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Multilevel factor analysis models are widely used in the social sciences to account for heterogene- 
ity in mean structures. In this paper we extend previous work on multilevel models to account for general 
forms of heterogeneity in confirmatory factor analysis models. We specify various models of mean and co- 
variance heterogeneity in confirmatory factor analysis and develop Markov Chain Monte Carlo (MCMC) 
procedures to perform Bayesian inference, model checking, and model comparison. 

We test our methodology using synthetic data and data from a consumption emotion study. The 
results from synthetic data show that our Bayesian model perform well in recovering the true parameters 
and selecting the appropriate model. More importantly, the results clearly illustrate the consequences 
of ignoring heterogeneity. Specifically, we find that ignoring heterogeneity can lead to sign reversals of 
the factor covariances, inflation of factor variances and underappreciation of uncertainty in parameter 
estimates. The results from the emotion study show that subjects vary both in means and covariances. 
Thus traditional psychometric methods cannot fully capture the heterogeneity in our data. 

Key words: confirmatory factor analysis, multilevel models, random coefficient models, MCMC methods, 
Gibbs sampling, Metropolis-Hastings. 

1. Introduction 

Confirmatory factor analysis is widely used by researchers in the social sciences to identify 
constructs and to model the relationship between these latent constructs and observed variables. 
Many applications of confirmatory factor analysis assume a common model for all individuals 
and therefore implicitly ignore the influence of unobserved heterogeneity although it is unlikely 
that all individuals in the sample have the same set of parameters. It is well known that ignoring 
to account for unobserved heterogeneity can lead to biased parameter estimates and therefore 
can yield distorted results. Using a hypothetical example where groups of subjects have common 
measurement parameters but have different variable means, Muthdn (1989) shows that ignoring 
this type of heterogeneity leads to inflated measurement reliability. His result is consistent with 
the classic results of Lord and Novick (1968, pp. 129-131) on effects of group heterogeneity and 
selection on test reliability. Other types of distortions are possible depending upon the nature and 
extent of heterogeneity in data. 

Several extensions of the basic confirmatory factor analysis model have appeared in the 
psychometric literature for treating population heterogeneity. JOreskog (1971) and SOrbom 
(1981) developed the multiple group confirmatory factor analysis model to treat the situation 
where data come from several a priori identified groups that are heterogeneous in their factor 
structure. Using a finite mixture approach, Bladfield (1980) and more recently, Jedidi, Jagpal, 
and DeSarbo (1997a, 1997b), Yung (1997), Arminger and Stein (1997), Arminger, Stein and 
Wittenberg (1999) generalized the multigroup model to handle the case where the groups are 
unobserved a priori. The multigroup and finite mixture approaches work well with few groups 
and typically require a large number of observations per group. Contrary to these fixed effects 
approaches, a number of researchers (Goldstein & McDonald, 1988; Kaplan & Elliot, 1997; 
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Longford & Muthdn, 1992; McDonald & Goldstein, 1989; Muthdn, 1989, 1994; Muthdn & 
Satorra, 1989) have championed multilevel covariance structure models for the random effects 
analysis of hierarchical data (e.g., achievement data obtained from students sampled from within 
classrooms and classrooms sampled from within schools). As we show later in the paper, unlike 
the multigroup model and its finite mixture extensions, multilevel models capture heterogeneity 
only in mean structures (i.e., measurement intercepts) but not in covariance structures (i.e., the 
variances and covariances of the factors and measurement errors). 

In this paper, we extend previous work on multilevel models by describing general forms of 
heterogeneity in confirmatory factor analysis models. Specifically, we describe how mean and co- 
variance heterogeneity can be implemented in confirmatory factor analysis models using a hier- 
archical Bayesian framework. We develop Markov Chain Monte Carlo (MCMC) procedures for 
sampling based Bayesian inference in such models. The hierarchical Bayesian approach allows 
for appropriate pooling of the data while taking into account heterogeneity and is particularly 
suitable for studies in which multilevel data, panel data or multiple observations are available for 
a given set of subjects or objects (e.g., schools). Such data are commonly collected in the so- 
cial sciences. For example, in the educational achievement studies, data are available for several 
students within a classroom and for several classrooms within a school. Similarly, in consumer 
psychology, firms use consumer panels for tracking consumer satisfaction and perceptions over 
time. 

The hierarchical Bayesian approach for modeling heterogeneity provides several theoretical 
and practical advantages. From a practical viewpoint, Bayesian methods allow the estimation of 
individual-specific parameters (such as factor scores) while accounting properly for the uncer- 
tainty in such estimates. Moreover, as we discuss later, by using MCMC procedures, simulation- 
based estimates of the parameters can be obtained. This circumvents the need for evaluating 
complex multidimensional integrals that are often required to implement maximum likelihood 
methods for heterogeneous data. From a statistical viewpoint, sampling-based Bayesian meth- 
ods are appealing because they do not rely on asymptotic theory. In addition, Bayesian methods 
allow for the incorporation of prior information where available. 

There is a rich literature on Bayesian modeling of covariance structure models. Martin and 
McDonald (1975) provides an early illustration of Bayesian techniques for the factor analysis 
model and Lee (1981) focuses on the use of different prior distributions, whereas Bartholomew 
(1981) and Shi and Lee (1997) illustrate the use of Bayesian analysis to derive posterior estimates 
of factor scores, given point estimates of the other parameters. More recently, Arminger and 
Muthdn (1998) develop Bayesian methods for handling nonlinear models. Scheines, Hoijtink 
and Boomsma (1999) describe MCMC methods for covariance structure models and Ansari and 
Jedidi (2000) describe Bayesian multilevel models for binary data. 

The rest of the paper is organized as follows. Section 2 discusses the hierarchical Bayesian 
confirmatory factor analysis model. Section 3 discusses the specification of the priors and de- 
scribes the MCMC method for inference. Section 4 discusses procedures for model adequacy 
and model comparison. Section 5 reports the results of two studies involving synthetic data. Sec- 
tion 6 illustrates our methodology using emotion data obtained from a consumer panel. Section 7 
summarizes the paper and discusses directions for future research. 

2. Model 

We begin by describing a general random coefficient confirmatory factor analysis model. 
Suppose data are available from I individuals. Let individual i provide j = 1 to ni multivariate 
observations on a p dimensional vector Yij of indicator variables 1. The total number of obser- 
vations across all individuals is then given by N = ~ , i  ni and since ni can vary across indi- 

1 We depart from the standard multilevel nomenclature by using the term individuals for level-two units (i.e., groups) 
and the term observations for level-one units. 
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viduals, the data are unbalanced. The variation in the observed variables Yij can  be explained in 
terms of  m latent factors. A confirmatory factor analysis model  can be written for individual i as 
Yij = ozi -~- A i  ~ij -~- ~.ij, for j = 1 to hi. The vector a i  contains the p measurement  intercepts, !;ij 
contains the m latent factors and Ai is a p x m matrix of factor loadings. The latent factors !;ij 
are assumed to be normally distributed N(v i ,  dPi ), where vi contains the m factor means and qbi 
is a m x m positive definite covariance matrix of  the factors. Finally, the measurement errors in 
Eij are assumed to be normal, N(0,  ®i),  where ®i as usual is a p x p diagonal matrix containing 
the measurement error variances. 

If  a large number of  observations are available per individual, then we can perform separate 
factor analyses for each individual. In many research contexts, this is not feasible because of 
the scarcity of  observations. In such situations, a random coefficient approach can be used to 
appropriately pool  information across individuals and to account for the unobserved sources of 
heterogeneity (Longford, 1993, Muthdn 1989). In the random coefficient approach, a second 
stage model  specifies how the parameters from the individual level factor analysis models  vary 
across the different individuals. The second stage combines the individual level models  using a 
population distribution over the parameters. The set of  parameters ~oi = {~i, Ai ,  vi, ~i ,  ~ i  } of 
the factor analysis model  for individual i can be assumed to come from a population distribution 
f (1)). Combining the individual level models  with the population model, the generic form of  the 
random coefficient factor analysis model  can then be written as follows: 

Yij = ozi + A i  ~ij -]- ~.ij, 

~ij = N( l v i ,  dPi) 

~.ij = N(O, COl) 

eoi ~ f (1)), i = 1 to I ,  j = 1 to hi. (1) 

It is important to note that the above approach assumes that the individual specific factor analysis 
models  are form invariant (Bollen, 1989) which implies that the collection of  individual level 
models  all share the same form (i.e., they all have the same number of  factors, the same form of 
parameter matrices with the same dimensions and have the same locations of  free, constrained 
and fixed parameters).  

A general random coefficient model  that allows across individual variation in all parameters 
as in (1), is not identified. Identifiability necessitates restrictions on the form and the variability 
of  some of  the parameters. In this paper, we choose the nature of  these restrictions to yield a set of 
identified models  that highlight different sources of across individual heterogeneity. Specifically, 
we differentiate between models  that are heterogeneous in mean structures alone and those that 
also include heterogeneity in covariance structures. 

2.1. Heterogeneity in Mean Structures 

We begin by describing two models that allow heterogeneity in mean structures across the 
individuals. 

2.1.1. Heterogeneous Factor Means 

In many situations, researchers are interested in modeling individual differences in latent 
constructs. For example, in emotion studies, researchers are interested in profiling different in- 
dividuals in terms of  their average levels of  different types of  emotions. Such individual differ- 
ences can be modeled using different factor means vi for the individuals. Different factor means 
result in different mean structures for the individuals. As heterogeneity in mean structures is 
introduced using different factor means, the measurement intercepts a i  can be assumed to be 
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invariant, that is, o~ i = O~ for i = 1 tO I .  In this particular model, as the focus is on studying 
variation in mean structures alone, we assume that all individuals have common factor loadings 
A, common factor covariance matrices ~ ,  and common measurement variances (9. The implied 
mean vector and covariance matrix for an arbitrary observation for individual i is then given by 
E[Yij I vi] = oe -k Avi  and V[Yij I vi] = AqbA ~ + (9 respectively. The complete model  for an 
arbitrary individual, i, can then be written as 

Yij = OZ Jr- A ~ i  j Jr- Eij , 

~ij ~ N ( v i ,  qb), j = 1 tO Y/i 

~.ij ~ N(O, (9). (2) 

As is usual in confirmatory factor analysis, certain restrictions are required on the parameters 
of  the above model  for identification purposes. Specifically, the loading matrix A usually has 
a patterned structure with certain elements set to zero. Given the arbitrary scaling of  the latent 
factors, restrictions are needed either on A (e.g., by setting the scale of  each factor to the scale 
of  an a priori chosen variable), or alternatively, on qb, by assuming it to be a correlation matrix. 
If  restrictions are imposed on A then qb is a covariance matrix. 

