in the range of 0.56 to 0.68.
Therefore, for our simulation study we chose two levels, 0.3 to represent a
relatively low level of correlation, and 0.7 to represent a relatively high level of
correlation among parameters.

2. Consumer heterogeneity ðgÞ: In addition to parameter correlation, consumer
heterogeneity is also likely to play a significant role in information leverage across
two categories. Recall that we have a reference set of households for whom we
have complete information in both categories. Our objective is to make inferences
about the target households for whom we have limited information in one or both
categories. If consumers are very homogeneous (in the extreme case, identical),
then information on reference households within a category is sufficient to make
inferences about the behavior of target households in that category. In other
words, additional information from a second category, no matter how high the
parameter correlation across these two categories may be, is unlikely to provide
any additional information. Although heterogeneity estimates from previous
studies are not strictly comparable due to differences in models and other features,
nonetheless they provide guidelines for our choice in this simulation. In their study
of tuna, Rossi et al. (1996) find unobserved heterogeneity in price parameter
(measured as variance of price parameter across consumers) to be approximately
11. Ainslie and Rossi (1998) found the comparable heterogeneity in price
parameter across five product categories in the range of 4.88 to 9.0. Erdem et al.
(2001) estimated this heterogeneity in three categories in the range of 0.37 to 1.69.
Based on these studies, we chose two levels of consumer heterogeneity (defined as
variance of parameters across consumers) as 0.3 (low) and 11 (high).

3. Number of observations ðn1; n2Þ: Bayesian theory suggests that information
transfer from Category-1 to Category-2 also depends on the precision of
household-level estimates in Category-1. Among other things, this precision
depends on the number of observations available for a household in Category-1.
The number of observations for a household may differ across categories because
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of differences in purchase frequency. Based on previous scanner studies, we chose
two levels for the number of observations ðn1Þ in the first category – 8 (low) and 24
(high). The number of observations for the second category ðn2Þ were kept
constant at eight.

4.2. Data generation

We generated data using the cross-category multinomial probit model described in
Section 3.1. We considered three brands in each category and constructed the
responses assuming that the underlying latent variables are affected by only one
explanatory variable, say, brand price. As mentioned above, we allowed the number
of observations per household to differ across the two categories. For each
observation, the three brand prices in a category are independently and identically
distributed as a uniform random deviate between 2.00 and 5.00.4 Thus, for
observation t of household h within category k, the 363 design matrix, Xhtk,
contains the two intercepts and a column of prices for the three brands. Given the
design matrix, the underlying latent variables for household h in category k follow
uhtk*NðXhtkbhk;RkÞ, where Rk is fixed to be identity and bhk is a 361 coefficient
vector.
The household-level parameters, bh1 and bh2, are drawn from a multivariate

normal with a population mean l of dimension 661 and a population variance-
covariance matrix K of dimension 666. We did not consider any household-level
demographics for this simulation, thus Zh ¼ I. We fixed l0 at ½0:9; 1:5;-1:5; 1:0; 0:8;
� 2:0� for all data sets in the simulation and set L to be an equicorrelated matrix of
the form gX. The correlation matrix X has a correlation r on each off-diagonal
element and g represents the population variance for each parameter.
As the three factors correlation, heterogeneity, and number of observations are

varied at two levels each, we have a 26262 design for the simulation study. Within
each of the eight cells, we generated 10 replications involving a reference group of
200 households and a target group of 100 households. The design matrices ðXhtkÞ for
these 80 replications were randomly generated using uniform deviates to create
variation across the replications.

4.3. Results

We assess the simulation results on two criteria—likelihood of the target group’s
data under different information Scenarios and how well household-specific

4 A uniform distribution can increase the variance in prices more than what is observed in scanner data.

We thank one of the reviewers for bringing this to our attention.
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parameters are recovered. We use the error sum of squares (ESS) to measure how
well household-specific parameters are estimated for the target group. The ESS is
defined by the following formula:

ESS ¼ 1

I

XI
i¼1

X3
j¼1

ðbij � b̂bijÞ2; ð18Þ

where bij is the true (known) parameter j for consumer i within the target category,
b̂bij is the estimated posterior mean for the parameter, and I is the number of
individuals in the target group.
For computing the data likelihood, we use the estimated household-specific

posterior mean of the parameters, b̂bi, as an input to the Geweke–Keane–
Hajivassiliou (GHK) algorithm (Geweke, 1991; Hajivassiliou, 1990; Keane, 1994)
for the multinomial probit model. The algorithm details can be found in Chib et al.
(1998).
We compute ESS and the data likelihood for target households in a category using

both single-category and cross-category analysis. We then compare the improvement
in these two criteria in going from single-category analysis to cross-category analysis
under different experimental conditions. In other words, our focus is to see the
incremental benefit of the cross-category analysis that leverages information from
both categories over a single-category analysis that treats each category as
independent of the other. Without loss of generality, we assume that we are
leveraging the information from Category-1 to predict consumer behavior in
Category-2. We now discuss the results of four key Scenarios (1, 4, 5 and 7). Recall
that these Scenarios represent varying degrees of information about target
households. In every Scenario, we have complete information about reference
households in both categories.

4.3.1. Scenario-1: Base-Base. This Scenario represents the situation where a firm
has no specific information about a target customer. The firm, however, does know
the distribution of preferences and price sensitivities across reference consumers in
both product categories, as well as the correlation in these preferences and price
sensitivities between the two products. In a single-category analysis, inference for the
target household will be simply based on a random draw from the distribution of
reference households in Category-2 (Rossi et al., 1996). This analysis can be possibly
improved by using information about households’ preference distribution in
Category-1 and its correlation with Category-2. We call the latter as cross-
category analysis. Table 2 presents the absolute improvement in log-likelihood and
the percent improvement in ESS in going from single-category to cross-category
analysis, averaged over the 10 replicated data sets within each experimental cell of
the 26262 design. Here, each of the three factors (correlation in parameters
between the two products, consumer heterogeneity in parameters, and number of
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observations in Category-1) are represented at two levels (L ¼ low, and H ¼ high).
The low and high levels for each factor are as discussed above. Statistically
significant improvements in log-likelihood and ESS are shown in bold.
The results show that cross-category analysis does not provide any significant

improvement in either the data likelihood or parameter recovery (as measured by
ESS) for any of the experimental conditions. In other words, additional information
from the second category (e.g., correlation in price sensitivities, even when it is as
high as 0.7), does not provide any incremental benefits. This is not surprising since
the base case does not provide any specific information about the target households.
This result sets a benchmark for the potential improvement in other Scenarios.

