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1. Introduction
We consider oligopoly competition in service industries
with congestion effects: the benefits consumers experience
are offset by a negative externality that is increasing in the
total volume of consumers served. Our base model con-
sists of a finite collection of competing service providers
facing a downward-sloping demand function. We consider
a model where a consumer’s disutility is a function of the
full price: the sum of the price of the service and a conges-
tion cost that increases with the total number of consumers
subscribing to the same firm. Firms set prices, and also
invest in their service; investment lowers the congestion
cost experienced by their consumers.
Our model is motivated by modern technology-based ser-

vices such as modern telecommunication and computing
services; broadly, these services satisfy three key assump-
tions that drive our analysis. First, we assume that pricing
and investment decisions are made on similar timescales;
this will be the case in industries where investments
are easily reversible. To capture this, we study a game
where service providers choose prices and investment levels
simultaneously, and consumers subsequently choose ser-
vice providers. Second, we assume that consumers distribute
among the firms so that the full prices of active firms are

equalized; this will be the case if switching costs are rel-
atively low for consumers. Third, we consider congestion
models that include those where loss or blocking probabil-
ity (as opposed to queueing delay) is the primary measure
of disutility for consumers; more generally, the industries
we consider are those that exhibit nonincreasing returns
to investment. As we discuss below, these key assumptions
regarding the nature of decisions and the cost structure
fit well with important telecommunications and computing
services, including wireless Internet service provision and
cloud and cluster computing services.
In this paper, we make three main contributions regard-

ing this class of oligopoly models. First, we characterize
and study uniqueness and efficiency of Nash equilibrium
in settings that exhibit nonincreasing returns to investment.
Second, we study existence of equilibrium. Finally, we
study a model where providers must first decide whether
to enter the market. As we now discuss, our theoretical
results contribute to the basic understanding of competition
in service industries with congestion and provide insight
into business and policy considerations.
We begin by defining a natural notion of returns

to investment. We assume that the sum of congestion
costs experienced by a firm’s customers (called the total
congestion cost) is jointly convex in the number of
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customers and the firm’s investment expenditure. As a con-
sequence of this fact, the industry exhibits nonincreasing
returns to investment. The class of congestion cost mod-
els we consider accommodates loss sensitivity (e.g., where
cost corresponds to the probability a job is dropped in a
finite buffer queueing system) as a special case, but not
delay sensitivity (e.g., where cost corresponds to delay in
an infinite buffer queueing system); delay models exhibit
increasing returns to investment. Our results establish that
the nature of congestion sensitivity (loss versus delay) has
a first-order impact on market structure.
Next, we study uniqueness and efficiency of pure-

strategy Nash equilibria of the simultaneous pricing and
investment game. First, we consider an industry that
exhibits constant returns to investment. We show that in
this case the total cost of each firm (i.e., the sum of invest-
ment and congestion costs when a firm invests efficiently)
is linear in the total demand served in equilibrium, greatly
simplifying the analysis. We show that every Nash equilib-
rium has a threshold form: a firm is active if and only if
the slope of its total cost is below a threshold. Moreover,
we show that if such an equilibrium exists, it is unique.
We then consider an industry that exhibits nonincreasing
returns to investment, but in which firms are homogeneous
(i.e., they all share the same congestion cost function). For
this model, we prove that if a pure-strategy Nash equilib-
rium exists, it is unique and symmetric (i.e., all firms are
active).
Our uniqueness results provide a sharp characterization

of equilibrium behavior. In particular, our results allow us
to study the effects of both demand elasticity and hetero-
geneity among firms on efficiency of the resulting equi-
librium. As long as all firms are homogeneous, we show
that the unique Nash equilibrium is efficient conditional on
the total number of consumers served; however, because
firms have market power, the number of consumers served
is below the socially efficient level. As demand becomes
perfectly inelastic, the unique Nash equilibrium becomes
efficient. We also observe via numerical example that as
firms become increasingly heterogeneous, inefficiency can
increase significantly as well. In this situation it is possi-
ble for an efficient firm to price less efficient firms out of
the market and yet realize an operating point that exhibits
significant inefficiency.
Pure-strategy Nash equilibrium may not exist in general,

so we then provide sufficient conditions for their existence.
In particular, we observe that if the congestion cost is “too
steep” with respect to the number of firms in the industry,
a pure-strategy Nash equilibrium may fail to exist in a
model with perfectly inelastic demand. Motivated by this
negative result, we provide several distinct precise condi-
tions that guarantee existence of pure-strategy Nash equi-
librium. We begin by showing that if the demand and the
congestion cost functions are concave, a pure-strategy Nash
equilibrium exists. We also provide sufficient conditions
for existence of Nash equilibrium in settings with constant

returns to investment and an elastic demand curve, and
with nonincreasing returns to investment and an inelastic
demand curve. In both these cases, we require that the con-
gestion cost is not too steep relative to the number of firms
in the industry.
The preceding results pertain to competition among a

given number of incumbent firms. However, the number
of participating firms has a significant impact on market
performance. With this motivation, we extend our analy-
sis to include an entry stage, and we study the efficiency
properties of entry decisions made by homogeneous profit-
maximizing firms. In that analysis, we assume that entrants
pay a positive fixed sunk cost to compete, and the indus-
try exhibits constant returns to investment. We establish
that the equilibrium number of entrants exceeds the socially
efficient level; however, entry becomes efficient asymptoti-
cally as the sunk entry cost becomes small. We also study
entry decisions in an industry that exhibits nonincreasing
returns to investment, but that faces a perfectly inelastic
demand.
Our uniqueness, existence, and entry results are the first

for the class of models we study. Extensive attention has
been devoted to analyzing oligopoly models with conges-
tion in the recent literature in operations, economics, com-
munication networks, and transportation; see, for example,
Xiao et al. (2007), Allon and Federgruen (2008), Acemoglu
et al. (2009), Acemoglu and Ozdaglar (2007), Cachon and
Harker (2002), Scotchmer (1985), and the detailed discus-
sion in §2. As several of these authors have noted, impor-
tant basic features of such models have remained poorly
understood, particularly concerning existence and unique-
ness of equilibrium. The presence of congestion effects
distinguishes these models from standard price-setting or
quantity-setting oligopoly games (Vives 2001). Moreover,
equilibrium analysis is especially difficult in the case of
games where firms choose both prices and investment lev-
els, because such games are generally neither concave nor
supermodular—thus, standard game-theoretic arguments do
not apply. Therefore, our work represents a significant con-
tribution to the basic understanding of competition in con-
gested industries.
We conclude by discussing the implications of our results

for policy analysis and business strategy. Our model and
analysis are directly relevant for modern technology-based
services such as modern telecommunication and comput-
ing services. As we now establish, such industries satisfy
our key assumptions regarding the timing of decisions, cus-
tomer behavior, and returns to investment. In particular, in
these industries (1) pricing and investment in capacity can
be carried out on a similar timescale, (2) consumers have
relatively low switching costs, and (3) constant returns to
investment are exhibited. As a result, our insights provide
a benchmark with which a range of such service industries
can be studied.
First, consider a wireless hotspot (Wi-Fi) provider who

offers Internet access to consumers. We assume that the
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provider can invest in additional wireless access points
(AP) to expand the capacity of the network, but that at each
access point the number of channels available for trans-
mission is constrained by the Wi-Fi protocol and available
spectrum. Consumers are sensitive to channel access con-
gestion, as measured by the experienced loss (or block-
ing) probability when they try to use the service. Because
APs are inexpensive and easily installed, capacity plan-
ning can be carried out on the same timescale as ser-
vice pricing. (Indeed, infrastructure solutions such as those
offered by Meraki, www.meraki.com, have vastly simpli-
fied the process of expanding hotspot capacity.) For con-
sumers, switching costs are typically quite low between
different hotspots—often as simple as choosing an alterna-
tive hotspot via a software interface. Furthermore, a simple
channel access congestion model analogous to that studied
by Campo-Rembado and Sundararajan (2004) suggests that
this industry exhibits constant returns to investment.
Second, consider the rapidly growing cloud comput-