The population distribution specifying the heterogeneity in the individual-level factor means 
can be written as 

V i ~ N ( 0 ,  A ) ,  (3)  

for i = 1 to I .  In (3), the factor means vi for each individual, come from a population normal 
distribution with mean zero and a covariance matrix, A. We assume a zero mean for this distri- 
bution in order to fix the location of the grand mean and to ensure identification of  parameters. 
This is analogous to setting the factor means of  the first group to zero in a multigroup (i.e., fixed 
effects) factor analysis model. The covariance matrix A describes the covariation in the factor 
means across individuals (between individuals variation). Taking into account the differences 
in factor means across individuals, the unconditional mean for an arbitrary observation can be 
written as E [ E [ y  I vi]] = ee and the unconditional covariance can be written as 

V[yij] = E[V(Yi j  I vi)] + V[E(Yi j  I vz)] 

= E[A~bA I + ®] + Vice + Avi ]  

= A(dpAgg)A I q- (9, (4) 

where OP Agg = (I) Jr- A combines the within and between sources of  variation in the factors. Thus 
an analysis that ignores heterogeneity may recover A and ® but will fail to separate the two 
components of  OP Agg. 

In other words, ignoring the heterogeneity in factor means can yield misleading inferences 
regarding the factor structure of the underlying latent constructs. Usually, researchers are inter- 
ested in studying the within individual factor structure represented in qb. For example, researchers 
may wish to investigate how different types of  emotional  states covary. As mentioned earlier, if 
heterogeneous data are analyzed using a conventional factor analysis model  that ignores hetero- 
geneity, the estimated factor covariance matrix OP Agg from such a model  will confound qb and A. 
Consequently, two types of  misleading inferences regarding the elements in qb will result from 
using such an analysis. First, as the diagonal elements in OP Agg are necessarily larger than the 
corresponding elements in qb, factor reliabili ty estimates will be inflated (Lord and Novick, 1968 
pp. 129-131, Muth6n 1989). Second, the magnitude and the signs of  the factor covariances in 
OP Agg will be distorted. For example, if the elements dPij and A i j  are of the salne sign, then the 
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magnitude of  opiAgg would be amplified. Alternatively, if OPij and Aij are of opposite sign, then 

OPi Agg may get attenuated or may indeed have the wrong sign. 

2.1.2. Heterogeneous Intercepts 

Heterogeneity in mean structures can alternatively be modeled by assuming that individuals 
differ in their measurement intercepts a i .  Such an approach is suitable when researchers are 
interested in modeling the differences in scale usage across individuals. As heterogeneity in mean 
structures is modeled in terms of  the measurement intercepts, we need to restrict the individual 
factor means for identification. We therefore assume that the factor means for each individual 
are zero, that is, vi = 0, for i = 1 to I .  The implied mean vector for an arbitrary observation 
for individual i is then given by E [Yij I oei] = oei. As in the previous model, we assume that 
all individuals have a common loadings matrix A, a common factor covariance matrix qb, and 
common measurement variances 6). The implied covariance matrix for an observation belonging 
to the individual is given by V[yij I ~i] = A qbA~ + 6). The model  for an arbitrary individual i, 
can then be written as 

Yij = oei q- A ~ i j  q- ~.ij, 

~ij ~ N(O, ~) ,  

~.ij ~ N(O, ®), (5) 

for observations j = 1 to hi. The usual restrictions on A or qb can be placed as in the previous 
model  for identification purposes. 

The second stage population distribution that specifies the heterogeneity in the individual- 
level intercept parameters can be written as 

a i  ~ N ( ~ ,  ~b).  (6) 

The intercepts for the different individuals are assumed to originate from a multivariate normal 
distribution with population mean ~ and a (p x p)  covariance matrix Eb. If  interest is in studying 
the variation across individuals then a factor analytic structure can be further imposed on Eb such 
that Eb = AbqbbA~ + ®b. Such a model  is known as the multilevel model  in the psychometric  
literature (Longford & Muth6n, 1992). 

Taking into account the measurement intercepts across individuals, the unconditional mean 
for an arbitrary observation can be written as E[E[Yii [ oei]] = /* and the unconditional co- 
variance is given by V[Yij] = E[V(Yij  [ ~i)]  q- V[E(Yij  [ ~i)]  = E[AqbA'  + ®] + V[eei] = 
AqbA I + ® + Eb. The form of  the unconditional covariance matrix indicates that if  we ana- 
lyze data originating from such a model  using traditional methods that ignore heterogeneity, then 
misleading inferences regarding A, qb and ® may result. For example, if Eb = AqbbA I + ®b 
(i.e., common loadings across levels) then V[Yi j ]  = A(Op q- OPb)A t q- 6) q- 6)b. Thus, in this 
special case, conventional confirmatory factor analysis will confound both the factor and the 
measurement error covariance matrices. 

2.2. Heterogeneity in Covariance Structures 

The first two models  focussed solely on the variation in means and assumed invariant covari- 
ance structures across all individuals. Specifically, we assumed that the factor loading matrices A, 
the factor covariance matrices qb and the measurement variances ® are invariant across individ- 
uals. Here we relax these assumptions and focus on characterizing heterogeneity by accounting 
for the variation in the factor structures and measurement variances. We describe two forms of 
heterogeneous factor structures. In each case we assume that the measurement variances ®i and 
the mean structures are different across individuals. 
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2.2.1. Heterogeneous Factor Loadings 

In characterizing heterogeneity in factor structures, researchers may be interested in speci- 
fying different factor to variable transformation mechanisms for different individuals (see Yung, 
1997). Even if two individuals have the same true scores on the latent factors, they may have 
different scores on the manifest variables due to differences in their loadings for the factors. To 
model such situations, the loadings matrices, Ai, can be allowed to vary across individuals. To 
ensure appropriate comparisons across individuals and to limit attention to variation in factor 
loading matrices, variance of each factor can be fixed to one and a common factor correlation 
matrix dp for each individual can be assumed. The heterogeneity in the means can be captured 
by either allowing the factor means to vary or by allowing the measurement intercepts to differ 
across individuals. For example, choosing the former variation in means, the implied mean vec- 
tor for an arbitrary observation for individual i is given a s  E[Yij I Ai ,  vi] = Oz -]- A i v i  and the 
implied covariance matrix is given by V[Yij I A i ,  (Oi] = Ai  dPA1i + (Oi. The resulting model for 
individual i can be represented by the following set of equations: 

Yij = oz + Ai~i j  -]- ~.ij, 

~ij ~ N(v i ,  ~), j = 1 to ni 

~.ij ~ N(O, ®i). (7) 

The population distribution that describes the variation in the individual level parameters 
can be specified in terms of the product of independent population distributions over el, Ai and 
®i. The population distributions can be written as 

V i ~ N(O, A) 

A i ~ I - I  N(Lkm,  Xkm), i = 1 to I 

km 

P 
®i ~ 1-I IG(ak,  bk). (8) 

k = l  

The population distribution over ei is as in (3). The population distribution for Ai specifies 
that each nonzero element (row k, column m) of the loadings matrix is independently distributed 
univariate normal with mean )~km and variance Xkm. The third population distribution specifies 
how the p measurement error variances vary in the population of individuals. We choose the 
product of independent inverse gamma IG(a ,  b) distributions for this population distribution. 

Taking into account the variation across individuals, the unconditional mean structure can 
be written as E[Yii] = E[E[Yii I Ai ,  vi]] = oz, and the unconditional variance can be written as 
V[Yii] = E [ A i  (dp + A)AIi] + E[(9i]. E[(9i] i s  a diagonal matrix whose k-th diagonal element 
is obtained from the mean 1/[bk(ak -- 1)], of the corresponding inverse gamma distribution 
I G (ak, bk). The term E [Ai(qb q- A)Ai ] depends upon the specific form of the A i matrix and can 
be easily computed given our population distribution. It is clear from the implied variance that if 
the true data generating process involves heterogeneous covariance structures, then misleading 
inferences pertaining to factor loadings, factor covariances and the measurement variances may 
result when models ignoring heterogeneity are used. 

2.2.2. Heterogeneous Factor Covariances 

An alternative characterization of heterogeneity in factor structures can be made by spec- 
ifying different covariation patterns, qbi, of the latent factors across different individuals. For 
example, individuals can differ in the extent to which the different types of emotional states co- 
vary with each other. For some individuals, the latent factors may be near orthogonal, whereas 
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for others the same factors may be highly correlated. In order to make meaningful comparisons 
across the individuals, the factor loading matrices can be assumed to be invariant. The hetero- 
geneity in mean levels can be captured either through the factor means or through heterogeneous 
measurement intercepts. Here, we model heterogeneous factor means. The heterogeneous factor 
covariances model with heterogeneous intercepts is described in Appendix 2. The implied mean 
vector for an arbitrary observation for individual i is then given by E[Yij  [ vi] = oe q- A v i ,  
and the implied covariance structure is given by V[Yij  [ qbi, ~i] = AdPiA ~ + ~i. The resulting 
model for the individual can then be written as 

Yij = oe + A~i j  + ~.ij, 

~ij ~ N ( v i ,  dPi), j = 1 tO ni 

~.ij ~ N(O, ®i) .  (9) 

The population distribution can be specified by choosing independent population distribu- 
tions over the individual sets of parameters. These distributions can be written as 

v i  ~ N(O, A) 

dP i ~ I W ( p ,  R)  i = 1 

P 

®i ~ U I G ( a k ,  bk).  
k=l 

to I 

(lO) 

The population distribution for the factor covariance matrices, qbi, is assumed to be an 
inverse Wishart distribution with scale matrix R, and a positive shape parameter p. The other 
population distributions are as in the previous models. The unconditional mean for an arbitrary 
observation is given by E[yi j]  = oz. The unconditional variance is V[yi j]  = A(A + E[~i ] )A I + 
E [®i] where the expectation E [qbi] is given from the inverse Wishart distribution as R / ( p  - 
2p - 2) and E[®i] is the same as in the previous model. As is the case for the previous models, 
the implied covariance structure indicates that ignoring heterogeneity can provide misleading 
inferences regarding parameters. 

