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MARKOV PERFECT INDUSTRY DYNAMICS WITH MANY FIRMS

BY GABRIEL Y. WEINTRAUB, C. LANIER BENKARD,
AND BENJAMIN VAN ROY1

We propose an approximation method for analyzing Ericson and Pakes (1995)-style
dynamic models of imperfect competition. We define a new equilibrium concept that we
call oblivious equilibrium, in which each firm is assumed to make decisions based only
on its own state and knowledge of the long-run average industry state, but where firms
ignore current information about competitors’ states. The great advantage of oblivious
equilibria is that they are much easier to compute than are Markov perfect equilibria.
Moreover, we show that, as the market becomes large, if the equilibrium distribution
of firm states obeys a certain “light-tail” condition, then oblivious equilibria closely
approximate Markov perfect equilibria. This theorem justifies using oblivious equilibria
to analyze Markov perfect industry dynamics in Ericson and Pakes (1995)-style models
with many firms.

KEYWORDS: Dynamic games, oblivious equilibrium, approximation, industrial orga-
nization, imperfect competition.

1. INTRODUCTION

JUST OVER A DECADE AGO, Ericson and Pakes (1995) (hereafter EP) intro-
duced an approach to modeling a dynamic industry with heterogeneous firms.
The goal of their paper, stated in the title, was to promote empirical work to
evaluate the effects of policy and environmental changes on things like job
turnover, market structure, and welfare. The EP model and its extensions have
proven to be both useful and broadly applicable. In the EP model, dynam-
ics came in the form of firm investment, entry, and exit. However, subsequent
work extended the model to many other contexts, including dynamics in the
product market, dynamic demand, collusion, and asymmetric information.2
With the advent of new ways to estimate such models (see Pesendorfer and
Schmidt-Dengler (2003), Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky,
and Berry (2007), Aguirregabiria and Mira (2007)), this has become an active
area for frontier level applied research.

1We have had very helpful conversations with José Blanchet, Uli Doraszelski, Liran Einav,
Hugo Hopenhayn, Ken Judd, Jon Levin, and Ariel Pakes, as well as seminar participants at
Berkeley, Columbia, Duke, IIOC, Iowa, Informs, Kellogg, Minnesota, NYU, SITE, Stanford,
Rochester, UCLA, UIUC, University of Chile, UT Austin, and Yale. We thank the editor and
three anonymous referees for valuable suggestions. This research was supported by the Federal
Reserve Bank of San Francisco, General Motors, the Lillie Fund, the National Science Founda-
tion, and the Office of Naval Research.

2See Berry and Pakes (1993), Gowrisankaran (1999), Fershtman and Pakes (2000, 2005), Judd,
Schmedders, and Yeltekin (2002), Langohr (2003), Song (2003), Besanko and Doraszelski (2004),
de Roos (2004), Besanko, Doraszelski, Kryukov, and Satterthwaite (2005), Goettler, Parlour, and
Rajan (2005), Doraszelski and Markovich (2007), Markovich (2008), Noel (2008), and Schivardi
and Schneider (2008), as well as Doraszelski and Pakes (2007) for an excellent survey.
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There remain, however, some substantial hurdles in the application of EP-
type models. Because EP-type models are analytically intractable, analyzing
market outcomes is typically done by solving for Markov perfect equilibria
(MPE) numerically on a computer, using dynamic programming algorithms
(e.g., Pakes and McGuire (1994)). This is a computational problem of the high-
est order. Note that even if it is possible to estimate the model parameters
without computing an equilibrium, as in the papers listed above, equilibrium
computation is still required to analyze the effects of a policy or other en-
vironmental change. Methods that accelerate these equilibrium computations
have been proposed (Judd (1998), Pakes and McGuire (2001), Doraszelski and
Judd (2006)). However, in practice computational concerns have typically lim-
ited the analysis to industries with just a few firms, much less than the real
world industries at which the analysis is directed. Such limitations have made
it difficult to construct realistic empirical models, and application of the EP
framework to empirical problems is still quite difficult (see Gowrisankaran and
Town (1997), Benkard (2004), Jenkins, Liu, Matzkin, and McFadden (2004),
Ryan (2005), Collard-Wexler (2006)). Furthermore, even where applications
have been deemed feasible, model details are often dictated as much by com-
putational concerns as economic ones.

In this paper we consider a new notion of equilibrium that we call oblivious
equilibrium (henceforth, OE). Our hope is that OE will serve as the basis for
more refined equilibrium notions that can be used to closely approximate MPE
market outcomes in realistically sized industries. OE is a natural starting point
for approximating MPE outcomes because, as we show in this paper, under
fairly general assumptions OE is close to MPE in markets with many firms.
We make this statement more precise below. In addition, OE is much simpler
to solve for than MPE, and it can be computed easily even for industries with
hundreds or thousands of firms. Finally, we believe that for some industries
OE and its extensions may provide an appealing behavioral model in its own
right. By using OE in place of MPE, we hope it will become possible to analyze
many empirical problems that would have been intractable before.

In an EP-type model, at each time, each firm has a state variable that cap-
tures its competitive advantage. Although more general state spaces can be
considered, we focus on the simple case where the firm state is an integer. The
value of this integer can represent, for example, a measure of product quality,
the firm’s current productivity level, or its capacity. Each firm’s state evolves
over time based on investments and random shocks. The industry state is a vec-
tor that represents the number of firms with each possible value of the firm
state variable. Even if firms are restricted to symmetric strategies, the number
of relevant industry states (and thus, the computer time and memory required
for computing MPE) becomes enormous very quickly as the numbers of firms
and firm states grows. For example, most industries contain more than 20 firms,
but it would require more than 20 million gigabytes of computer memory to
store the policy function for an industry with just 20 firms and 40 firm states.
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As a result, it seems unlikely that exact computation of equilibria will ever be
possible in many industries.

The intuition behind our alternative approach is as follows. Consider an EP-
type model in which firm shocks are idiosyncratic. In each period, some firms
receive positive shocks and some receive negative shocks. Now suppose there is
a large number of firms. It is natural to think that changes in individual firms’
states average out at the industry level, such that the industry state does not
change much over time. In that case, each firm could make near-optimal de-
cisions by knowing only its own firm state and the long-run average industry
state. Strategies for which a firm considers only its own state and the long-run
average industry state we call oblivious strategies, and an equilibrium in which
firms use oblivious strategies we call oblivious equilibrium (OE). Computing
OE is simple because dynamic programming algorithms that optimize over
oblivious strategies require computer time and memory that scale only with
the number of firm states, not with the number of firms. Hence, computational
considerations place very few constraints on model details.

A fundamental question becomes whether OE provides meaningful approx-
imations of MPE behavior. To address this question, in the main theorem of
the paper we prove an asymptotic result that provides sufficient conditions for
OE to closely approximate MPE as the market size grows. It may seem that
this would be true provided that the average number of firms in the industry
grows to infinity as the market size grows. However, it turns out that this is
not sufficient. If the market is highly concentrated—for example, as is the case
with Microsoft in the software industry—then the approximation is unlikely to
be precise. In that case a strategy that does not keep track of the dominant
firm’s state would not perform well even if there were many firms in the indus-
try. Instead, we show that, alongside some technical requirements, a sufficient
condition for OE to well approximate MPE asymptotically is that they gener-
ate a firm size distribution that is “light-tailed,” in a sense that we will make
precise. To make this notion more concrete, if the demand system is given by a
logit model and the spot market equilibrium is Nash in prices, then the condi-
tion holds if the average firm size is uniformly bounded for all market sizes.

Since the main result of this paper is a limit theorem, it is natural to won-
der whether there are any real world industries in which OE can be shown to
approximate MPE well. We address this issue more directly in a companion
paper (Weintraub, Benkard, and Van Roy (2007)), where we provide a com-
putational algorithm that solves for OE and approximation bounds that can be
computed to provide researchers with a numerical measure of how close OE
is to MPE in their particular application. We find in that paper that OE ap-
proximate MPE better in some industries than others, depending on industry
concentration and the nature of competitive interactions. In one example the
approximation works well with a C4 of close to 100%. In another, the approxi-
mation fails to work well until there are over a thousand firms in the industry.
These results suggest that, by using OE to approximate MPE, it is possible to
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greatly increase the set of problems that can be analyzed using EP-type mod-
els. As further evidence of the usefulness of OE, Xu (2006) has already used
OE in a novel study of research and development investment in the Korean
electric motor industry. This application would not have been possible using
exact computation of MPE.

While our computational results suggest that OE will be useful in many ap-
plications on its own, there are also many industries that are too large to com-
pute MPE, but that are too concentrated for OE to provide a precise approxi-
mation. Thus, we believe that a major contribution of OE will be as a starting
point with which to build even better approximations. We suggest some possi-
ble extensions to OE in the conclusions.

Finally, we note that, while our emphasis is on the use of OE as an approx-
imation to MPE, in many cases OE (and its extensions) may also provide an
appealing behavioral model on its own. If observing the industry state and de-
signing strategies that keep track of it are costly and do not lead to significant
increases in profit, firms may be better off using oblivious strategies.

The rest of paper is organized as follows. In Section 2 we describe the rela-
tionship between our work and previous literature. In Section 3 we outline the
dynamic industry model. In Section 4 we introduce the concept of oblivious
strategies and oblivious equilibrium. In Section 5 we provide our main result,
namely, we give conditions under which oblivious equilibrium approximates
MPE asymptotically as the market size grows. Finally, Section 6 presents con-
clusions and a discussion of future research directions. All proofs and mathe-
matical arguments are provided in the Appendix and the Supplemental mate-
rial (Weintraub, Benkard, and Van Roy (2008)).

