I nter net recommendation systems
Asim Ansari; Skander Essegaier; Rajeev Kohli
JMR, Journal of Marketing Research; Aug 2000; 37, 3; ABI/INFORM Global

pg. 363

.... ResearcH NoTES

AND CommunNICcATIONS

ASIM ANSARI, SKANDER ESSEGAIER, and RAJEEV KOHLI*

Several online firms, including Yahoo!, Amazon.com, and Movie Critic,
recommend documents and products to consumers. Typically, the recom-
mendations are based on content and/or collaborative filtering methods.
The authors examine the merits of these methods, suggest that prefer-
ence models used in marketing offer good alternatives, and describe a
Bayesian preference model that allows statistical integration of five types
of information useful for making recommendations: a person’s expressed
preferences, preferences of other consumers, expert evaluations, item
characteristics, and individual characteristics. The proposed method
accounts for not only preference heterogeneity across users but also
unobserved product heterogeneity by introducing the interaction of unob-
served product attributes with customer characteristics. The authors
describe estimation by means of Markov chain Monte Carlo methods and
use the model with a large data set to recommend movies either when
collaborative filtering methods are viable alternatives or when no
recommendations can be made by these methods.

Internet Recommendation Systems

Recommendation systems provide a type of mass cus-
tomization that is becoming increasingly popular on the
Internet. Search engines such as Yahoo! and Alta Vista use
them to recommend relevant documents on the basis of user-
supplied keywords. The Los Angeles Times allows online
news customization. Amazon.com and barnesandnoble.com
recommend books and movies on the basis of the prefer-
ences of their other customers. Such customization ostensi-
bly decreases the search effort for users. It also promises a
firm greater customer loyalty, higher sales, more advertising
revenues, and the benefit of targeted promotions.

Current customization systems fall into two classes that
use different information sources to make recommenda-
tions. The first class comprises collaborative filtering, which
mimics word-of-mouth recommendations. Operationally,
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these methods predict a person’s preferences as a linear,
weighted combination of other people’s preferences.
Notable commercial implementations of collaborative filter-
ing are offered by Net Perceptions, Likeminds, and the now
defunct Firefly. The second class, known as content filter-
ing, makes recommendations on the basis of consumer pref-
erences for product attributes. The available commercial
systems offered by PersonalLogic, Frictionless Commerce,
and Active Research use self-explicated importance ratings
and/or attribute trade-offs to make their recommendations.
Both types of filtering methods have limitations.
Collaborative filtering needs dense data sets; can be used
only when at least a few people have evaluated a product;
does not reflect uncertainty in predictions; and provides few,
if any, reasons for a recommendation. Attribute-based sys-
tems can recommend entirely new items but do not neces-
sarily incorporate the information in preference similarity
across individuals. Similar to collaborative filtering, these
methods also cannot make recommendations for people who
provide no preference information. And though it is desir-
able in online situations to minimize the amount of data col-
lected from a person, little is known about the trade-off
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between predictive accuracy and the amount of data col-
lected from a person for this class of recommendation sys-
tem. Finally, to our knowledge, there are no published com-
parisons within or across the two types of recommendation
systems, nor is there a comparison with uncustomized rec-
ommendations that is obtainable, for example, from an
attribute-based regression that pools data across individuals.

As is clear from this description, collaborative and con-
tent filtering methods use one or two types of information.
However, there are at least five information sources that can
be used for making recommendations: (1) a person’s
expressed preferences or choices among alternative prod-
ucts, (2) preferences for product attributes, (3) other peo-
ple’s preferences or choices, (4) expert judgments, and (5)
individual characteristics that may predict preferences. A
good recommendation system should be able to use any or
all of these five types of information, potentially making
better recommendations as more information becomes
available. In other words, a method should be able to inte-
grate alternative information sources by means of nested
specifications that allow for predictions based on informa-
tion subsets. It should also provide estimates of its accuracy,
explain reasons behind recommendations, and incorporate
dynamic learning in the sense that as more information
becomes available for certain people, it should make better
recommendations for those and possibly other people.!

We use a hierarchical Bayesian approach to design a rec-
ommendation system. Similar to the models described by
Allenby and Ginter (1995) and Rossi and Allenby (1996),
ours allows unobserved heterogeneity in consumer prefer-
ences. In addition, we introduce the effect of unobserved
product heterogeneity on preferences to allow for the intro-
duction of unobserved product attributes, such as holistic
customer judgments and product appeal structures. In an
online context, accounting for product heterogeneity is cru-
cial because the product/merchant options available to a
consumer often change on an ongoing basis. It therefore
makes sense to consider alternatives at a certain time as ran-
dom draws from a suitable distribution. This contrasts with
models for supermarket purchases by a panel of households,
for which a fixed (often small) number of brands sold by a
single retail chain is best represented by a fixed-effects
model.

In the following section, we briefly discuss recommenda-
tion systems; we then describe the set of proposed models
and their estimation using Markov chain Monte Carlo
(MCMC) methods. In the final section, we present the
results of a test of the models using a large, publicly avail-
able data set that other researchers have used to make online
movie recommendations to consumers.

AN OVERVIEW OF RECOMMENDATION SYSTEMS

Although the idea dates back to Negroponte (1970) and
Kay (1984), practical implementations of “intelligent
agents” are relatively recent and have been fueled by the
successes of online companies such as Firefly and
Amazon.com. Early uses, which were not on the Internet,
included short-lived in-store kiosks at Blockbuster Video

ILycos has recently acquired a system called WireWise that provides
adaptive filtering. The details of its method are described in U.S. Patent
#5,983.214.
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that recommended films on the basis of a member’s past
rental history (West et al. 1999). This made possible such
interesting recommendations as pornographic films to chil-
dren and Teletubbies programs to grandparents who lived in
the same household. Its effect on family well-being is not
known. Then there was Magnet (Levy 1993), which claimed
to be the first intelligent agent for the Macintosh. Essentially
a file manager, it dispatched files into the trash if a user
mistyped a destination folder (Foner 1993).

Recommendation systems are agents of the sort used by
Blockbuster. Using behavioral or preference information,
they filter alternatives and make suggestions to a user.
Internet search engines are an example of such content-
based systems, as these retrieve documents by means of
keywords. In one commonly used system, the frequency of
a target word is used to assess a document’s relevance, and
the relative frequencies of words are used to assess docu-
ment similarity (Salton and Buckley 1988).