While it is conceptually possible to specify and provide Bayesian estimation procedures 
for models with heterogeneous covariance structures, we wish to caution that in many empir- 
ical applications, data may not provide enough information to allow reliable estimation of all 
parameters in such complex models. Researchers therefore need to impose reasonable levels of 
heterogeneity so as to obtain valid inferences for quantities of interest. In addition, as is the case 
in consumer psychology studies, researchers may have a priori hypotheses regarding the role 
of moderating variables. For example, researchers may be interested in knowing how different 
groups of individuals (males versus females) differ in their emotional structures. In such situa- 
tions, instead of allowing vi ,  ~ i  and ®i to vary for each individual, a hybrid approach (random 
coefficient + multigroup) that allows complete variation in the factor means and measurement 
variances, but restricts the qb matrices to be group specific may be more fruitful. This can be 
achieved by reparametrizing vi as a function of the hypothesized moderator variables and by 
estimating separate qb matrices for each group. 

In summary, notice that the first two models that focus only on the heterogeneity in mean 
structures can be considered as special cases of the last two models which allow for more general 
patterns of heterogeneity. In the main body of the paper, we focus on the heterogeneous factor 
means and heterogeneous factor covariances model. The algorithmic details pertaining to the 
estimation of the heterogeneous factor loadings model are described in Appendix 1 and the de- 
tails for the heterogeneous factor covariance model with heterogeneous intercepts are provided 
in Appendix 2. 
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3. Inference 

Bayesian inference requires specification of priors for all parameters in a model. We de- 
scribe the priors associated with the heterogeneous factor covariances model. 

3.1. Priors 

The unknown parameters for the model can be collected in the set ~ = {o~, A, A, p, R, {ak}, 
{bk } }. Lee (1981) and Arminger and Muthdn (1998) discuss different forms of prior distributions 
for factor analysis models. In this paper we specify the prior distribution over ~ as a product of 
independent priors. 

We use proper, but diffuse priors over all model parameters. The prior for the overall mean 
can be chosen to be multivariate normal N(aq, C). The covariance matrix C for this prior can 

be assumed to be diagonal and the diagonal elements (variances) can be set to large values to 
represent vague knowledge. The exact location of this distribution is no longer critical once C is 
set to be large and therefore, aq can be set to zero. 

The matrix of factor loadings, A, has a patterned structure. We therefore specify indepen- 
dent multivariate normal priors over the free elements within each row of the matrix. We have for 
row k a prior N(gk, Hk). The covariance matrix Hk can be assumed diagonal with large variances 
to ensure a diffuse prior. The prior over A then is a product of the independent priors associated 
with the p rows. 

The precision matrix A -  1 associated with the population distribution of the factor means 
vi ~ N(0, A), is a m x m, positive definite matrix. In keeping with standard Bayesian analysis 
of linear models, we assume a Wishart prior W(& (3S2) -1) where S2 -1 can be considered the 
expected prior precision of the vi s. Smaller 3 values correspond to vaguer prior distributions. 

The Wishart population distribution W(p, R) of the individual specific factor precision ma- 
trices, ~-1,  has two unknown parameters, p and R. The scale parameter R is a m x m symmetric 

positive definite matrix. A conjugate prior for R -1 can be assumed to facilitate further analysis. 
We therefore choose a Wishart prior, R -1 ~ W('y, ( 'yS)-I).  The shape parameter, p, is a pos- 
itive scalar quantity. The Wishart distribution W(p, R) is a proper density only if p > m. We 
therefore choose a truncated univariate normal prior over pl = log(p). Specifically, we assume 
pl ~ tN(O, r) where r can be assumed to be large enough to represent vague knowledge. 

There are p different population distributions IG(ak, bk), k = 1 to p, for the p measure- 
ment error variances contained in ®i. We therefore need to specify priors over the set of un- 
knowns, {{ak}, {bk}}. We choose independent conjugate inverse gamma priors, bk ~ IG(gk, hk), 
for k = 1 to p, to represent the prior uncertainty about the scale parameters. Finally, we assume 
independent univariate normal N(0, rak) priors over 1og(ak), for k = 1 to p. The prior variance, 
rak, Can be set to a large value to ensure a diffuse prior. 

3.2. Inference Procedure 

Inference in the Bayesian framework involves summarizing the joint posterior of all un- 
knowns. We use simulation based methods to obtain random draws from the posterior density as 
this density is not available in closed form for our models. Inference is based on the empirical 
distribution of the draws. The complexity of the posterior density also implies that we cannot 
use direct methods for obtaining these draws. We therefore use Markov Chain Monte Carlo 
(MCMC) methods involving data augmentation (Tanner & Wong, 1987) Metropolis-Hastings 
methods (Hastings 1970; Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) and Gibbs 
sampling (Geman & Geman 1984) to obtain these draws. The MCMC methods involve sam- 
pling parameter estimates from the full conditional distribution of each block of parameters. If 
the full conditional is known only up to a normalizing constant, then a Metropolis Hastings step 
can be used, otherwise, if it is completely known, a Gibbs sampling step can be employed. In 
the context of the heterogeneous factor covariances model, we need to generate random draws 
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for {ee, A, {i;ij}, {Vi}, {qbi}, A -1, p, R -1, {6)i}, {ak}, {bk}}. Each iteration of the MCMC sam- 
pler involves sequentially sampling from the full conditional distributions associated with each 
block of parameters. The MCMC procedure also provides samples of the factor scores {~ij } via 
data augmentation, and therefore enable posterior inference about factor scores. As these fac- 
tor scores are obtained as part of the MCMC output, a proper accounting of the uncertainty is 
possible in their estimation. We now describe the simulation steps involved in each iteration. 
The (t + 1)-th iteration of the sampling algorithm involves generating random draws from the 
following full conditional distributions: 

. 

. 

. 

. 

The overall mean ee has a normal prior. From standard Bayesian theory, the full conditional 
distribution can be written as a multivariate normal distribution given by 

p ( ~  I A, {~ij}, {6)i}, {Yij}) = N(&,  Vc~) (11) 

where 

I 
v j  I = c-1 + ni6)71 

i=l  

I ni ) )  
and & =  Vc~ C - I . + Z 6 ) ; 1 Z ( Y i j - A ~ i j  • 

i=1 j= i  

The loading matrix A is a patterned matrix containing both fixed and free elements. Of 
the fixed elements, some are fixed to zero, while others are fixed at one to impose identi- 
liability constraints. The full conditional distribution for the free elements in a row of the 
matrix A is multivariate normal. Given the choice of the prior distributions, the full condi- 
tionals pertaining to the different rows are independent. Therefore, the rows can be handled 
sequentially. Let hk be the vector of free elements in row k. The prior for hk is given by 

p(Ak) = N(gk, Hk). 
Let ~ijk be the vector of factor scores corresponding to the elements in row k of A that 

are set to one and let ~ - i j k  contain the remaining factor scores from ~ij. Form the adjusted 

variable Y i j k  = Y i j k  - -  t t ~ i j k  - -  ~ k ,  where t is a vector of ones. Given the prior, the vector Ak 
can be sampled from the full conditional distribution given by 

) p(Akl{igijk},{~-ijk},Oi,k) = N  Dk I Z Z O i , k ~ - i A Y i j k + H k - i g k  ,Dk (12) 
[_i=1 j = l  

where 

I ni 
-1 ! D ;  1 = oi ,k  t-ijkt_ij  + H ;  1, 

i=1 j= l  

and Oi,k is the (k, k)-th element of ®i. 
The factor scores can be obtained in a data augmentation step. Given the multivariate normal 
prior N(vi ,  dPi ), for the factor scores, the full conditional distribution for the factor scores 
~ij for each observation is multivariate normal and is given by 

P(~ij ] Yij, oz, A, ®i, vi, ~i) = N ~ij, V~ij (13) 

where 

( , 1  ) V -1 = dP~ 1 + A t ® ~ I A  and  ~ij = V$ij dP~lvi + A 6)i (Yij - oz) ~ij 

The full conditional distribution for the individual level factor means vi is a multivariate 
normal distribution that can be written as 

p(vi ] {~ij }, OPi, A) = N (i'i, Vv~ ), (14) 
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where 

tti 
Vv71 = A -1 -~- v/i (I)71 and Vi = Viii (~71 ~ ~ij. 

j=l 

5. The normal sampling distribution for the factor scores when combined with the Wishart 
prior for the individual specific factor precision matrices, ~ -1  ~ W (p, R), yields a Wishart 

full conditional distribution for ~-1  which can be written as 

where 

t/i p ( ~ l  I {~ij}j=l, P, R) = W(ppos, Rpos) 

Ppos = P + ni a n d  Rpos = (~i j  - -  V i ) ( ~ i j  - -  Vi )  t + R - 1  • 

[_j=l 

(15) 

6. Similarly, the full conditional distribution for the precision matrix A -1  of the individual 
specific factor means vi, is a Wishart distribution. Given the prior A -1 ~ W(3, (3f2)-1), 
this full conditional distribution can be written as 

(E 1-1 ) p ( A - 1 1 { v i } ) = W  c~+I, ~ v i v W + c ~ 2  . 
i=1 

(16) 

7. The full conditional distribution for the hyperparameter R -  1 is a Wishart Distribution. The 
likelihood associated with this full conditional distribution is a product of Wishart distri- 
butions. As the population distribution for the factor precisions ~i is given by ~-1  
W(exp(y) ,  R), the likelihood can be written as 

e x p ( - ½ t r ( R - l ~ [ = l  * i -1) )  1 ~ 1  * i  -1 exp(p/) P 1 

L({qbi-1} I pl, R) = (17) 
IRI ~2~exp(p/)lpexp(p/)mUj=I F (exp(p 1 - j ) ~ +  

The above likelihood when combined with the conjugate Wishart prior, R - 1 ~ W (g, (g S) - 1 ) 
yields a full conditional distribution that can be written as 

(18) 

8. The full conditional for the hyperparameter p~ = log(p) of the Wishart population distri- 
bution W(p, R) cannot be written in closed form. This full conditional is proportional to 
product of the likelihood expression specified in (17), and the prior density of p~ which is a 
truncated univariate normal p(y )  = N(0, r).  We therefore use a random walk Metropolis 
Hastings step to generate random draws of y .  We use a univariate normal proposal density 
N ( y  (t), t), that is centered on the old value of y(t) to generate a candidate y c  The tuning 
constant t in the proposal density is chosen to facilitate rapid mixing and to avoid excessive 
rejections of the candidate draws. The generated candidate yc is accepted with the following 
acceptance probability 

min{ L(YeI{~F~i}'R)P(Ye) 1} 

L(y(t) l { ~ l } ,  R)p(y(t)) ' 
(19) 

If the candidate is accepted then p1(t+l) = yc, otherwise y(t+l) = p~(t). 