ing platforms, such as the Force.com service offered by
Salesforce.com (www.salesforce.com/force), and the cloud
computing services offered by Amazon’s Elastic Com-
pute Cloud (EC2) service (aws.amazon.com/ec2), GoGrid
(www.gogrid.com), and Flexiscale (www.flexiscale.com).
These services aggregate large amounts of computing
resources into clusters and employ sophisticated resource
allocation mechanisms to sell “virtual” computers created
from these resources. Such services allow nascent soft-
ware developers to rapidly scale up their platforms with-
out needing the large capital investment of building their
own computing cluster. We consider a model where the
provider has already made the large capital investment to
establish several geographically dispersed computing clus-
ters; in this case, investment is primarily in the computing
hardware and network connectivity available within each
cluster. These are easily upgradeable commodity elements
that can be altered on the same timescale as prices. From
a customer’s standpoint, switching costs are relatively low,
precisely because these services are virtual computing plat-
forms: for example, Flexiscale even advertises “true pay-
as-you-go utility pricing with no lock-in.” Furthermore,
in cloud services, applications are subject to blocking if
resources are not available—again a congestion model that
satisfies constant returns to investment.
Our results suggest that for these industries if all firms

have access to the same technology, and, hence, they
are homogeneous, competition yields outcomes that are
socially desirable; the unique equilibrium is symmetric
and no dominant firm emerges. Moreover, firms invest
efficiently conditional on the number of consumers they
serve. These appealing properties are not obtained in situa-
tions with increasing returns to investment or where invest-
ments are chosen before prices. In the former, a natural
monopoly arises, and in the latter, firms underinvest to
soften price competition. On the other hand, if some firms
have technological advantages over others, then even under

our assumptions on timing and returns to investment, the
efficiency loss compared to a model with homogeneous
firms is generally larger, and firms with cost advantages can
exploit their market power and price less efficient firms out
of the market.
The remainder of the paper is organized as follows. In

§2 we review literature related to our work. In §3 we intro-
duce our model of service provision. In §4 we introduce
and study the notion of returns to investment. In §5 we
introduce a game-theoretic model to analyze competition
between profit-maximizing firms, and characterize its Nash
equilibrium. In §6 we study uniqueness of Nash equilib-
rium. In §7 we study existence of equilibria. In §8 we
study entry decisions made by firms. Finally, in §9 we
conclude and provide some thoughts for future research.
We note that all appendices, including proofs, are pro-
vided in the e-companion to this paper, which is avail-
able as part of the online version that can be found at
http://or.journal.informs.org/.

2. Related Literature
In this section we briefly discuss several threads of the
literature related to our model and analysis. We compare
our work to recent results in the operations management
literature and to welfare analysis in congestion games. We
also discuss models of Edgeworth-Bertrand games and club
goods.
Several operations management papers study competi-

tion in service industries (see Allon and Federgruen 2008,
Cachon and Harker 2002, So 2000, Allon and Federgruen
2007, for a survey). In these studies congestion models are
often based on the steady-state expected waiting time of
a typical customer in a queue. In these models, resource
pooling is typically efficient, so in the context of our model,
there are increasing returns to investment. Furthermore, the
game-theoretic model is substantially different: firms com-
mit ex ante to a guaranteed level of service and invest
ex post to meet that guarantee. DiPalantino et al. (2009)
compare the model in this paper with a service-level guar-
antee model in terms of market outcomes and show that
equilibria can be drastically different.
Our paper is related to the growing recent literature

on welfare analysis in congestion games in transporta-
tion and communication networks; see, e.g., Roughgarden
(2005) for an overview. In particular, Acemoglu and
Ozdaglar (2007), Ozdaglar (2008), Hayrapetyan et al.
(2007), and Engel et al. (2004) study competition among
profit-maximizing oligopolists that set prices, whereas con-
sumers’ disutility is measured through the sum of price and
congestion cost (as in our paper). Our paper extends their
analysis by including investment and entry decisions.
Closely related to our work is Xiao et al. (2007),

which independently simultaneously studied a pricing and
investment game similar to the one studied in this paper.
Their entire analysis is restricted to industries that exhibit
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constant returns to investment only, whereas part of our
analysis includes a wide range of industries that exhibit
nonincreasing returns. A main focus of their paper is to
bound efficiency loss of a pure-strategy Nash equilibrium.
Specific bounds are obtained for symmetric equilibria when
firms are assumed to be homogeneous. They found that
the efficiency loss of symmetric Nash equilibrium (NE)
compared to the social optimum is no more than 15% for
exponential or linear demand functions. This result com-
plements our insights; efficiency loss of symmetric NE is
not significant in these cases. However, Xiao et al. (2007)
do not study uniqueness and existence of Nash equilibria.
Hence, our results strengthen theirs, because our unique-
ness result implies that their bounds for symmetric equilib-
ria are valid even if one considers asymmetric equilibria.
Furthermore, our existence result ensures that these bounds
are not vacuous. We conclude by noting that Xiao et al.
(2007) assume that in the socially optimal solution all firms
are active. In a setting with constant returns to investment,
this is only possible if all firms share the same total cost
function. By contrast, we analyze uniqueness and existence
of equilibrium among firms with heterogeneous total cost
functions; in our approach we explicitly consider participa-
tion, which is a fundamental determinant of both socially
efficient and equilibrium outcomes.
The presence of congestion effects distinguishes our

model from standard pricing- or quantity-setting oligopoly
games (Vives 2001). Our model is more closely related,
however, to Edgeworth-Bertrand games, where firms face
strict capacity constraints and compete by setting prices
(Edgeworth 1925, Tirole 1988). In an Edgeworth-Bertrand
game, no congestion is experienced until capacity is
reached, and congestion is “infinite” thereafter. In contrast,
in our model, congestion is monotonically increasing in the
number of consumers. In Edgeworth-Bertrand games, when
firms compete by setting quantities and prices simultane-
ously, pure-strategy Nash equilibria generally do not exist
(Levitan and Shubik 1978) unless demand is stochastic and
the game is large (Deneckere and Peck 1995). This is in
marked contrast to our results. In related work, Acemoglu
et al. (2009) show that existence of equilibrium can also
be restored if capacity decisions are made prior to pricing
decisions.
Our paper is also closely related to the literature on “club

goods” from public economics, which analyzes shared
public goods with congestion, such as swimming pools
(see Scotchmer 2002 for a recent survey). In particular,
Scotchmer (1985) studies Nash equilibrium among profit-
maximizing clubs that first choose whether to enter, and
then choose facility size and price simultaneously at the
second stage given a perfectly inelastic demand. Our anal-
ysis is more general than Scotchmer’s model because her
entire analysis is restricted to a perfectly inelastic demand
and homogeneous firms. In addition, we prove unique-
ness and existence of a pure-strategy Nash equilibrium;
Scotchmer (1985) does not study uniqueness and proves

existence for large economies only. De Vany and Saving
(1983) analyze a similar model but consider competitive
equilibria.
Like our uniqueness and existence results for the pricing

and investment game, our entry results are also the first for
the class of models we study. Xiao et al. (2007) do not
study entry; Scotchmer (1985) studies entry in a similar
model, but that analysis does not apply to our model. As
we discuss later in §8, Scotchmer’s entry results are vac-
uous in our setting, because she assumes the sunk entry
cost equals zero. Our entry results extend classic results in
standard oligopoly games (Mankiw and Whinston 1986) to
congestion games.

3. Model
In this section we introduce our model of service provision,
focusing on competition after firms have already entered
the market. We assume that N � 2 incumbent firms are
present after entry decisions have been made; we consider
a game with entry decisions in §8. Firms compete for con-
sumers by choosing prices and investment levels. Invest-
ment made by a firm improves the service experience for all
consumers that are served by that firm. We assume there are
no externalities among firms; therefore, consumers served
by other firms are unaffected by this investment.
For firm j , we let pj , Ij , and xj denote, respectively, the

price per consumer charged, the investment level chosen,
and the number of consumers served. Each investment level
Ij is measured in currency units, and the resulting physi-
cal capacity can be a nonlinear function of this investment
expenditure. The postentry profit of firm j is given by:1

��pj� Ij � xj� = pjxj − Ij � (1)

Thus, profits of firms are determined by the price, invest-
ment expenditure, and number of consumers served; of
these, price and investment expenditure are decision vari-
ables for the firms.
The demand model formalizes a congestion externality

among a firm’s consumers. We assume that when a firm j
invests Ij and serves xj consumers, each consumer of that
firm experiences a congestion cost lj �xj� Ij�. The conges-
tion cost function lj �xj� Ij� represents the disutility per-
ceived by consumers due to congestion.