4.3.2. Scenario-4: Full-Base/Demo. As mentioned before, this Scenario represents
a typical cross-selling case. Here a firm may have full information about target
customers in one category (Category-1) but no, or only demographic, information in
Category-2. The firm wishes to leverage customers’ information in Category-1 to
predict their behavior in Category-2. For simplicity, we ignore demographics in this
simulation. To ensure consistency with the nomenclature in Table 1, we continue to
call this as Scenario-4.
To compute the incremental benefit we compare the predictions in Category-2

from a single-category model with those from our cross-category model. In a single-
category probit model, we have no specific information about target households in
Category-2. Therefore, inferences can only be made by using the population-level
estimates obtained from estimating the model on the reference group purchases in
Category-2. In contrast, as described in Section 3.2, when a cross-category model is
used, inferences about the target group within Category-2 are based on (a) the
population-level estimates obtained from estimating this joint model on the reference
group purchases in both categories and (b) the full purchase history of the target
households in Category-1. A comparison of the results from the two approaches
provides an indication of the incremental information gleaned from a cross-category
analysis. Table 3 provides these results. The numbers in bold represent a significant
improvement.

Table 2. Simulation results for Scenario-1: Base-Base.

Parameter

correlation

Consumer

heterogeneity

Number of

observations

Percent improvement

in ESS

Improvement

in LL

L L L � 0.53 � 5.18

L L H 0.52 � 2.60

L H L 0.53 3.93

L H H 0.12 � 5.86

H L L � 0.14 � 1.76

H L H 0.41 � 1.18

H H L 0.03 � 18.19

H H H 1.33 8.50
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We begin by focusing on log-likelihood. Our results show that cross-category
information improves the data likelihood only when both parameter correlation and
consumer heterogeneity are high. If these conditions hold, data likelihood from the
cross-category model improves over those from the single-category analysis by as
much as 115 points. In all other conditions, there is no significant improvement. It is
reasonable to expect that when correlation among parameters of the two categories
is low ðr ¼ 0.3Þ, there is very little transfer of information from one category to the
other. Therefore, it is not surprising to find that high parameter correlation is a
necessary condition for improvement in prediction over single category analysis.
However, a somewhat surprising result is that high correlation, while necessary, is
not a sufficient condition. Why? When consumer heterogeneity is low (in the extreme
case consumers are perfectly homogeneous), information about reference consumers
in Category-2 is a strong indicator of target consumers’ behavior in this category as
consumers are relatively homogeneous. Additional information from Category-1
purchases of target customers does not provide any incremental benefit in predicting
their behavior. Therefore, high heterogeneity is needed in addition to high
correlation.
We next focus on ESS. The ESS results show that in all conditions, except when

both heterogeneity and correlation are low, the full purchase information of a target
household in Category-1 is useful in recovering its parameters in Category-2.
Further, the incremental benefit of this information is the highest under conditions
of high heterogeneity and high correlation. When all three factors are at a high level,
cross-category model ESS improves over single-category ESS by as much as 51%.
Finally, we rank the factors in terms of their influence on the results by averaging the
gain for the three factors and considering the difference in the gain between the high
and low level of each factor. For this analysis, the non-significant gains are taken to
be 0. The average gain for high level of correlation is 37% whereas that for a low
level of correlation is 11%. This gives a spread of 26%. The spread for heterogeneity
and number of observations can be similarly computed and they are � 2% and 10%
respectively. Thus, correlation is the most influential factor, followed by number of
observations and consumer heterogeneity.

Table 3. Simulation results for Scenario-4: Full-Base.

Parameter

correlation

Consumer

heterogeneity

Number of

observations

Percent improvement

in ESS

Improvement

in LL

L L L � 5.79 � 7.73

L L H 1.78 0.85

L H L 9.89 4.75

L H H 11.88 4.62

H L L 21.13 2.45

H L H 37.61 5.25

H H L 38.41 117.23

H H H 51.38 114.02
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Comparing the results for log-likelihood and ESS, we see that in several situations
while ESS improves with additional information from a second category, there is no
significant improvement in log-likelihood. In other words, the benefit of additional
information from a second category depends on the researcher’s objective.

4.3.3. Scenario-5: Choice-Choice. This Scenario represents situations where
companies collect information about consumers’ choices but do not have any
information about the causal variables (e.g., price) that may affect their choices.
Examples include direct marketing companies that track consumers’ choices simply
because they have to ship the product. However, many of these companies do not
keep records of all the events and promotional material sent to every customer.
Similarly, loyalty programs keep detailed account of customers’ purchases (e.g.,
hotel stay, travel etc.) but not necessarily the price paid or other causal variables.
In our context, we once again have complete information for both product

categories for the reference households, but only choice information in both
categories for the target households. For a single category, Rossi et al. (1996) show
how we can draw inferences about the price sensitivity of target households without
observing causal information for them. In our context of two categories, we wish to
find out if correlation between these two categories and the choice information of
target households in Category-1 help us draw better inferences about their
preferences and purchase behavior in Category-2.
Once again we compare the predictions for target households in Category-2 from

a single-category model with those from our cross-category model. In a single-
category model, inferences about the parameters for the target group can be made by
combining (a) the information about choices of the target group in Category-2 and
(b) the population-level estimates obtained from estimating this model on the
reference group purchases in Category-2. When a cross-category model is used,
inferences about the parameters for the target group in Category-2 are based on (a)
choice information of the target households in Category-2 (b) the population-level
estimates obtained from estimating this joint model on the reference group purchases
in both categories (which includes the correlation in parameters between these two
categories) and (c) information about choices of the target households in Category-1.
A comparison of the results from the two approaches provides an indication of the
incremental benefit from the cross-category analysis.
Table 4 provides these results. As earlier, this table shows the absolute

improvement in log-likelihood and the percent improvement in ESS of cross-
category model over single category model. The improvement estimates are averaged
over the 10 replicated data sets within each combination of the experimental factors.
Statistically significant changes are highlighted in bold.
We begin with the log-likelihood results. In general, there is no improvement in

log-likelihood. In fact, under low correlation and low heterogeneity, there is a
significant decline! We explain this surprising finding in the following discussion of
the ESS results.
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The ESS results show that under low correlation and low heterogeneity condition,
the cross-category model performs worse than the single category model. In other
words, instead of being beneficial, additional information is detrimental to
parameter recovery! We believe this happens for the following reasons. In a
choice-choice context where we have no information about causal variables for
target households, it is obviously much harder to infer price sensitivity for these
customers. In case of low heterogeneity, customers are very similar. Therefore, price
sensitivity of reference households in Category-2 provides significant information
about the price sensitivity of target households in Category-2. In effect, this is what a
single-category model is doing. When we add cross-category information in a low
correlation context, we are doing the following. First, using choice information of
target households in Category-1, we are inferring their price sensitivity in Category-
1. Next, we are using the parameter correlation between the two categories
(estimated from reference households) to link Category-1 price sensitivity of a target
household to its price sensitivity in Category-2. Note, in a low heterogeneity case,
analyzing only Category-2 provides us a fairly accurate account of target
household’s price sensitivity. In the extreme case of completely homogeneous
population, we have a perfect estimate of target households’ price sensitivity in a
single category analysis. However, when we add the noisy (due to low correlation)
estimates from the cross-category analysis to good (in the extreme case, perfect)
estimates of single-category analysis, we end up with estimates that are worse than
single category estimates. The inaccuracy in the estimates in then reflected in the
deterioration of the log-likelihood. Most of the other differences in ESS are
insignificant except H-L-H combination of correlation, heterogeneity and observa-
tions respectively. However, this appears to be an anomaly.