ASIM ANSARI,  KAMEL JEDIDI,  AND LAURETTE DUBE 59 

. The full conditional distributions for the diagonal elements of the individual specific mea- 
surement error variances in ®i, that is, Oi,k, k = 1 to p, are independent inverse gamma 
distributions. These follow from standard Bayesian theory and can be written as 

tli p(Oi,kk I Ak, C~k, {~ij}j= 1, ak, bk) 

I ~ j  =1 (Y~jk - c~k - Ak~i j)  
= I G  +ak,  + b~-l] - ~ )  (20) 

10. 
where Ak contains the elements of row k of A. 
The full conditional for the hyperparameter bk of the inverse gamma population distribution 
over the k-th measurement error variance, Oi,k, is alSO an inverse gamma distribution as the 
inverse gamma prior, IG(gk,  hk) is a conjugate distribution. The full conditional can be 
written as 

( i p(bk ] {Oi,k},ak, gk, hk) = I G  Iak + gk, hk 1 + Oi,k • (21) 

11. 

The parameter draws from the full conditional distributions of each bk, k = 1 to p can be 
made in sequence. 
The full conditional for the hyperparameter a~ = 1og(ak) of the inverse gamma population 
distribution for the k-th measurement error variance, Oi,k, cannot be written in closed form. 
The likelihood of the "data" can be written as 

I exp(a~)- i  exp(--b~lOi,k) Oi,k 
L({Oi,k}l@ bk) = l - I  

i=1 F(exp(a;))bek xp(°;) 
(22) 

The prior density of a~ is a univariate normal p (a~) = N (0, to). The full conditional is pro- 
portional to the product of the likelihood and the prior. We use a random walk Metropolis- 
Hastings step to generate random draws of a~. We use a univariate normal proposal density 

• IC N(a2 (t), to), that is centered on the old value of a2 (t) to generate a can&date a k . The tuning 
constant to in the proposal density is chosen to allow rapid mixing and to avoid excessive 

zc is accepted with the following ac- rejections of the candidates. The generated candidate a k 
ceptance probability 

{ L(a~ l {Oi.k~}, bk)p(a~) } 
min L(ak(t ) I {Oi.kl}, bk)p(ak(t)) ' 1 . 

(23) 

• t ( t + l )  
= ,c otherwise a k = a~(t). Parameter draws If the candidate is accepted then a~ (t+l) a k , 

k =  l t o p .  can be sequentially made for each a k, 

The MCMC sampler is run for a large number of iterations. This iterative scheme of sequen- 
tial draws generates a Markov chain that converges in distribution to the joint posterior under 
fairly general conditions (Tierney, 1994). After discarding the initial draws (burn-in draws) the 
subsequent draws from the chain can be used as a sample from the posterior distribution. A large 
sample of draws can be obtained to approximate the posterior distribution to any desired level of 
accuracy. 
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4. Model Assessment 

4.1. Model Adequacy 

The adequacy of a Bayesian model can be assessed using posterior predictive model check- 
ing (Gelman, Carlin, Stem, & Rubin, 1996; Yao & BOckenholt, 1999). Let yObS be the observed 
data,/~ be the vector of all unknowns and d be the number of posterior draws that are used for 
adequacy assessment. The sample of parameter draws/~1,/~2 . . . .  /~d available from the MCMC 
algorithm can be used along with the appropriate sampling distribution p(y ] /~) to generate 

rep reD reD hypothetical replicated multilevel data sets Yl , Y2 , • • •, Yd . The actual data set can be com- 
pared with the replicated data sets using test quantities T(y, f )  involving either the data alone 
or both data and parameters. These test quantities are chosen to measure departures of the ob- 
served data from the assumed model. They can be omnibus goodness of fit measures or could be 
chosen specifically to highlight substantive aspects of the application of interest. If the replicated 
data sets differ systematically from the actual data on some test quantities, then we can ascertain 
that the model does not adequately capture the data generation process on those aspects that are 
captured by the test quantities. A posterior predictive p-value given by 

p(y) = P[T(y reD, ,8) >_ T(y °bs,/~) l y °bs] (24) 

can be used to detect model inadequacies. This p-value can be approximated easily from the 
MCMC sequence of draws using 

1 d 
Z ~ re D p(y) = ~ I t l t y t  ,fit) >_ T(y°bS,ft)), 
t= l  

(25) 

where I is an indicator function. The expression in (25) estimates the p-value as the proportion 
of the d replications in which the simulated discrepancy variable exceeds the realized value. A 
p-value close to zero or one indicates that the model is inadequate for the aspects measured by 
the discrepancy variable T. 

In heterogeneous factor analysis models, we suggest test statistics based on the within- and 
between-individual covariance matrices, ]~w and ]~e, respectively. Let Yk denote the grand mean 
for indicator Yk and Yik denote the mean for individual i. Then for a given data set yt, these test 
quantities are computed as 

w 1 I ni 

T(Sk, l) = N Z Z (yijk - Y~k)(Y~jz- Y~z), 
i=1 j=l 

(26) 

and 

I 

b 1 Z n i ( Y i k _ Y k ) ( Y i l - - Y l ) ,  
T(sk' l)  = N i=1 

(27) 

and b denote the within- and between-individual covariances, respectively. If a where sk, l sk, l 
model consistently overpredicts or underpredicts a within- (between) individual covariance then 
we can conclude that the within (between) covariance structure implied by the model fails in 
replicating that covariance in the actual data. In the synthetic data applications to follow, we 
illustrate the diagnostic potential of such test statistics. 

The above suggested test statistics are by no means exhaustive. Further research can in- 
vestigate the specification and empirical performance of other test statistics and discrepancy 
measures. In addition to using posterior predictive checks, researchers can also use Bayesian 
residuals based on a fitted model and validation data to see how well the model fits the data. 
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Bayesian residuals are available easily as a by-product of the MCMC simulation. Various sum- 
mary measures of these residuals can be utilized to assess model adequacy. For example, Q-Q 
plots can be utilized to test the normality assumptions of the measurement errors. 

4.2. Model Comparison 

In Bayesian analysis, Bayes factors (Kass & Raftery, 1995) have traditionally been used to 
compare two models. However, Bayes factors are difficult to compute for complex models such 
as ours. We therefore use the pseudo-Bayes factor (PsBF; Geisser & Eddy, 1979; Gelfand, 1996) 
as a surrogate for the Bayes factor. While the Bayes factor uses the prior predictive density to 
compute the marginal likelihood, the PsBF is based on the cross-validation predictive density of 
the data. It can therefore be used even with improper priors. Moreover, it can be very conveniently 
computed for structural equation models using the MCMC draws. 

Let y be the observed data and let Y(ijk) represent the data with the kth variable of obser- 
vation j from individual i deleted. The cross-validation predictive density can then be written 
as 

7c(Yijk I Y(ijk)) = f 7c(Yijk I fl, Y(ijk))ZC(fl I Y(ijk))dfl  (28) 

where/3 is the vector of all parameters in the model. The PsBF for comparing two models (M1 
and M2) is expressed in terms of the product of cross-validation predictive densities and can be 
written as 

I ni p M1) 
~(Y i j k  ] Y(ijk), (29) 

PsBF = U U U 7c(Yijk ] Y(ijk), M2)" 
i=l j= l  k=l 

The PsBF summarizes the evidence provided by the data for M1 against M2 and its value can be 
interpreted as the number of times model M1 is more (or less) probable than model M2. 

The PsBF for our model can be calculated easily from a sample of d MCMC draws 
{/~1 . . . . .  /~d}. As /3 is the vector of all parameters, including the factor scores, the responses 
Yijk, i = 1 to I,  j = 1 to ni and k = 1 to p, are conditionally independent given/3 (i.e., 
Yijk ~ N (ak + ,~klVij, Oi,k)). In such a situation, a Monte Carlo estimate of 7c(Yijk ] Y(ijk)) Can 
be obtained as 

fr(Yijk ] Y(ijk)) = = f (Yijk; /3(t)) " (30) 

where the univariate normal density f(Yijk; /3(t)) is evaluated at t-th draw,/3(t), from the MCMC 
sampler. Gelfand (1996) provides the derivation for the above equation. In practice, we can cal- 
culate the logarithms of the numerator and denominator of the PsBF. These can be considered as 
a surrogate for the log-marginal data likelihoods log(Pr(D)) from the models. 

5. Synthetic Data Applications 

We investigate the MCMC procedures described above using two synthetic data studies. The 
first study illustrates the consequences of ignoring heterogeneity and examines the performance 
of the algorithms in recovering the true parameters. The second study examines the performance 
of the different criteria for model assessment. 

