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Traditional monopoly pricing models assume that firms have full information about the market
demand and consumer preferences. In this paper we study a prototypical monopoly pricing problem
for a seller with limited market information and different levels of demand learning capability under
relative performance criterion of the competitive ratio. We provide closed-form solutions for the
optimal pricing policies for each case and highlight several important structural insights. We note
the following: a) From the firm’s viewpoint the worst-case operating conditions are when it faces a
homogeneous market where all customers value the product equally, but where the specific valuation
is unknown. In cases with partial demand information, the worse case cumulative willingness-to-
pay distribution becomes piecewise-uniform as opposed to a point mass. b) Dynamic (skimming)
pricing arises naturally as a hedging mechanism for the firm against the two principal risks that
it faces: first, the risk of foregoing revenue from pricing too low, and second, the risk of foregoing
sales from pricing too high. And, c) even limited learning, e.g., market information at a few price
points, leads to significant performance gains.

1 Introduction

Classical models from the economics and revenue management literature study monopoly pricing

problems under the assumption that firms have accurate characterizations, potentially probabilistic,

of the market demand and consumer preferences. In practice, however, there are many settings,

such as introduction of new and innovative products, where one rarely has such full and accurate

demand information. This source of model uncertainty may lead to significant revenue loss and

may be insufficiently hedged against through the use of pricing policies that do not explicitly

incorporate it in their derivation. This paper studies these two issues for a monopolist operating

in settings with limited market information and different degrees of learning capability, and where

model uncertainty is captured through the relative performance criterion of the competitive ratio.

As a motivating example consider a monopolist firm that offers a new product to a set of

risk-neutral, heterogenous consumers, each endowed with a private willingness-to-pay (WtP or

valuation), which is an independent draw from a common distribution. The market information is

summarized by the number of potential consumers, i.e., the market size, and the WtP distribution.
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Classical models would assume that both of these elements are known to the firm, and are used

to determine the expected revenue maximizing price; the market size is relevant when supply is

limited. How should the seller approach this problem if the market size and WtP distribution

were unknown? What should be the form of seller’s pricing policy in that case? How should

that be adjusted to take advantage of partial demand information extracted, for example, from

experimenting at a few price points?

There are two natural ways to specify this type of model uncertainty that lead to different

formulations and different policy recommendations. The first one is stochastic, wherein the un-

known WtP distribution is assumed to be drawn from a given set of possible distributions according

to some known probability law, and where the firm’s goal is to optimize her expected revenues -

potentially risk-adjusted- over all possible market model realizations. Its main shortcoming is that

it requires detailed information on the distribution of the model uncertainty, which itself may not

be available. The second formulation adopts a worst-case perspective using a max-min criterion on

expected revenue, wherein the WtP distribution is assumed to be selected from an appropriate set

of possible distributions by an imaginary adversary (“nature”) to minimize the revenue, and where

the firm’s objective is to select its pricing policy to maximize the worst-case revenue performance.

This criterion may yield overly pessimistic results; e.g., by setting the WtP of all consumers equal

to its minimum allowed value irrespective of the pricing decision. To reduce this inherent con-

servatism, one typically imposes constraints on the decision set of the adversary, that are either

ellipsoidals (see BenTal and Nemirovski (1998), and ElGhaoui and Lebret (1997)), or polyhedra

(see Bertsimas and Sim (2003), as well as Bertsimas and Thiele (2004), Perakis and Sood (2003)).

In a similar vein, Lim and Shanthikumar (2004) suggested using a relative entropy constraint to

bound the distance of the WtP distribution from a nominal one. Each of these extensions essen-

tially imposes an uncertainty “budget” to the adversary so as to reduce the pessimistic nature of

the associated solution. The selection of this budget is often arbitrary, and analytical solutions are

often not available, leading to numerically computed results that do not provide easily interpretable

structural insights.

An alternative approach to reduce the conservatism of max-min formulations while maintaining

their appealing low informational requirements is through the use of the competitive ratio criterion,
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which measures the performance relative to a fully-informed decision maker. In broad terms, this is

defined as follows: the firm first selects a policy π, and the adversary selects a worst-case distribution

function for the unknown consumer attribute, F (·); in the above example, π could be the posted

price, and F (·) the WtP distribution. Let R(π, F ) be the actual expected revenue earned for the

pair of actions π and F (·), and R(π∗(F ), F ) be the maximum expected revenue the firm could have

extracted if she knew the selected distribution F (·); here π∗(F ) denotes the optimal policy if F was

known. The competitive ratio is given by

c∗ = max
π

min
F

R(π, F )
R(π∗(F ), F )

That is, the firm strives to minimize the relative difference from the maximum revenues it could

have extracted in the full-information case.2 To contrast, the max-min criterion takes the form

maxπ minF R(π, F ). The relative performance criterion prevents trivial choices for the adversary,

such as choosing the minimal WtP for all consumers, where the firm achieves a bad outcome no

matter what the policy, because the fully-informed manager would also be harmed in such instances.