4.3.4. Scenario-7: Full-Full. This is the most data rich Scenario where a firm has
complete information about both reference and target households in both product
categories. Most cross-category studies (e.g., Ainslie and Rossi, 1998; Erdem et al.,
2001) consider this Scenario. Results for this Scenario are given in Table 5.

Table 4. Simulation results for Scenario-5: Choice-Choice.

Parameter

correlation

Consumer

heterogeneity

Number of

observations

Percent improvement

in ESS

Improvement

in LL

L L L � 5.38 � 22.72

L L H � 7.95 � 17.60

L H L 3.51 � 35.15

L H H 0.70 � 23.87

H L L � 4.44 � 3.75

H L H 9.72 � 1.50

H H L 1.33 � 43.45

H H H 1.18 � 23.95
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These results suggest that compared to a single-category analysis, cross-category
analysis in general does not improve the data likelihood. The H-L-L combination of
correlation, heterogeneity and observations appears to be an anomaly. However,
there is a significant improvement in parameter recovery or ESS under high
correlation case. We can rank the three factors in terms of their influence on the ESS
results. We average the gain for the three factors and consider the difference in the
gain between the high and low level of each factor. The average gain under high
correlation is 19.32% and under low correlation is 0% (non-significant gains are
taken to be 0). Thus, the spread in gain is 19.32%. The differences for consumer
heterogeneity and number of observations are smaller at � 7.82% and 5.43%
respectively. Thus, correlation is the most influential factor followed by consumer
heterogeneity and number of observations.

4.4. Summary of simulation results

Based on our simulation results, we can draw the following conclusions about the
benefit of cross-category analysis over single-category analysis.

1. In most situations there is very little gain in data likelihood compared to single
category analysis. This suggests that in any empirical application, where the
likelihood provides a way to compare approaches, a cross-category analysis is
unlikely to show any significant gains over a single-category analysis. This makes
the single-category analysis as suggested by Rossi et al. (1996) even more powerful
than we may have realized in the past. In many situations, however, leveraging
information across categories improves the recovery of underlying household-
specific parameters. This finding is managerially useful as better estimation of
individual-level parameters can lead to more optimal customization of marketing
initiatives.

2. Cross-category analysis and leveraging information across categories is most
useful when there is complete information for a customer in one category and no

Table 5. Simulation results for Scenario-7: Full-Full.

Parameter

correlation

Consumer

heterogeneity

Number of

observations

Percent improvement

in ESS

Improvement

in LL

L L L 1.14 � 0.08

L L H 5.63 � 4.9

L H L 5.36 0.14

L H H 3.61 � 0.49

H L L 17.76 5.70

H L H 28.71 1.38

H H L 15.46 � 1.34

H H H 15.37 � 4.96
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or very little information about that customer in a related category (Scenario 4).
However, when firms have no causal information in either product category
(Scenario 5), they may be well advised to avoid the complexity of cross-category
analysis since it does not provide any benefit over single-category analysis.

3. In many situations, high correlation among parameters of two categories is a
necessary but not sufficient condition for transfer of information between two
products. Consumer heterogeneity also plays an important part. This provides
strong guidelines for researchers and managers about when additional informa-
tion and complexity is likely to pay off.

4. More information is not always better. In some cases (low correlation, low
heterogeneity and choice only), including additional information from a second
category may lead to worse results.

5. Application

In this section, we report the results from an application for two grocery products.
Here, we use our model on the reference households to get estimates of parameter
correlations and consumer heterogeneity. In addition, the data provide us
information about the number of observations in each category. The information
on these three factors when combined with our simulation guidelines allows us to
predict how well a cross-category model is likely to perform compared to a single-
category model. In other words, we can hypothesize the value of leveraging
information across categories. We estimate both single- and cross-category models,
compare the likelihood and assess whether our application results confirm our
simulation guidelines.

5.1. Data

The data, made available by A.C. Nielsen, pertains to two related product
categories—Breakfast Foods and Table Syrup. We deliberately chose related
categories to ensure significant correlation in parameters between these two
products. The data span a period of 120 weeks from January 1993 to March 1995
and are from a large metropolitan market area in the western United States. We
randomly chose 200 people to form the reference group and 100 people to form the
target group. There are four major brands within each category. For each brand, we
have price and promotion information. Promotion is a dummy variable created by
combining various promotional vehicles such as feature and display. On average, we
have eight observations per household in Breakfast Foods and three observations
per household in Table Syrup. Table 6 provides summary statistics for the two
categories. The column labeled promotion indicates the proportion of times that a
specific brand was promoted.
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5.2. Estimation

Both the single and cross-category models were estimated using the Bayesian
procedures outlined in Appendix A. We first estimated the population parameters
using data for reference customers. The population parameters and the purchase
information of target households were then used in tandem to estimate the parameters
for the target households and to predict their behavior under the four information
Scenarios discussed earlier. TheMCMC algorithm for estimating the population level
parameters in both single category and cross-category analysis was run for 40,000
iterations with a burn-in period of 25,000 iterations. Convergence of the parameters
was assessed by monitoring the time series plots across the MCMC iterations.

5.3. Results

5.3.1. Results for reference customers. The parameter estimates from the
independent single-category analysis of reference households are given in Table 7.
This table shows the estimates for the population mean and the population variance

Table 6. Summary statistics of data.

Breakfast Foods Table Syrup

Brand Price ($) Promotion Brand Price ($) Promotion

1 1.75 0.07 1 1.98 0.03

2 1.58 0.04 2 2.87 0.02

3 1.92 0.09 3 1.74 0.05

4 1.94 0.01 4 1.63 0.07

Table 7. Parameter estimates for single-category analysis.