5.1. Study 1: The Consequences of  Ignoring Heterogeneity 

In this section we illustrate the application of the MCMC procedures on synthetic data. The 
aim is to highlight that simpler methods can yield misleading inferences when data come from a 
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heterogeneous model. We used a balanced 6 variate data set with 100 groups and 30 observations 
within each group according to the heterogeneous factor covariances model described in (9) and 
(10). We set a = O, 

a'--(lo v o:o:  :,) 
1 

E[(I) i ]= (01.2 0 i2 ) ,  A :  ( 0 0 !  4 ;0 .64) ,  

(31) 

(32) 

and E[6)i] = 0.4 to generate the data. 
We used SAS and our MCMC procedures to estimate tl~ee models on the data. The first 

model (NH) is a nonhierarchical model that ignores the nature of the clustering of the observa- 
tions and is given by 

yij ~ N(oe, E) 

where N = AcI)A I + 6). We estimated this model using Proc CALIS in the SAS software. The 
second model (ML) is the multilevel model with heterogeneous factor means described by (2) 
and (3). Finally, our third model is the true model, that is, the Heterogeneous Factor Covariances 
(HC) model represented by (9) and (10). In estimating these models we use priors that are similar 
to those outlined in section 3.1. The prior for o~ is assumed to be p(~e) = N(0, 1001). The 
measurement variances in the first two models have independent inverse gamma priors each given 
by p(Okk) = IG(0.001, 1000), k = 1, . . .  p. We use R -1 ~ W(3, 31) and log(p) ~ tN(O, 100) 
for the hyperparameters associated with the factor covariances. For the mean factor covariances 
we use A -1 ~ W(3, 31) and finally we assume independent univariate normal N(0, 100) priors 
over the individual elements in A. 

The estimates for the models are based on 10,000 draws from the joint posterior distribution. 
These draws were obtained after discarding 2,000 draws from the initial transient portion of the 
chain. Convergence was assessed using a variety of diagnostics detailed in the CODA package 
(Best, Cowles & Vines, 1995) and by using time series plots to graphically assess the quality of 
the mixing of the chain. 

Table 1 reports the estimated factor loadings and the associated 95% posterior intervals for 
the three models. It is clear from the table that all three models yield almost identical estimates 
of the factor loadings. This is not surprising as the data generating mechanism assumed identical 
A for all individuals. 

Table 2 reports the within factor covariance matrix (I) for the first two models and the popu- 
lation expectation of the (I)i matrices, E (oPi) for the heterogenous factor covariance model (HC). 

TABLE 1. 
Factor loadings 

Parameter True NH ML HC 

)~21 0.8 0.79 0.79 0.78 
(0.76, 0.82) (0.76, 0.82) (0.75, 0.82) 

)~31 0.6 0.61 0.61 0.61 
(0.58, 0.64) (0.58, 0.63) (0.59, 0.63) 

L52 0.6 0.60 0.60 0.60 
(0.57, 0.63) (0.57, 0.63) (0.58, 0.63) 

)~62 0.8 0.80 0.79 0.79 
(0.76, 0.83) (0.75, 0.82) (0.76, 0.83) 
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TABLE 2. 
Factor covariance matrices 
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Parameter True NH ML HC 

qbll 1.0 1.37 0.78 0.98 
(1.28, 1.47) (0.72, 0.84) (0.84, 1.17) 

qbl2 0.2 --0.14 0.19 0.22 
(--0.19, --0.08) (0.15, 0.22) (0.15, 0.29) 

qb22 1.0 1.27 0.81 0.97 
(1.18, 1.37) (0.75, 0.87) (0.83, 1.13) 

A H 0.6 0.59 0.60 
- (0.43, 0.77) (0.44, 0.80) 

A12 -0 .4  -0.33 -0.34 
- (-0.47, -0.21) (-0.48, -0.22) 

A22 0.6 0.48 0.48 
- (0.36, 0.66) (0.35, 0.66) 

It also reports the across individual covariance matrix A of  the mean factor scores vi for the two 
models  that incorporate heterogeneity in factor means. It is clear from the estimates obtained 
for the nonhierarchical model  (NH) that ignoring heterogeneity leads to a confounding of the 
within and between covariance matrices of  the factor scores. We see that the variance terms qbll 
and qb22 are inflated when compared to their true values and the covariance qb12 has the wrong 
sign because of  this confounding. The estimates from the true model  (HC) are close to the true 
values as expected. However, it is interesting to note that the estimates of qb from the multi level 
model  (ML), are misleading. Whi le  the ML covariance estimate qb12 is of the proper sign, the 
magnitudes of  the variances differ from the true values and the 95% posterior intervals do not 
cover the true values. Finally, the estimates of  A obtained from the two models  are close to the 
true values. 

Table 3 reports the estimated measurement error variances ® for the NH and ML models  and 
the population expectation of ®i for the HC model. The magnitude of  the estimates are similar 
across all the models. A closer look at the estimates associated with (}~)33 and ®55 reveals that the 
95% posterior intervals for the first two models  do not cover the true value of  0.4. The posterior 
intervals for the full model  (HC) are wider as they properly reflect the uncertainty arising due to 
heterogeneity and cover the true value for all parameters. 

TABLE 3. 
Measurement error variances 

HC 
Parameter True NH ML E (63i) 

® 11 0.4 0.41 0.41 0.40 
(0.37, 0.46) (0.37, 0.46) (0.34, 0.47) 

Q22 0.4 0.39 0.39 0.41 
(0.36, 0.42) (0.36, 0.42) (0.36, 0.47) 

Q33 0.4 0.35 0.35 0.35 
(0.32, 0.37) (0.32, 0.37) (0.3, 0.40) 

Q44 0.4 0.43 0.41 0.42 
(0.38, 0.48) (0.37, 0.45) (0.36, 0.48) 

6355 0.4 0.35 0.35 0.35 
(0.32, 0.37) (0.32, 0.37) (0.31, 0.40) 

6366 0.4 0.45 0.46 0.46 
(0.42, 0.49) (0.42, 0.49) (0.4, 0.52) 
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In summary, the results from this simulated example indicate that our MCMC algorithm 
does well in recovering the true parameters. More importantly, the example clearly demonstrates 
that ignoring heterogeneity can lead to misleading inferences. Ignoring heterogeneity altogether 
can lead to sign reversals and inflation of factor variances. Ignoring heterogeneity in covariance 
structures can lead to misleading estimates of parameter values and an underappreciation of 
uncertainty in these estimates. 

5.2. Study 2: Model Assessment 

To assess the performance of the model adequacy test quantities described in section 4.1 and 
to investigate the performance of the pseudo Bayes factor for model comparison, we generated 
data according to a standard multilevel model (i.e., the heterogeneous intercept model in (5) and 
(6)) and estimated two models. The first model (Model 1) is the true model while the second 
(Model 2) is a mis-specified heterogenous factor means model described in (2) and (3). 

We specified a two-factor structure at both levels with three indicators per factor. We set 
~3¢ z 0 ,  

A I = A ~ =  0 0 1 1 (33) 

(I 7) _0.2) = 0 2  , ~ b =  - 0 . 2  (34) 

® = diag(0.2), ®b = diag(0.1) (35) 

to generate a balanced 6 variate data set with 300 groups and 30 observations within each 
group. We then computed the posterior predictive p-values for the within- and between co- 
variances (see (26) and (27)) and the PsBE Note that Model 2 is mis-specified since it as- 
sumes constant measurement intercepts but heterogeneous factor means. In contrast, the correctly 
specified model (Model 1) assumes heterogeneous measurement intercepts but common factor 
m e a n s ,  

Columns 2 and 3 in Table 4 report the results of the posterior predictive p-values associated 
with the p ( p  + 1)/2 nonredundant elements of the within individual covariance matrix and 
Columns 7 and 8 report the corresponding p-values for the between individual covariance matrix 
for the two models. The p-values were computed based on 1500 replicated data sets. It is clear 
from columns 2 and 7 that the p-values for Model 1 are all near 0.5 for all the within and between 
covariance elements. This is expected as Model 1 is correctly specified. Most of the p values for 
Model 2 (columns 3 and 8), however, have extreme values. At first glance, this clearly indicates 
that a heterogeneous factor means model does not adequately capture the covariance structure 
implied by a standard multilevel model (i.e., heterogeneous intercepts). 

Assuming common factor loadings across levels, recall that the within- and between- 
individual covariance matrices implied by the standard multilevel model (Model 1) are, re- 
spectively, ~ v  = A ~ A I  + ® and ~ = A~bA ~ + ®b (see (5) and (6)). The corresponding 

quantities implied by the heterogeneous factor means model (Model 2) are E~v = A ~ A  ~ + ® 

and E~ = AAA ~ (see (2) and (3)). Examining these quantities, it is clear that the heterogenous 
factor model is likely to over (under) estimate the within- (between) group variances but would 
be adequate in estimating the covariance elements. A re-examination of columns 3 and 8 con- 
firms this conjecture as the p-values associated with the within and between variance elements 
are extreme (see numbers in bold). In fact, these p-values are near 1 in column 3 and near 0 
in column 8, thus clearly indicating that for the replicated data sets, the within covariance is 
inflated and the between covariance is underestimated. Not all the p-values associated with the 
covariances, however, are close to 0.5 (e.g., p-value for s~, 2 is 1). 