Assumption 1. For each j , the congestion cost function
lj �xj� Ij� is finite for all xj � 0 and Ij > 0, and is
twice differentiable in this region. Furthermore, for all
xj > 0 and Ij > 0, �lj�xj� Ij�/�xj > 0, �lj�xj� Ij�/�Ij <
0, and lj �0� Ij� = 0. In addition, lj �0�0� = �, and
limIj↓0 lj �xj� Ij� = lj �xj�0� = � for all xj > 0.

The assumption implies that congestion increases with
the mass of subscribers and decreases with investment
expenditures. The assumption also incorporates natural
boundary conditions: there is no congestion if there are
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no subscribers, and infinite congestion cost if a service
provider retains subscribers but does not invest in any
capacity. Assumption 1 is maintained throughout the paper
unless otherwise explicitly noted.
We assume that congestion cost is measured in currency

equivalent terms. Hence, a customer’s utility depends on
the sum of the price he is charged for service and the con-
gestion cost he experiences. We call this sum the full price.

Definition 1. The full price experienced by a customer of
firm j is equal to pj + lj �xj� Ij�.

Consumers generate a downward-sloping demand func-
tion. We let D��� denote the demand function, and let P�q�
be the inverse demand function; i.e., P�D���� = � for all
� > 0. We interpret P�q� as the marginal utility obtained by
an additional infinitesimal consumer when the total num-
ber of consumers being served is q. We make the follow-
ing standard assumption that is maintained throughout the
paper unless otherwise explicitly noted.

Assumption 2. For all q � 0, P�q� is nonnegative and
continuously differentiable with P ′�q� < 0 whenever posi-
tive. Furthermore, limq→� P�q� = 0.2

To model consumer behavior, we consider a static equi-
librium in which firms that attract customers offer the same
full price. This is a natural condition: if one firm offers a
higher full price than another, then, absent switching costs,
its customers would switch providers. Such an equilibrium
is commonly known as a Wardrop equilibrium, particularly
in the transportation literature; we adopt the same terminol-
ogy here, with the abbreviation WE (Wardrop 1952). WE
is commonly used in this class of congestion models (e.g.,
Roughgarden 2005, Acemoglu and Ozdaglar 2007, Engel
et al. 2004). Formally, we have the following definition. We
use boldface type to denote vectors.

Definition 2. For given price and investment vectors p
and I, a vector of demand quantities x � 0 is a Wardrop
equilibrium if

pj + lj �xj� Ij� = P�Q�� for all j with xj > 0	 (2)

pj + lj �xj� Ij�� P�Q�� for all j� (3)

where Q =∑N
i=1 xi.

Under Assumptions 1 and 2, given price and investment
vectors p and I, if Ij > 0 for at least one firm j , then a WE
exists and is unique; see, e.g., Beckmann et al. (1956). We
denote the set of WE by W�p� I�. When Ij = 0 for all j ,
we let W�p� I� = �.
We now introduce the problem a social planner would

solve. The solution of this problem, which we call the effi-
cient solution, provides a benchmark against which equilib-
rium outcomes will be compared. We consider the problem
of maximizing social surplus, defined as the sum of con-
sumer and producer surplus, given a fixed number N � 2
of incumbent firms.3

Definition 3. The pair of vectors xS and IS is a social
optimum, or efficient solution, if it maximizes total social
surplus; i.e., if it solves:

maximize
∫ ∑N

i=1 xi

0
P�q�dq −

N∑
i=1

�xili�xi� Ii� + Ii� (4)

subject to x� I� 0�

We define the socially optimal mass of consumers served
QS according to QS =∑N

j=1 xS
j .

For later reference, we define efficient investment and
the total cost function.

Definition 4. Given total customer mass xj � 0, a firm
j’s efficient investment level Ij�xj� is an investment level
that minimizes the sum of total congestion cost and invest-
ment cost. That is, Ij�xj� is a minimizer of the following
optimization problem:4

vj�xj� ≡min
Ij�0


xj lj �xj� Ij� + Ij �� (5)

The function vj is called the total cost function for firm j .

Observe that because investment must be efficient at
the socially optimal solution, the social planner’s problem
is equivalent to maximizing

∫ Q

0 P�q�dq − ∑
i vi�xi� over

x� 0, where Q =∑
i xi. We will use this characterization to

compare Nash equilibrium outcomes with socially optimal
outcomes.
Finally, we make the following standard assumption

that is maintained throughout the paper unless otherwise
explicitly noted; without this assumption, no firm would
serve any customers in either the socially efficient solution
or in equilibrium.5

Assumption 3. P�0� >mini limxi→0 v′
i�xi�.

4. Returns to Investment
Cost structure is a key determinant of market outcomes in
our model. In this section, we define a notion of returns to
investment that yields a unifying framework for classifying
cost structures arising from different congestion models.
We start with the following definition; we use l�x� I� to
generically refer to the congestion cost function of a given
firm.

Definition 5. The total congestion cost experienced by a
mass x of customers served by a firm with congestion cost
function l�x� I� that invests I is K�x� I� = xl�x� I�.

Recall that l�x� I� represents the congestion cost expe-
rienced per unit mass of customers. Hence, K�x� I�
represents the sum of congestion costs experienced by all
subscribers to a firm’s service.
Returns to investment are defined via the total congestion

cost function K�x� I� as follows.
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Definition 6. A firm with congestion cost function
l�x� I� exhibits nonincreasing (respectively, nondecreas-
ing) returns to investment if:

K��x��I�� �resp., �� �K�x� I��

for all � > 1� and x� I > 0�

The firm exhibits decreasing �increasing� returns to invest-
ment if the corresponding inequalities are strict. The firm
exhibits constant returns to investment if returns to invest-
ment are both nonincreasing and nondecreasing.

To develop intuition, consider a setting where all firms
share the same congestion cost function. If firms exhibit
increasing returns to investment, then given a fixed invest-
ment expenditure, the total congestion cost associated with
a single firm serving the entire market is smaller than the
cost associated with several firms splitting both the demand
and the investment expenditure equally. If firms exhibit
decreasing returns to investment, then the converse is true.6

In this paper, we focus primarily on models that exhibit
nonincreasing returns to investment. Formally, we consider
congestion cost functions that satisfy the following convex-
ity assumption.

Assumption 4. For all j , the total congestion costKj�xj�Ij�
= xj lj�xj�Ij� is jointly convex in �xj� Ij�, and strictly convex
in Ij , for each xj > 0.7

It is straightforward to verify that if the total conges-
tion cost K is convex, then a firm with congestion cost l
exhibits nonincreasing returns to investment. If Assump-
tion 4 holds, then at any social optimum a positive mass
of consumers is served and investment is efficient. More-
over, the total cost functions vj can be shown to be convex;
see Lemma EC.3 in Appendix EC.2. Finally, the optimal
solution of problem (5) is also unique in this case; that is,
for all j and xj � 0, the efficient investment level Ij�xj� is
unique.
For several of our results we will assume firms exhibit

constant returns to investment, as follows.

Assumption 5. Assumption 4 holds. Moreover, for all j ,
firm j exhibits constant returns to investment; that is, there
exists a function hj such that lj �x� I� = hj�x/I�.

If Assumption 5 holds, then vj is in fact linear. For
simplicity, we omit the dependence of l, I , and v on the
subscript j .