2. PREVIOUS LITERATURE

Our approach is related to some past work. The concept of OE is most
closely related to Hopenhayn (1992).3 Hopenhayn (1992) modeled an industry
with a continuum of firms, each of which garners an infinitesimal fraction of the
market. His model is tractable because the industry state is constant over time,
implicitly assuming a law of large numbers holds. This assumption is based
on the same intuition that motivates our consideration of OE. However, our
goal is to apply our model directly to data, matching such industry statistics as
the number of firms, the market shares of leading firms, the level of markups,
and the correlation between investment and firm size. Thus, we are forced to
consider models that more closely reflect real world industries that have finite
numbers of firms, with strictly positive market shares. Relative to Hopenhayn
(1992), another difference is that in our EP-type model investment is explicitly
modeled, though it is also possible to achieve this in a Hopenhayn-type model.4

3See also Jovanovic and Rosenthal (1988).
4See Klette and Kortum (2004) and Melitz (2003).
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Our approach is also similar in spirit to Krusell and Smith (1998), whose
method has become popular in the recent macroeconomics literature. Krusell
and Smith (1998) were concerned with stochastic growth models with a contin-
uum of heterogeneous agents, in which case the state space of the model is infi-
nite dimensional and consists of the entire wealth distribution in the economy.
Since solving for a true equilibrium to the model would be analytically and
computationally intractable, they instead solved for an equilibrium in which
strategies are a function of some simple summary statistics of the wealth distri-
bution. However, rather than attempting to prove that their algorithm closely
approximates the true equilibrium, as we do here, they viewed their model as
a behavioral one involving agents with bounded rationality. Their work raises
the question of why we did not consider a similar approach in EP-type models.
In fact, we considered such an approach, but were unable to prove that equi-
librium behavior of this sort would be close to MPE behavior in an EP-type
model. The approximation theorem in this paper essentially shows that, as-
ymptotically, the concept of OE can only eliminate equilibria relative to MPE,
not create any. We were unable to establish a similar result for equilibria based
on summary statistics.

Our results are also related to work by Levine and Pesendorfer (1995),
Fudenberg, Levine, and Pesendorfer (1998), and Al-Najjar and Smorodinsky
(2001) on the negligibility of players in repeated interactions. These papers
were motivated by the fact that equilibria in a game with a large but finite
number of agents can be very different from equilibria in the limit model with a
continuum of agents. In a model with a finite number of players, deviations can
be detected. Therefore, equilibria where agents act nonmyopically can be sus-
tained using schemes of rewards and punishments based on past play. On the
other hand, in the continuum model, all agents are negligible and an individual
deviation cannot be detected and punished. These papers provide conditions
under which this paradox is resolved (e.g., if players’ actions are observed with
noise). Our light-tail condition is related to the idea that any individual player
has little effect on the subsequent play of others. However, our work differs
from this literature in several ways. First, we restrict our attention to Markov-
ian (payoff-relevant, history independent) strategies. This restriction already
rules out many equilibria that the negligibility literature is concerned about.5
Additionally, unlike the papers listed above, in our model the number and size
of firms (or agents) is endogenous. Finally, another difference between our
work and the literature above is that the notion of a limit game in our model
could, in general, be complex. Thus, we do not attempt to consider equilibria
to the limit game itself. Instead we focus on the idea that OE becomes close to
MPE as the market size increases.

5To see this more clearly, note that in an infinitely repeated game the only Markov perfect
equilibria correspond to the infinite repetition of one of the Nash equilibria of the stage game. In
this case, the paradox studied by the above-mentioned papers is immediately resolved: all agents
act myopically.
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An implication of our results is that, for asymptotically large markets, a sim-
ple strategy that ignores current market information can be close to optimal.
In this sense, our results are also related to those of Roberts and Postlewaite
(1976), Novshek and Sonnenschein (1978, 1983), Mas-Colell (1982, 1983),
Novshek (1985), Allen and Hellwig (1986a, 1986b), and Jones (1987). Roughly
speaking, these papers establish conditions in different static models under
which the set of oligopolistic Nash equilibria approaches, in some sense, the set
of (Walrasian) competitive equilibria as the size of individual firms (or agents)
becomes small relative to the size of the market. There are some notable dif-
ferences with our work, though. Our interests lie in approximating dynamic
firm behavior in large markets, not in showing that the product market is per-
fectly competitive in the limit. In particular, while the above papers study static
models, in which the main strategic decisions are usually prices or quantities,
we study dynamic models, in which the main decisions are, for example, invest-
ment, entry, and exit. Thus, while we show that firm investment, entry, and exit
strategies become simple in markets with many firms, we do not rule out that
a small fraction or even all firms may still have some degree of market power
in the product market even in the limit.

3. A DYNAMIC MODEL OF IMPERFECT COMPETITION

In this section we formulate a model of an industry in which firms compete
in a single-good market. The model is general enough to encompass numer-
ous applied problems in economics. Indeed, a blossoming recent literature on
EP-type models has applied similar models to advertising, auctions, collusion,
consumer learning, environmental policy, international trade policy, learning-
by-doing, limit order markets, mergers, network externalities, and other ap-
plied problems.

Our model is close in spirit to that of Ericson and Pakes (1995), but with
some differences. Most notably, we modify the entry and exit processes in
Ericson and Pakes (1995) so as to make them more realistic when there are
a large number of firms. Additionally, the asymptotic theorem in this paper
does not hold when there are aggregate industry shocks, so our model includes
only idiosyncratic shocks.6

3.1. Model and Notation

The industry evolves over discrete time periods and an infinite horizon. We
index time periods with nonnegative integers t ∈ N (N = {0�1�2� � � �}). All ran-
dom variables are defined on a probability space (Ω�F�P) equipped with a

6In Weintraub, Benkard, and Van Roy (2007) we extended the model and analysis to include
aggregate shocks.
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filtration {Ft : t ≥ 0}. We adopt the convention of indexing by t variables that
are Ft-measurable.

Each firm that enters the industry is assigned a unique positive integer-
valued index. The set of indices of incumbent firms at time t is denoted by
St . At each time t ∈ N, we denote the number of incumbent firms as nt .

Firm heterogeneity is reflected through firm states. To fix an interpretation,
we will refer to a firm’s state as its quality level. However, firm states might
more generally reflect productivity, capacity, the size of its consumer network,
or any other aspect of the firm that affects its profits. At time t, the quality level
of firm i ∈ St is denoted by xit ∈ N.

We define the industry state st to be a vector over quality levels that specifies,
for each quality level x ∈ N, the number of incumbent firms at quality level x in
period t. We define the state space S = {s ∈ N

∞|∑∞
x=0 s(x) <∞}. Although in

principle there are a countable number of industry states, we will also consider
an extended state space S = {s ∈ �∞

+ |∑∞
x=0 s(x) <∞}. This will allow us, for

example, to consider derivatives of functions with respect to the industry state.
For each i ∈ St , we define s−i�t ∈ S to be the state of the competitors of firm i;
that is, s−i�t(x) = st(x) − 1 if xit = x and s−i�t(x) = st(x) otherwise. Similarly,
n−i�t denotes the number of competitors of firm i.

In each period, each incumbent firm earns profits on a spot market. A firm’s
single-period expected profit π(xit� s−i�t) depends on its quality level xit and its
competitors’ state s−i�t .

The model also allows for entry and exit. In each period, each incumbent
firm i ∈ St observes a positive real-valued sell-off value φit that is private infor-
mation to the firm. If the sell-off value exceeds the value of continuing in the
industry, then the firm may choose to exit, in which case it earns the sell-off
value and then ceases operations permanently.

If the firm instead decides to remain in the industry, then it can invest to
improve its quality level. If a firm invests ιit ∈ �+, then the firm’s state at time
t + 1 is given by

xi�t+1 = max(0�xit +w(ιit� ζi�t+1))�

where the function w captures the impact of investment on quality and ζi�t+1

reflects uncertainty in the outcome of investment. Uncertainty may arise, for
example, due to the risk associated with a research and development endeavor
or a marketing campaign. Note that this specification is very general: w may
take on either positive or negative values (e.g., allowing for positive deprecia-
tion). We denote the unit cost of investment by d.

In each period new firms can enter the industry by paying a setup cost κ.
Entrants do not earn profits in the period that they enter. They appear in the
following period at state xe ∈ N and can earn profits thereafter.7

7Note that it would not change any of our results to assume that the entry state was a random
variable.
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Each firm aims to maximize expected net present value. The interest rate is
assumed to be positive and constant over time, resulting in a constant discount
factor of β ∈ (0�1) per time period.

In each period, events occur in the following order:
1. Each incumbent firm observes its sell-off value, and then makes exit and

investment decisions.
2. The number of entering firms is determined and each entrant pays an

entry cost of κ.
3. Incumbent firms compete in the spot market and receive profits.
4. Exiting firms exit and receive their sell-off values.
5. Investment outcomes are determined, new entrants enter, and the indus-

try takes on a new state st+1.

3.2. Model Primitives

Our model above allows for a wide variety of applied problems. To study any
particular problem it is necessary to further specify the primitives of the model,
including the profit function π, the distribution of the sell-off value φit , the
investment impact function w, the distribution of the investment uncertainty
ζit , the unit investment cost d, the entry cost κ, and the discount factor β.

Note that in most applications the profit function would not be specified di-
rectly, but would instead result from a deeper set of primitives that specify a
demand function, a cost function, and a static equilibrium concept. An impor-
tant parameter of the demand function (and hence the profit function) that we
will focus on below, is the size of the relevant market, which we will denote
as m. Later on in the paper we subscript the profit function with the market
size parameter, πm, to explicitly recognize the dependence of profits on market
size. For expositional clarity, the subscript is omitted in the assumptions listed
below, implying that the market size is being held fixed.

3.3. Assumptions

We make several assumptions about the model primitives, beginning with
the profit function. An industry state s ∈ S is said to dominate s′ ∈ S if for all
x ∈ N,

∑
z≥x s(z)≥ ∑

z≥x s
′(z). We will denote this relation by s � s′. Intuitively,

competition associated with s is no weaker than competition associated with s′.

ASSUMPTION 3.1:
1. For all s ∈ S , π(x� s) is increasing in x.
2. For all x ∈ N and s� s′ ∈ S , if s � s′, then π(x� s)≤ π(x� s′).
3. For all x ∈ N and s ∈ S , π(x� s) > 0 and supx�s π(x� s) <∞.
4. For all x ∈ N, the function lnπ(x� ·) : S → �+ is continuously Fréchet dif-

ferentiable. Hence, for all x ∈ N, y ∈ N, and s ∈ S , lnπ(x� s) is continuously dif-
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ferentiable with respect to s(y). Further, for any x ∈ N, s ∈ S , and h ∈ S such that
s+ γh ∈ S for γ > 0 sufficiently small, if

∑
y∈N

h(y)

∣∣∣∣∂ lnπ(x� s)
∂s(y)

∣∣∣∣<∞�

then

d lnπ(x� s+ γh)
dγ

∣∣∣∣
γ=0

=
∑
y∈N

h(y)
∂ lnπ(x� s)
∂s(y)

�

The assumptions are fairly weak. Assumption 3.1.1 ensures that increases in
quality lead to increases in profit. Assumption 3.1.2 states that strengthened
competition cannot result in increased profit. Assumption 3.1.3 ensures that
profits are positive and bounded. Assumption 3.1.4 is technical and requires
that log profits be Fréchet differentiable. Note that it requires partial differen-
tiability of the profit function with respect to each s(y). Profit functions that
are “smooth,” such as ones arising from random utility demand models like
the logit model, will satisfy this assumption.