Similar to conjoint analysis, recommendation systems
screen attractive alternatives. But whereas conjoint analysis
is typically used to screen many products to find a few
attractive market options, recommendation systems are
models for individual-level prediction that can be useful
even if there are a few alternatives. For example, a person
deciding among new releases of music, plays, or movies
may have only a few choices. Recommendation systems are
also eminently suitable for suggesting books, restaurants,
dry cleaners, plumbers, physicians, lawyers, financial insti-
tutions, and real estate brokers. And it is not just experience
or reputation services of this sort for which people may seek
recommendations. As anyone who has used Consumer
Reports and the so-called online product configurators
knows, recommendations can be useful for such products as
cars and computers, which are considered search goods but
which people do not always have the ability or the means to
evaluate. Perhaps most important, recommendation systems
need to work well with much less information than is gen-
erally collected in marketing research studies, in which
either a respondent is compensated for participating in a
one-time study or choice data are available from customer
panels over a relatively long period of time. In contrast, the
folklore for online recommendation systems is that most
people are averse to answering too many questions before
they get recommendations.

Collaborative filtering algorithms were first introduced
by Goldberg and colleagues (1992). They are used by the
Los Angeles Times, London Times, CRAYON, and Tango to
customize online newspapers; by Bostondine to recommend
restaurants in and around Boston; by Sepia Video Guide to
make customized video recommendations; by Movie Critic,
Moviefinder, and Morse to recommend movies; and by
barnesandnoble.com to recommend books. In the simplest
case, collaborative filtering predicts a person’s preferences
as a weighted sum of other people’s preferences, in which
the weights are proportional to correlations over a common
set of items evaluated by two people. More recently, model-
based collaborative filtering has been introduced. We refer
the reader to Breese, Heckerman, and Kadie (1998) for a
description of these alternative implementations, which
include Bayesian networks (Heckerman 1996) and finite
mixture models (Chien and George 1999). An early assess-
ment of these methods by Breese, Heckerman, and Kadie
(1998) is not encouraging on reported predictive criteria.
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As already noted, collaborative filtering algorithms have
several limitations. First, when data are sparse, the correla-
tions (weights) are based on few common items and there-
fore are unreliable. Breese, Heckerman, and Kadie (1998)
show that prediction performance suffers dramatically in
such a situation. Second, collaborative filtering algorithms
can be used only when preference data for an item already
exists in the database. In other words, these systems cannot
handle queries that pertain to new items. For example, most
collaborative filtering algorithms cannot help a user who
needs to know whether a new movie is good. In such situa-
tions, the database has no information about the movie, and
the system is therefore unable to process such requests.
Third, these methods use ad hoc prediction algorithms,
which are not based on a statistical model. Consequently,
they do not account for uncertainty, which may be less
important for such low-risk purchases as movies and com-
pact discs but can be very important when the stakes are
higher for a consumer or company. Fourth, collaborative fil-
tering systems do not explicitly incorporate attribute infor-
mation, though they are bootstrapped by creating “virtual
users” who represent particular tastes (e.g., a virtual action
fan who has high ratings for all action movies). The impli-
cations of such indirect accounting of product features is not
clear. Finally, because collaborative filtering methods are
correlational, they provide little explanation for a recom-
mendation, a feature that can be important for building trust
and enhancing customer loyalty.

Attribute-based systems allow recommendations for
entirely new items but do not necessarily incorporate the
information in preference similarity across individuals.2
Similar to collaborative filtering, these methods cannot
make recommendations for people who provide no prefer-
ence information. The commercially available attribute-
based systems appear to collect a large amount of informa-
tion from respondents, and little is known about their
predictive accuracy. Moreover, systems that use neural net-
works often have difficulty providing explanations for rec-
ommendations. To overcome the shortcomings of existing
systems, we develop flexible yet simple statistical models,
which are described in the next section.

A HIERARCHICAL BAYESIAN RECOMMENDATION
SYSTEM

We develop an ensemble of statistical methods, which we
estimated using customer ratings on small, idiosyncratic
subsets of products. We then use these models to make cus-
tomized recommendations over holdout items—in our case,
new theater releases and video rentals (or rereleases) of
older movies. We adopt a regression-based approach and
model customer ratings as a function of product attributes,
customer characteristics, and expert evaluations. The mod-
els we develop differ in how they account for unobserved
sources of heterogeneity in customer preferences and prod-
uct appeal structures. To the extent that parameter estimates

2Shardanad and Maes (1995) and Balabanovic and Shoham (1997) pro-
vide examples of systems that combine content and collaborative filtering.
Sarwar and colleagues (1998) use filterbots that act like normal users in a
collaborative filtering system and rate articles on the basis of certain
semantic information.

365

reflect causal preference structures, they enable us to tell not
only what people may like but also why they may react in
the predicted manner.

Customer Heterogeneity

The database consists of ratings provided by customers for
many different movies. Customers differ in the number of
movies they rate, which yields an unbalanced data set. Let i =
1 to I represent customers and j = 1 to J represent movies.
Customer i provides ratings for n; movies in the database; let
M; = {j;, jo, ---» Jni} denote the index set of the n; movies
rated by customer i. Let r;; represent the rating given by cus-
tomer i for movie j, where j € M;. The total number of rat-
ings across all customers is given by N = X!

The observations for each customer are used to specify a
customer-level regression model:

=]ni4

(]) rij = W]BJ + eij‘ e‘,j ~ N(O, 02).

where j € M;, w; is a vector of movie attributes (genre and
expert ratings) for movie j, and B, is a vector of parameters
that represent the preference structure for customer i.

If the database contains many observations for each cus-
tomer, we can in principle estimate the preceding regression
model for each customer. In many situations, however, the
database is sparse, and only a few observations are available
for some customers. Therefore, we cannot perform separate
regressions for each customer. We can, however, use a hier-
archical Bayesian approach that adequately pools informa-
tion across customers to make inferences that pertain to a
specific customer. In this approach, a continuous mixture
distribution is used to describe how the individual-level
parameters in Equation 2 vary across the customers in the
population. The population model that accounts for both
observed and unobserved sources of heterogeneity is

) Bi=zik+ A,

fori=1 to L. In Equation 2, z; contains the characteristics of
customer i, and A represents the unobserved customer effect
for the ith customer.

The complete model can alternatively be written as

(3) rij — X’Up’ + W;& + eij’ eij &= N(O. 0'2), k e N(O, A),

fori=1toIandje M; In Equation 3, x;; is a vector con-
taining all observed movie attributes (i.e., genre variables
and expert ratings) and person characteristics and their inter-
actions, and w; is a vector that contains the observed movie
attributes. The vector W represents the fixed effects and doc-
uments the influence of observed customer and movie vari-
ables and their interactions. The vector A; contains all the
random effects pertaining to the ith customer. The covari-
ance matrix A provides information about the extent of
unobserved heterogeneity in customer preference structures.