Lemma 1. Suppose Assumption 5 holds for congestion cost
function l; i.e., there exists a function h such that l�x� I� =
h�x/I�. Then there exists a unique solution  to the equa-
tion 2h′�� = 1. Furthermore, I�x� = x/, and thus
v�x� = �x, where � = h�� + 1/ > 0�

Several key examples satisfy Assumption 5. These
include service systems that can be modeled as loss systems
(i.e., consumers’ disutility is a function of the blocking

probability) and where firms invest to increase the service
rate. As one example, Hall and Porteus (2000) use loss sys-
tem models to analyze competition in capacitated systems.
Xiao et al. (2007) use a similar model to analyze com-
petition among private toll roads. Loss systems are also a
plausible model for wireless service provision, where we
expect that consumers are most sensitive to the fraction of
times they are unable to connect to a base station after pay-
ing a subscription fee to a given provider.8 Indeed, constant
returns to investment are exhibited, for example, when the
marginal productivity of investment expenditure in building
capacity is constant and l�q� I� represents Erlang’s formula
for a loss system with mean arrival rate q, service rate I ,
and a fixed number of servers. Constant returns to invest-
ment are also exhibited for alternative loss models like the
loss probability of an M/M/1/s system or the exceedance
probability of an M/M/1 queue (Kleinrock 1975). If the
marginal productivity of investment expenditure in building
capacity is decreasing, then these models exhibit decreas-
ing returns to investment. In Appendix EC.1 we provide
details on these and other related examples and prove that
they satisfy our assumptions.
We conclude this section by briefly considering the

scenario where an industry exhibits increasing returns to
investment; note that in this case K is not convex, i.e.,
Assumption 4 is not satisfied. In this setting we typically
expect that the efficient solution calls for a single firm serv-
ing the entire market and that a natural monopoly will arise.
As noted in Appendix EC.1, an important class of conges-
tion models with this property is derived from steady-state
expected waiting times in queueing models.
A key resulting insight is that the nature of the conges-

tion cost experienced by consumers is a primary determi-
nant of the returns to investment in the industry. In turn,
the returns to investment have a fundamental impact on effi-
ciency of market outcomes. As illustrated by the examples
in Appendix EC.1, industries where consumers are loss sen-
sitive exhibit nonincreasing returns to investment, whereas
industries where consumers are delay sensitive exhibit
increasing returns. Hence, the distinction between delay and
loss is critical for market outcomes. As noted in the introduc-
tion, our emphasis is on technology-based services, includ-
ing wireless Internet service provision and cloud computing
services; these services fit well with the assumption of con-
stant or nonincreasing returns to investment.

5. The Game and Nash Equilibrium
In this section we introduce a game-theoretic model to
analyze competition between profit-maximizing firms. We
analyze the postentry game with a fixed finite number of
incumbent firms N . We consider a game where prices and
investment levels are chosen simultaneously; it is as if
the two decisions are made on the same timescale, and
investment decisions are as reversible as pricing decisions.
We first define and characterize pure-strategy Nash equi-
librium in prices and investment levels. Then, using this
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characterization, in §§6 and 7 we prove several of the main
results of the paper: these establish uniqueness, existence,
and efficiency properties of Nash equilibrium.
We study pure-strategy Nash equilibrium (NE) of the

simultaneous pricing and investment game, defined as
follows.

Definition 7. A triple consisting of prices pNE, investment
levels INE, and demand quantities xNE, is a pure-strategy
Nash equilibrium of the simultaneous pricing and invest-
ment game (NE) if the following conditions hold:
1. The demand quantities are a WE given prices and

investment levels: xNE ∈ W�pNE� INE�.
2. Each firm maximizes profit given prices and invest-

ment levels of other firms; i.e., for all j = 1� � � � �N ,
pj� Ij � 0, and x ∈ W�pj�p

NE
−j � Ij � I

NE
−j �,

��pNE
j � INEj � xNE

j ����pj� Ij � xj�� (6)

Note that when a firm makes investment and pricing deci-
sions, it anticipates that consumers will be allocated accord-
ing to a WE. We use p−j and I−j to denote the vectors of
prices and investment levels of the competitors of firm j .
In §5.1, we provide Nash equilibrium conditions for the

general model. In §5.2, we specialize the conditions to a
setting where firms are homogeneous (i.e., share the same
congestion cost characteristics); in this case our interest will
be in symmetric equilibrium.

5.1. Nash Equilibrium Conditions:
Heterogeneous Firms

We first find necessary conditions for a Nash equilibrium in
the general model, where firms may be heterogeneous. For
our development we require the concept of an active firm.

Definition 8. A firm j is active at a NE �pNE� INE�xNE� if
it invests a positive amount INEj > 0.

Note that in equilibrium, only active firms serve cus-
tomers. We establish the following proposition. Xiao et al.
(2007) proves a similar result for the special case of indus-
tries that exhibit constant returns to investment. The proof
is provided in Appendix EC.3.

Proposition 1. Suppose that the vectors of prices pNE,
investment levels INE, and demand levels xNE form an NE
for which only firms in the set A are active, where A is a
nonempty subset of �1�2� � � � �N �. Then the NE must satisfy
the following conditions:

pNE
j = xNE

j

(
�lj�x

NE
j � INEj �

�xj

+ 1∑
i∈A�i 
=j �1/��li�x

NE
i �INEi �/�xi��−1/�P ′�QNE��

)
�

j ∈ A	 (7)

0= xNE
j

�lj�x
NE
j � INEj �

�Ij

+ 1� j ∈ A� (8)

where QNE = ∑N
j=1 xNE

j . Furthermore, P�QNE� > 0; hence,
P ′�QNE� < 0.
In the NE, firm j ∈ A makes a profit equal to

��pNE
j � INEj � xNE

j � = P�QNE�xNE
j − vj�x

NE
j �. Furthermore, if

Assumption 4 also holds, then all firms invest efficiently:
INEj = Ij�x

NE
j � for all firms j ∈ A.

Efficient investment follows because under Assump-
tion 4, (8) is the optimality condition for (5). Intuitively,
firms invest at efficient levels because they can extract
any additional consumer surplus generated by investment
through an appropriate choice of price. This insight was
also previously obtained by Scotchmer (1985) for club
goods.
Note that if a social planner were to levy “taxes” to

induce a social optimum �xS� IS�, she should charge a Pigo-
vian price for the service of each firm j , given by pj =
xS

j �lj�x
S
j � IS

j �/�xj (Pigou 1920). This corresponds to the
congestion externality imposed by the marginal consumer
at firm j to all other consumers served by firm j . The NE
price pNE

j is the Pigovian price plus a positive markup.
The price reflects the fact that firm j charges an additional
marginal customer the amount required to retain existing
consumers. A new marginal customer imposes a congestion
externality on existing customers. In addition, the marginal
unit of demand is partially derived from the competitors;
hence, their congestion levels are reduced. Firm j needs
to compensate its customers for these two factors to retain
them despite its higher congestion.

5.2. Nash Equilibrium Conditions:
Homogeneous Firms

In several of our results, we consider a specialized setting
where firms are homogeneous; i.e., they share the same
congestion cost specification. This is formalized in the fol-
lowing assumption.

Assumption 6. All firms have the same congestion cost
function: for all x� I and for all i� j , there holds li�x� I� =
lj �x� I�.

Whenever Assumption 6 holds, we suppress subscripts
on the functions l, h, K, I , and v.
With homogeneous firms, we are particularly interested

in symmetric NE, defined as follows.

Definition 9. An NE is symmetric if pNE
i = pNE

j and
INEi = INEj for all i� j; because the WE is uniquely defined,
this also implies xNE

i = xNE
j . An NE is symmetric among

active firms if pNE
i = pNE

j and INEi = INEj for all firms i� j
that are active.

Note that if Assumptions 4 and 6 hold, then there exists
a symmetric social optimum. In this setting, symmetry of
NE is a socially desirable property, because in that case
both demand allocations and investment levels are efficient
conditional on the total mass of consumers served.
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When firms are homogeneous, the necessary condition
for a symmetric NE becomes:

pNE
j = xNE

j

(
�l�xNE

j � INEj �

�xj

+ 1
�N −1�/��l�xNE

j �INEj �/�xj�−1/�P ′�QNE��

)
�

for all j� (9)

Finally, we conclude by specializing further to a setting
where demand is perfectly inelastic.