We also make assumptions about investment and the distributions of the
private shocks:

ASSUMPTION 3.2:
1. The random variables {φit |t ≥ 0� i ≥ 1} are independent and identically

distributed (i.i.d.) and have finite expectations and well-defined density functions
with support �+.

2. The random variables {ζit |t ≥ 0� i ≥ 1} are i.i.d. and independent of
{φit |t ≥ 0� i≥ 1}.

3. For all ζ, w(ι� ζ) is nondecreasing in ι.
4. For all ι > 0, P [w(ι� ζi�t+1) > 0]> 0.
5. There exists a positive constantw ∈ N such that |w(ι� ζ)| ≤w for all (ι� ζ).

There exists a positive constant ι such that ιit < ι, ∀i�∀t.
6. For all k ∈ {−w� � � � �w}, P [w(ι� ζi�t+1)= k] is continuous in ι.
7. The transitions generated by w(ι� ζ) are unique investment choice admis-

sible.

Again the assumptions are natural and fairly weak. Assumptions 3.2.1
and 3.2.2 imply that investment and exit outcomes are idiosyncratic conditional
on the state. Assumptions 3.2.3 and 3.2.4 imply that investment is productive.
Note that positive depreciation is neither required nor ruled out. Assump-
tion 3.2.5 places a finite bound on how much progress can be made or lost
in a single period through investment. Assumption 3.2.6 ensures that the im-
pact of investment on transition probabilities is continuous. Assumption 3.2.7
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is an assumption introduced by Doraszelski and Satterthwaite (2007) that en-
sures a unique solution to the firms’ investment decision problem. It is used to
guarantee the existence of an equilibrium in pure strategies and is satisfied by
many of the commonly used specifications in the literature.

We assume that there are a large number of potential entrants who play a
symmetric mixed entry strategy. In that case the number of actual entrants is
well approximated by the Poisson distribution (see the Appendix for a deriva-
tion of this result). This leads to the following assumptions:

ASSUMPTION 3.3:
1. The number of firms entering during period t is a Poisson random variable

that is conditionally independent of {φit� ζit |t ≥ 0� i≥ 1}, conditioned on st .
2. κ > β · φ̄, where φ̄ is the expected net present value of entering the market,

investing zero and earning zero profits each period, and then exiting at an optimal
stopping time.

We denote the expected number of firms entering at industry state st by λ(st).
This state-dependent entry rate will be endogenously determined, and our so-
lution concept will require that it satisfies a zero expected discounted prof-
its condition. Modeling the number of entrants as a Poisson random variable
has the advantage that it leads to more elegant asymptotic results. Assump-
tion 3.2.2 ensures that the sell-off value by itself is not a sufficient reason to
enter the industry.

3.4. Equilibrium

As a model of industry behavior we focus on pure strategy Markov perfect
equilibrium (MPE) in the sense of Maskin and Tirole (1988). We further as-
sume that equilibrium is symmetric, such that all firms use a common station-
ary investment/exit strategy. In particular, there is a function ι such that at each
time t, each incumbent firm i ∈ St invests an amount ιit = ι(xit� s−i�t). Similarly,
each firm follows an exit strategy that takes the form of a cutoff rule: there is a
real-valued function ρ such that an incumbent firm i ∈ St exits at time t if and
only if φit ≥ ρ(xit� s−i�t). In the Appendix we show that there always exists an
optimal exit strategy of this form even among very general classes of exit strate-
gies. Let M denote the set of exit/investment strategies such that an element
μ ∈ M is a pair of functions μ= (ι�ρ), where ι : N × S → �+ is an investment
strategy and ρ : N × S → �+ is an exit strategy. Similarly, we denote the set of
entry rate functions by Λ, where an element of Λ is a function λ : S → �+.

We define the value function V (x� s|μ′�μ�λ) to be the expected net present
value for a firm at state x when its competitors’ state is s, given that its competi-
tors each follows a common strategy μ ∈ M, the entry rate function is λ ∈ Λ,
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and the firm itself follows strategy μ′ ∈ M. In particular,

V (x� s|μ′�μ�λ)= Eμ′�μ�λ

[
τi∑
k=t
βk−t(π(xik� s−i�k)− dιik)+βτi−tφi�τi

∣∣∣
xit = x� s−i�t = s

]
�

where i is taken to be the index of a firm at quality level x at time t, τi is a
random variable that represents the time at which firm i exits the industry, and
the subscripts of the expectation indicate the strategy followed by firm i, the
strategy followed by its competitors, and the entry rate function. In an abuse of
notation, we will use the shorthand V (x� s|μ�λ) ≡ V (x� s|μ�μ�λ) to refer to
the expected discounted value of profits when firm i follows the same strategy
μ as its competitors.

An equilibrium to our model comprises an investment/exit strategy μ =
(ι�ρ) ∈ M and an entry rate function λ ∈ Λ that satisfy the following con-
ditions:

1. Incumbent firm strategies represent a MPE:

sup
μ′∈M

V (x� s|μ′�μ�λ)= V (x� s|μ�λ) ∀x ∈ N�∀s ∈ S�(3.1)

2. At each state, either entrants have zero expected discounted profits or
the entry rate is zero (or both):∑

s∈S

λ(s)
(
βEμ�λ

[
V (xe� s−i�t+1|μ�λ)|st = s

] − κ) = 0�

βEμ�λ
[
V (xe� s−i�t+1|μ�λ)|st = s

] − κ≤ 0 ∀s ∈ S�

λ(s)≥ 0 ∀s ∈ S�

In the Appendix, we show that the supremum in part 1 of the definition above
can always be attained simultaneously for all x and s by a common strategy μ′.

Doraszelski and Satterthwaite (2007) established the existence of an equi-
librium in pure strategies for a closely related model. We do not provide an
existence proof here because it is long and cumbersome, and would replicate
this previous work. With respect to uniqueness, in general we presume that our
model may have multiple equilibria.8

Dynamic programming algorithms can be used to optimize firm strategies,
and equilibria to our model can be computed via their iterative application.

8Doraszelski and Satterthwaite (2007) also provided an example of multiple equilibria in their
closely related model.
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However, these algorithms require computer time and memory that grow pro-
portionately with the number of relevant industry states, which is often in-
tractable in contexts of practical interest. This difficulty motivates our alter-
native approach.

4. OBLIVIOUS EQUILIBRIUM

We will propose a method for approximating MPE based on the idea that
when there are a large number of firms, simultaneous changes in individual
firm quality levels can average out such that the industry state remains roughly
constant over time. In this setting, each firm can potentially make near-optimal
decisions based only on its own quality level and the long-run average industry
state. With this motivation, we consider restricting firm strategies so that each
firm’s decisions depend only on the firm’s quality level. We call such restricted
strategies oblivious since they involve decisions made without full knowledge
of the circumstances—in particular, the state of the industry.

Let M̃ ⊂ M and Λ̃ ⊂ Λ denote the set of oblivious strategies and the set
of oblivious entry rate functions. Since each strategy μ = (ι�ρ) ∈ M̃ gener-
ates decisions ι(x� s) and ρ(x� s) that do not depend on s, with some abuse
of notation, we will often drop the second argument and write ι(x) and ρ(x).
Similarly, for an entry rate function λ ∈ Λ̃, we will denote by λ the real-valued
entry rate that persists for all industry states.

Note that if all firms use a common strategy μ ∈ M̃, the quality level of each
evolves as an independent transient Markov chain. Let the k-period transi-
tion subprobabilities of this transient Markov chain be denoted by Pkμ(x� y).
Then the expected time that a firm spends at a quality level x is given by∑∞

k=0 P
k
μ(x

e�x) and the expected lifespan of a firm is
∑∞

k=0

∑
x∈N
Pkμ(x

e�x).
Denote the expected number of firms at quality level x at time t by s̃t(x) =
E[st(x)]. The following result offers an expression for the long-run expected
industry state when dynamics are governed by oblivious strategies and entry
rate functions.

LEMMA 4.1: Let Assumption 3.2 hold. If firms make decisions according to an
oblivious strategy μ ∈ M̃ and enter according to an oblivious entry rate function
λ ∈ Λ̃, and the expected time that a firm spends in the industry is finite, then

lim
t→∞

s̃t(x)= λ
∞∑
k=0

Pkμ(x
e�x)(4.1)

for all x ∈ N.

We omit the proof, which is straightforward. To abbreviate notation, we let
s̃μ�λ(x)= limt→∞ s̃t(x) for μ ∈ M̃, λ ∈ Λ̃, and x ∈ N. For an oblivious strategy
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μ ∈ M̃ and an oblivious entry rate function λ ∈ Λ̃ we define an oblivious value
function

Ṽ (x|μ′�μ�λ)

=Eμ′

[
τi∑
k=t
βk−t(π(xik� s̃μ�λ)− dιik)+βτi−tφi�τi

∣∣∣xit = x
]
�

This value function should be interpreted as the expected net present value
of a firm that is at quality level x and follows oblivious strategy μ′, under the
assumption that its competitors’ state will be s̃μ�λ for all time. Note that only
the firm’s own strategy μ′ influences the firm’s state trajectory because neither
the profit function nor the strategy μ′ depends on the industry state. Hence,
the subscript in the expectation only reflects this dependence. Importantly,
however, the oblivious value function remains a function of the competitors’
strategy μ and the entry rate λ through the expected industry state s̃μ�λ. Again,
we abuse notation by using Ṽ (x|μ�λ)≡ Ṽ (x|μ�μ�λ) to refer to the oblivious
value function when firm i follows the same strategy μ as its competitors.

We now define a new solution concept: an oblivious equilibrium consists of
a strategy μ ∈ M̃ and an entry rate function λ ∈ Λ̃ that satisfy the following
conditions:

1. Firm strategies optimize an oblivious value function:

sup
μ′∈M̃

Ṽ (x|μ′�μ�λ)= Ṽ (x|μ�λ) ∀x ∈ N�(4.2)

2. Either the oblivious expected value of entry is zero or the entry rate is
zero (or both):

λ
(
βṼ (xe|μ�λ)− κ) = 0�

βṼ (xe|μ�λ)− κ≤ 0�

λ≥ 0�

It is straightforward to show that OE exists under mild technical conditions.
Furthermore, if the entry cost is not prohibitively high, then an OE with a
positive entry rate exists. We omit the proof of this for brevity. With respect to
uniqueness, we have been unable to find multiple OEs in any of the applied
problems we have considered, but similarly with the case of MPE, we have no
reason to believe that, in general, there is a unique OE.9

9However, since oblivious strategies rule out strategies that are dependent on competitors’
states, there are likely to be fewer OEs than there are MPE.
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Finally, in the Appendix we show that when strategies and entry rate func-
tions are oblivious, the Markov chain {st : t ≥ 0} admits an invariant distribu-
tion. Moreover, we show that when firms play OE strategies, the long-run be-
havior of the industry is such that the number of firms in each state x is given
by a Poisson random variable with mean s̃μ�λ(x), independent across states x.