Product Heterogeneity

Previous approaches to modeling heterogeneity in mar-
keting (mostly in conjoint and discrete choice contexts)
have used data that involve a few products that are well
described by observed attributes. In such contexts, differ-
ences in customer preference structures primarily contribute
to the heterogeneity in the data. In contrast, recommenda-
tion systems operate on databases that include ratings on
many products. Moreover, as in the case of movies and
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music, products cannot be described adequately in terms of
a few observable attributes. Consumer preferences in such
categories are shaped by myriad attributes that interact in
intricate ways, which leads to thematic differences that
necessitate accounting for these complex yet unobserved
product attributes (see Gershoff and West 1998). These
unobserved movie attributes lead to differences in product
appeal structures. Accommodating these differences among
movies becomes crucial in modeling customer ratings. In
this section, we develop a model that accounts for unob-
served movie attributes in modeling preferences.

Let C; _ {iy, iy, ..., ip;} represent the index set of the n;
customers who rated movie j. Let r;; represent the rating
given by customer i for movie j, where i € C;. The number
of customers that provide ratings for a movie varies, which
yields an unbalanced data set. The observations for movie j
can be used in specifying a movie-level regression model as
follows:

@) hi = z’iBj + €ij» € ~ N(0, 62),

for all i € C;. The vector z; contains customer characteristics
for customer i, and BJ- is a vector of parameters for movie j
that represents the movies’ appeal structure across cus-
tomers. The population model that specifies how movies
differ in their appeal structures can be written as

®) Bi=win+7, 7~ NQO,D,

for j =1 to J. The vector w; contains the observed movie
characteristics, and ¥ represents the unobserved movie
effects. The complete model can alternatively be written as

(6) rji = X,U". = Z’I'YJ + eji, eji = N(O, 02), Y_l =3 N(0, I"),

for j =1 to J and for i € Cj. The vector x;; contains all
observed movie attributes and customer characteristics and
their interactions. The variance matrix I" provides informa-
tion about the extent of unobserved heterogeneity in product

appeal structures.

Customer and Product Heterogeneity

As is apparent from our previous discussion, recommen-
dation systems operate in contexts that involve many prod-
ucts and customers. It is therefore imperative to account for
both customer and product heterogeneity in modeling prefer-
ences. We combine both forms of heterogeneity. In the com-
bined model, the rating rj; for customer i can be written as

7 rij = X’Ul,l. + Z’I'Yl + W;A.. + €ji» &ji ~ N(O, 0'2),
A ~ N0, A), ¥, ~ N0, D),

fori=1toIandj e M, The vector x;; contains the movie
and customer variables, z; is a vector ofl customer character-
istics, and w; is a vector of movie attributes. The random
effects A; account for unobserved sources of customer het-
erogeneity and appear in the model interactively with the
observed movie attributes. The random effects ; account for
the unobserved source of heterogeneity in movie appeal
structures and interact with the observed customer charac-
teristics. Such a model provides a flexible framework for
capturing differences in customer preference structures and
movie appeal structures.

We use MCMC methods (Gelfand and Smith 1990) for
sampling-based inference. These methods involve sampling
parameter estimates from the full conditional distribution of
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blocks of parameters. In the context of our model, we need
to generate random draws for the parameter blocks {, {A;},
{%}, 02, T, A}. The Appendix gives the specification of pri-
ors and the full conditional distributions.

APPLICATION TO MOVIE RECOMMENDATIONS

In this section, we describe an application of our model-
ing approach to movie recommendations on the Internet. The
choice of the application is guided by two considerations.
The first is simply the availability of a large commercial data
set. The second is that though several marketing researchers
have modeled aggregate movie performance (e.g., Dodds
and Holbrook 1988; Eliashberg and Shugan 1997; Jedidi,
Krider, and Weinberg 1998; Sawhney and Eliashberg 1996),
there is limited work on preferences of individuals.

Data were obtained from an actual recommendation sys-
tem called EachMovie. This recommendation system was
operated by DEC Systems research center for 18 months until
September 1997. The public domain data consist of (1) rat-
ings of 75,000 customers for 1628 movies on a six-point
scale, (2) movie genre, and (3) user demographics. The orig-
inal data do not contain expert evaluations from movie critics.
We therefore collected expert evaluations for 340 of the
movies in the database from various Internet sites and movie
directories. We used the ratings data for an arbitrary sample of
2000 customers from those who provided complete demo-
graphic information on age and sex. Although it was not a
random sample, the choice of 340 movies was arbitrary and
was determined more by availability of expert ratings than
any other biasing criterion. Overall, our sample data are
sparse, consisting of 56,239 of 680,000 (8%) possible ratings.
Each person rates between 1 and 235 movies, and the average
(median) is 29 (19) movies per person. The data set is also
unbalanced, as different customers rate different subsets of
movies and different movies are rated by different subsets of
people. Overall, the number of ratings per movie ranges from
1 to 1285, and the average (median) is 163 (74) ratings.

Our calibration sample contains 10,344 ratings on 228
movies and 986 customers. We construct four validation
samples to reflect the following possible scenarios that can
be described in terms of the information that is available on
customers and movies in the database. First, a customer can
be either an existing one, in which case customer preference
data on this customer will be available in the database, or a
new one, in which case only demographic information on
this customer may be available. Second, a movie can be
regarded as an old movie, in which case customer ratings for
it are available in the database, or a new one, in which case
only genre and expert evaluations are available.
Accordingly, we designed our four validation sets to reflect
the four possible combinations of customer and movie types
(Figure 1).

The first validation sample comprises 2886 observations
from the same set of customers and the same set of movies
as in the calibration sample. For each person, the holdout
movies in this validation sample are different from those
the person rates in the calibration sample. Similarly, for
each movie, the customers who provide ratings for the
movie in this validation sample are different from those in
the calibration sample. We label this validation sample old
person/old movie. The second validation sample contains
ratings from the 986 customers in the calibration sample on
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Figure 1
CALIBRATION AND VALIDATION SAMPLES

Old Movie New Movie

Calibration

Old Person Old person/old movie

validation

Old person/new movie
validation

New person/old maovie
validation

New person/new movie
validation

New Person

the remaining 112 holdout movies in the data set. We label
this validation sample old person/new movie. The third val-
idation sample contains ratings of the 1014 holdout cus-
tomers on the 228 movies in the calibration data set. This
reflects the situation in which a new customer interacts
with the recommendation system. We label this validation
sample new person/old movie. The last validation set con-
tains observations on 1014 holdout customers and 112
holdout movies. We label this sample new person/new
movie.