Assumption 7. Demand is perfectly inelastic of size M .

The assumption corresponds to a situation where a total
customer mass of size M has an infinite valuation for the
service. In Appendix EC.4, we formally develop the model
of perfectly inelastic demand with homogeneous firms and
the resulting Wardrop equilibrium conditions for demand
allocation. In this case, both in the social optimum and NE,
the entire mass of consumers M is served. It can be shown
that the price at a symmetric NE is given by:

pNE
j = M

N − 1
�l

�x

(
M

N
�INEj

)
� (10)

We observed above that when firms are homogeneous and
Assumption 4 holds, demand allocations and investment
levels are efficient conditional on the total mass of con-
sumers served. When demand is inelastic, this property
implies the additional insight that a symmetric NE is in fact
socially efficient.

6. Uniqueness of Nash Equilibrium
In this section we prove several of the main results of the
paper, concerning uniqueness and efficiency of NE in the
oligopolistic simultaneous pricing and investment game. In
§6.1 we consider a class of models that exhibits constant
returns to investment; we show that if a NE exists, then it
is unique. In §6.2 we assume that firms are homogeneous,
and consider a class of models that exhibit nonincreasing
returns to investment; we show that if an NE exists, then
it is unique and symmetric. Moreover, if demand is per-
fectly inelastic, this NE is efficient. These results provide a
sharp characterization of NE behavior. In §6.3 we use our
results to discuss the implications of NE behavior in terms
of social welfare.

6.1. Uniqueness: Heterogeneous Firms and
Constant Returns to Investment

In this section, we show that if firms exhibit constant
returns to investment (i.e., if Assumption 5 holds), then if
a NE exists, it is unique. Recall that under Assumption 5,
for all j , the total cost function vj is linear; i.e., vj�x� =
�jx for some �j > 0 (see Lemma 1). Linearity of the total

cost function greatly simplifies the analysis. Without loss
of generality, for the remainder of the paper whenever
Assumption 5 holds, we also assume that �1 � · · · � �N .
That is, firm 1 has the lowest total cost function and firm N
has the highest. Recall that in Appendix EC.1 we discuss
important congestion cost functions that exhibit constant
returns to investment.
The following result shows that an NE must be of a

threshold form: all firms with cost coefficient below a
threshold are active, and all others are not. All proofs for
this section are provided in Appendix EC.5.

Proposition 2. Suppose Assumption 5 holds. Suppose that
the vectors of prices pNE, investment levels INE, and demand
levels xNE form an NE with at least one active firm. Let
QNE = ∑N

j=1 xNE
j . Then, the profit of firm j is given by

pNE
j xNE

j − INEj = �P�QNE� − �j�x
NE
j . Moreover, firm j is

active if and only if P�QNE� > �j . As a consequence, the
NE is a threshold equilibrium: there exists n∗ ∈ �1� � � � �N �
such that all firms i � n∗ are active, and all firms i > n∗

are not active.

Next, we show that for any fixed threshold n∗, there is
essentially at most one NE with that threshold, as long as
demand is log concave. (A positive function f is log con-
cave if log f is concave.) Recall that D��� is the demand
function, i.e., P�D���� = � for all � > 0. Note that many
commonly used demand functions are log concave, such as
D��� = exp�−��.

Proposition 3. Suppose Assumption 5 holds and the
demand function D��� is log concave over the region
where it is positive. Fix n∗ � 1. Suppose that the vectors
of prices pNE, investment levels INE, and demand levels xNE

form an NE with n∗ active firms. Then, xNE and INE are
uniquely determined; further, prices for active firms, pNE

j ,
j = 1� � � � � n∗, are uniquely determined as well.

The preceding proposition establishes that for any fixed
threshold, there is at most one NE with that threshold. We
now show that the threshold for any NE is uniquely deter-
mined as well.

Proposition 4. Suppose that Assumption 5 holds and the
demand function D��� is log concave over the region
where it is positive. Suppose that the vectors of prices
pNE, investment levels INE, and demand levels xNE form an
NE with n∗ active firms. Then, n∗ � 1 and n∗ is uniquely
determined.

The previous results lead directly to the main result of
this section: if demand is log concave, then the NE is essen-
tially uniquely determined.

Theorem 1. Suppose Assumption 5 holds and the demand
function D��� is log concave over the region where it is
positive. Suppose that the vectors of prices pNE, investment
levels INE, and demand levels xNE form an NE; let n∗ be
the number of active firms, and let QNE =∑N

j=1 xNE
j .
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Then n∗ � 1, and n∗, xNE, INE, are uniquely determined;
further, prices for active firms, pNE

j , j = 1� � � � � n∗, are
uniquely determined as well. All active firms make positive
profits. Finally, the mass of consumers served in the NE is
less than the socially optimal level, that is, QNE < QS .

6.2. Uniqueness: Homogeneous Firms and
Nonincreasing Returns to Investment

In the previous section we proved a uniqueness result
under the assumption of constant returns to investment
and log-concave demand. In this section we generalize our
uniqueness result in one dimension, assuming nonincreas-
ing returns to investment and a general demand function,
but restrict it in another by assuming homogeneous firms.
In particular, we establish uniqueness and symmetry of the
NE in a model with homogeneous firms (if a NE exists).
First, we define the marginal rate of substitution (MRS)

of I for x as the amount by which investment must increase
per unit increase in demand quantity if the congestion cost
level is to remain unchanged:

MRS�I	 x� = −�l�x� I�/�x

�l�x� I�/�I
�

We introduce the following condition:

�

�I
MRS�x	 I��

1
x

� ∀x > 0� I > 0� (11)

Informallly, this condition ensures that the efficient invest-
ment level does not grow too rapidly as x increases; see
Appendix EC.5 for details.
We have the following result.

Theorem 2. Suppose Assumptions 4 and 6 hold. Suppose
in addition that condition (11) holds. Suppose that the vec-
tors of prices pNE, investment levels INE, and demand levels
xNE form an NE; let QNE =∑N

j=1 xNE
j .

Then �pNE� INE� is uniquely determined and symmetric.
For all firms j , the NE demand quantities and investment
levels are given by xNE

j = QNE/N and INEj = I�QNE/N�,
whereas prices are given by (9). All firms’ profits are pos-
itive. Finally, the mass of consumers served in NE is less
than the socially optimal level; that is, QNE < QS .
Under Assumption 7, the same result holds, except that

QNE = QS = M and prices are given by (10). In this case,
the unique and symmetric NE is efficient.

As a corollary, observe that for all congestion cost
models studied in Lemma EC.1 in Appendix EC.1, the
conclusion of Theorem 2 holds: these models satisfy
Assumption 4 and can be shown to satisfy condition (11)
(see Corollary EC.1 in Appendix EC.5).

6.3. Discussion

Theorems 1 and 2 establish a sharp prediction of firm deci-
sions and consumer behavior in equilibirum; the NE is
unique if it exists. Moreover, if firms are homogeneous
the unique NE is symmetric. Our results are valid for the
class of congestion models discussed in Lemma EC.1. Of
particular importance is the fact that we do not assume
convexity of the congestion cost function l, a common
assumption made in papers that study these models (e.g.,
Xiao et al. 2007, Acemoglu and Ozdaglar 2007, Ozdaglar
2008, Hayrapetyan et al. 2007, Engel et al. 2004). Many of
the congestion models discussed in Lemma EC.1, such as
loss probabilities in queueing systems, do not satisfy this
assumption. For example, Erlang’s formula, Erl�x� I	 s�,
is generally not jointly convex in x and I ; it is not
even convex in x for fixed I . However, as discussed after
Lemma EC.1, xErl�x� I	 s� is jointly convex in x and I ,
and hence convex in x for fixed I .
It is also worth noting that a similar argument to the

proof of Theorem 2 is valid for a pricing game without
investment.9 This result is of interest in itself; in particular,
it provides the first uniqueness theorem for pricing games
of this form in the literature.10

Theorem 2 suggests that for a broad class of models with
homogeneous firms for which congestion cost exhibits non-
increasing returns to investment and firms choose prices
and investments levels simultaneously, competition yields
outcomes that are socially desirable. If demand is perfectly
inelastic, the unique NE is efficient. If demand is not per-
fectly inelastic, there is an efficiency loss in the unique NE
because the total mass of consumers served is less than
socially efficient.11 However, given the mass of consumers
served in equilibrium, demand allocations and investment
levels are efficient. We emphasize that even though firms
are ex ante identical, they could be differentiated ex post by
choosing different investment levels; this is not observed in
equilibrium. The unique equilibrium is symmetric, and no
dominant firm emerges. Note that uniqueness and symme-
try is obtained even in models that exhibit constant returns
to investment.
We conclude by discussing efficiency losses with het-

erogeneous firms, based on Theorem 1. When firms have
different cost structures, the efficiency loss compared to the
symmetric NE with homogeneous firms generally increases
because firms with cost advantages can exploit their market
power. In particular, the analysis in Theorem 1 explicitly
considers participation, which is a fundamental determinant
of market outcomes. Indeed, often more cost-efficient firms
can price less efficient firms out of the market. We provide
an example that illustrates these effects.