5. ASYMPTOTIC RESULTS

As stated in the Introduction (see also Weintraub, Benkard, and Van Roy
(2007)), OEs are simple to compute because they only involve one dimensional
dynamic programs. However, how well do OEs approximate MPEs? In this
section, we study this question and prove the main result of the paper. In par-
ticular, we establish an asymptotic result that provides conditions under which
OEs offer close approximations to MPEs in large markets. The main condition
is that the sequence of OEs generates firm size (or quality level) distributions
that are “light-tailed” in a sense that we will make precise.

As specified above, our model does not explicitly depend on market size.
However, market size would typically enter the profit function, π(xit� s−i�t),
through the underlying demand system; in particular, profit for a firm at a given
state (x� s) would typically increase with market size. Therefore, in this section
we consider a sequence of markets indexed by market sizes m ∈ �+. All other
model primitives are assumed to remain constant within this sequence except
for the profit function, which depends on m. To convey this dependence, we
denote profit functions by πm.

We index functions and random variables associated with market sizem with
a superscript (m). From this point onward we let (μ̃(m)� λ̃(m)) denote an OE for
market size m. Let V (m) and Ṽ (m) represent the value function and oblivious
value function, respectively, when the market size is m. To further abbreviate
notation, we denote the expected industry state associated with (μ̃(m)� λ̃(m)) by
s̃(m) ≡ s̃μ̃(m)�λ̃(m) .

The random variable s(m)t denotes the industry state at time t when every firm
uses strategy μ̃(m) and the entry rate is λ̃(m). We denote the invariant distribu-
tion of {s(m)t : t ≥ 0} by q(m). To simplify our analysis, we assume that the initial
industry state s(m)0 is sampled from q(m). Hence, s(m)t is a stationary process; s(m)t

is distributed according to q(m) for all t ≥ 0. Note that this assumption does not
affect long-run asymptotic results since for any initial condition, the process
approaches stationarity as time progresses.

It will be helpful to decompose s(m)t according to s(m)t = f (m)t n(m)t , where f (m)t is
the random vector that represents the fraction of firms in each state and n(m)t is
the total number of firms, respectively. Similarly, let f̃ (m) ≡ E[f (m)t ] denote the
expected fraction of firms in each state and let ñ(m) ≡ E[n(m)t ] = ∑

x∈N
s̃(m)(x)

denote the expected number of firms. It is easy to check that f̃ (m) = s̃(m)/ñ(m).
With some abuse of notation, we define πm(xit� f−i�t� n−i�t)≡ πm(xit� n−i�t ·f−i�t).
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5.1. Assumptions About the Sequence of Profit Functions

In addition to Assumption 3.1, which applies to individual profit func-
tions, we will make the following assumptions, which apply to sequences of
profit functions. Let S1 = {f ∈ S|∑x∈N

f (x) = 1} and S1�z = {f ∈ S1|∀x > z�
f (x)= 0}.

ASSUMPTION 5.1:
1. supx∈N�s∈S πm(x� s)=O(m).10

2. For all increasing sequences {mk ∈ N|k ∈ N}, n : N 
→ N with n(mk) =
o(mk), x�z ∈ N with x > z, and f ∈ S1�z , limk→∞πmk(x� f�n(mk))= ∞.

3. The following holds

sup
m∈�+�x∈N�

f∈S1�n>0

∣∣∣∣d lnπm(x� f�n)
d lnn

∣∣∣∣<∞�

The assumptions are again fairly weak. Assumption 5.1.1, which states that
profits increase at most linearly with market size, should hold for virtually all
relevant classes of profit functions. It is satisfied, for example, if the total dis-
posable income of the consumer population grows linearly in market size.11

Assumption 5.1.2 is also natural. It states that if the number of firms grows
slower than the market size, then the largest firm’s profit becomes arbitrarily
large as the market grows. Assumption 5.1.3 requires that profits be smooth
with respect to the number of firms and, in particular, states that the relative
rate of change of profit with respect to relative changes in the number of firms
is uniformly bounded. To provide a concrete example, we show in Section 5.5
that these assumptions are satisfied by a single-period profit function derived
from a demand system given by a logit model and where the spot market equi-
librium is Nash in prices.

5.2. Asymptotic Markov Equilibrium

Our aim is to establish that under certain conditions, OEs well approximate
MPEs as the market size grows. We define the following concept to formalize
the sense in which this approximation becomes exact.

10In this notation, f (m) = O(m) denotes lim supm
f(m)

m
< ∞ and f (m) = o(m) denotes

lim supm
f(m)

m
= 0.

11For example, if each consumer has income that is less than some upper bound Ȳ , then total
disposable income of the consumer population (an upper bound to firm profits) is always less
than m · Ȳ .
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DEFINITION 5.1: A sequence (μ̃(m)� λ̃(m)) ∈ M ×Λ possesses the asymptotic
Markov equilibrium (AME) property if for all x ∈ N,

lim
m→∞

Eμ̃(m)�λ̃(m)
[

sup
μ′∈M

V (m)(x� s(m)t |μ′� μ̃(m)� λ̃(m))

− V (m)(x� s(m)t |μ̃(m)� λ̃(m))
]

= 0�

Recall that the process st is taken to be stationary and, therefore, this expec-
tation does not depend on t. The definition of AME assesses the approxima-
tion error at each firm state x in terms of the amount by which a firm at state x
can increase its expected net present value by deviating from the OE strategy
μ̃(m) and instead following an optimal (nonoblivious) best response that keeps
track of the true industry state. Recall that MPE require that the expression
in square brackets equals zero for all states (x� s). In that sense, the notion of
AME relates to the more common notion that ε-equilibria approximate true
equilibria in games as ε→ 0 (Fudenberg and Levine (1986)).12

Note that standard MPE solution algorithms (e.g., Pakes and McGuire
(1994)) aim to compute pointwise ε-equilibria; that is, where a firm cannot
improve its net present value by more than ε starting from any state (x� s). The
AME property instead considers the benefit of deviating to an optimal strat-
egy starting from each firm state x, averaged over the invariant distribution of
industry states. It would not be possible to obtain our results pointwise. This
is because in OE, firms may be making poor decisions in states that are far
from the expected state. Offsetting this effect is the fact that these states have
a very low probability of occurrence, so they have a small impact on expected
discounted profits.

If a sequence of OEs has the AME property, then as m grows,
supμ′∈M V (m)(x� s|μ′� μ̃(m)� λ̃(m)) ≈ V (m)(x� s|μ̃(m)� λ̃(m)) for states s that have
significant probability of occurrence. This implies that, asymptotically, μ̃(m) is
a near-optimal strategy (so it approximately satisfies the MPE equation) when
the industry starts in any state that has a significant probability of occurrence.
Additionally, one can show that when the sequence of OEs has the AME prop-
erty, then it is also the case that limm→∞Eμ̃(m)�λ̃(m)[|V (m)(xe� s(m)t |μ̃(m)� λ̃(m)) −
Ṽ (xe|μ̃(m)� λ̃(m))|] = 0. Since βṼ (xe|μ̃(m)� λ̃(m)) = κ for all m, asymptotically,
βV (m)(xe� s|μ̃(m)� λ̃(m)) ≈ κ for states s that have a significant probability of
occurrence. Hence, asymptotically, λ̃(m) satisfies the zero profit condition
at such states. In summary, if Eμ̃(m)�λ̃(m)[supμ′∈M V (m)(x� s(m)t |μ′� μ̃(m)� λ̃(m)) −

12Similar notions of closeness based on ε-equilibria are used by Roberts and Postlewaite
(1976), Fudenberg, Levine, and Pesendorfer (1998), and Al-Najjar and Smorodinsky (2001).
Pakes and McGuire (2001) also used a concept similar to the AME property as a stopping rule in
their stochastic algorithm.
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V (m)(x� s(m)t |μ̃(m)� λ̃(m))] is small, MPE strategies and entry rates at relevant
states should be well approximated by oblivious ones. Weintraub, Benkard,
and Van Roy (2007) presented computational results that support this point.13

Since OE will only have the ability to approximate MPE strategies in states
that have a significant probability of occurrence, OE will not be able to approx-
imate equilibria in which behavior depends on off-the-equilibrium-path values,
as is typically the case in tacit collusive schemes. In that sense, OE can be also
understood (at least heuristically) as a mechanism that selects MPE that are
“noncollusive.”14

5.3. Uniform Law of Large Numbers

The following theorem establishes that when the number of firms is large,
the industry state becomes approximately constant (i.e., s(m)t ≈ s̃(m)) with high
probability. We use →p to denote convergence in probability as m→ ∞.

THEOREM 5.1: If limm→∞ ñ(m) = ∞, then

sup
x∈N

∣∣∣∣s
(m)
t (x)

ñ(m)
− s̃(m)(x)

ñ(m)

∣∣∣∣ →p 0�

The theorem can be proved by invoking a uniform law of large numbers
(Vapnik and Chervonenkis (1971)) and using Lemma A.4 in the Appendix. It
suggests that when the expected number of firms is large, using an oblivious
strategy might be close to optimal, and that a sequence of OEs possesses the
AME property. However, for this to be the case it turns out that additional
conditions are required.

5.4. A Light-Tail Condition Implies AME

Even when there are a large number of firms, if the market tends to be
concentrated—for example, if the market is usually dominated by few firms—
the AME property is unlikely to hold. A strategy that does not keep track of the
dominant firms will perform poorly. To ensure the AME property, we need to
impose a light-tail condition that rules out this kind of market concentration.

13One might attempt to formalize this argument by following a line of reasoning similar to
Fudenberg and Levine (1986) or Altman, Pourtallier, Haurie and Moresino (2000), who provided
conditions under which, if a sequence of restricted games, Gm, converges to a game of interest,
G, in an appropriate way, then any convergent sequence of εm-equilibria of Gm with εm → 0
converges to an equilibrium of G.

14Note that even under the Markov perfection assumption, tacit collusive agreements could
be supported as equilibria. For example, firms may remain small by the threat of escalation in
investment outlays (see Nocke (2007)).
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In this section, we establish the main result of the paper; under an appropriate
light-tail condition, the sequence of OEs possesses the AME property.