Breakfast Foods Table Syrup

Parameter Mean Variance Mean Variance

Intercept1 � 0.67 3.90 � 0.02 1.96

(�1.11, �0.23) (2.48, 5.73) (�0.75, 0.63) (0.74, 4.14)

Intercept2 2.08 2.94 � 0.54 3.42

(1.69, 2.57) (1.72, 4.80) (�1.13, 0.28) (1.83, 5.94)

Intercept3 �0.94 4.30 � 1.45 1.67

(�2.18, �0.19) (2.06, 8.79) (�2.03, �0.86) (0.67, 3.35)

Price � 3.36 2.89 � 5.18 1.48

(�4.20, �2.88) (0.93, 4.44) (�5.91, �4.62) (0.37, 3.07)

Promotion 0.28 1.40 1.22 1.71

(�0.17, 0.74) (0.63, 2.78) (0.29, 2.10) (0.52, 4.25)
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of the parameters in the two categories. The numbers in parentheses show the 95%
posterior intervals around the estimate and ‘‘significant’’ posterior means are shown
in bold. The corresponding estimates from a cross-category analysis are given in
Table 8. In addition, the cross-category analysis also provides estimates of the
correlation between parameters of the two categories (Table 9). Note, in our
estimation procedure, we allow all the parameters across the two categories to be
correlated with each other. In other words, we do not impose any structure on the K
matrix. We estimate the K matrix during each iteration of the MCMC algorithm and
then calculate the correlations. Table 9 gives the average correlations across 25,000
iterations with the significant ones shown in bold. Significance is ascertained by
looking at the 95% confidence interval around the estimate.
From these tables we make the following observations. First, the parameter

estimates have face validity, i.e., the price parameters are negative and the promotion
parameters have positive signs. Second, the parameter estimates from the single-
category analysis are very similar to those obtained from the cross-category analysis.
Third, while there is no significant correlation between the promotion parameters of
the two categories, the price parameters are positively correlated. However, this
correlation is only 0.21 which is consistent with the results in Ainslie and Rossi
(1998). Fourth, consumer heterogeneity, as measured by the population variances, is
between 1.7 to 4.3. In general, there is greater heterogeneity in Breakfast Foods than
in Table Syrup.
Recall that our simulation results were based on three factors: parameter

correlation (low ¼ 0.3, high ¼ 0.7), consumer heterogeneity (low ¼ 0.3, high ¼ 11)
and number of observations (low ¼ 8, high ¼ 24). The results from our application
show low correlation between parameters (0.21 to � 0.32), low to moderate customer
heterogeneity (1.7 to 4.3), and low number of observations (3 for Table Syrup and 8
for Breakfast Foods). Therefore, our simulation guidelines suggest that cross-
category analysis is unlikely to provide a better data likelihood than single-category

Table 8. Parameter estimates for cross-category analysis.

Breakfast Foods Table Syrup

Parameter Mean Variance Mean Variance

Intercept1 �0.64 4.29 � 0.22 2.62

(�1.08, �0.19) (2.67, 6.38) (�0.97, 0.52) (1.11, 4.99)

Intercept2 2.13 3.33 � 0.63 4.36

(1.74, 2.59) (1.96, 5.41) (�1.28, 0.03) (1.84, 8.51)

Intercept3 �0.80 4.32 �1.68 2.45

(�1.63, �0.12) (2.27, 7.58) (�2.35, �1.04) (1.06, 4.92)

Price �3.38 3.70 �5.81 1.89

(�3.90, �2.91) (2.02, 5.90) (�6.75, �4.80) (0.83, 3.24)

Promotion 0.29 1.73 1.53 2.45

(�0.15, 0.75) (0.83, 3.23) (0.47, 2.67) (0.90, 5.59)
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analysis for all possible information Scenarios. While we do not know the true
parameters in the context of our application, simulation results suggest that
parameter recovery is also unlikely to benefit in almost all Scenarios, with the
possible exception of Scenario-4 (full-base).

5.3.2. Results for target customers. In each of the four information Scenarios
discussed earlier, we use both the single- and cross-category models to estimate
parameters for the target households. In the single-category analysis for each
product, we use full information of the reference households and any available
information (depending on the Scenario) of the target households in that product
category only. In other words, we completely ignore the purchase information in the
related product category. For example, to estimate parameters of target households
in Breakfast Foods in Scenario-5 (choice-choice), we use full information of
reference households but only choice information of target households in Breakfast
Foods. Similarly, in Scenario-4 (full-base), we have no specific purchase information
on target households. In cross-category analysis, we use full information of reference
households in both categories and any available information of target households in
both categories. For example, cross-category analysis for Breakfast Foods in
Scenario-4 (full-base) involves using full information of the reference households in
both the categories, full information about the target households in Table Syrup, but
no specific information about target households in Breakfast Foods.
Using the single-category and cross-category analysis, we estimated the mean price

parameter for each of the 100 target households. We then calculated the sample
mean and standard deviations for these household-specific parameters. Table 10
shows the mean price parameter estimates with the standard deviation in the
parenthesis. As expected from our simulation results, there are no significant
differences in the price parameter estimates of single- and cross-category analysis for
any Scenario, except for Scenario-4 (the results are similar for other parameters).
We also computed the log-likelihood using both the single- and cross-category

models. As expected from our simulation results, cross-category analysis did not lead
to any significant improvement in likelihood over a single category analysis for any
of the four scenarios.

Table 9. Cross-category correlation matrix.

Category-2

Category-1 Intercept-1 Intercept-2 Intercept-3 Price Promotion

Intercept-1 0.23 � 0.19 �0.32 0.23 0.01

Intercept-2 �0.27 � 0.10 0.21 0.02

Intercept-3 � 0.28 � 0.18 0.03

Price 0.21 0.03

Promotion 0.04
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6. Extension to multiple categories

Until now the paper has focused on two categories. Extension to multiple categories
is straightforward. Here we show the extension of our model for three categories.
The number of information scenarios (Table 1) grows if an additional category is
considered. In what follows, for illustration purposes, we choose two information
Scenarios and show how inferences for household-level parameters can be carried
out. The two Scenarios that we choose are Full-Choice-Demographics (Full
information in Category-1, Choice information in Category-2 and Only Demo-
graphics in Category-3) and Full-Full-Choice (Full information in Category-1, Full
information in Category-2 and Choice information in Category-3).

6.1. Full-Choice-Demographics

In this Scenario, we have full information about the target group in Category-1,
choice information in Category-2 and only demographics in Category-3. The
following analysis shows how to combine these three information sets to infer
household-specific parameters in categories where only partial information is
available.
We begin with Category-2. The information set in that category is choice only.

Specifically, utility for a complete data model in Category-2 (given in equation (1))
can be rewritten as

uht2 ¼ Xht2bh2 þ eht2 ¼
0
ch2

� �
þ Xcht2dh2 þ eht2; ð19Þ

Table 10. Mean price parameter estimates.