Example 1. We consider a duopoly (N = 2), in which
lj �xj� Ij� = g�Erl�xj� Ij 	 sj��, where g�z� = z/�1 − z� and
Erl�xj� Ij 	 sj� is Erlang’s formula where xj is the arrival
rate, Ij is the service rate that is controlled by invest-
ment, and sj is a predetermined number of servers (see
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Appendix EC.1). We assume a linear demand function
P�q� = 3− q.

In the following analysis, we assume firm 1 has the most
efficient technology with s1 = 3 and corresponding cost
coefficient �1 = 0�77 (see Lemma 1), and we vary the cost
efficiency of firm 2. We consider three cases, where firm 2
has three servers, two servers, or one server; the corre-
sponding cost coefficients �2 are 0�77, 1�1, and 2, respec-
tively. In the social optimum firm 1 serves all demand QS ,
with P�QS� = �1. In this case, QS = xS

1 = 2�23, and in the
socially optimal solution total social surplus is equal to 2�5.
First, we consider a game where firms are homoge-

neous, so that both firms have s1 = s2 = 3. By Theorem 2
the NE is unique and symmetric if it exists. Indeed, the
NE conditions yield xNE

1 = xNE
2 = 0�95 (see Proposition 1

and Lemma EC.4) and the associated social surplus only
exhibits a 2�1% efficiency loss compared to the social
optimum.
Second, we consider a game in which firm 2 has s2 = 2,

so firm 1 has a cost advantage. By Theorem 1 the NE is
unique if it exists. Moreover, the NE conditions (see Propo-
sition 2 and Lemma EC.4) yield xNE

1 = 1�07, xNE
2 = 0�62.

The efficiency loss increases to 14�7%.
Third, we consider a game in which firm 2 has s2 = 1;

in this case firm 1 has an even larger cost advantage. The
NE conditions yield xNE

1 = 1�12, xNE
2 = 0. Firm 1 can take

advantage of its technological advantage due to a larger
capacity, and price firm 2 out of the market. In this case,
the efficiency loss increases significantly to 25%.

The example suggests that with asymmetry, inefficiency
appears to increase. The main reason the inefficiency in the
second game is larger than in the game with homogeneous
firms is that in the second game, firm 2 serves consumers
despite having an inferior technology. It is worth noting
that in the third game the efficient firm serves all con-
sumers, yet it realizes an inefficient operating point. This
is because firm 1 exploits its cost advantage to extract a
strong (and inefficient) markup, and thus the mass of con-
sumers it serves in equilibrium is significantly less than the
efficient level.

7. Existence of Nash Equilibrium
In this section we study conditions under which pure-
strategy Nash equilibria exist for the pricing and investment
game under consideration. In general, an NE may not exist,
and we provide such an example. However, we provide sev-
eral sufficient conditions that guarantee existence of an NE.
In §7.1, we discuss two general existence theorems. We first
show that if demand is concave, and all firms’ congestion
cost functions are concave as a function of demand, then
an NE always exists. We then find a sufficient condition
for existence of NE when firms exhibit constant returns to
investment; notably, here we do not require the congestion
cost function to be concave.

We conclude in §7.2 by discussing existence theorems
that assume firms are homogeneous. In this case, we obtain
two existence theorems: The first requires that firms exhibit
constant returns to investment but face an elastic demand
curve; the second assumes a perfectly inelastic demand
curve but only requires nonincreasing returns to investment.
In both cases, these existence results reveal that an NE
exists only if there are sufficiently many competing firms
relative to the elasticity of the congestion function.
We first show that even under the assumptions of The-

orem 2, an NE need not exist. Similar examples can be
constructed under the assumptions of Theorem 1.

Example 2. Consider a duopoly with homogeneous firms
(N = 2) that face a perfectly inelastic demand of size
M = 10. The congestion cost is l�x� I� = x6/I . It is easy
to see that the assumptions of Theorem 2 hold; if an NE
exists, it must be unique and symmetric. By Theorem 2,
the candidate NE price and investment level are given
by (10) and INEj = I�M/N�, which lead to pNE = 671 and
INE = 280. Given that firm 2 is pricing at 671 and invest-
ing 280, the best response of firm 1 is to price at 1�367
and invest 20�5 to obtain a demand of 2�37 and a profit
of 3�222. If firm 1 were to price at 671 and invest 280, it
would only obtain a profit of 3�075. Thus, in this setting,
firm 1 is better off investing less, attracting fewer con-
sumers, and pricing higher than suggested by the expres-
sions associated with the symmetric NE.

The preceding example suggests that if congestion cost
increases too quickly as demand increases, there may be
no NE. Motivated by this fact, in the next two sections we
provide results that provide sufficient conditions for exis-
tence of an NE.

7.1. Existence: Heterogeneous Firms

Our first existence theorem requires that the congestion cost
function and the inverse demand function are both con-
cave in quantity. All proofs for this section can be found
in Appendix EC.6.

Theorem 3. Suppose Assumption 4 holds. Suppose in
addition that for all j , lj �x� I� is a concave function of x
for all I > 0, and that the inverse demand function P�q�
is a concave function of q where it is positive. Then there
exists an NE.

Note that concavity of the inverse demand function P�q�
in q is equivalent to concavity of the demand function
D��� in �. We also observe that, for example, concavity
of the congestion cost function is satisfied by Erlang’s for-
mula for an M/G/1/1 queueing system. At the same time,
it is a restrictive assumption that we alleviate in our next
existence result.12

In our next result, we assume that firms exhibit constant
returns to investment.
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Proposition 5. Suppose Assumption 5 holds. Further-
more, assume that for each firm j , �j , and j are defined
as in Lemma 1. Suppose the demand function D��� is a
concave function of � where it is positive.
Let �̄ =maxi �i, and define A��� and B��� for � > �̄ as

follows:

A��� =
∑

i �i��� − N + 1∑
i�1− �i����/i

	 B��� = −D′���

D���
�

where �i��� = 
i�� − hi�i���
−1. Assume that

lim�→�̄ A��� > lim�→�̄ B���.
Finally, let �̄ = sup��� D��� > 0�, and assume for

each j that �̄ + hj�yj� is a log-concave function of yj and
that �̄ < �̄. Then there exists an NE in which all firms are
active.

This proposition is proven by using the approach of The-
orem 1 to find a candidate NE where each firm’s profit is
locally stationary; we then apply the assumptions to show
that at this candidate NE, each firm’s best-response prob-
lem is concave, and so no firm has any incentive to deviate.
Although the preceding proposition is theoretically appeal-
ing, the conditions over A��� and B��� do not directly
provide insight into the structure of equilibrium; further,
the condition that �̄+hj�yj� must be log concave, although
weaker than concavity of hj�yj�, can in fact be quite strong.
In the next section, where we consider firms that are homo-
geneous, we obtain a related result that provides greater
insight into conditions under which equilibria will exist.