As a further check, we computed the mean absolute deviations ISact - srep l between the 
covariances from the actual data Sact and the covariances from the replicated data sets step. The 
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TABLE 4. 
Model adequacy check 
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Within-Subject Covariance 

p-values MAD 

Model  1 Model  2 Mode l  1 Model  2 

Between-Subject  Covariance 

p-values  MAD 

Model  1 Mode l  2 Model  1 Model  2 

s w 0.473 1.000 0.0111 0.0761 1,1 
s w 0.513 0.000 0.0080 0.0419 1,2 
s w 0.473 0.018 0.0079 0.0273 1,3 
s w 0.591 0.614 0.0064 0.0080 1,4 
s w 0.487 0.506 0.0065 0.0075 1,5 
s w 0.369 0.346 0.0068 0.0092 1,6 
s w 0.512 1.000 0.0117 0 .0580 2,2 
s w 0.501 0.000 0.0082 0.0353 2,3 
s w 0.484 0.486 0.0064 0.0085 2,4 
s w 0.437 0.432 0.0063 0.0081 2,5 
s w 0.432 0.346 0.0066 0.0095 2,6 
s w 0.516 1.000 0.0109 0.0739 3,3 
s w 0.716 0.762 0.0072 0.0093 3,4 
s w 0.399 0.516 0.0066 0.0079 3,5 
s w 0.558 0.572 0.0058 0.0082 3,6 
s w 0.526 1.000 0 .0104 0 .0857 4,4 
s w 0.492 0.010 0.0079 0.0272 4,5 
s w 0.515 0.000 0.0073 0.0376 4,6 
s w 0.489 1.000 0.0113 0.0558 5,5 
s w 0.503 0.000 0.0080 0.0414 5,6 
s w 0.505 0.998 0 .0110 0 .0640 6,6 

si, 1 

s ,2 

s ,3 

s 1,4 

s 1,5 

s 1,6 

& ,2 
s b 
2,3 

s b 
2,4 

s b 
2,5 

s b 
2,6 

s b 
3,3 

s b 
3,4 

s b 
3,5 

s b 
3,6 

s b 
4,4 

s b 
4,5 

s b 
4,6 

s b 
5,5 

s b 
5,6 

s b 
6,6 

0.518 0.000 0.0114 0.0776 

0.493 1.000 0.0081 0.0399 

0.495 0.992 0.0083 0.0301 

0.487 0.236 0.0075 0.0103 

0.535 0.510 0.0075 0.0078 

0.509 0.162 0.0072 0.0118 

0.502 0.000 0.0115 0.0579 

0.490 1.000 0.0085 0.0366 

0.526 0.670 0.0077 0.0083 

0.537 0.934 0.0078 0.0155 

0.599 0.998 0.0075 0.0275 

0.529 0.000 0.0119 0.0707 

0.439 0.016 0.0076 0.0210 

0.535 0.470 0.0075 0.0074 

0.483 0.182 0.0077 0.0104 

0.519 0.000 0.0102 0.0813 

0.507 0.996 0.0073 0.0282 

0.470 1.000 0.0071 0.0407 

0.543 0.000 0.0108 0.0604 

0.471 1.000 0.0072 0.0364 

0.498 0.000 0.0104 0.0636 

fourth and the ninth columns in Table 4 show that the mean absolute deviations for Model 1 
are very close to zero indicating perfect recovery of the within and between-group covariance 
matrices. Columns 5 and 10, (Model 2) show that the mean absolute deviations associated with 
the variance elements are of larger magnitude than those corresponding to the covariance ele- 
ments (see numbers in bold). The mean absolute deviations of the covariance elements, however, 
are still larger than those from Model 1. Thus combining the results from the posterior predic- 
tive checking (i.e., p-values) and the mean absolute deviations clearly shows that Model 2 is 
misspecified. 2 

To complete our model assessment, we computed the Psuedo Bayes Factor for Model 1 
versus Model 2 and found P s B F = exp (10, 351). This value clearly provides strong support for 
the true model (Model 1) over the mis-specified model (Model 2). 

In summary, our synthetic data results indicate that our MCMC algorithm does well in 
recovering the true parameters. In addition, our model adequacy test function and the pseudo 
Bayes factor measure are effective in model diagnosis and selection. 

2Test statistics based on the total covariance matrix are not diagnostic. Comparing the sum of the implied within- 
and between-individual covariance matrices (i.e., Z/W + ZB, 1 = 1, 2) for both models suggests that the heterogeneous 
factor means model has an identical total covariance structure as the standard multilevel model but confounds O and O b . 
We computed p-values and mean absolute deviations based on the total covaxiance matrix and found that both models 
are adequate in recovering such a test statistics. 
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6. Application: The Structure of Consumption Emotions 

We now report the application of the above procedures on a data set involving the structure 
of consumption emotions. Consumption emotions are affective states associated with product 
consumption. An understanding of the structure of consumption emotions is important as past 
research has shown a significant relationship between such emotions and consumer satisfaction 
(Oliver 1993) and other evaluative judgements. Bagozzi, Gopinath and Nyer (1999) present a 
comprehensive review of emotions and their role in marketing. 

Consumption emotions have been conceptualized in three ways. At one extreme, they are 
represented in a rich taxonomy of discrete emotions such as joy, happiness, anger, and guilt 
(see Richins, 1997). At the other extreme, consumption emotions have been structured into a 
limited number of basic dimensions such as pleasure/arousal (e.g., Mano & Oliver, 1993) or pos- 
itive/negative affect (e.g., Dube & Morgan, 1996). Between these two extremes, an attribution- 
based conceptualization has emerged. In this representation, negative emotions are further differ- 
entiated into "Other-attributed emotions", "Situation-attributed emotions" and "Self-attributed 
emotions" on the basis of their locus of attribution. Other-attributed emotions (e.g, anger and 
frustration) are those negative emotions that are attributed to a specific external agent who failed 
to manage controllable circumstances. Situation-attributed emotions (e.g., anxiety and sadness) 
result from uncontrollable circumstances. Finally, Self-attributed emotions (e.g., guilt, shame) 
are attributed to own actions and such emotions rarely emerges in a consumption context (West- 
brook & Oliver, 1991). There is considerable empirical evidence that supports an attribution- 
based structure of consumption emotions in a diversity of industries (see Oliver, 1993; also Dube, 
Belanger, & Trudeau, 1996). 

We used our Bayesian approach to estimate a confirmatory factor analysis model of con- 
sumption emotions using a data set in which a panel of 54 customers of a college dining meal plan 
reported the consumption emotions they experienced during each of a sequence of 39 consecutive 
dinner episodes. The original data were collected to examine the relationship between consump- 
tion emotions and consumer satisfaction. For this paper, we obtained the portion of the original 
data that pertains to consumption emotions to illustrate our methodology. On average, each cus- 
tomer reported emotions for 29 episodes. Respondents were asked to indicate how intensely they 
felt each emotion during dinner on a 7-point scale. The emotions items for positive emotions 
(PE) were happy, proud, and elated. The other-attributed emotion (OAN) items included hos- 
tile, irritated, and upset. The items for situation-attributed emotion (SAN) were anxiety, fear, and 
sadness. Figure 1 presents the consumption emotion structure that we specified. 

We specified three models to examine the nature of customer heterogeneity in consumption 
emotion structure The first model (M1) is the traditional confirmatory factor analysis model that 
assumes no heterogeneity. The second model (M2), described in section 2.1.1, captures hetero- 
geneity in mean structure by assuming that subjects differ in their factor means. The third model 
(M3) generalizes M1 and M2 by specifying heterogeneity in both mean and covariance struc- 
tures. 3 Specifically, it allows subjects to have different factor means and different measurement 
error variances. However, to make the factor scores comparable across subjects, M3 constrains 
the factor loadings to be invariant (see Yung, 1997). For identification, we imposed the following 
constraints on the parameters. In all three models, to fix the scale of the factors, we set the load- 
ings of one of the indicator variables pertaining to each factor to unity. In models M1 and M2, as 
discussed in section 2, we set the population mean of the subject-specific factor means to zero to 
fix the origin of the factors. 

In estimating these models we use priors that are similar to those outlined in section 3.1. 
The prior for ~¢ is assumed to be p(~¢) = N(0, 100I). The measurement variances in the first 

3As noted by an anonymous reviewer, the repeated measurement nature of our study necessitates that we also 
account for time dependence. As our model does not handle time series, we leave this issue for future research. We note, 
however, that our model does imply some correlation structure between the observations of the same individual. 
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FIGURE 1. 
The factor analysis model for consumption emotions. 

two models (M1 and M2) have independent inverse gamma priors each given by p(Okk) = 
IG(0.001, 1000), k = 1 . . . .  p. We use R -1 ~ W(3, 3I) and log(p) ~ tN(O, 100) for the 
hyperparameters associated with the factor covariances. For the mean factor covariances we use 
A -1 ~ W(3, 3I) and finally we assume independent univariate normal N(0, 100) priors over 
the individual elements in A. 

We use MCMC procedures for parameter inference. The MCMC procedures involve itera- 
rive sampling from the full conditionals pertaining to the model unknowns. The full conditionals 
for the parameters of the restricted models can be easily adapted from those given in section 3. 
For example, if a particular parameter is assumed to be invariant in a restricted model, then the 
hyper-parameters (i.e., parameters specific to the associated population distribution) are fully 
specified and are not treated as random. Given the hierarchical nature of the specifications, this 
involves minimal changes in the full conditionals described in section 3. Given priors and appro- 
priate starting values, the MCMC sampler invloves iterative drawing from the full conditional 
distributions. The parameter estimates that we report for the three models are based on 20,000 
draws after discarding the initial 5,000 draws as burn-in. Convergence was assessed using a va- 
riety of diagnostics implemented in CODA (Gilks, Richardson, & Spiegelhalter, 1996). 

6.1. Model  Selection 

To select the model that best captures heterogeneity in consumption emotion structure, we 
computed the log-marginal likelihoods based on the cross validation density (LML; see Gelfand, 
1996)) for the three models from the simulated parameter draws. The LML for models M1, M2 
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and M3, respectively, are - 17669.03, - 17419.46, and - 14215.02. The improvements in LML 
from M1 to M3 and M2 to M3 are very large suggesting that the data strongly support M3. Thus, 
subjects are clearly different in both the mean and covariance structures. 

6.2. Parameter Estimates 

We now describe the parameter estimates of  the three models. Table 5 reports the estimated 
factor loadings. The loading estimates from models M1 and M2 are similar. However, the es- 
timates from M3 which allows heterogeneity in factor means and in covariance structures are 
different from those of M1 and M2. Specifically, except for the "Upset" item, the factor loadings 
from M3 are lower in magnitude than those from M1 and M2. As the reliability of  a measure is 
proportional to its squared loading, this result clearly indicates that ignoring heterogeneity leads 
to inflated measurement reliability. Finally, all the factor loadings from M3 are significant. This 
suggests that the indicators variables we used are reliable measures for the underlying factors. 
Comparing the magnitude of  the factor loadings reveals that the "fearful" and "sad" measures 
are the least reliable. 