Model Specification and Variable Definition

The model with both forms of heterogeneity can be writ-
ten in terms of four components that include observed vari-
ables and two components that include unobserved random
effects. The general template for our model is as follows:

(8) rjj = Genre; + Demographics; + Expert Evaluations;
+ Interactions;; + Customer Heterogeneityj;

+ Movie Heterogeneity;; + ¢;;,
where r;; represents customer ratings on a six-point scale
from zero to five. We treat these ratings as interval scaled.
We now describe each component of our model.

Genre. The genre variables are specified by nine binary
indicators that describe whether the movie pertains to one or
more of the following genre categories: action, art/foreign,

classic, comedy, drama, family, horror, romance, and

thriller. A movie can be simultaneously classified into more
than one of these genres. The genre effects are included in
the model as follows:

9 Genre; = ZukGenrejk,
k

where Genrej refers to the genre variable k, and pis repre-
sent the fixed effects.

Demographics. The demographic variables include age
and sex for the customers in the database and are repre-
sented in the model as follows:

367

(10) Demographics; = z u Demographics;, ,
k

where Demographics; refers to the demographic variable k,
and s represent the fixed effects.

Expert evaluations. The expert evaluations are from
Roger Ebert (Ebert) of the Chicago Sun-Times; James
Berardinelli (James) of ReelViews, an online film review
site; the Videohound movie directory (Bones); and the
Internet Movie Database (IMDB). The variables Ebert,
James, and Bones are on a nine-point scale ranging from
zero to four in increments of one-half point. The variable
IMDB reflects the mean ratings of users on the IMDB and
has a range of zero to ten. The expert evaluations effects are
included in the model as follows:

(n Expert Evaluations; = zp,Expenj,,
1

where Expert;| refers to the expert variable 1, and ps repre-
sent the fixed effects as previously.

Interactions. Two types of interactions can be included in
the model. First, interactions of the demographics with the
different genre and expert variables can be included to cap-
ture the impact of observed sources of heterogeneity.
Second, interactions between the different movie character-
istics can be included to capture the joint impact of different
genre and expert variables. Both types of interactions were
found to be insignificant across all our specifications. We
therefore ignore these for model parsimony.

Customer heterogeneity. We model customer heterogeneity
in two ways. First, we allow for a customer-specific random
intercept. This captures any idiosyncrasies a customer may
exhibit in rating movies in general. Second, we allow for cus-
tomer-specific interactions between the unobserved customer
variables (random effects) and the observed descriptors (genre
and expert evaluations) of a movie. The interactions enable us
to model how different customers value different movie gen-
res and the opinions of various experts. The customer hetero-
geneity effects are included in the model as follows:

(12)  Customer Heterogeneityij = k“ + EkikGenrejk
k

+2 A Expert;,
[

where Genrej; refers to the genre variable k of movie j and
Expert;; refers to the expert evaluation |. The As represent the
customer random effects, and the A; vector is assumed to come
from a multivariate normal population distribution N(0, A).

Product heterogeneity. We model product heterogeneity
similarly by allowing (1) a movie-specific random intercept
that captures the movie equity and (2) movie-specific inter-
actions between the unobserved movie attributes (random
effects) and the observed customer demographics. The inter-
actions enable us to model movie appeal structures, that is,
how different aspects of the movie appeal to different cus-
tomer groups. The movie heterogeneity effects are included
in the model as follows:

(13) Movie Heterogeneity;; = v + Zij Demographics;,,
k
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where Demographics; refers to the demographic variable k
of customer i. The ys represent the movie random effects,
and the ¥; vector is assumed to come from a multivariate
normal population distribution N(0, I').

In Table 1, we summarize the key statistics on the movies
and respondent descriptors. For example, Mean 1, com-
puted across all 340 movies and 2000 respondents, indicates
that our sample has 16.9% movies and that Roger Ebert
gives a mean rating of 2.745 to our movie sample. The aver-
age age of our sample respondent is 33 years; 85% of
respondents are male. Mean 2 is computed across all 56,239
sample ratings and indicates, for example, that 28.4% of
these ratings are for action movies and 83.8% were given by
male respondents.

In addition to the complete model, we estimated 11 other
restricted models that involve different combinations of the
observed effects and heterogeneity specifications. The
details of the included and excluded effects are clear from
the description of the models in Table 2. The configuration

JOURNAL OF MARKETING RESEARCH, AUGUST 2000

of restricted models enables us to investigate the differential
impacts of (1) the two forms of heterogeneity and (2) the
different types of movie descriptors in predicting customer
preferences. We estimated the models using programs
developed in the C language on a Sun Enterprise 4000
machine. The estimation time for 5000 iterations is approx-
imately one and one-half hours, whereas prediction on any
given observation takes less than a second.

RESULTS
Model Comparison

We use (1) the marginal likelihood of the data based on
the cross-validation predictive density (Gelfand 1996) and
(2) the deviance information criterion (DIC) statistic
(Spiegelhalter, Best, and Carlin 1998) for model compari-
son. Both criteria are based on the likelihood of a model and
appropriately penalize a model for complexity. Although the
marginal likelihood traditionally has been used in the

Table 1
SUMMARY STATISTICS
(Standard (Standard
Variables Mean 14 Deviation 1) Mean 2b Deviation 2)
Genre variables Action 169 (.375) 284 (.451)
Art/foreign 143 (.350) .080 (.272)
Classic .003 (.054) .007 (.085)
Comedy 300 (.459) 307 (.461)
Drama 426 (.495) 384 (.486)
Family .079 (.270) .108 (.310)
Horror .044 (.205) .074 (.262)
Romance 146 (.353) 152 (.359)
Thriller .160 (.367) 179 (.384)
Expert variables Ebert 2.745 (.827) 2.888 (.831)
James 2.653 (.761) 2.738 (.779)
Bones 2.567 (.651) 2:737 (.656)
IMDB 7.072 (1.239 6.974 (1.274)
Demographic variables Sex 851 (.356) 838 (.369)
Age 33.01 (11.28) 31.63 (10.63)

aMean | and Standard Deviation | are the mean and standard deviation across all 340 movies or all 2000 customers.
bMean 2 and Standard Deviation 2 are the mean and standard deviation across all 56,239 ratings.