7.2. Existence: Homogeneous Firms

In this section we suppose throughout that Assumption 6
holds. We start by considering a version of the existence
result in Proposition 5, but with homogeneous firms.13

Theorem 4. Suppose Assumptions 5 and 6 hold. In addi-
tion, suppose that the function h�x� is log concave and that
the demand function D��� is a concave function of � where
it is positive. Suppose also that the following inequality
holds:

N �
�1+ eh�

2

1+ eh�1+ ed�
� (12)

where eh = h′��/h��, eD = −�D′���/D���, and  and
� are defined as in Lemma 1. Then there exists an NE.

The preceding condition directly relates the elasticity of
the congestion cost function, the elasticity of the demand
function, and the number of firms together to provide a
condition for existence of equilibrium. In particular, note
that a higher demand elasticity makes the condition less
restrictive. Also, note that for large enough N the condition
above is satisfied. Furthermore, note that eD � 0; thus, a
sufficient condition for existence of NE is:

N � eh + 1� (13)

This condition suggests that for existence of NE, the num-
ber of firms should be sufficiently large relative to the elas-
ticity of the congestion cost function.
We conclude with a second result that assumes homoge-

neous firms. In this result we require stronger assumptions
about demand—we assume it is perfectly inelastic—but no
longer assume the congestion cost exhibits constant returns
to investment; however, we do require the congestion cost
function itself to be convex. Because demand is inelastic,
we obtain an analog of (13) as a sufficient condition for
existence of equilibrium.

Theorem 5. Suppose Assumptions 4, 6, and 7 hold. In
addition, suppose for all I > 0 that l�x� I� is convex in x,
and ��l�x� I�/�x�/l�x� I� is nonincreasing in x. Suppose
also that the number of firms N satisfies:

N �
x�l�x� I�/�x

l�x� I�
+ 1

for x = M/N and I = I�M/N�. Then there exists an NE.

To construct concrete examples of the preceding results,
consider congestion cost functions of the form l�x� I� =
�x/I�q , q � 1; this is a loss model derived from
the exceedance probability of an M/M/1 queue (see
Appendix EC.1). If N � q + 1, then an equilibrium is guar-
anteed to exist. The latter example clearly shows that to
guarantee existence of NE, the congestion cost function can-
not be too steep as demand increases, in relation to the
number of incumbent firms. Indeed, observe that l�x� I� =
�x/I�q satisfies the assumptions of either Theorem 4 or The-
orem 5. In fact, if the steepness condition is not satisfied,
a firm’s best-response problem may fail to be concave, or
even quasi-concave. Hence, necessary optimality conditions
are not sufficient. As illustrated in Example 2, in these cases
a firm may be better off by investing less and attracting
fewer consumers than suggested by the symmetric NE. If
the number of firms is small, the symmetric NE allocates
a relatively large mass of consumers to each firm. In addi-
tion, if the congestion cost is steep (relative to the number
of firms), firms will be heavily congested. By serving fewer
consumers, a firm may significantly decrease its congestion
level and as a consequence increase prices and profits.

7.3. Discussion

In this section we have provided existence results; these
naturally complement our uniqueness results. In particu-
lar, if the assumptions of either of the preceding results
holds together with the uniqueness conditions in Theo-
rems 1 and 2, then a unique NE exists.
We note that the pricing and investment game is gen-

erally neither concave nor supermodular, so standard exis-
tence arguments do not apply (Vives 2001). The fact that
NE may fail to exist is not entirely surprising if one consid-
ers that in Edgeworth-Bertrand competition, pure-strategy
Nash equilibria may not exist (Edgeworth 1925, Levitan
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and Shubik 1972, Kreps and Scheinkman 1983, Tirole
1988). However, in Edgeworth-Bertrand games where firms
compete by setting quantities and prices simultaneously,
pure-strategy Nash equilibria generally do not exist, in
marked contrast to our result (Acemoglu et al. 2009,
Levitan and Shubik 1978).
As far as we know, Theorems 3, 4, and 5 are the first

results in the literature concerning existence of a pure-
strategy Nash equilibrium for congestion games where
firms compete by simultaneously setting prices and invest-
ment levels. Acemoglu and Ozdaglar (2007), Baake and
Mitusch (2007), and Engel et al. (2004) provide conditions
for existence of pure-strategy Nash equilibrium for conges-
tion games where firms only compete in prices, but not in
investment. Their conditions have a similar spirit to ours;
they restrict the “steepness” of the congestion cost func-
tions. Note that of course, Theorems 3, 4, and 5 are also
valid for a pricing game without investment (i.e., where
lj �x� I� does not depend on I).
Mendelson and Shneorson (2003) provide an existence

result where firms compete by simultaneously choosing
investments and the mass of consumers served (as opposed
to prices). Finally, Allon and Federgruen (2008, 2007),
Cachon and Harker (2002), and So (2000) study existence
of pure-strategy Nash equilibria in games where firms com-
pete by choosing prices and “service levels.” In the context
of our model, this would imply that a firm commits to a
fixed level of congestion ex ante, and implicitly agrees to
invest as necessary to meet the service level. By contrast,
in our model, a firm commits ex ante to investment expen-
ditures instead.

8. Entry
Thus far, we have analyzed models given the existence of N
incumbent firms that have already entered the market. In
this section we study the efficiency properties of entry deci-
sions made by profit-maximizing firms. We show that for a
wide range of models, generally the free entry equilibrium
number of firms may exceed the level that a social planner
would choose; however, the free entry equilibrium becomes
asymptotically efficient as the fixed cost of entry decreases
to zero.
We assume that there exists an infinite number of homo-

geneous firms, and that any firm that wishes to enter the
market must pay a strictly positive fixed sunk entry cost F
to participate. To further simplify the analysis, in this sec-
tion, we assume constant returns to investment. Hence,
throughout this section we assume Assumptions 5 and 6
hold. (In Appendix EC.8 we present analogous results that
assume inelastic demand, but allow us to consider models
with nonincreasing returns to investment.)
First, we introduce a game-theoretic model to analyze

competition between profit-maximizing firms. We consider
the following two-stage game. In the first stage, firms
simultaneously decide whether to enter and participate in
the industry. In the second stage, incumbent firms compete

by simultaneously setting prices and investment levels as
described in §5. A free entry equilibrium is a pure-strategy
subgame-perfect equilibrium of the two-stage game.
We showed in §§6 and 7 that for a wide range of mod-

els with homogeneous firms that exhibit constant returns
to investment, a unique and symmetric NE exists. In this
section we restrict attention to models that exhibit this type
of postentry behavior.

Assumption 8. In the postentry game where incumbent
firms choose prices and investment levels simultaneously,
for all numbers of incumbent firms, there exists a unique
and symmetric NE.

In light of the preceding assumption, it is useful to
explicitly define profits in a symmetric NE as a function
of the number of incumbent firms. Given N , let ��N�
denote the profit an incumbent firm garners in a symmet-
ric NE. Note that ��N� = P�QN �qN − v�qn� − F , where
qN is the mass of consumers served by a firm in the pos-
tentry symmetric NE when there are N incumbent firms,
and QN = NqN ; see Proposition 2. The following definition
formalizes the notion of a free entry equilibrium.

Definition 10. A free entry equilibrium number of firms,
N E ∈ �1�2� � � ��, satisfies ��N�� 0 and ��N + 1� < 0.14

We make the following standard assumption.

Assumption 9. ��1�� 0.

A key insight in our analysis is to observe that ��N�
is similar to the profit obtained in a standard oligopoly
postentry model with cost function v�q� = �q. As a con-
sequence, we apply the results of Mankiw and Whinston
(1986), which characterize entry in this setting. Following
their approach, to compare against equilibrium outcomes,
we consider as a benchmark the second-best problem faced
by a social planner that chooses the number of partici-
pant firms in the industry, but that is unable to control the
postentry behavior of firms; we assume that firms behave
according to NE in the second stage. This is in contrast
to §3. We introduce the following definition.