Breakfast Foods Table Syrup

Information

scenarios

Single category

analysis

Cross- category

analysis

Single category

analysis

Cross-category

analysis

Scenario-1 � 3.37 � 3.38 � 5.19 � 5.81

(Base-base) (0.04) (0.02) (0.31) (0.40)

Scenario-4 �3.37 �5.26 �5.19 �3.51

(Full-base/demo) (0.04) (0.39) (0.31) (0.37)

Scenario-5 � 3.23 � 2.74 � 3.17 � 3.34

(Choice-choice) (1.58) (1.24) (0.43) (0.35)

Scenario-7 � 3.38 � 3.40 � 5.65 � 5.83

(Full-full) (1.33) (1.50) (0.30) (0.45)

The number in parentheses is the standard deviation. Significant differences are shown in bold.
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where Xcht2 is a matrix containing the causal variables and ch2 is brand-specific
constants for Category-2. For identification purposes, the first brand-specific
constant is forced to zero.
While complete information is available for reference households, only choice

information is available for the target households. Therefore, for the target group we
can only specify an intercept-level model, i.e.,

uht2 ¼
0
lh2

� �
þ eht2: ð20Þ

To leverage information from the reference group analysis appropriately, we need
to map the posterior distribution for lh2 into a distribution for the full set of
parameters bh2. The identification restrictions in the model with complete
information are different from those required for the intercepts-only model for the
target households. In particular, the first intercept is set to zero in both categories in
the intercept-only model and this necessitates taking utility differences in the
complete model so as to make the parameters across the two models comparable (see
Rossi et al., 1996 for an extended discussion). After making adjustments for these
differences in identification conditions for the above two sets of equations, and after
taking iterated expectations E½u� ¼ Ex½E½ujX�� ¼ Ex½Xb� we arrive at the following
equalities for the parameters within the model.

gh2 þ R2dh2 ¼ lh2; ð21Þ

where,

R2 ¼

x02 � x01
x03 � x01

..

.

x0n � x01

2
6664

3
7775

and x0j is a vector of the means for the causal variables of the jth brand in Category-2.
We can now integrate the information in Category-2 with that in Category-1 and

Category-3. This linkage explictly captures the cross-category influence. The
integration is best expressed through the following matrix equality.

bh1
lh2
dh2
bh3

2
664

3
775 ¼

I 0 0 0

0 I R2 0

0 0 I 0

0 0 0 I

2
664

3
775

bh1
ch2
dh2
bh3

2
664

3
775: ð22Þ
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This can be rewritten as:

hh
fh

� �
¼ A11 A12

A21 A22

� �
bh12
bh3

� �
; ð23Þ

where, hh:ðb0h1; l0h2Þ
0; fh:ðd0h2; b0h3Þ

0; bh12:ðb0h1; c0h2; d
0
h2Þ

0 and,

A11 ¼
I 0 0

0 I R2

� �
; A12 ¼

0

0

� �
;

A21 ¼
0 0 I

0 0 0

� �
; A22 ¼

0

I

� �
:

ð24Þ

The reference group provides estimates of the population distribution’s fixed effect
a, and covariance K.
Using the above defined submatrices of A, we can rewrite the multivariate normal

expression as

hh
fh

� �
*N

A11 A12

A21 A22

� �
Zh12a12
Zh3a3

� �
;

A11 A12

A21 A22

� �
K12 K123

K321 K33

� �
A11 A21

A12 A22

� �� �
; ð25Þ

where K12 refers to the cross-category covariance matrix between parameters in
Category-1 and Category-2, K123 is the cross-category covariance matrix between
parameters in Category-1, Category-2 and Category-3 and K33 represents the
within category covariance matrix of the parameters in Category-3. We choose
this particular representation of the covariance matrix between the parameters
of Category-1, Category-2 and Category-3 in order to have a 262 structure,
which facilitates the subsequent analytical computation. Finally, Zh12a12:
ðZh1a01;Zh2a02Þ

0

For ease of illustration, we denote the covariance, AKA0, as 262 matrix Q,
where,

Q11 ¼ A2
11K12 þ A2

12K33 þ A11A12ðK123 þ K0
123Þ;

Q22 ¼ A2
21K12 þ A2

22K33 þ A21A22ðK123 þ K0
123Þ;

Q12 ¼ A11A21K12 þ A12A22K33 þ A11A22K123 þ A12A21K
0
123;

Q21 ¼ Q0
12:

ð26Þ

Given the above normal distribution, the conditional distribution for fh, a normal
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Nðfh j hhÞ can now be ascertained. Specifically,

fh j hh *NðEðfh j hhÞ;Varðfh j hhÞÞ;
Eðfh j hhÞ ¼ A21Zh12a12 þ A22Zh3a3 þQ21Q

�1
11 ðhh � ðA11Zh12a12 þ A12Zh3a3ÞÞ;

Varðfh j hhÞ ¼ Q22 �Q21Q
�1
11 Q12:

ð27Þ

6.2. Full-Full-Choice

In this information scenario, we have Full information in Category-1, Full
information in Category-2 and Choice information in Category-3. In what follows,
we show how to combine the available information across the three categories to
make inferences about the household-specific parameters.
We begin with Category-3. The information set in this category contains only

choices. The analysis described in the previous sub-section within Category-2 can be
replicated in Category-3. Thus, we begin with the matrix representation for
integrating the information across categories.

bh1
bh2
lh3
dh3

2
664

3
775 ¼

I 0 0 0

0 I 0 0

0 0 I R3

0 0 0 I

2
664

3
775

bh1
bh2
ch3
dh3

2
664

3
775: ð28Þ

This can be rewritten as:

hh
dh3

� �
¼ A11 A12

A21 A22

� �
bh12
bh3

� �
; ð29Þ

where, hh:ðb0h1; b0h2; l0h3Þ
0; bh12:ðb0h1; b0h2Þ

0; bh3:ðc0h3; d
0
h3Þ

0 and,

A11 ¼
I 0

0 I

0 0

2
64

3
75; A12 ¼

0 0

0 0

I R3

2
64

3
75;

A21 ¼ [ 0 0 ]; A22 ¼ [ 0 I ]:

ð30Þ

The reference group provides estimates of the population distribution’s fixed effect
a, and covariance K.
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Using the above defined submatrices of A, we can rewrite the multivariate normal
expression as

hh
dh3

� �
*N

A11 A12

A21 A22

� �
Zh12a12
Zh3a3

� �
;

A11 A12

A21 A22

� �
K12 K123

K321 K33

� �
A11 A21

A12 A22

� �� �
;