Note that (d lnπm(y� f�n))/df (x) is the semielasticity of one-period profits
with respect to the fraction of firms in state x. We define the maximal absolute
semielasticity function:

g(x)= sup
m∈�+�y∈N�

f∈S1�n>0

∣∣∣∣d lnπm(y� f�n)
df (x)

∣∣∣∣�

For each x, g(x) is the maximum rate of relative change of any firm’s single-
period profit that could result from a small change in the fraction of firms at
quality level x. Since larger competitors tend to have greater influence on firm
profits, g(x) typically increases with x and can be unbounded.

Finally, we introduce our light-tail condition. For eachm, let x̃(m) ∼ f̃ (m), that
is, x̃(m) is a random variable with probability mass function f̃ (m). The random
variable x̃(m) can be interpreted as the quality level of a firm that is randomly
sampled from among all incumbents while the industry state is distributed ac-
cording to its invariant distribution.

ASSUMPTION 5.2: For all quality levels x, g(x) <∞. For all ε > 0, there exists
a quality level z such that

E
[
g(x̃(m))1{x̃(m)>z}

] ≤ ε
for all market sizes m.

Put simply, the light-tail condition requires that states where a small change
in the fraction of firms has a large impact on the profits of other firms must have
a small probability under the invariant distribution. In practice, this typically
means that very large firms (and hence high concentration) rarely occur under
the invariant distribution.

Recall that g(x) is the maximum rate of relative change of any firm’s single-
period profit that could result from a small change in the fraction of firms at
quality level x. The first part of the assumption requires that for any x, this
quantity is finite. If this condition is not satisfied, a small change in the number
of firms at quality level x can have an arbitrarily large impact on other firms’
profits as the market size grows. It is unlikely that OE will provide a good
approximation in this situation. Note that the assumption imposes that g(x) is
finite for each x, but allows g(x) to grow arbitrarily large as x grows.

To interpret the second part of the assumption, it is helpful to first under-
stand a weaker condition: E[g(x̃(m))]<∞. This weaker condition ensures that
the expected impact of a randomly sampled incumbent is finite. It can be
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viewed as a light-tail condition, since it requires that the probability of sam-
pling firms at large quality levels dies off sufficiently quickly so that the ex-
pected impact remains finite. For any x and z, the product g(x)1{x>z} is equal
to 0 if x≤ z, but otherwise is equal to g(x). Hence, E[g(x̃(m))1{x̃(m)>z}] is similar
to E[g(x̃(m))], but ignores the impact of any sampled firm if its quality level is z
or lower. Consequently, E[g(x̃(m))1{x̃(m)>z}] bounds the expected impact of the
presence of a randomly sampled firm if the impact of any firm with quality level
z or lower is ignored.

It is easy to see that the conditionE[g(x̃(m))]<∞ is equivalent to a condition
that, for any ε > 0, there exists a quality level z such that E[g(x̃(m))1{x̃(m)>z}] ≤ ε.
This is because increasing z sufficiently will result in ignoring a larger and
larger fraction of firms in computing the expected impact and the expected
impact when none of the firms is ignored is finite. Assumption 5.2 poses a
stronger condition in that it requires that a quality level z can be chosen such
that E[g(x̃(m))1{x̃(m)>z}] ≤ ε for all market sizes m simultaneously. This is like
the light-tail condition E[g(x̃(m))1{x̃(m)>z}] ≤ ε or, equivalently, E[g(x̃(m))]<∞,
which applies to a fixed market size, but it precludes the possibility that the
tail becomes arbitrarily “fat” as the market size increases. In a sense, it re-
quires that the tails of quality distributions f̃ (m) are uniformly light over market
sizes m.

We note that if g(x) is strictly increasing and unbounded, the light-tail
condition is equivalent to the condition that the class of random variables
{g(x̃(m))|m ∈ �+} is uniformly integrable. In this case, if there exists γ > 0,
such that supm E[g(x̃(m))1+γ]<∞, Assumption 5.2 is satisfied. The condition is
slightly stronger than requiring uniformly bounded first moments of g(x̃(m)).

The following theorem establishes that, asymptotically, the average number
of firms grows at least linearly in the market size.

THEOREM 5.2: Under Assumptions 3.1, 3.2, 3.3, 5.1.2, and 5.2, ñ(m) =Ω(m).15

The proof can be found in the Appendix. The result implies that if the light-
tail condition is satisfied, then the expected number of firms under OE strate-
gies grows to infinity as the market size grows. The intuition behind the result
is simple. If the number of firms were to grow slower than the market size,
profits would blow up and the zero profit condition at the entry state would
not be met.

The next result, which is also proved in the Appendix, establishes a
stronger form of convergence than Theorem 5.1. First, we define ‖f‖1�g =∑

x |f (x)|g(x).

15In this notation, f (m) = Ω(m) implies that lim infm
f(m)

m
> 0. With an additional technical

regularity condition, it is straightforward to show that ñ(m) = O(m). Hence, in this case, ñ(m) =
Θ(m), that is, ñ(m) grows linearly in m asymptotically.
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THEOREM 5.3: Let Assumptions 3.1, 3.2, 3.3, 5.1.2, and 5.2 hold. Then, as m
grows, n(m)t /ñ(m) →p 1 and ‖f (m)t − f̃ (m)‖1�g →p 0.

The light-tail condition is key to proving the second part of the result,
namely, convergence of the normalized industry states in the ‖ · ‖1�g weighted
norm. This new form of convergence allows us to ensure the AME property,
which leads to the main result of the paper.

THEOREM 5.4: Under Assumptions 3.1, 3.2, 3.3, 5.1, and 5.2, the sequence
{μ̃(m)� λ̃(m)} of OEs possesses the AME property.

This result is proved in the Appendix. We provide an explanation of the main
steps of the proof here. First, we compare the value functions in the definition
of the AME property through the OE value function. Formally,

Eμ̃(m)�λ̃(m)
[

sup
μ′∈M

V (m)(x� s(m)t |μ′� μ̃(m)� λ̃(m))− V (m)(x� s(m)t |μ̃(m)� λ̃(m))
]

(5.1)

=Eμ̃(m)�λ̃(m)
[

sup
μ′∈M

V (m)(x� s(m)t |μ′� μ̃(m)� λ̃(m))− Ṽ (m)(x|μ̃(m)� λ̃(m))
]

+Eμ̃(m)�λ̃(m)
[
Ṽ (m)(x|μ̃(m)� λ̃(m))− V (m)(x� s(m)t |μ̃(m)� λ̃(m))]�

We now explain how we prove that the first expectation in the right-hand side
above converges to zero; the argument for the second one is analogous. First,
we observe that because μ̃(m) and λ̃(m) attain an OE, for all x,

Ṽ (m)(x|μ̃(m)� λ̃(m))= sup
μ′∈M̃

Ṽ (m)(x|μ′� μ̃(m)� λ̃(m))

= sup
μ′∈M

Ṽ (m)(x|μ′� μ̃(m)� λ̃(m))�

where the last equation follows because there will always be an optimal obliv-
ious strategy when optimizing an oblivious value function even if we consider
more general strategies (a key feature of oblivious strategies). Hence,

V (m)(x� s|μ∗(m)� μ̃(m)� λ̃(m))− Ṽ (m)(x|μ̃(m)� λ̃(m))
≤ V (m)(x� s|μ∗(m)� μ̃(m)� λ̃(m))− Ṽ (m)(x|μ∗(m)� μ̃(m)� λ̃(m))�

where μ∗(m) ∈ M achieves the supremum in equation (5.1). Note that in the
right-hand side of the above inequality both value functions are evaluated at
the same set of strategies. This allows us to compare V (m)(x� s|μ∗(m)� μ̃(m)� λ̃(m))
with Ṽ (m)(x|μ̃(m)� λ̃(m)) by only taking into consideration the difference be-
tween single-period profits (actual versus oblivious). The quantities asso-
ciated with the difference between strategies (μ∗(m) versus μ̃(m)) can be
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neglected, greatly simplifying the analysis. Hence, using the previous in-
equality we obtain one of the key insights of the proof; the difference be-
tween value functions can be bounded by a discounted sum of expected dif-
ferences between actual and oblivious single-period profits. Formally, the
first expectation in the right-hand side of equation (5.1) can be bounded
by

∞∑
k=t
βk−tEμ∗(m)�μ̃(m)�λ̃(m)

[|πm(xik� s(m)−i�k)−πm(xik� s̃(m))|
∣∣(5.2)

xit = x� s(m)−i�t ∼ q(m)
]
�

Hence, if expected actual and oblivious single-period profits are close, then the
respective expected value functions are also close.

To finish the proof, we show that the discounted sum (5.2) converges to
zero. For this, first we argue that πm(x� s) and πm(x� s

′) are close when
|n/n′ − 1| and ‖f − f ′‖1�g are small. The previous statement embodies an-
other key insight. Single-period profits evaluated at different industry states
are close if the states are close under the appropriate norm. For example,
even if ‖f − f ′‖∞ is small (where ‖ · ‖∞ denotes the sup norm), the dif-
ference between πm(x� f�n) − πm(x� f

′� n) could still be huge. Differences
in profits are generally determined by the cumulative difference in the frac-
tion of firms at each quality level. Moreover, it is likely that differences at
larger states have a bigger impact on profits. The weighted ‖ · ‖1�g norm cap-
tures these effects. Finally, the previous continuity statement together with
Theorem 5.3 is used to show that the discounted sum (5.2) converges to
zero.

5.5. Example: Logit Demand System With Price Competition

To provide a concrete example of the conditions required for the asymp-
totic results above, we consider a model similar to that of Pakes and McGuire
(1994). We consider an industry with differentiated products, where each firm’s
state variable represents the quality of its product. There are m consumers in
the market. In period t, consumer j receives utility uijt from consuming the
good produced by firm i given by

uijt = θ1 ln(xit + 1)+ θ2 ln(Y −pit)+ νijt� i ∈ St� j = 1� � � � �m�

where Y is the consumer’s income and pit is the price of the good produced
by firm i. νijt are i.i.d. random variables that are Gumbel distributed and rep-
resent unobserved characteristics for each consumer–good pair. There is also
an outside good that provides consumers zero utility. We assume consumers
buy at most one product each period and that they choose the product that
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maximizes utility. Under these assumptions, our demand system is a classical
logit model.