Table 2
MODEL COMPARISON STATISTICS

DIC Statistics

Log-Marginal
Heterogeneity Movie Attributes Likelihood Fit D Complexity pD DIC

No heterogeneity Genre only -18,801 37,589 13 37,602
Expert only -18,398 36,788 8 36,796
Genre and expert -18,327 36,638 17 36,655
Customer he(emgenei[y Genre only -17,581 34,135 1020 35,155
Expert only -17,162 33,429 900 34,329
Genre and expert -16,909 32,215 1501 33,716

Movie heterogeneity
Genre only -18,072 35,825 275 36,100
Expert only -18,067 35,834 259 36,093
Genre and expert -18,066 35,830 260 36,090

Movie and customer
Heterogeneity Genre only -16,793 32,118 1390 33,508
Expert only -16,840 32,502 1146 33,648
Genre and expert -16,675 31,488 1717 33,205

Notes: All models include demographic variables.
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Bayesian literature, the DIC statistic recently has been sug-
gested as an alternative criterion that is simple to compute in
most modeling contexts and can be written as

(14) DIC = D(®) + pp,

where D(0) = —2LL(0) is the model deviance and is equal to
twice the negative log-likelihood. The vector @ contains all
parameters, including the random effects. The average
deviance D is computed by taking the average of the
deviance over the MCMC draws and is viewed as a measure
of model fit. The term pp, penalizes the model for complex-
ity and can be interpreted as the effective number of param-
eters in the model. It is computed as pp = D(6) — D(8),
where D(G)is the deviance calculated using the mean of the
parameters 0 obtained from the MCMC draws. The model
with the lowest DIC is considered the best model.

In Table 2, we report the log-marginal likelihoods and the
DIC statistics for all our models. We show that the complete
model (last row) outperforms all other models on both model
comparison criteria. The DIC statistics in the last row indicate
that though this model is the most complex (pp = 1717), it is
also the best fitting (Fit = 31,488), and therefore it outperforms
the other models on the DIC statistic. In contrast, in the first
row of Table 2, we show that the model that does not capture
any source of unobserved heterogeneity and includes only
genre variables for describing the movies performs the worst.

A comparison of the different classes of models shows
that the first set of models that do not allow for unobserved
heterogeneity has the least support, whereas the models that
include both sources of unobserved heterogeneity (the last
set) have the greatest empirical support on both model com-
parison criteria. A comparison of the second set of models
with the third set shows that accounting for customer het-
erogeneity is more important than accounting for movie het-
erogeneity. The improvements in log-marginal likelihood
are greater when customer heterogeneity is added (espe-
cially in the impact of expert variables) to the first set of
models than when movie heterogeneity is included as in the
third set. The DIC statistics also imply that the more com-
plex models with customer heterogeneity outperform mod-
els with movie heterogeneity alone.

Parameters Estimates

In Table 3, we report the posterior mean estimates for the
fixed effects L and the standard deviations (i.e., the square
root of the diagonal elements of A of I') of the customer and
movie random effects. Note that a variable can influence
preferences either directly through the fixed effects or indi-
rectly by interacting with the random effects. The first row
of Table 3 shows that the standard deviation of the customer-
specific random effect associated with the intercept is 1.647.
This implies that customers differ in their use of the rating
scale. Similarly, the movie equity differs across the movies
in the sample. This is evident from the fifth column in Table
3, which shows that the standard deviation of the movie-spe-
cific random effect associated with the intercept is .515.
Most genre variables show insignificant fixed effects. On
average, people like action and thriller movies and dislike
horror movies. The standard deviations of customer-specific
random effects pertaining to the genre variables, however,
are large for all genre variables and unambiguously indicate
that customers differ in their preference structures. Thus,
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accounting for differences in the preference structures
across customers is important for our application.

The fixed effects for James, Bones, and IMDB are positive
and significant and imply that the expert evaluations are, in
general, positively associated with the ratings in the database.
The random effects pertaining to the expert variables vary sig-
nificantly across the users, as is evident from the significant
magnitudes of their standard deviations across customers.
This implies that the association of the ratings with the expert
evaluations varies across customers. Thus, accounting for
expert evaluations is crucial in this application. Finally, the
fixed effect for sex is insignificant, whereas the coefficient for
age is significant. The demographics are an important com-
ponent of the model, as the standard deviations of the associ-
ated random effects across the movies reveal differences in
movie appeal structures. Thus, it appears that movie appeal
differs across demographic groups, but this difference is
based on unobserved movie attributes.

Predictive Ability

In Table 4, we report the root mean square errors
(RMSE:s) in prediction for all the models on the calibration
data and on each of the four validation data sets. In general,
the RMSE statistics decrease in magnitude from the top to
the bottom of the table. Table 4 also shows that models that
include customer heterogeneity have better fit than models
that include movie heterogeneity alone. Comparing the
RMSE statistics for the proposed model (last row) with
those obtained from the restricted models, we see that the
proposed model outperforms the other models on almost all
the data sets.

How well does the model compare with actual recommen-
dation systems on the market? Unfortunately, commercial
vendors are loath to share proprietary implementations, and
any implementation of algorithms we execute is open to criti-
cism by these companies. Fortunately, a recent report (Breese,
Heckerman, and Kadie 1998), written by researchers at
Microsoft, Firefly’s parent company, gives us some bases for
comparing our method with implementations of four collabo-
rative filtering algorithms for the same database of movies
used in the present article. These four methods are (1) collab-
orative filtering, (2) Bayesian networks, (3) Bayesian cluster-
ing (mixture/latent-class models), and (4) vector similarity.
Using all but one observation for model estimation, Breese,
Heckerman, and Kadie (1998) find that the excluded movie is,
on average, approximately one rating point away from its true
value. Specifically, if mean absolute deviation (MAD) =
(Zlpredicted rating — true ratingl/number of observations) is
the MAD of the predicted and true ratings over the holdout
movies, its value is .994 for collaborative filtering, 1.103 for
Bayesian clustering, and 1.006 for Bayesian networks. Vector
similarity, with a value of MAD = 2.136, does the worst.