ð31Þ

where, K12 refers to the cross-category covariance matrix between parameters in
Category-1 and Category-2, K123 is the cross-category covariance matrix between
parameters in Category-1, Category-2 and Category-3 and K33 represents the within
category covariance matrix of the parameters in Category-3. Finally,
Zh12a12:ðZh1a01;Zh2a02Þ

0

For ease of illustration, we denote the covariance, AKA0, as 262 matrix Q, where,

Q11 ¼ A2
11K12 þ A2

12K33 þ A11A12ðK123 þ K0
123Þ;

Q22 ¼ A2
21K12 þ A2

22K33 þ A21A22ðK123 þ K0
123Þ;

Q12 ¼ A11A21K12 þ A12A22K33 þ A11A22K123 þ A12A21K
0
123;

Q21 ¼ Q0
12:

ð32Þ

Given the above normal distribution, the conditional distribution for dh3, a normal
Nðdh3 j hhÞ can now be ascertained. Specifically,

dh3 j hh *NðEðdh3 j hhÞ;Varðdh3 j hhÞÞ;
Eðdh3 j hhÞ ¼ A21Zh12a12 þ A22Zh3a3 þQ21Q

�1
11 ðhh � ðA11Zh12a12 þ A12Zh3a3ÞÞ;

Varðdh3 j hhÞ ¼ Q22 �Q21Q
�1
11 Q12:

ð33Þ

Thus, our model lends itself to an extension to three categories. However, as is
evident, increasing the number of categories, increase both the complexity and the
number of parameters to be estimated. As more categories are considered, it would
become necessary to impose a structure on the parameter covariance matrix in order
to keep the estimation procedure feasible. Examples of this structure include
variance component analysis (Ainslie and Rossi, 1998) or a factor analytical
structure (Deepak et al., 2002).

7. Multi-category data

In this paper we focused on prediction and parameter recovery within a category in
the presence of missing information. Using these two criteria, we assessed the
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information gain while using data from another category. In our simulation study,
we find that, in general, there is very little gain in prediction from a cross-category
model when compared to a single-category analysis. This suggests that in any
empirical application, where the likelihood provides a way to compare approaches, a
cross-category analysis is unlikely to show any significant gains over a single-
category analysis. In many situations, however, leveraging information across
categories improves the recovery of underlying household-specific parameters.
While we focus on a specific facet of multi-category information and find its

informational value questionable, it is clear that there are several substantive
problems that cannot be addressed in the absence of multi-category information. For
instance, Ainslie and Rossi (1998) focus on the presence of correlation in price-
sensitivities across multiple categories. It would be impossible to address this
substantive problem in the absence of multiple category information. Our focus is
also on the correlation in cross-category price sensitivities but, rather than just its
presence, we question whether that correlation can be leveraged for parameter
recovery and choice prediction within a category. We find that a high correlation
among parameters of two categories is a necessary but not sufficient condition for
information transfer between two product categories.
Apart from the substantive problem of investigating the correlation in price

sensitivities across categories, there are other issues that cannot be addressed without
multi-category data. For instance, managers are interested in understanding how
brand equity can be leveraged across categories. Several studies have proposed that a
common brand name helps in transferring quality across product categories (Aaker
and Keller, 1990; Wernerfelt, 1988). This effect, called umbrella branding, has
subsequently been empirically studied. Both Erdem (1998) and Manchanda et al.
(2000) found that common brand names across categories did indeed help in
transferring quality and that there was a strong correlation in the own price
sensitivity across categories. Manchanda et al. (2000) also found that the cross-
category effects were stronger for common brands. In a similar context, Erdem and
Sun (2002) found evidence for advertising and promotion spill over effects for
common brands across categories. All the empirical studies described above used
multi-category data and it would be impossible to address these substantive issues in
absence of such multi-category information.
Another stream multi-category research has focused on understanding the nature

of relationships in cross-category purchasing. An interest in uncovering comple-
mentary and substitute relations between products has its roots in both marketing
(Bass et al., 1969) and economics (Stone, 1954). The identification of substitute and
complementary products can help in understanding how shopping baskets are put
together. This understanding, besides being of obvious interest from an academic
perspective, can guide managers to forecast the cross-category effects of any
marketing action. In this vein, Manchanda et al. (1999) used multi-category grocery
data to separate the effects of product complementarity from that of co-occurrence
or coincidence on the formation of a shopping basket. As with the substantive issue
of umbrella branding, the issues of complementarity and substitution cannot be
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suitably addressed without multi-category data. Thus, we are certainly not making a
claim that multi-category information is questionable under all circumstances.
In sum, the value of cross-category data depends on the objective of the

researcher. Our focus is well suited for providing guidelines to managers for
implementing their micro marketing programs. We have shown conditions where a
cross-category analysis can lead to better recovery of household-specific parameters
as compared to a single category analysis. Any decision problem that relies on
household-specific parameter estimates to derive optimal managerial actions could
directly benefit from an improved recovery of parameters. For instance, in optimal
couponing decisions (Rossi et al., 1996), improved estimation of household-specific
parameters can alter the distribution of household-specific optimal coupons in a
target category. However, we also showed that there are specific conditions that are
conducive for this better parameter recovery. Thus, managers have to carefully
consider the cost–benefit tradeoffs associated with collecting and utilizing multi-
category information.

8. Conclusion

As companies collect increasing amounts of information about their customers, there
is a strong need to understand how this information can be leveraged to predict
consumers’ behavior in multiple categories. This could help companies in many
situations such as cross-selling. Building on the work of Rossi et al. (1996) who show
the value of purchase information within a single product category, we show how
information can be leveraged across multiple categories when a firm has limited or
no information about a target customer in one or more categories.
To understand the boundary conditions of information transfer across categories,

we conduct an extensive simulation that shows many interesting and surprising
findings. For example, we find that in most situations a single-category model is
likely to give rise to data likelihood as good as a cross-category model. This makes
the work of Rossi et al. (1996) even more powerful than previously recognized.
However, our simulation also shows the conditions when additional information is
likely to be beneficial. Specifically, we find that there are a few conditions wherein
there is a decrease in the ESS when a cross-category model is considered as compared
to a single-category analysis. In those conditions, the distribution of household-
specific optimal coupons in a target category would be different if cross-category
information is considered as opposed to household information from only the target
category.
The guidelines developed from this simulation help us to predict the outcome for

empirical applications. We confirm this in our application involving two related
grocery products—Breakfast Foods and Table Syrup. In spite of a reasonable
correlation in the price parameter across these two categories, a cross-category
analysis provides no significant benefit over a single-category analysis, consistent
with our simulation guidelines.
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There are several limitations of the present work and these provide avenues for
future research.5 In this paper, we show that the information content of cross-
category data is questionable. We, however, empirically show this result with only
two categories. It is possible that our results might change if more categories are
considered. This would be the case as with more categories there is greater
information about household-level purchase behavior and this might aid in
leveraging any cross-category correlation. In our model, we utilize an unstructured
covariance matrix between the cross-category parameters. On the one hand, an
unstructured covariance matrix is flexible but on the other, as more categories are
considered, it suffers from the curse of dimensionality. It would be interesting to
explore whether putting a structure on the covariance matrix, and thereby relatively
easily accommodating more categories, helps in better parameter recovery and/or
prediction.