Table 6 reports the measurement error variances. First, note that all the measurement error 
variances from all three models are positive (i.e., no heywood cases). Second, the variance esti- 
mates from M1 and M2 are slightly different for the SAN and OAN emotion items but deviate 
significantly for the PE items. Thh'd, column 5 reports the mean measurement en'or variances 
from M3. Comparing these estimates with those from M1, we see that ignoring both mean and 
covariance heterogeneity results in more amplified bias. Finally, the last column in Table 6 re- 
ports the across-individual variation, Std(Oi), of the measurement error variances. Clearly, there 
is considerable level of heterogeneity in the measurement error variances. This means that our 
sample subjects responded to questions with different degree of  accuracy. 

TABLE 5. 
Factor loadings 

Factor Indicator M 1 M2 M3 

Happy 1 i I 

Positive Proud 0.873 0.997 0.882 
Emotion (0.041) (0.055) (0.051) 

(PE) 
Elated 1.04 0.877 0.840 

(0.057) (0.036) (0.042) 

Anxious 1 1 1 

Negative Fearful 0.925 0.890 0.517 
Emotion (0.026) (0.025) (0.037) 
(SAN) 

Sad 0.727 0.723 0.490 
(0.032) (0.033) (0.04) 

Hostile 1 1 1 

Negative Lrritated 0.798 0.773 0.597 
Emotion (0.029) (0.028) (0.025) 
(OAN) 

Upset 1.181 1.118 1.143 
(0.041) (0.041) (0.040) 
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TABLE 6. 
Measurement error variances 
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Factor Indicator M 1 M2 M3 

E(oi) Std(Oi) 

Happy 1.080 1.039 1.144 1.006 
(0.059) (0.058) (0.140) 

Positive Proud 1.046 0.784 0.744 0.165 
Emotion (0.050) (0.054) (0.091) 

(PE) 
Elated 0.331 0.581 0.360 0.185 

(0.048) (0.036) (0.047) 

Anxious 0.341 0.315 0.303 3.637 
(0.020) (0.019) (0.03) 

Negative Fearful 0.240 0.267 0.068 2.678 
Emotion (0.016) (0.015) (0.010) 
(SAN) 

Sad 0.765 0.752 0.77 1.064 
(0.030) (0.030) (0.012) 

Hostile 0.571 0.519 0.472 1.489 
(0.028) (0.027) (0.057) 

Negative Irritated 0.416 0.411 0.207 0.631 
Emotion (0.019) (0.019) (0.025) 
(OAN) 

Upset 0.504 0.549 0.387 1.361 
(0.03I) (0.030) (0.053) 

Table 7 reports the estimated factor covariance matrices qb from the three models. For M2 
and M3, the table also reports the covariance matrix A of the mean factor scores vi across in- 
dividuals. In section 2.1.1, we show that ignoring heterogeneity in factor means leads to an 
aggregate factor covariance matrix that confounds qb and A (i.e.,~ Agg = qb + A). We also show 
that this confound could lead to a sign reversal of the factor covariances under some conditions. 
Comparing the factor covariance estimates from M1 (column 2) with the sum of the estimated 
within (column 3) and between factor covariance (column 4) matrices from M2 clearly confirms 
this theoretical relationship. For example, ~PE-PE from M1 is 0.922. This value is approxi- 
mately equal to the sum of the estimates ~PE-PE = 0.383 and ApE_pE = 0.583 obtained 
from M2. Most importantly, note that the factor covariance estimates ~PE-SAN and ~PE-OAN 
from M1 have the opposite sign. This result of a positive relationship between positive and neg- 
ative emotions is clearly misleading. The same comparison between M1 and M3 confirms that 
the aggregate model confounds both sources of factor variability and leads to a sign reversal of 
the covariances between the positive and the negative emotion factors. However, the relationship 
~Agg = qb + A does not hold as closely. This is because, unlike M2, M3 accounts for both mean 
and covariance heterogeneity. Thus, if factor mean and/or covariance heterogeneity are ignored, 
the results from a conventional factor analysis model (M1) will always overestimate the factor 
variances and therefore inflate the measurement reliability. They could also lead to sign reversal 
of the factor covariances. Finally, comparing the factor covariance estimates from M2 and M3 
in Table 7, we see that the heterogeneous factor means model (M2) generally produced larger qb 
and lower A estimates. This suggests that the conventional multilevel factor analysis model may 
not fully correct for heterogeneity and can also lead to inflated measurement reliability. 
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TABLE 7. 
Variation in factors scores 

qb A 

Parameter M1 M2 M3 M2 M3 

PE-PE 0.922 0.383 0.378 0.583 0.716 
(0.075) (0.041) (0.042) (0.123) (0.162) 

PE-SAN 0.173 -0.048 -0.041 0.182 0.257 
(0.028) (0.018) (0.012) (0.071) (0.097) 

PE-OAN 0.001 -0.207 -0.153 0.157 0.202 
(0.030) (0.024) (0.021 ) (0.061) (0.072) 

SAN-SAN 0.780 0.452 0.115 0.357 0.501 
(0.041) (0.025) (0.017) (0.075) (0.108) 

SAN-OAN 0.571 0.334 0.209 0.257 0.330 
(0.031) (0.020) (0.019) (0.059) (0.074) 

OAN-OAN 0.777 0.583 0.473 0.256 0.261 
(0.048) (0.036) (0.034) (0.056) (0.059) 

We now focus on the qb and A estimates from the selected model M3. As expected, we 
see that the negative emotion factors SAN and OAN are positively correlated with each other 
but negatively correlated with the positive emotion factor, PE. The A estimates show that all 
the factor means are positively correlated across individuals. In addition, the large magnitude of 
the diagonal elements of A show that there is considerable heterogeneity in factor means across 
individuals. Figure 2 provides a plot of the individual mean factor scores. 

In summary, this empirical example clearly illustrates the consequences of ignoring hetero- 
geneity. Specifically, our empirical results show that ignoring both mean and covariance hetero- 
geneity leads to sign reversal in the factor covariance matrix and inflated measurement reliability. 
Our results also show that multilevel factor analysis models that only capture heterogeneity in 
means are likely to understate the factor means variability in the population and to overstate the 
factor variances. Thus, multilevel factor model can also lead to inflated measurement reliability. 

7. Summary and Conclusions 

This paper develops and tests a hierarchical Bayesian framework for handling mean and 
covariance heterogeneity in confirmatory factor analysis. We develop Markov Chain Monte 
Carlo (MCMC) procedures for sampling based Bayesian inference. The hierarchical Bayesian 
approach allows for appropriate pooling of the data while taking into account heterogeneity and 
is particularly suitable for studies in which multilevel data, panel data or multiple observations 
are available for a given set of subjects. The Bayesian procedures we developed in this paper 
circumvent the need for complex multidimensional integration which is necessary for maximum 
likelihood estimation. An important feature of our Bayesian approach is that it automatically 
provides individual-level estimates of model parameters and factor scores while accounting for 
the uncertainty in such estimates. 

Our analysis of the simulated data sets indicate that our MCMC algorithm does well in re- 
covering the true parameters. In addition, our model adequacy test function and the pseudo Bayes 
factor measure are effective in model diagnosis and selection. More importantly, our analysis 
clearly illustrates the consequences of ignoring heterogeneity. Specifically, we find that ignor- 
ing heterogeneity altogether can lead to sign reversals and inflation of factor variances. Ignoring 
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heterogeneity in covariance structures, however, can lead to misleading estimates of parameter 
values and an underappreciation of uncertainty in these estimates. 

We also tested our Bayesian methodology using data from a consumption emotion study. 
The results show that both factor means and measurement error variances vary significantly in 
the population. The results also show that conventional confirmatory factor analysis that totally 
ignores heterogeneity leads to sign reversal in the factor covariance matrix and inflated measure- 
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ment reliability. Our results also indicate that multilevel factor analysis models that only capture 
heterogeneity in means is likely to understate the factor means variability in the population and 
to overstate the factor variances. Thus accounting for heterogeneity in both mean and covariance 
structures is important for obtaining proper inferences. 

In this paper, we concentrated on confirmatory factor analysis but our procedures can be 
readily used for exploratory factor analysis models given proper constraints to control for the 
rotational indeterminacies of the factor solution. Bock and Gibbons (1996) suggest one type of 
constraints that can be applied. Similarly, although our procedures were presented in the context 
of metric data, they can be generalized to accommodate nonmetric (e.g., binary or ordinal) data 
situations. Our algorithms can also be naturally extended to data structures with multiple levels 
of nesting and can also be modified easily to include regressors at all levels of the hierarchy. 
Finally, future research should generalize our model to account for time dependence in situations 
where the level-one units are repeated measures. 

A. Appendix 1: Full Conditional Distributions for the Heterogeneous Factor Loadings Model 

We need  to generate  r andom draws for  {to, Ai ,  {Zkm}, {,'¢km}, {~ij }, {t'i }, qb, A -1 ' {(~i }, {ak}, 
{bk}}. Each iteration of the MCMC sampler involves sequentially sampling from the full condi- 
tional distributions associated with each block of parameters. We describe the appropriate priors 
while detailing the full conditionals 

1. The full conditional for to is multivariate normal N(&, V,), where V~ -1 = C -1 + 
~ Z l l  n i ® ; l  and & V~[C-]~ + ~ L ]  ®; ] ni = ~ j = l  (Yij -- A i  ~ij )]. 

2. The free elements of Ai can be drawn in sequence from univariate normal distributions. 
The population distribution in Equation (8) acts as a prior for the elements of Ai. For sake 
of notational simplicity, we drop subscripts and let Zi be a free element of Ai. Also let 
the associated population distribution be N(Z, x). The full conditional can be written as 
N(~.i, vz~), where v -1 = x -1 -1 1- z~ + 0/-1~I~ and ,~i = vz~ [x- lk  + 0 i ~ yi], where Oi is the 
appropriate measurement error variance, ~ is the vector of the relevant factor scores for 
individual i and Yi is a vector of adjusted scores for the manifest variable associated with Z i 
for the i th  individual. 