We assume that firms set prices in the spot market. If there is a constant
marginal cost c, there is a unique Nash equilibrium in pure strategies, denoted
p∗
t (Caplin and Nalebuff (1991)). Expected profits are given by

πm(xit� s−i�t)=mσ(xit� s−i�t�p∗
t )(p

∗
it − c)� ∀i ∈ St�

where σ represents the market share function from the logit model. In the
Appendix we show that this single-period profit function satisfies Assumptions
3.1 and 5.1. In addition, we show that, in this model, the function g(x̃(m)) takes
a very simple form,

g(x̃(m))∝ (x̃(m))θ1�

where θ1 is the parameter on quality in the logit demand model. Therefore, the
light-tail condition amounts to a simple condition on the equilibrium distribu-
tion of firm states. Under our assumptions, such a condition is equivalent to a
condition on the equilibrium size distribution of firms.

The light-tail condition requires that for all ε > 0, there exists a quality level
z such that E[(x̃(m))θ1 1{x̃(m)>z}] ≤ ε for all market sizes m. If θ1 < 1, then the
light-tail condition is satisfied if supm E[x̃(m)] <∞, that is, if the average firm
quality level remains uniformly bounded over all market sizes. This condition
allows for relatively fat-tailed distributions. For example, if x̃(m) is a sequence
of log-normal distributions with uniformly bounded parameters, then the con-
dition is satisfied. On the other hand, if x̃(m) converges to a Pareto distribution
with parameter one (which does not have a finite first moment), then the con-
dition would not be satisfied.

6. CONCLUSIONS AND FUTURE RESEARCH

The goal of this paper has been to provide foundations for an approxima-
tion method for analyzing Ericson and Pakes (1995)-style dynamic models of
imperfect competition. Existing dynamic programming methods suffer from a
curse of dimensionality that has limited application of these models to indus-
tries with a small number of firms and a small number of states per firm. We
propose instead to approximate MPE behavior using OE, where firms make
decisions only based on their own state and the long-run average industry state.
Our main result lays a theoretical foundation for our method; we show that the
approximation works well asymptotically, where asymptotics are taken in the
market size. A key condition for an OE to well approximate MPE asymptoti-
cally is that the sequence of industry states generated by the OEs is light-tailed
(as described by Assumption 5.2).

In a complementary paper (Weintraub, Benkard, and Van Roy (2007)), we
have developed computational tools to facilitate the use of OE in practice.
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That paper also provides computational evidence to support the conclusion
that OE often yields good approximations of MPE behavior for industries like
those that empirical researchers would like to study.

However, while we believe that the concept of OE will be useful in empir-
ical applications on its own (see also Xu (2006)), we think that the greatest
value of OE may come through some extensions that we now briefly describe.
In a spirit similar to Krusell and Smith (1998), we envision algorithms that will
progressively incorporate more information into firms’ strategies, improving
the accuracy of the approximation until an acceptable performance is reached.
First, in Weintraub, Benkard, and Van Roy (2007) we extended the notion of
OE to accommodate aggregate industry shocks. Additionally, to capture short-
run transitional dynamics that may result, for example, from shocks or policy
changes, we have also developed a nonstationary notion of OE in which every
firm knows the industry state in the initial period, but does not update this
knowledge after that point. Finally, in ongoing research, we are working on an
extended notion of OE that allows for there to be a set of “dominant firms,”
whose firm states are always monitored by every other firm. Our hope is that
the dominant firm OE will provide better approximations for more concen-
trated industries. Each of these extensions trades off increased computation
time for a better behavioral model and a better approximation to MPE be-
havior. Note also that it is our belief that the theorem in this paper could be
extended to cover each of these cases.

APPENDIX A: PROOFS AND MATHEMATICAL ARGUMENTS

A.1. Proofs and Mathematical Arguments for Section 3

A.1.1. The Poisson Entry Model

Suppose there are N potential entrants. Each potential entrant enters if the
setup cost κ is less than the expected present value of future cash flows upon
entry. Let vN(i) be the expected present value of future cash flows for each
entering firm if i firms enter simultaneously; vN(i) is nonincreasing in i. One
can then pose the problem faced by potential entrants as a game in which each
entrant employs a mixed strategy and enters with some probability pN . If we
assume that every potential entrant employs the same strategy, the condition
for a mixed strategy Nash equilibrium when κ ∈ [vN(N)�vN(1)] can be written
as

N−1∑
i=0

(
N − 1
i

)
piN(1 −pN)N−1−ivN(i+ 1)− κ= 0�(A.1)

which is solved by a unique pN ∈ [0�1]. If κ < vN(N), the equilibrium is a
pure strategy with pN = 1, whereas if κ > vN(1), the equilibrium is given by
pN = 0. The following result, which we state without proof, establishes that
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our Poisson entry model can be viewed as a limiting case as the number of
potential entrants N grows large.

LEMMA A.1: Let the following conditions hold:
1. vN(i) is nonincreasing in i ∀N and nonincreasing in N ∀i.
2. There exists a positive number M such that |vN(i)|<M ∀N , ∀i.
3. There exists N , such that ∀N >N , vN(i)− κ changes sign in {1�N − 1}.
4. There exists a function v(i) such that limN→∞ supi∈N

|vN(i)− v(i)| = 0.
Then the subsequent conditions hold:

1. For each N >N , equation (A.1) has a unique solution p∗
N ∈ (0�1).

2. The limit λ= limN→∞Np∗
N exists, and if YN is a binomial random variable

with parameters (N�p∗
N) and Z is a Poisson random variable with mean λ, then

YN ⇒Z.

The result states that if the number of potential entrants grows to infinity,
then the entry process converges to a Poisson random variable. Hence, Pois-
son entry can be understood as the result of a large population of potential
entrants, each one playing a mixed strategy and entering the industry with a
very small probability.

A.1.2. Bellman’s Equation and Exit Cutoff Strategy

We define a dynamic programming operator:

(Tμ�λV )(x� s)= π(x� s)+E
[
max

{
φit� sup

ι≥0

(−dι
+βEμ�λ[V (xi�t+1� s−i�t+1)|xit = x� s−i�t = s� ιit = ι]

)}]

for all x ∈ N and s ∈ S .
To simplify the notation in this section we will let V μ′

μ�λ ≡ V (·|μ′�μ�λ).

LEMMA A.2: Let Assumptions 3.1 and 3.2 hold. Then, for all μ ∈ M and λ ∈
Λ, there exists μ∗ ∈ M such that

V μ∗
μ�λ = sup

μ′∈M
V μ′
μ�λ = Tμ�λV μ∗

μ�λ�

Further, V μ∗
μ�λ is the unique fixed point of Tμ�λ within the class of bounded functions.

PROOF: Investment is bounded. Let π = supx�s π(x� s) < ∞. Then βφ ≤
ρ(x� s) ≤ π

1−β + φ ∀x ∈ N�∀s ∈ S . Therefore, the action space for each state
is compact.
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For a given state (x� s), expected one-period profits including investment
and sell-off value can be written as

π(x� s)− dι(x� s)P [φ< ρ(x� s)]
+E[φ |φ≥ ρ(x� s)]P [φ≥ ρ(x� s)]�

Note that π(x� s) < π, investment is bounded, and φ has finite expectation.
Therefore, expected one-period profits including investment and the sell-off
value are uniformly bounded for all states (x� s). The result follows by Propo-
sitions 1.2.2 and 3.1.7 in Bertsekas (2001). Q.E.D.

By the lemma and the definition of the dynamic programming operator we
observe that there exists an optimal exit strategy that has the form of a cutoff
value.

A.2. Proofs and Mathematical Arguments for Section 4: Long-Run Behavior
and the Invariant Industry Distribution

In this section we analyze the long-run behavior of an industry where strate-
gies and the entry rate function are oblivious. The results will be useful to
prove our main result. The proofs are provided in a separate technical ap-
pendix (Weintraub, Benkard, and Van Roy (2008)).

In Lemma 4.1, we characterized the long-run expected industry state. Our
next result characterizes the long-run distribution. The symbol ⇒ denotes
weak convergence as t → ∞.

LEMMA A.3: Let Assumptions 3.2 and 3.3 hold. Assume that firms follow a
common oblivious strategy μ ∈ M̃, the expected entry rate is λ ∈ Λ̃, and the ex-
pected time that each firm spends in the industry is finite. Let {Zx :x ∈ N} be a
sequence of independent Poisson random variables with means {s̃μ�λ(x) :x ∈ N}
and let Z be a Poisson random variable with mean

∑
x∈N
s̃μ�λ(x). Then:

(a) {st : t ≥ 0} is an irreducible, aperiodic, and positive recurrent Markov
process;

(b) the invariant distribution of st is a product form of Poisson random vari-
ables;

(c) for all x, st(x)⇒Zx;
(d) nt ⇒Z.

We state another important result for later use. First note that

st(x)=
∑
i∈St

1{xit=x} =
nt∑
j=1

1{x(j)t=x}�
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where 1A denotes the indicator of event A. Hence, for example, 1{xit=x} = 1 if
xit = x and 1{xit=x} = 0 otherwise. {x(j)t : j = 1� � � � � nt} is a random permutation
of {xit : i ∈ St}. That is, we randomly pick a firm from St and assign to it the index
j = 1; from the remaining firms we randomly pick another firm and assign to it
the index j = 2, and so on.

LEMMA A.4: Let Assumptions 3.2 and 3.3 hold. Assume that firms follow a
common oblivious strategy μ ∈ M̃, the expected entry rate is λ ∈ Λ̃, and the ex-
pected time that each firm spends in the industry is finite. Let {Yn :n ∈ N} be a
sequence of integer-valued i.i.d. random variables, each distributed according to
s̃μ�λ(·)/∑

x∈N
s̃μ�λ(x). Then, for all n ∈ N,

(x(1)t� � � � � x(nt )t |nt = n)⇒ (Y1� � � � �Yn)�

The Poisson entry process is key to proving these results. Lemma A.4 ensures
that if we sample a firm randomly from those firms currently in the industry
and the industry state is distributed according to the invariant distribution, the
firm’s state will be distributed according to the normalized expected industry
state. Further, each subsequent time we sample without replacement we get an
independent sample from the same distribution.

It is straightforward to show that if per-period profit is bounded, say by some
quantity π, then the expected time a firm spends in the industry is finite for any
oblivious strategy μ ∈ M̃ that comprises an OE. This follows from the fact that
the sell-off value has support in �+ and the continuation value from every state
is bounded above by π

1−β +φ. Hence, the probability of exiting in each period
is bounded below by a positive constant. This implies that the previous lemmas
apply when firms use OE strategies.