Appendix A. Full conditional distributions for the cross-category model

Markov chain Monte Carlo procedures are used for numerical Bayesian inference
for the reference group data. MCMC involves iterative sampling from the full
conditional distributions. The multiple iterations of the MCMC procedure then
generate a Markov chain that converges in distribution to the joint posterior
under fairly general conditions. Thus, the essential idea is to construct a chain
whose stationary distribution is the required posterior distribution. We extend to a
cross-category model the MCMC procedure for the multinomial probit model
(Albert and Chib, 1993; McCulloch and Rossi, 1994) to generate the sample of
draws. The following set of full conditionals and priors for a;K;S1;S2; bh1; bh2 and
u are used:

a. The full conditional for a is multivariate normal Nð�aa;VaÞ, where V�1
a ¼ C�1 þPH

h¼1 Z
0
hK

�1Zh and �aa ¼ Va½C�1gþ
PH

h¼1 Z
0
hK

�1bh�. The prior mean g was fixed to
be 0 and C was set as a diagonal matrix diag(1000).

b. The full conditional for the precision matrix K�1 of the population distribution is
a Wishart distribution. The full conditional can be written as Wðrl;VlÞ, where
Vl ¼ ð

PH
h¼1 ðbh � ZhaÞðbh � ZhaÞ0 þ rCÞ�1 and rl ¼ rþH. H is the number of

households, r which is the df for the Wishart prior is set to Np þ 1, where Np is the
dimension of bh and C the scale matrix for the Wishart prior is fixed at identity.

c. Draws for bh are obtained by obtaining conditional draws for bh1 and bh2. We
consider the full conditional of bh1 here and the one for bh2 is analogous. The
prior for bh is NðZha;KÞ. We can derive the conditional prior distribution of bh1

5 We thank the reviewers for bringing a few of these to our attention.
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given bh2. Specifically,

bh1 j bh2*NðEðbh1 j bh2Þ;Varðbh1 j bh2ÞÞ;
Eðbh1 j bh2Þ ¼ Zh1a1 þ K12K

�1
22 ðbh2 � Zh2a2Þ;

Varðbh1 j bh2Þ ¼ K11 � K12K
�1
22 K21;

ð1Þ

where, K11 is the covariance among the parameters of Category-1, K22 is the
covariance among the parameters in Category-2 and K12 refers to the covariance
between the parameters of Category-1 and Category-2.

For ease of exposition, we can write the conditional normal prior as
pðbh1 j bh2Þ*Nða1j2;K1j2Þ. With this conditional prior, the full conditional of bh1
is normal, Nð�bbh1;Vbh1Þ with V�1

bh1
¼ K�1

1j2 þ
Pnh1

t¼1 X
0
ht1S

�1
1 Xht1 and �bbh1 is

Vbh1 ½K
�1
1 j 2ah1 j 2 þ

Pnh1
t¼1 X

0
ht1S

�1
1 uht1�.

d. The full conditional distribution for R1 and R2 can be considered separately given
their assumed independence. Here we consider the full conditional of R1. The full
conditional of R2 is analogous. R1 is diagonal with the first element set to 1 (for
scaling purposes). As the utilities within Category-1 are considered independent
given bh1, each element of R1 can be considered separately. Considering the kth
element of R1, we set an inverse gamma prior IGða; bÞ. Thus, pðs1kÞ*IGða; bÞ.
With this prior, the posterior is IGðN1=2þ a; ½1=2

PH
h¼1

Pn1h
t¼1 ðuhtk1� X0

htk1bh1Þ
2 þ

b�1��1Þ where N1 is the number of observations within Category-1. We fixed a at 3
and b at 0.5 for the priors.

e. The utilities uht1 and uht2 for any given observation in each category can be drawn
in a data augmentation step as detailed in Rossi et al. (1996). This involves
drawing each brand utility from a truncated conditional normal distribution
where the truncation points depend upon whether the utility is for the chosen
brand or not.

Appendix B. Information scenarios

In this appendix we show how to make inferences for the household-specific
parameters, bh, for the target group under the different Scenarios.

B.1. Scenario-1 (Base-Base)

In this Scenario, no specific information about any target household h is available in
both categories. Inferences about the response coefficients bh can be made by
utilizing the information about the reference group in both categories. Specifically,
the reference group gives information about the population parameters, a and K.
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For any particular target household h, we can write,

pðbh jDÞ ¼
Z

pðbh jZh; a;KÞf ðZhÞf ða;K jDÞ dZh da dK; ð1Þ

where pðbh jDÞ is the predictive distribution conditional on the data D of the
reference group, Zh represents the block-diagonal matrix of demographics
influencing bh; f ðZhÞ represents a distribution of the demographics and f ða;K jDÞ
is the joint posterior distribution of population parameters conditional on D.
As the demographics of a particular household, i.e., Zh, are unknown, these have

to be averaged out. This can be done by assuming a suitable demographics
distribution, f ðZhÞ, such as the empirical distribution in the data, and then sampling
from that distribution. The integration over the population parameters, a and K, can
be carried out by using samples obtained from the joint posterior distribution as a
consequence of estimating the cross-category model on the reference group. This
procedure gives a predictive distribution for parameters in both Category-1 and
Category-2. Rossi et al. (1996) employ a similar inference procedure. They, however,
use information of the reference group from Category-2 to infer the parameters of
the target group in that category. We differ by using information of the reference
group in both categories. This helps to leverage any information that is present in the
cross-category covariance between the parameters.

B.2. Scenario-2 (Demo-Demo)

This Scenario builds on the previous one by letting retailers have knowledge about
demographic attributes of their customer base. In the context of making inferences,
the only difference from Scenario-1 is that there is no need to average out the
distribution of demographics. Thus,

pðbh jZh;DÞ ¼
Z

pðbh j a;KÞpða;K jDÞ da dK; ð2Þ

where pðbh jZh;DÞis the predictive distribution conditional on the data D of the
reference group and the known demographics matrix, Zh of the target household and
f ða;K jDÞrepresents the joint posterior distribution of population parameters
conditional on the reference group data D.