3. The full conditional for the mean  Zkm of the population distribution associated with the 
(k, m) element of Ai is a univariate normal distribution. Given a common diffuse prior 
"~i,km ~ N ( g ,  h),  the full conditional is given by N ('~km, vzkm ), where 

,~km + Itrkm and ~,km = UZkm = h g q- I(km ki,km 

4. The full conditional for Xkm is given by 

. 

. 

( 1-1 ) I G  I / 2  + c, (Zi,km -- ,kkm)2/2 + d -1 , 

where I G ( c ,  d) is the prior for ICkm. 
The full conditional distribution for the factor scores gij for each observation is multivariate 

normal N @ij, V~i j ) where 

^ ! --1 V -1 = (q b - 1  q - A I o i - l A i )  and ~ij = V~i j (dP- lv i  + A i ( 9  i (Yij - oz)). 

The full conditional distribution for the individual level factor means v i is a multivariate 
normal distribution N ( i,i , Vvi ), where 
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fti 

V ~  1 = A -1  + ni  ~ - 1  and i,i = V~  ~ - 1  Z {fij. 
j = l  

. The correlation matrix qb can be drawn using a Metropolis Hit and Run algorithm (Ansari 
& Jedidi, 2000; Chen & Schmeiser, 1993; Dey &Chen ,  1998). If  the prior distribution for 
the nonredundant and free elements of  qb that are contained in the vector vec(qb) is given 
by rc(vec(qb) I qb0, Go), then the full conditional of  qb is proportional to the product of 
the likelihood L (qb I.) and the prior. Here L (.) is the conditional likelihood of observing the 
"data" and is proportional to 

: / I®i1-~  exp - ~ (Yi j  - oz - A i ~ i j ) '  ® 1 (Yi j  - oz - A i ~ i j )  • 
i=1 j = l  

Direct methods for sampling from this full conditional distribution are not available so we 
generate qb using a Metropolis Hit-and-Run algorithm. If qb (t) is the current value of the 
correlation matrix, then in the (t + 1)-th step, a candidate matrix qb c is generated by speci- 
fying a random walk chain qb c = qb (t) + H,  where H = (hi j )  is an increment matrix with 
E ( h i j )  = 0 a n d  hi i  = 0, for all i and j .  Let V be the smallest eigenvalue of qb(t). Then 
the elements of the increment matrix H can be generated using the Hit-and-Run algorithm 
which involves the following steps: 
(a) generate a sequence of iid standard normal deviates z12, z13 . . . . .  Z(m-1)m,  of length 

m ( m  - 1)/2, 
y 

(b) generate a deviate d from N(0,  o- S) which is truncated to the interval (---,/2' ~ ) '  

(c) formulate the elements 

d z i j  

h i j  = [,w-,J-1 w-~J 2 ~(1/2) 
~2_,j=1 2_,l=j+l z j l )  

for i < j ,  hii = O, a n d  hij  = h j i  for i > j .  
Here c~ff is a tuning constant that needs to be chosen such that candidates are not rejected 

disproportionately. If  gc  is the smallest eigenvalue of the candidate matrix, then once a 
candidate is generated, it is accepted or rejected based on the following Metropolis-Hastings 
acceptance probability 

Fc -F c ] 
L(qbc , .)p(vec(qbc))(qb ( ~ )  - qb ( ~ ) )  1 

min 
L(qb(m/ I .)p(vec(qb(t/))(qb ( ~ ) -  qb ( ~ ) )  

. 

where qb (.) is the standard normal cumulative distribution function. If  the candidate is ac- 
cepted then qb (t+l) = qb (c), otherwise qb (t+l) = qb (t) . 
The full conditional distribution for the precision matrix A - 1 of the individual specific factor 
means vi, is a Wishart distribution, 

W + 

. The full conditional distributions for the diagonal elements of  the individual specific mea- 
surement error variances in ®i i.e., Oi,k, k = 1 to p, are independent inverse gamma distri- 
butions 
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(2 
where ~tik contains the elements of row k of Ai. 

10. The full conditional for the hyperparameter bk is the same as for the heterogeneous covari- 
ance model and is given by Equation (21) of the paper. 

! 11. The full conditional for the hyperparameter a k = log(ak) is described in Item 11 in sec- 
tion 3.2. 

A. Appendix 2: Heterogeneous Intercepts and Heterogeneous Covariance Model 

In this appendix we describe the model that allows for heterogeneous intercepts, heteroge- 
neous factor covariances and heterogeneous measurement errors across individuals. The model 
for an arbitrary individual i, can be written as 

Yij = Ozi q- A ~ i j  q- ~.ij, 

~ij ~ N(O, ~ ) ,  

~.ij ~ N(O,  (~)i), (A1) 

for observations j = 1 to hi. The second stage population distribution that specifies the hetero- 
geneity in the individual-level intercept parameters can be written as: 

ai ~ N(~ ,  Nb) (A2) 

The intercepts for the different individuals are assumed to originate from a multivariate normal 
distribution with population mean/x and a (p x p) covariance matrix Nb. A factor analytic struc- 
ture can be further imposed on Zb such that Zb = Ab~bA~ + ®b. This is akin to representing 
the intercepts ai by the equation ai = I~ + Ab~i + ei, where 6i represents the level-two factor 
score and ei ~ N(0 ,  ~b) .  In addition, the heterogeneity in the covariance parameters can be 
represented by the population distributions 

~i ~ IW(p ,  R) 

P 
®i ~ l - I I G ( a k ,  bk) i = l  to I. (A3) 

k = l  

These population distributions are assumed to be mutually independent. Notice that when the 
individual-specific factor covariances are all the same and the measurement error variances are 
identical across individuals, we obtain the traditional multilevel model (Longford & Muthdn, 
1992; McDonald & Goldstein, 1989) 

Priors and Full conditionals: We describe succinctly all the required full conditionals and 
the priors associated with the unknown parameters. 

. The overall mean ~ has a normal prior N(aq, C). Therefore the full conditional distribution 
can be written as a multivariate normal distribution given by p ( ~  I {eei}, Nb) = N(/2, V,) 
where 

( i ) 
V~ 1 = C  - 1 +  I2~[~ 1 and [x= V~ c - l n +  ~]~[~lozi . 

\ i=1  
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2. The full conditional for the individual specific intercept a i is normal N(&i,  Vc~i ), where 

Vcei = ]~bl q - n i ] ~  1 and &i = V< ]E[(llx ÷ ] ~ l y i j  . 

The covariance matrix Ni = A dPi A t + Oi.  
3. The full conditional distribution for the free elements in a row of  the matrix Ab is multi- 

variate normal. Let  ab,k be the vector of  free elements in row k. The prior for ab,k is given 

by p(ab, k) = N(gb,k, Hb,k). Let {)ik be the vector of  factor scores corresponding to the 
elements in row k of  Ab that are set to one and let ,3-ik contain the remaining factor scores 
from •i. Form the adjusted variable (~ik = O~ik -- (~ik  -- #k, where t is a vector of  ones. 
Given the prior, the vector ab, k can be sampled from the full conditional distribution given 
by 

p(Ab,k I {~ik}, {~-/k}, Oh,k) = N Dk Ob, k ~ - i k ~ i k  + HD,kgb, k , Dk 

where D~ -1 ~//--1 -1 t -1 = Ob,k~-ik~_i k + HD,k. 
4. Given a prior do{ -1 ~ W(pb, (pbRb)- l ) ,  the full conditional for do{ -1 can be written as 

( 1 ) p ( ~ I I { & } )  = W O h + I ,  ~i~i  q- pbRb  • 

5. Let  the priors for the diagonal elements of  the level-two measurement  error variance matrix 
®b be independent inverse Gamma distributions IG(rk,  Sk), k = 1 to p.  The full conditional 
distributions for the diagonal elements of  ®b, i.e., Oh, k, k = 1 to p are then independent 
inverse gamma distributions given by 

( I± 1) p(Ob,kllX, {~i}, {&}, Ab) = I G  1/2  + rk, (O~ik -- IZk -- Ab, k ~ i ) 2 / 2  + Sk  1 • 
[_i=1 

6. The full conditional for qb~ -1 is a Wishart  W(p  + ni, Rpos), where 

-1  

Rpos = ij~ij q- R-1  
\ j = l  

7. Given a conjugate prior R -1 ~ W(V, ( v S ) - I ) ,  the full conditional for R -1 is identical to 
that in (18) of the paper. 

8. Given a truncated univariate normal prior pt ~ tN(O, r ) ,  the full conditional for pt = log(p)  
is the same as in Item (8) of section 3.2 in the paper. 

9. The full conditional for the diagonal elements in ®i are independent inverse gamma distri- 
butions 

p(Oi k I Ak, clik, {~ij ni t 2 , } j=l ,ak,  bk) = I G  n i / 2 + a k ,  (Yijk --(-gk --~tk~i  j )  / 2 + b k  -1 
j= 

where Ak contains the elements of  row k of  A. 
10. The full conditional for the kth hyperparameter, bk, k = 1 to p of  the inverse gamma pop- 

ulation distribution of  the measurement  error variances is the same as given in Item (10) in 
section 3.2. 
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11. 

12. 

The full conditional for the hyperparameter a~ = log(ak) is the same as described in Item 
(11) in section 3.2 of the paper. 
The full conditional distribution for the free elements in a row of the matrix A is multivariate 
normal. Let Ak be the vector of free elements in row k. The prior for Ak is given by p(Ak) = 
N(gk, Hk). Let ~ijk be the vector of factor scores corresponding to the elements in row k of 
A that are set to one and let ~-ijk contain the remaining factor scores from ~ij. Form the 

adjusted variable Yijk = Yijk -- [/~ijk -- C~ik, where t is a vector of ones. Given the prior, the 
vector Ak can be sampled from the full conditional distribution given by 

[- I ni ) 

Li=l  j = l  

where 

[ ni 
D ;  1 = ~ _ V ~ O  -1~: ~:/ Z.., i,k S-ijkS-iyk + H,71. 

i=I j = i  
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