A.3. Proofs and Mathematical Arguments for Section 5

A.3.1. Preliminary Lemmas

LEMMA A.5: Under Assumptions 3.1, 3.2, and 3.3, for all x,

sup
m

Ṽ (m)(x|μ̃(m)� λ̃(m)) <∞�

PROOF: We will assume that x≥ xe; the case of x < xe is trivial. Assume for
contradiction that supm Ṽ

(m)(x|μ̃(m)� λ̃(m))= ∞. We will argue that this contra-
dicts the zero profit condition for entering firms. If a firm invests ι > 0, there
is a probability p(ι) > 0 that the firm will increase its quality level by at least
one unit. Let τ be the time a firm takes to transition from state xe to state x. If
a firm invests ι > 0 in each period, by a geometric trials argument, E[τ]<∞.
Therefore, there exists an investment strategy for which the expected time and



MARKOV PERFECT INDUSTRY DYNAMICS 1401

cost to transition from xe to x are uniformly bounded above over m. It fol-
lows that supm Ṽ

(m)(xe|μ̃(m)� λ̃(m))= ∞. This contradicts the zero profit condi-
tion. Q.E.D.

Let �1�g = {f ∈ �∞
+ |‖f‖1�g < ∞}. With some abuse of notation, let S1�g =

S1 ∩ �1�g.

LEMMA A.6: Let Assumptions 3.1, 3.2, 3.3, and 5.2 hold. Then, for all x,

sup
m

sup
μ∈M

Eμ

[ ∞∑
k=t
βk−t sup

f∈S1

πm(xik� f� ñ
(m))

∣∣∣xit = x
]
<∞�

PROOF: Let all expectations in this proof be conditioned on xit = x. First
note that

sup
m

sup
μ∈M

Eμ

[ ∞∑
k=t
βk−tπm(xik� s̃(m))

]
<∞�(A.2)

If not, supm Ṽ
(m)(x|μ̃(m)� λ̃(m)) = ∞, because total investment cost is bounded

by ι
1−β , violating Lemma A.5.

By Assumption 3.1.4, the fundamental theorem of calculus, and the chain
rule for Fréchet differentiable functions (Luenberger (1969)), it follows that
for any y ∈ N, f� f ′ ∈ S1�g, and m�n ∈ �+,

| lnπm(y� f�n)− lnπm(y� f ′� n)|(A.3)

=
∣∣∣∣
∫ 1

γ=0

∑
x∈N

(f (x)− f ′(x))
(
∂ lnπm(y� f ′ + γ(f − f ′)�n)

∂f (x)

)
dγ

∣∣∣∣
≤

∫ 1

γ=0

∑
x∈N

(|f (x)− f ′(x)|)g(x)dγ
= ‖f − f ′‖1�g

<∞�

Letting f = (1�0�0� � � �), using Assumption 5.2, it follows that
supx∈N�m∈�+ |πm(x� f � ñ(m)) − πm(x� s̃

(m))| ≡ C <∞. By Assumption 3.1.2, for
allm ∈ �+, x ∈ N, and f ∈ S1, πm(x� f� ñ(m))≤ πm(x� f � ñ(m))≤ πm(x� s̃(m))+C.
The result then follows from (A.2). Q.E.D.

A.3.2. Proof of Theorem 5.2

THEOREM 5.2: Under Assumptions 3.1, 3.2, 3.3, 5.1.2, and 5.2, ñ(m) =Ω(m).
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PROOF: Assume for contradiction that lim infm(ñ(m)/m)= 0. Then there ex-
ists an increasing sequence mk such that limk(ñ

(mk)/mk)= 0, and by Assump-
tion 5.1.2, for all x�z ∈ N with x > z, and f ∈ S1�z , limk→∞πmk(x� f� ñ

(mk))= ∞.
Using equation (A.3), it follows from Assumptions 3.1.4 and 5.2 that

lim
z→∞

sup
m

inf
f̂∈S1�z

sup
x

| lnπm(x� f̃ (m)� ñ(m))− lnπm(x� f̂ � ñ(m))| = 0�

It follows that

lim
z→∞

sup
m

inf
f̂∈S1�z

sup
x

∣∣∣∣πm(x� f̃ (m)� ñ(m))
πm(x� f̂ � ñ(m))

− 1
∣∣∣∣ = 0

and, therefore,

πm(x� f̃
(m)� ñ(m))≥ (1 − ε)πm(x� f̂ (m)� ñ(m))

for a sequence f̂ (m) ∈ S1�z with sufficiently large z, and for all x and m. This
implies that for all x > z, limk→∞πmk(x� f̃

(mk)� ñ(mk)) = ∞, which contradicts
Lemma A.5. It follows that ñ(m) =Ω(m). Q.E.D.

A.3.3. Proof of Theorem 5.3

LEMMA A.7: Let Assumptions 3.1, 3.2, 3.3, 5.1.2, and 5.2 hold. Then, for any
δ > 0,

P
[∣∣∣∣n

(m)
t

ñ(m)
− 1

∣∣∣∣ ≥ δ
]

≤ e−Ω(m)�

PROOF: By a simple analysis of the Poisson distribution, it is easy to show
that if n is a Poisson random variable with mean ñ,

P
[∣∣∣∣nñ − 1

∣∣∣∣ ≥ δ
]

≤ e−Θ(ñ)�

By Lemma A.3, n(m)t is a Poisson random variable with mean ñ(m). By Theo-
rem 5.2, ñ(m) =Ω(m). The result follows. Q.E.D.

THEOREM 5.3: Let Assumptions 3.1, 3.2, 3.3, 5.1.2, and 5.2 hold. Then, as m
grows, n(m)t /ñ(m) →p 1 and ‖f (m)t − f̃ (m)‖1�g →p 0.

PROOF: Convergence of n(m)t /ñ(m) follows from Lemma A.7. To com-
plete the proof, we will establish convergence of ‖f (m)t − f̃ (m)‖1�g. Note that
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for any z ∈ N,

‖f (m)t − f̃ (m)‖1�g ≤ zmax
x≤z

g(x)|f (m)t (x)− f̃ (m)(x)|

+
∑
x>z

g(x)f (m)t (x)+
∑
x>z

g(x)f̃ (m)(x)

≡A(m)
z +B(m)z +C(m)

z �

We will show that for any z, A(m)
z converges in probability to zero, that for any

δ > 0, for sufficiently large z, limm→∞ P [C(m)
z ≥ δ] = 0, and that for any δ > 0

and ε > 0, for sufficiently large z, lim supm→∞ P [B(m)z ≥ δ] ≤ ε/δ. The assertion
that ‖f (m)t − f̃ (m)‖1�g →p 0 follows from these facts.

By Lemma A.4, for any x, (f (m)t (x)|n(m)t = n) is distributed as the empirical
mean of n i.i.d. Bernoulli random variables with expectation f̃ (m)(x). It follows
that for any x, (|f (m)t (x)− f̃ (m)(x)||nt = n) converges in probability to zero uni-
formly overm as n grows. By Theorem 5.2 and the fact that n(m)t /ñ(m) converges
in probability to 1, for any n, limm→∞ P [n(m)t ≤ n] = 0. It follows that for any z,
A(m)
z converges in probability to zero.
By Assumption 5.2, for any δ > 0, for sufficiently large z, lim supm→∞C

(m)
z <

δ and, therefore, limm→∞ P [C(m)
z ≥ δ] = 0. By Tonelli’s theorem, E[B(m)z ] =

C(m)
z . Invoking Markov’s inequality, for any δ > 0 and ε > 0, for sufficiently

large z, lim supm→∞ P [B(m)z ≥ δ] ≤ ε/δ. The result follows. Q.E.D.

A.3.4. Proof of Theorem 5.4

The following technical lemma follows immediately from Assumption 5.1.3.
The proof is similar to Lemma A.10 and is omitted.

LEMMA A.8: Let Assumptions 3.1.3 and 5.1.3 hold. Then, for all ε > 0, there
exists δ > 0 such that for all n� n̂ ∈ �+ satisfying |n/n̂− 1|< δ,

sup
m∈�+�x∈N�f∈S1

∣∣∣∣πm(x� f�n)−πm(x� f� n̂)
πm(x� f� n̂)

∣∣∣∣ ≤ ε�

LEMMA A.9: Let Assumptions 3.1, 3.2, 3.3, 5.1, and 5.2 hold. Then, for all
sequences {μ(m) ∈ M},

lim
m→∞

Eμ(m)�μ̃(m)�λ̃(m)

[
τi∑
k=t
βk−t |πm(xik� s(m)−i�k)−πm(xik� f (m)−i�k� ñ

(m))|∣∣

xit = x� s(m)−i�t ∼ q(m)
]

= 0�
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PROOF: For the purpose of this proof, we will assume that all expectations
are conditioned on xit = x and s(m)−i�t ∼ q(m). Note that if s(m)−i�t is distributed ac-
cording to q(m), then the marginal distribution of s(m)−i�k is also q(m) for all k > t.
Let Δ(m)it = |πm(xit� s(m)−i�t) − πm(xit� f

(m)
−i�t � ñ

(m))|. Fix ε > 0 and let δ > 0 satisfy
the assertion of Lemma A.8. Let Z(m) denote the event |n(m)t /ñ(m) − 1| ≥ δ.
Applying Tonelli’s theorem, we obtain

Eμ(m)�μ̃(m)�λ̃(m)

[
τi∑
k=t
βk−tΔ(m)ik

]

≤
∞∑
k=t
βk−tEμ(m)�μ̃(m)�λ̃(m)[Δ(m)ik ]

=
∞∑
k=t
βk−t(Eμ(m)�μ̃(m)�λ̃(m)[Δ(m)ik 1¬Z(m)] +Eμ(m)�μ̃(m)�λ̃(m)[Δ(m)ik 1Z(m)]

)

≤
∞∑
k=t
βk−t(εEμ(m)�μ̃(m)�λ̃(m)[πm(xik� f (m)−i�k� ñ

(m))
] +O(m)P [Z(m)])

≤ εEμ(m)�μ̃(m)�λ̃(m)
[ ∞∑
k=t
βk−t sup

f∈S1

πm(xik� f� ñ
(m))

]
+ O(m)P [Z(m)]

1 −β �

where the second to last inequality follows from Lemma A.8 and Assump-
tion 5.1.1. Since ε is arbitrary, the expected sum is finite (by Lemma A.6), and
P [Z(m)] ≤ e−Ω(m) (by Lemma A.7), the result follows. Q.E.D.

The following technical lemma follows from assumptions on the profit func-
tion.