B.3. Scenario-3 (Demo-Choice)

In this Scenario, the demographics of the target household and choices in one
category (without loss of generalization Category-1) are known. Scenario-2 provides
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the methodology for estimating the target household parameters when only
demographics of the target households are known. The new element in this Scenario
is that choice information is available within Category-1 and no purchase
information is available for Category-2. In what follows, we adapt the methodology
outlined in Rossi et al. (1996) when only choice information is available within a
category to our cross-category context.
For the target households, we can only run an intercept-level model within

Category-1. This yields

uht1 ¼
0
lh1

� �
þ eht1: ð3Þ

We have to map the posterior distribution of lh1 into a distribution on bh1 and
need to simultaneously infer bh2 based on the demographics for household h and the
population parameters from the reference group. The complete model for house-
holds within Category-1 can be written as

uht1 ¼ Xht1bh1 þ eht1 ¼
0
ch1

� �
þ Xcht1dh1 þ eht1; ð4Þ

where, Xcht1 is a matrix containing causal variables, which is not available for the
target households. Therefore, to map lh1 into bh1, following Rossi et al. (1996),
we can take iterated expectations and equate these expectations with the
intercepts obtained in equation (3) above. Formally, E½u� ¼ Ex½E½u jX�� ¼ Ex½Xb�
and thus,

E½u� ¼

x01dh1
g21 þ x02dh1

..

.

gp1 þ x0pdh1

2
66664

3
77775: ð5Þ

In the above equation, x0j is the vector of means of the causal variables for the jth
alternative. It is through these means that the prior information on the
distribution of causal variables is incorporated. After making adjustments for
differences in identification, we can write in matrix form,

ch1 þ R1dh1 ¼ lh1; ð6Þ
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where,

R1 ¼

x02 � x01
x03 � x01

..

.

x0n � x01

2
6664

3
7775:

This analysis needs to be integrated with the reference group information in both
categories. Conceptually, these sources of information can be brought together as
a set of equations,

lh1
dh1
bh2

2
4

3
5 ¼

I R1 0

0 I 0

0 0 I

2
4

3
5 ch1

dh1
bh2

2
4

3
5: ð7Þ

Rewriting ðd0h1; b0h2Þas h0h, we have

lh1
hh

� �
¼ ½A�

ch1
dh1
bh2

2
4

3
5; ð8Þ

where,

A ¼
I R1 0

0 I 0

0 0 I

2
4

3
5:

Further, we can write ðc0h1; d
0
h1Þ:b0h1 to obtain

lh1
hh

� �
¼ ½A� bh1

bh2

� �
: ð9Þ

The reference group provides estimates of the population distribution’s fixed
effect a, and covariance K. These estimates allow us to write the following

lh1
hh

� �
*NðAZa;AKA0Þ: ð10Þ
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For ease of explication, let,

A ¼ A11 A12

A21 A22

� �
; ð11Þ

where,

A11 ¼ I R1½ �; A12 ¼ 0½ �; A21 ¼
0 I

0 0

� �
; A22 ¼

0

I

� �
:

Using the above defined submatrices of A, we can rewrite the multivariate normal
expression as

lh1
hh

� �
*N

A11 A12

A21 A22

� �
Zh1a1
Zh2a2

� �
;

A11 A12

A21 A22

� �
K11 K12

K21 K22

� �
A11 A21

A12 A22

� �� �
: ð12Þ

For ease of illustration, we denote the covariance, AKA0, as 262 matrix Q,
where,

Q11 ¼ A2
11K11 þ A2

12K22 þ A11A12ðK12 þ K21Þ;
Q22 ¼ A2

21K11 þ A2
22K22 þ A21A22ðK12 þ K21Þ;

Q12 ¼ A11A21K11 þ A12A22K22 þ A11A22K12 þ A12A21K21;

Q21 ¼ Q0
12:

ð13Þ

Given the above normal distribution, the conditional distribution for hh, a normal
Nðhh j lh1Þcan now be ascertained. Specifically,

hh j lh1*NðEðhh j lh1Þ;Varðhh j lh1ÞÞ;
Eðhh j lh1Þ ¼ A21Zh1a1 þ A22Zh2a2 þQ21Q

�1
11 ðlh1 � ðA11Zh1a1 þ A12Zh2a2ÞÞ;

Varðhh j lh1Þ ¼ Q22 �Q21Q
�1
11 Q12:

ð14Þ

B.4. Scenario-4 (Base-Full)

This Scenario is discussed in detail in the text.
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B.5. Scenario-5 (Choice-Choice)

This Scenario is discussed in detail in the text.

B.6. Scenario-6 (Choice-Full)

In this Scenario, we have full information in one category (without loss of generality,
Category-1) and only choice in the other (Category-2). Thus for the target group, we
can estimate a cross-category probit model that yields the response parameters bh1 in
Category-1 and the intercepts lh2 in Category-2. Using these estimates and the
information from the reference group, the task is to obtain estimates for response
coefficients for the causal variables in Category-2, i.e., dh2. We can write the
relationship between these three sets of parameters in matrix form as follows:

bh1
lh2
dh2

2
4

3
5 ¼

I 0 0

0 I R2

0 0 I

2
4

3
5 bh1

ch2
dh2

2
4

3
5; ð15Þ

where R2 is analogous to that defined previously. We denote,

A ¼
I 0 0

0 I R2

0 0 I

2
4

3
5: ð16Þ

For ease of explication, let,

A ¼ A11 A12

A21 A22

� �
; ð17Þ

where,

A11 ¼
I

0

� �
; A12 ¼

0 0

I R2

� �
; A21 ¼ ½0�; and A22 ¼ 0 I½ �:

The reference group provides estimates of the population distribution’s fixed effect a,
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and covariance K. These estimates allow us to write the following

hh
dh2

� �
*NðAZha;AKA

0Þ; ð18Þ

where, hh:ðb0h1; l0h2Þ
0.

Using the above defined submatrices of A, we can rewrite the expression as

hh
dh2

� �
*N

A11 A12

A21 A22

� �
Zh1a1
Zh2a2

� �
;

A11 A12

A21 A22

� �
K11 K12

K21 K22

� �
A11 A21

A12 A22

� �� �
: ð19Þ

For ease of illustration, we denote the covariance, AKA0, as 262 matrix Q, with
components Q11;Q12;Q21 and Q22 defined in equation (13) in the appendix. As in
Scenario-3, the conditional distribution for d2h, is a normal Nðdh2 j hhÞwhere the
mean and variance of this distribution can be obtained from equation (14) of the
appendix.

B.7. Scenario-7 (Full-Full)

In this information set, full information is available for every target household h in
both categories. Hence, there is no difference between the reference group and target
group in terms of the level of available information. Thus, within each category, the
reference group and the target group can be combined and our cross-category model
can be estimated on these combined groups. As a by product of the estimation
procedure, we can obtain the inferences for the household-level parameters.
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