To assess the predictive accuracy of our models on the
original scale, we transform the continuous predictions to a
zero to five scale. We use an optimal set of thresholds (much
as in an ordinal probit specification) to transform the pre-
dictions. We obtain these thresholds by minimizing the
MADs on the calibration data through a grid search. The
proposed model, estimated using all but one holdout movie
per person, gives MAD = .899 for the holdout set.3

3Replication on another holdout set yields a MAD =.79.
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Moreover, whereas Breese, Heckerman, and Kadie’s (1998)
test uses an average of 46.5 movies per person (median =
36), we use an average of 17 movies per person (median =
10). Even if we use an average of 12.82 movies per person
(median = 8), our model produces MAD = .905 on a hold-
out set comprising on average 5.33 movies per person
(median = 3). However, before we conclude that our method
is superior to these others, it is worth examining the per-
formance of an aggregate regression-—an uncustomized rec-
ommendation system—that uses expert ratings and genre as
the independent variables. The resulting MAD = 1.094 sug-
gests that none of the models—including ours—does partic-
ularly well compared with this baseline model.4

Why does regression do so well? Not because it is a bet-
ter model, but because MAD is not very informative about

4The regression also uses a holdout set with an average of 5.33 movies
per person. We caution that a direct comparison of results is not possible,
because the calibration data set we use differs from the exact data set used
in Breese, Heckerman, and Kadie’s (1998) study.
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how a model fails. To see this, compare the row/column
marginals of the incidence matrices in Tables 5 and 6. Note
that (1) 54.19% of cases are true 3/4 ratings, (2) our model
predicts 3/4 ratings in 66.28% of cases, and (3) regression
predicts 3/4 in an overwhelming 90.3% of cases. That is, the
aggregate regression makes virtually identical predictions
for almost all people and movies. It is not a good method for
making recommendations, but it gets close on average, at
least in this data set.

A better approach is to examine the full information—the
6 x 6 matrix of actual versus predicted ratings. Tables 5 and
6 display these for the proposed method and regression for
the comparison reported previously, which is restricted to
old person/old movie. Table 5 can be interpreted as follows:
If we predict a rating of O for a movie that is not seen by a
person, the odds that a person who sees it will rate it a 0 is
65%, and so forth. That is, instead of making a point pre-
diction, we can present to users the odds that if they see a
new movie they will subsequently give it a certain rating.
Three immediate observations can be made from an exami-
nation of Table 5. First, the diagonal numbers (perfect pre-

Table 3
PARAMETER ESTIMATES FOR THE COMPLETE MODEL

Standard Deviation Standard Deviation

Variables Fixed Effects pa Across Customers Across Movies
Intercept 325 1.647 D15
(.371)
Genre variables Action 341* 407
(.131)
Art/foreign 053 573
(.148)
Classic —-.085 318
(.571)
Comedy 210 .300
(.127)
Drama 124 257
(.117)
Family .048 321
(.168)
Horror -411* 347
(.226)
Romance —-.084 .301
(.137)
Thriller 319* 292
(.162)
Expert variables Ebert .085 127
(.062)
James 231% 210
(.089)
Bones .266* 229
(.088)
IMDB 125% .087
(.048)
Demographic variables Sex .018 455
(.074)
Age .006* .024
(.003)
o2 1.229*
(.021)

aStandard deviations across MCMC iterations are in parentheses.
*Significant at the .05 level.
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dictions) are not impressive. Second, the percentage of per-
fect matches decreases toward the center of the scale. Third
and most important, the greatest proportion of errors are
nearest neighbors. In other words, if we make a forecast of
5, then 86% of the true ratings are 4 or 5. These nearest
neighbor percentages can be summarized as in Table 7.
From these numbers, we would be most confident in mak-
ing point predictions within a rating point at the top end of
the scale. This is a fortunate coincidence, which may or may
not carry over to other applications. Our model will never
give recommendations for movies with low ratings. And for
movies with high predicted ratings (4 or 5), it will do quite
well. A recommendation system built on the basis of these
results should restrict recommendations to movies with rat-
ings of 4 or 5. If the predicted rating is 4, the actual rating is
no lower than 4 in 68% of cases and no lower than 3 in 90%
of cases: It is a good surprise 26% of the time and a mild dis-
appointment 22% of the time. Translated to raw numbers
(see Table 5), this means that of the 1022 recommendations
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we make with a rating of 4, in 427 cases, people who see
these movies will come away with the exact same judgment
about the movie as we predict; there will be 266 good sur-
prises, and 224 will be mildly disappointed (we use the
terms “happier” and “slightly” colloquially, for there is no
saying how unhappy a slightly disappointed person might
be). Among the remaining, 43 will probably not want to use
the recommendation system again. Similarly, if people see
the 325 recommendations for which we predict a rating of 5,
there will be complete agreement with our assessment in
165 cases, another 116 cases of mild disappointment, and 44
cases of reactions that range from disappointment to sheer
exasperation.

How disappointed will people be if they are not told of a
movie they would have liked? The answer depends on our
criteria for not recommending. If we never recommend
movies for which we predict a rating of 0, then .5% of peo-
ple (11 of 2886 people in our sample) will not see a movie
they would rate 4 or 5 were they to see it, because we failed

Table 4
ROOT MEAN SQUARE ERRORS

Calibration Old Person/ Old Person/ New Person/ New Person/
Sample Old Movie New Movie Old Movie New Movie
No heterogeneity Genre only 1.488 1.504 1.544 1.421 1.500
Expert only 1.431 1.453 1.460 1.376 1.444
Genre and expert 1.420 1.442 1.476 1.370 1.458
Movie heterogeneity Genre only 1.349 1.442 1.542 1.349 1.468
Expert only 1.350 1.417 1.473 1.348 1.460
Genre and expert 1.350 1.418 1.488 1.349 1.478
Customer heterogeneity Genre only 1.196 L3013 1.307 1.414 1.516
Expert only 1.163 1.278 1.299 1.369 1.438
Genre and expert 1.061 1.241 1.306 1.361 1.456
Movie and customer Genre only 1.063 1.233 1.367 1.339 1.483
heterogeneity Expert only 1.192 1.287 1.296 1.383 1.432
Genre and expert 1.012 1.216 1.295 1.337 1.446
Table 5
PROPOSED MODEL: VALIDATION SAMPLE OLD PERSON/OLD MOVIE INCIDENCE MATRIX
Predicted
Actual 0 1 2 3 4 3 Total
0 130* 67 56 58 24 3 338
(64.68)** (37.22) (20.97) (6.51) (2.35) (.92) (11.71)
1 23 21 26 55 19 1 145
(11.44) (11.67) (9.74) (6.17) (1.86) (31 (5.02)
2 19 31 S 123 62 10 289
(9.45) (17.22) (16.48) (13.80) 6.07) (3.08) (10.01)
3 18 42 82 296 224 30 692
(8.96) (23.33) (30.71) (33.22) (21.92) (9.23) (23.98)
- 7 13 43 266 427 116 872
(3.48) (7.22) (16.10) (29.85) (41.78) (35.69) (30.21)
5 -+ 6 16 93 266 165 550
(1:99) (3.30) (5.99) (10.44) (26.03) (50.77) (19.26)
Total 201 180 267 891 1022 325 2886
percentage (6.96) (6.24) (9.25) (30.87) (35.41) (11.26) (100)