Definition 11. A number of firms N S is socially optimal
if it maximizes total social surplus assuming that firms play
the unique (symmetric) NE strategy in the second stage,
i.e., if it solves:15

maximize W�N�F �≡
∫ QN

0
P�q�dq−Nv�qN �−NF � (14)

In our first result, we compare the free entry equi-
librium with the socially optimal number of firms and
show that, in general, there is excessive free entry. Indeed,
Mankiw and Whinston (1986) show that in oligopoly
models with increasing and convex cost functions, and
downward-sloping demand function, under the following
three assumptions excessive entry is obtained:
1. QN is strictly increasing in N and limN→� QN =

Q < �.
2. qN is strictly decreasing in N .
3. P�QN � − v′�qN �� 0, ∀N .
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We have the following result. The proof relies on show-
ing that conditions (1), (2), and (3) above hold in our model
under the assumptions stated in the theorem; full details are
provided in Appendix EC.7.

Theorem 6. Suppose Assumptions 5, 6, 8, and 9 hold and
that the inverse demand function P�q� is a concave function
of q. Then the free entry equilibrium number of firms exists
and is unique, and it is no smaller than one less than any
socially optimal number of firms.

The thrust of the result is that, in general, there is more
entry than the socially efficient level. An additional entrant
creates social surplus equal to its profits. On the other
hand, it generates a “business stealing effect:” an addi-
tional entrant marginally reduces the mass of consumers
served by each of its competitors (condition (2) above). The
business-stealing effect is not internalized by the additional
entrant, generating more entry than is socially optimal.
Theorem 6 reveals excessive entry in models with strictly

positive sunk entry costs. In the next result, we show that
entry becomes asymptotically efficient as the sunk entry
cost becomes small. Let N E�F � and N S�F � be the free
entry and socially optimal number of firms, respectively,
when the sunk entry cost is F . Mankiw and Whinston
(1986) show that if conditions (1)–(3) above together with
the condition limN→� P�QN � − v′�qN � = 0 are satisfied,
then entry becomes asymptotically efficient as F → 0. The
congestion cost function, l, and the demand function, P ,
remain the same for all sunk entry costs. Under the assump-
tions in Theorem 6, the latter condition is also satisfied,
and, hence, we obtain the following result. The proof is
direct from the proof of Theorem 6 and is omitted.

Theorem 7. Suppose Assumptions 5, 6, 8, and 9 hold and
that the inverse demand function P�q� is a concave function
of q. Then, limF →0 N E�F � = � and limF →0 N S�F � = �,
and limF →0 W�N S�F �� F � − W�N E�F �� F � = 0.

Note that if firms were “price-takers” and, hence, the
symmetric NE price was equal to the Pigovian price,
then the free entry equilibrium number of firms would be
socially optimal. The result implies that as the sunk entry
cost becomes small, the free entry equilibrium number of
firms grows to infinity. As a consequence, firms indeed
become “price-takers” and the free entry equilibrium num-
ber of firms becomes socially optimal asymptotically.
We note that the results by Mankiw and Whinston (1986)

cannot be directly applied in a model with a perfectly
inelastic demand function.16 In Appendix EC.8 we study
entry and prove similar results to those in this section for
such a model. There, we more generally assume nonin-
creasing returns to investment.

9. Conclusion
Our paper analyzes a model of investment and market
structure in industries with congestion effects. Our model

and results provide a framework through which competition
in a range of congested service industries can be studied,
yielding insight into business and policy considerations,
with a particular emphasis on technology-based services.
Our analysis highlights several key industry features that
must be taken into account when characterizing industry
performance:
1. Cost structure. Not surprisingly, the structure of costs

has a critical impact on market outcomes; whereas con-
gestion cost functions derived from loss systems impose
a form of nonincreasing returns to investment, conges-
tion cost functions derived from delay models impose a
form of increasing returns to investment. In the latter, the
socially efficient outcome calls for a single operating firm
and a natural monopoly arises. In the former, competition
among homogeneous firms yields symmetric equilibria and
no dominant firm emerges.
2. Timing of decisions. In our model we assume that

investment and pricing occur on the same timescale. A natu-
ral alternative is to consider a two-stage game where invest-
ment decisions are made prior to pricing decisions. In this
model it is as if investment decisions involve a longer-
term commitment than price decisions. In this case, one
can construct examples where, in marked contrast to the
efficient investment (conditional on the mass of consumers
served) observed in the NE of the simultaneous pricing and
investment game with homogeneous firms, highly inefficient
investments are obtained in equilibrium. Firms may under-
invest in the first stage to “soften” price competition in the
second stage (see also De Borger and Van Dender 2006).
3. Contractual structure. In our model, firms compete

by setting prices and investment levels simultaneously. This
represents a best effort (BE) contractual agreement, where
firms provide the best possible service given their infras-
tructure, but without an explicit guarantee. For example,
typical end-user Internet service provision contracts dis-
claim liability for loss or delay. A common alternative is
a model where firms compete by setting prices and ser-
vice level guarantees (SLGs) simultaneously. The SLG is
a contractual obligation on the part of the service provider:
regardless of how many customers subscribe, the firm is
responsible for investing so that the congestion experienced
by all subscribers is equal to the SLG. In some industries,
service-level guarantees are the norm (e.g., expedited ship-
ping, such as FedEx and UPS). DiPalantino et al. (2009)
compare these competitive models and show that equilib-
ria can be drastically different. For example, in the case
of constant returns to investment and homogeneous firms,
although the Nash equilibrium price for the SLG game is
perfectly competitive, firms obtain positive markups in the
unique Nash equilibrium for the BE game.
Our paper leaves many significant directions for future

research. Our model has considered consumers that are
homogeneous in their preferences: all consumers trade off
congestion and money in the same way. We leave for future
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research study of a model where consumers have hetero-
geneous preferences. We have not modeled the fact that
consumers may face switching costs in moving between
providers. We have also not modeled the fact that firms
may choose to contract with each other, particularly in pro-
viding services that exhibit strong network effects. Indeed,
in such industries we might see integration across firms as
well. We leave modeling of these additional phenomena to
future work.

10. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.

Endnotes
1. Our results can be easily extended to a setting where all
firms additionally face a constant cost per consumer served.
However, to simplify the model and notation, we ignore
this cost.
2. We assume throughout the paper that derivatives at zero
are right-directional derivatives.
3. In §8 we consider the setting where a social planner
chooses the number of firms.
4. For any xj > 0, problem (5) admits an optimal solution
because the objective function is continuous and coercive
for Ij > 0. For xj = 0, we define by convention that the
optimal solution is Ij = 0.
5. Under our assumptions it can be shown that vi�xi� is
differentiable for xi > 0.
6. Note that in the case of decreasing returns to investment,
if a firm can costlessly divide itself into multiple facilities,
it will always choose to do so; the resulting cost structure
will exhibit constant returns to investment.
7. Throughout the paper, Kj being convex refers to Kj

being convex on the set 
0��� × �0���.
8. Campo-Rembado and Sundararajan (2004) use such
a model to study competition among wireless service
providers.
9. In that case, if l�x� is nondecreasing and xl�x� is a
convex function of x, then, if an NE exists, it is unique and
symmetric.
10. Baake and Mitusch (2007) and De Borger and Van
Dender (2006) provide uniqueness results, but only for a
duopoly.
11. That QNE < QS was also found by Xiao et al. (2007) in
the particular case of industries that exhibit constant returns
to investment, and by Ozdaglar (2008) and Engel et al.
(2004) when firms only compete in prices.
12. In particular, if l�x� I� = Erl�x� I	 s�, s > 1, an NE may
fail to exist.
13. In this case, the condition lim�→�̄ A��� > lim�→�̄ B���
is satisfied directly. To prove the existence result below, we
assume h�x� log concave; under condition (12) we do not
need to assume the stronger condition that �̄ + h�x� is log
concave.

14. If Assumption 8 holds, a free entry equilibrium num-
ber of firms is the number of entrants in a subgame-perfect
equilibrium of the two-stage entry game. The first condi-
tion in the definition guarantees that entrants are better off
participating in the industry. The second condition ensures
that a potential additional entrant prefers not to enter.
15. Because F > 0, in any socially optimal solution, the
number of entrants is finite.
16. The complication arises from the fact that the full price
in the market cannot be expressed as P�q�.
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