LEMMA A.10: Let Assumptions 3.1.3 and 3.1.4 hold. Then, for all ε > 0, there
exists δ > 0 such that for f� f̂ ∈ S1�g satisfying ‖f − f̂‖1�g < δ,

sup
m∈�+�x∈N�n∈�+

∣∣∣∣πm(x� f�n)−πm(x� f̂ � n)
πm(x� f̂ � n)

∣∣∣∣ ≤ ε�

PROOF: By equation (A.3), for any x ∈ N, f� f̂ ∈ S1�g, and m�n ∈ �+,
∣∣ln(πm(x� f�n)/πm(x� f̂ � n))∣∣ ≤ ‖f − f̂‖1�g�(A.4)

Let B = πm(x� f�n)/πm(x� f̂ � n), where we have ignored the dependence on
m�x�f� f̂ � n to simplify notation. Take ε > 0 and let δ in the statement of
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the lemma be δ = ln(1 + ε) > 0. Suppose B > 1. By equation (A.4), ln(B) =
| ln(B)| < ln(1 + ε); hence, |B − 1| < ε for all m�x�n. Suppose B < 1. By
equation (A.4), − ln(B) = | ln(B)| < ln(1 + ε); hence, 1/B < 1 + ε. Then
|B−1| = 1−B < ε/(1+ε) < ε, for allm�x�n, where the last inequality follows
because ε > 0. The result follows. Q.E.D.

LEMMA A.11: Let Assumptions 3.1, 3.2, 3.3, 5.1, and 5.2 hold. Then, for all
sequences {μ(m) ∈ M},

lim
m→∞

Eμ(m)�μ̃(m)�λ̃(m)

[
τi∑
k=t
βk−t |πm(xik� f (m)−i�k� ñ

(m))−πm(xik� s̃(m))|
∣∣

xit = x� s(m)−i�t ∼ q(m)
]

= 0�

PROOF: For the purpose of this proof, we will assume that all expectations
are conditioned on xit = x and s(m)−i�t ∼ q(m). Let Δ(m)it = |πm(xit� f (m)−i�t � ñ

(m)) −
πm(xit� s̃

(m))|. Fix ε > 0 and let δ satisfy the assertion of Lemma A.10. Let Z(m)

denote the event ‖f (m)−i�k − f̃ (m)‖1�g ≥ δ. Applying Tonelli’s theorem, we obtain

Eμ(m)�μ̃(m)�λ̃(m)

[
τi∑
k=t
βk−tΔ(m)ik

]

≤
∞∑
k=t
βk−tEμ(m)�μ̃(m)�λ̃(m)[Δ(m)ik ]

=
∞∑
k=t
βk−t(Eμ(m)�μ̃(m)�λ̃(m)[Δ(m)ik 1¬Z(m)] +Eμ(m)�μ̃(m)�λ̃(m)[Δ(m)ik 1Z(m)]

)

≤ εC +
∞∑
k=t
βk−tEμ(m)�μ̃(m)�λ̃(m)[Δ(m)ik 1Z(m)]

for some constant C > 0. The last inequality follows from Lemmas A.6
and A.10.

Note that Δ(m)ik ≤ 2 supf∈S1
πm(xik� f� ñ

(m)). Hence,

∞∑
k=t
βk−tEμ(m)�μ̃(m)�λ̃(m)[Δ(m)ik 1Z(m)]

≤
∞∑
k=t
βk−tEμ(m)�μ̃(m)�λ̃(m)

[
2 sup
f∈S1

πm(xik� f� ñ
(m))1Z(m)

]
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≤ 2 sup
μ∈M

Eμ�μ̃(m)�λ̃(m)

[ ∞∑
k=t
βk−t sup

f∈S1

πm(xik� f� ñ
(m))1Z(m)

]

= 2P [Z(m)] sup
μ∈M

Eμ

[ ∞∑
k=t
βk−t sup

f∈S1

πm(xik� f� ñ
(m))

]
�

because supμ∈M is attained by an oblivious strategy, so f (m)−i�k evolves indepen-
dently from x(m)ik . Since ε is arbitrary, P [Z(m)] → 0 (by Theorem 5.3), and the
expected sum is uniformly bounded over all m (by Lemma A.6), the result fol-
lows. Q.E.D.

THEOREM 5.4: Under Assumptions 3.1, 3.2, 3.3, 5.1, and 5.2, the sequence
{μ̃(m)� λ̃(m)} of OE possesses the AME property.

PROOF: Let μ∗(m) be an optimal (nonoblivious) best response to (μ̃(m)� λ̃(m));
in particular,

V (m)(x� s|μ∗(m)� μ̃(m)� λ̃(m))= sup
μ∈M

V (m)(x� s|μ� μ̃(m)� λ̃(m))�

Let

V̂ (m)(x� s)= V (m)(x� s|μ∗(m)� μ̃(m)� λ̃(m))− V (m)(x� s|μ̃(m)� λ̃(m))≥ 0�

The AME property, which we set out to establish, asserts that for all x ∈ N,
limm→∞Eμ̃(m)�λ̃(m)[V̂ (m)(x� s(m)t )] = 0.

For any m, because μ̃(m) and λ̃(m) attain an OE, for all x,

Ṽ (m)(x|μ̃(m)� λ̃(m))= sup
μ̃∈M̃

Ṽ (m)(x|μ̃� μ̃(m)� λ̃(m))

= sup
μ̃∈M

Ṽ (m)(x|μ̃� μ̃(m)� λ̃(m))�

where the last equation follows because there will always be an optimal obliv-
ious strategy when optimizing an oblivious value function, even if we consider
more general strategies. It follows that

V̂ (m)(x� s)= (
V (m)(x� s|μ∗(m)� μ̃(m)� λ̃(m))− Ṽ (m)(x|μ̃(m)� λ̃(m)))
+ (
Ṽ (m)(x|μ̃(m)� λ̃(m))− V (m)(x� s|μ̃(m)� λ̃(m)))

≤ (
V (m)(x� s|μ∗(m)� μ̃(m)� λ̃(m))− Ṽ (m)(x|μ∗(m)� μ̃(m)� λ̃(m))

)
+ (
Ṽ (m)(x|μ̃(m)� λ̃(m))− V (m)(x� s|μ̃(m)� λ̃(m)))

≡A(m)(x� s)+B(m)(x� s)�
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To complete the proof, we will establish that Eμ̃(m)�λ̃(m)[A(m)(x� s(m)t )] and
Eμ̃(m)�λ̃(m)[B(m)(x� s(m)t )] converge to zero.

Let τi be the time at which firm i exits and let Δ(m)it = |πm(xit� s(m)−i�t) −
πm(xit� s̃

(m))|. It is easy to see that

A(m)(x� s)≤Eμ∗(m)�μ̃(m)�λ̃(m)

[
τi∑
k=t
βk−tΔ(m)ik

∣∣∣xit = x� s(m)−i�t = s
]
�

B(m)(x� s)≤Eμ̃(m)�λ̃(m)
[

τi∑
k=t
βk−tΔ(m)ik

∣∣∣xit = x� s(m)−i�t = s
]
�

and letting q(m) be the invariant distribution of s(m)t with the oblivious strategy
μ̃(m) and the oblivious entry rate λ̃(m),

Eμ̃(m)�λ̃(m)[A(m)(x� s(m)t )]

≤Eμ∗(m)�μ̃(m)�λ̃(m)

[
τi∑
k=t
βk−tΔ(m)ik

∣∣∣xit = x� s(m)−i�t ∼ q(m)
]
�

Eμ̃(m)�λ̃(m)[B(m)(x� s(m)t )]

≤Eμ̃(m)�λ̃(m)
[

τi∑
k=t
βk−tΔ(m)ik

∣∣∣xit = x� s(m)−i�t ∼ q(m)
]
�

By the triangle inequality,

Δ(m)ik ≤ |πm(xik� s(m)−i�k)−πm(xik� f (m)−i�k� ñ
(m))|

+ |πm(xik� f (m)−i�k� ñ
(m))−πm(xik� s̃(m))|�

The result therefore follows from Lemmas A.9 and A.11. Q.E.D.

A.3.5. Derivations for the Logit Demand Model Outlined in Section 5.5

For brevity, we omit the proofs that show Assumptions 3.1, 5.1.1, and 5.1.2
are satisfied. Now, we show that Assumption 5.1.3 is satisfied. Let ψ= 1. Note
that

d lnπm(x� f�n)
d lnn

= ∂ lnπm(x� f�n)
∂ lnn

+ ∂ lnπm(x� f�n)
∂px

∂px

∂ lnn
(A.5)

+
∑
i∈S

∂ lnπm(x� f�n)
∂pi

∂pi

∂ lnn
�

where S is the set of firms in state s = fn and px is the price charged by the
firm in state x. The first term takes into account the direct change in profits
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due to the change in the number of firms keeping prices fixed. The second and
third terms consider the change in profits implied by the change of prices. Now

∂ lnπm(x� f�n)
∂ lnn

= − n
∑

z∈N
f (z)(1 + z)θ1(Y −pz)θ2

1 + n∑
z∈N
f (z)(1 + z)θ1(Y −pz)θ2 + (1 + x)θ1(Y −px)θ2

�

Therefore,

sup
m∈�+�x∈N�f∈S1�n>0

∣∣∣∣∂ lnπm(x� f�n)
∂ lnn

∣∣∣∣ = 1�

Similarly, it is possible to show that if θ2 ≤ 1
2 , then

sup
m∈�+�x∈N�f∈S1�n>0

∣∣∣∣∂ lnπm(x� f�n)
∂px

∂px

∂ lnn
+

∑
i∈S

∂ lnπm(x� f�n)
∂pi

∂pi

∂ lnn

∣∣∣∣
<∞�

The complete derivation is long and algebraically cumbersome, so it is omit-
ted. However, we note a couple of important points. To compute ∂pi/∂ lnn
we use the first-order condition for profit maximization together with the im-
plicit function theorem. Each term in the sum is Θ( 1

n
); hence, the sum remains

bounded, even if it includes an infinite number of terms.
Now we derive the maximal absolute semielasticity function, g(x). Similarly

to equation (A.5), we have

d lnπm(y� f�n)
df (x)

= ∂ lnπm(y� f�n)
∂f (x)

+ ∂ lnπm(y� f�n)
∂py

∂py

∂f (x)
(A.6)

+
∑
i∈S

∂ lnπm(y� f�n)
∂pi

∂pi

∂f (x)
�

Now,

∂ lnπm(y� f�n)
∂f (x)

= − n(1 + x)θ1(Y −px)θ2

1 + n∑
z∈N
f (z)(1 + z)θ1(Y −pz)θ2 + (1 + y)θ1(Y −py)θ2

�

Therefore,

sup
m∈�+�y∈N�f∈S1�n>0

∣∣∣∣∂ lnπm(y� f�n)
∂f (x)

∣∣∣∣ ∝ xθ1 �
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The second and third terms in equation (A.6) can be bound in a similar way to
(A.5). The result follows.
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