*Cell frequency.
**Column percentage.
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Table 6
REGRESSION: VALIDATION SAMPLE OLD PERSON/OLD MOVIE INCIDENCE MATRIX
Predicted
Actual 0 1 2 3 4 5 Total
0 0* 37 29 147 124 1 338
0)** (38.54) (31.52) (14.89) (7.66) (1.11) (LT
1 1 13 11 68 49 3 145
(50) (13.54) (11.96) (6.89) (3.03) (3.33) (5.02)
2 1 15 12 131 126 -+ 289
(50) (15.63) (13.04) (13.27) (7.78) (4.44) (10.01)
3 0 17 28 288 346 13 692
(0) (17.71) (30.43) (29.18) 21.37) (14.44) (23.98)
4 0 13 9 247 568 35 872
0) (13.54) (9.78) (25.03) (35.08) (38.89) (30.21)
S 0 | 3 106 406 34 550
0) (1.04) (3.26) (10.74) (25.08) (37.78) (19.06)
Total 2 96 92 987 1619 90 2886
percentage .07 (3.33) (3.19) (34.20) (56.10) (3.12) (100)
*Cell frequency.
**Column percentage.
Table 7 movies. This conservative pattern of predictions becomes

NEAREST NEIGHBOR PERCENTAGES

Percent Actual Within

Predicted Nearest Neighbors One Point of Prediction
5 4 86
4 355 90
3 2,4 77
2 1.5 7
1 0.2 66
0 1 76

to tell them about it. The 2 and 3 predictions are murky
grounds. Many movies are good to miss, and many are
worth seeing. In summary, if we consider only exact
matches, our prediction model is far from perfect. But for
making recommendations, it is not so bad at all.

A priori, the quality of recommendations should decrease
as the available information about a person or movie
decreases. This is indeed the case for MAD, which ranges
from .905 for old movies/old people to 1.122 for new
movies/new people; the values for the two other conditions
are .971 (old person/new movie) and 1.008 (new person/old
movie). Nevertheless, even in the worst case, the deteriora-
tion in the MAD values is not terrible, as it changes from
approximately | point for all the previous methods to 1.12
in the worst case (new person/new movie). However, the
full distribution of predictions must be examined to assess
how well the method does in each case. In Tables 8 to 10,
we give the complete distributions. The odds of true rating
when ratings of 5 (which correspond to movies that might
be recommended) are predicted do not differ markedly from
each other, except for new person/new movie. But for old
person/old movie, the percentage of movies predicted to
have 5 ratings decreases from 11.26% to 7.17%, whereas the
percentage of movies with true ratings of 5 drops from
19.26% to 17.14%. In other words, the model becomes more
conservative in predicting a 5 rating from old to new

even more pronounced as less information is used to make
predictions. Thus, in the worst case (new person/new
movie), the model predicts ratings of 5 in 3.95% of cases,
whereas 17.76% of movies have a true rating of 5, a number
close to the 3.12% for the aggregate regression in Table 6. A
conservative pattern of predictions is also observed at the
other end of the scale (i.e., for 0 and | ratings).

A similar analysis when 4 ratings are predicted suggests a
more noticeable decline in the performance of the model:
The proportion of true ratings with a value of 3 increases
significantly as less information becomes available. Stll, if
the odds of a 4 prediction being a true 4 or 5 rating are con-
sidered, the worst case (new movie/new person) odds of .6
are not bad compared with the odds of .678 in the best case
(old movie/old person).

In summary, compared with collaborative filtering, the
proposed model is substantially better for two reasons. First,
it does better when both collaborative filtering and our
method can be used to make recommendations (i.e., old per-
sonf/old movie). Second, it can make recommendations
when collaborative filtering cannot be used. As might be
expected, the less information about a person or a movie, the
less accurate are the predictions.

As long as making recommendations is the goal, the pres-
ent model performs well, because this entails making accu-
rate predictions of movies with high (4 or 5) ratings, pro-
vided there are enough movies for which these ratings are
predicted. But if responding to queries (Should I see this
movie or not?) is the goal, even in the best case (old
movie/old person), a predicted rating of 2 or 3 has unac-
ceptably high odds of being some other true rating. This is
an area in which model improvement is especially desirable.
That said, we believe that it is better for any recommenda-
tion system not just to make a point prediction but also to
predict odds for true ratings in the manner discussed here,
together with the count (number of observations) on which
the odds are based. This, in the end, is much better for mak-
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Table 8
PROPOSED MODEL: VALIDATION SAMPLE OLD PERSON/NEW MOVIE INCIDENCE MATRIX
Predicted
Actual 0 1 2 s 4 5 Total
0 549* 273 324 467 136 26 1775
(62.10)** (32.85) (20.02) (7.55) (2.58) 227 (11.14)
1 84 113 177 417 138 29 958
(9.50) (13.60) (10.94) (6.74) (2.62) (2.54) (6.01)
2 91 160 298 806 329 53 1737
(10.29) (19.25) (18.42) (13.04) (6.24) (4.64) (10.90)
3 84 155 455 1912 1119 106 3831
(9.50) (18.65) (28.12) (30.92) (21.21) 9.27) (24.04)
4 56 95 271 1895 2220 366 4903
(6.33) (11.43) (16.75) (30.65) (42.08) (32.02) (30.77)
5 20 35 93 686 1334 563 2731
(2.26) 4.21) (5.75) (11.09) (25.28) (49.26) (17.14)
Total 884 831 1618 6183 5276 1143 15935
percentage (5.55) (5.21) (10.15) (38.80) (33.11) (7.17) (100)
*Cell frequency.
**Column percentage.
Table 9
PROPOSED MODEL: VALIDATION SAMPLE NEW PERSON/OLD MOVIE INCIDENCE MATRIX
Predicted
Actual 0 1 2 3 4 5 Total
0 6* 132 158 365 274 14 949
(54.55)** (36.97) (20.08) (8.76) (4.92) (1.68) (8.09)
| 2 31 95 254 137 9 528
(18.18) (8.68) (12.07) (6.10) (2.46) (1.08) (4.50)
2 1 55 126 510 362 20 1074
(9.09) (15.41) (16.01) (12.29) (6.50) (2.40) 9.16)
3 1 69 191 1108 1095 99 2563
(9.09) (19.33) (24.27) (26.60) (19.65) (11.86) (21.86)
4 0 54 165 1364 2090 266 3939
(.00) (15.13) (20.97) (32.75) (37.51) (31.86) (33.59)
5 1 16 o2 564 1614 427 2674
(9.09) (4.48) (6.61) (13.54) (28.97) (51.14) (22.80)
Total 11 357 787 4165 5572 335 11,727
percentage (.00) (3.00) (6.70) (35.5) (47.5) (7.1) (100)

*Cell frequency.
**Column percentage.

ing informed choices than a forced prediction, which in sit-
uations involving risky decisions, can lead to bad decisions
by a person who places undue trust in point predictions.

SUMMARY AND CONCLUSIONS

The simple, flexible models we describe can be general-
ized to incorporate revealed preferences on the basis of
explicit or implicit data. Methodologically, it seems useful
to consider the predictive improvements possible if nonlin-
earity is incorporated by means of radial basis function neu-
ral networks, multiplayer perceptrons, or other methods.
Alternative methods, such as latent-class models, may also
be worth investigating. We developed procedures for ratings
data. Extensions for ordinal or binary data can be handled
within the Bayesian framework with data augmentation

methods (Albert and Chib 1993). Similarly, data augmenta-
tion can be used to handle censoring that may arise because
rated movies have a higher or lower rating compared with
unrated movies. Finally, recommendation systems represent
just one type of “agent.” A variety of other information
agents—for example, negotiation agents, matchmaking
agents, and agents designed to participate in auctions—are
directly relevant for marketers. The approaches and method-
ologies that have evolved in the marketing literature to
explain customer preferences and other aspects of consumer
behavior can likely be used in each of these domains. The
new applications of information agents will also require
advances in data collection and analysis procedures; mar-
keting researchers are eminently poised to contribute signif-
icantly in these areas.
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APPENDIX: PRIOR DISTRIBUTIONS AND FULL
CONDITIONAL DISTRIBUTIONS

Priors

The unknown parameters for the model are B = {y, A, T,
o} In this article, we specify the prior distribution over B as
a product of independent priors. We use proper but diffuse
priors over all model parameters. The prior for | is multi-
variate normal N(n, C) The covariance matrix C is diagonal,
and large values for the variances reflect uncertainty. We use
N =0 and C = 10001, where I is the identity matrix. The pre-
cision matrix A-! associated with the population distribution
A; ~N(0, A)is a (m + 1) X (m + 1) positive definite matrix,
where m is the number of movie descriptors. Similarly, the
precision matrix I'-! associated with the population distribu-
tion ¥ ~ N(0, ) is a (p + 1) X (p + 1) positive definite
matrix, where p is the number of customer characteristics.
We assume Wishart priors: W[1, (1IL)-!] for the precision
matrix A-!, and W[j, (JG)-!] for the precision matrix I'-l.
The matrices L and G can be considered the expected prior
variances of the A;s and v;s, respectively. Smaller values for
1and j correspond to more diffuse prior distributions. We set
1=16,) =35, G =diag(.001), and L = diag(.001). The prior
for the error variance 62 is chosen to be inverse gamma
IG(a, b), where a=3 and b = 10.

Full Conditional Distributions for the Full Model

The parameter W can be generated from the multivariate
normal full conditional distribution given by

(AD) pahfry). (). (7). 02) ~ NG V),

where V' = C-! + 6-2X’X, and fi = V (c-2X'T + C-In).
The matrix X is obtained by stacking row by row all the row
vectors xj. The vector T is obtained by stacking all the ele-
ments j; = r;; — 2}y, — W'jA;, for all the person-movie pairs.

The full conditional distribution of the error variance G2
is inverse gamma and is given by

JOURNAL OF MARKETING RESEARCH, AUGUST 2000

(A2) p(o2iry ). (A1, f ;).
N s = N
~ IG{; + a[;(r - Xp)'(r - Xp) + b-‘] }

The customer random effects A; can be generated from the
multivariate normal full conditional distribution given by

(A3) pOAJ(ry) b (0,02, A) ~ N, V),

where V! = A-l + 62W';W, and &; = V(c2W'[f)). The
matrix W, is obtained by stacking row by row all the row
vectors w/ for j belonging to the index set of customer i’s
movies, M;. The vector T, is obtained by stacking the ele-
ments ;= r;; — Xjjll 2z}, for all the movies j € M; of cus-
tomer i.

The movie random effects 7, can be generated from the
multivariate normal full conditional distribution given by

(A4) pCY;ftr;). 1 (A}, 62, 1) ~ N(§;, V),

where Vj‘| =TI + 6-2Z'{Z; and §; = Vj(c-2Z’f;). The matrix
Z; is obtained by stacking all the row vectors z; for i in C;,
the index set of movie j’s customers. The vector f; is
obtained by stacking the elements fj = rjj — x{jL —wjA; for
all the customers i € C; of movie j.

The full conditional distribution of the precision matrix
A-! of the unobserved customer characteristics is Wishart

and is given by
1

. ;
A5 p(ATIAY) - W D ai+iL| |

Table 10
PROPOSED MODEL: VALIDATION SAMPLE NEW PERSON/NEW MOVIE INCIDENCE MATRIX
Predicted

Actual 0 i 2 £ 4 5] Total
0 2% 73 137 947 314 48 1521

(100)** (45.63) (14.50) (10.85) (6.29) (7.87) (9.86)
| 0 16 94 522 191 24 847

(.00) (10.00) (9.95) (5.98) (3.83) (3.93) (5.49)
2 0 15 153 1101 399 44 1712

(.00) (9.38) (16.19) (12.62) (8.00) (7.21) (11.09)
3 0 33 255 2257 1088 84 3717

(.00) (20.63) (26.98) (25.87) (21.81) (13.77) (24.09)
4 0 15 233 2742 1755 149 4894

(.00) (9.38) (24.66) (31.43) (35.18) (24.43) (31.72)
S 0 8 73 1156 1242 261 2740

(.00) (5.00) (7.72) (13.25) (24.89) (42.79) (17.76)
Total 2 160 946 8725 4989 610 15,431

percentage (.01) (1.04) (6.12) (56.54) (32.33) (3.95) (100)

*Cell frequency.
**Column percentage.
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The full conditional distribution of the precision matrix
I™-1 of the unobserved movie characteristics is also Wishart
and is given by

-1

(a6) p(r-11(y) - W iy,~v',-+16 gl
j=1
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