In that sense it allows us to distinguish between “bad market conditions” and “bad decisions”.

Relative performance criteria implicitly constrain the actions of the adversary without having

to impose additional constraints, and often result in intuitive policy recommendations. They have

been used extensively in the computer science literature, and have recently been applied in pricing

and operations management problems. Specifically, Ball and Queyranne (2004) used a competitive

ratio criterion for a single-resource capacity allocation problem, while Bergemann and Schlag (2005)

and Perakis and Roels (2004) adopted the regret criterion to study the monopolist pricing and the

newsvendor problems, respectively. Lan et al. (2006) generalizes Ball and Queyranne’s analysis and

extends it to cover the regret criterion as well. Perakis and Roels (2007) applies similar techniques

for network revenue management. Eren and van Ryzin (2006) apply these criteria to the problems.

Our work adopts the competitive ratio criterion to study the monopolist’s pricing problem

described earlier under the assumption that the underlying WtP distribution is unknown. The

firm has the ability to change its price over time, and its key decision is to figure out a pricing
2A related criterion is to minimize the absolute regret given by r = minπ maxF [R(π∗(F ), F )−R(π, F )]. Most

of our results extend to that case as well, but in the interest of space and since the structural insights gleaned from
the regret analysis are similar to those extracted from the competitive ratio one, we will not study it herein.
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policy (how much to charge and for how long to stay at each price point) that would perform well

even though the firm does not know the underlying consumers’ WtP distribution. An alternate

interpretation of this price skimming policy3 is to treat the relative length of time over which a

price is offered as a probability of that price point, thus interpreting the proposed price scheme as

a randomizing pricing policy; this was done in Bergemann and Schlag (2005).

Our model is deterministic, disregarding the stochastic variability of the sales process, e.g.,

due to its Poisson nature. This allows us to emphasize the effects of “first order” uncertainty

introduced by not knowing the sales rate itself at a selected price point, as opposed to “second

order” fluctuation due to stochastic nature of the process. Our analytical contributions are the

following: 1) The competitive ratio optimization problem is solvable in closed form, offering a

detailed description of the optimal policies for the seller and the adversary, the tradeoffs faced by

the seller, and a precise characterization of the resulting revenue loss (Theorem 2.1 and Proposition

2.1). 2) We extend our formulation and results to a two period setting that allows the seller to learn

from the sales observations in period one (Theorems 3.1 and 3.2). 3) We address the situation where

the seller only has limited price experimentation capability, or has limited past sales information.

Observing the demand at a price point gives cumulative demand information above and below

that price point and essentially decomposes the problem into simpler subproblems in the respective

regions that are readily solvable using linear programming techniques (Proposition 4.2). As a

special case of practical interest, we also study the “ex-post” problem that allows the seller to take

into account actual demand observation data in her price optimization and performance analysis

decisions (Proposition 4.4).

We highlight three observations from our work that are of potential interest. First, the worse

case market scenarios for the firm, as captured by the WtP distribution selected by the adversary,

correspond to homogeneous markets where all consumers have the same, yet unknown, valuation.
3 Dynamic pricing is concerned with adjusting prices to regulate demand over a finite sales horizon to maximize

revenue. Price skimming is a commonly used example of such a policy in many industries like airlines, hospitality
and fashion. Clearing excess inventory and perishable products –rather than salvaging leftover items at low value at
the end of the sales horizon– has been proposed as a possible explanation for this practice; see Talluri and van Ryzin
(2004) for a review of this body of work. Another possible explanation for the use of dynamic pricing policies is as
a hedging mechanism in settings where demand is uncertain; see Lazear (1986) for an analysis of this problem and
Pashigan (1988), and Pashigan and Bowen (1991) for empirical evidence of this explanation. Harris and Raviv (1981)
showed that a price skimming policy may emerge as the optimal mechanism when demand is uncertain. Our work
shows that such a policy will optimize the firm’s relative revenue performance when the demand model is unknown.
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Mathematically, this corresponds to an extreme point -unit mass- distribution whose exact position

is uncertain, forcing to firm hedge against opposing risks at each price point: first, the risk of

foregoing revenue from pricing too low, and second, the risk of foregoing sales from pricing too

high. In response, the firm’s strategy tries to hedge against this exposure.

The extreme point nature of the adversary’s strategy has appeared elsewhere in the literature.

One example form decision theory is Smith (1995), which studies the expectation maximization

problem among a set of probability distributions. He shows the equivalence of that problem to a

linear program and, as a result, recovers extreme point distributions as potential solution points.

Our objective function is not linear (and not even convex), and our results do not follow from

Smith’s observation. However, in most of the papers that such a structure emerges, it happens

because the inner optimization step can be reduced to a quasi-convex maximization problem over

the probability simplex, which admits an extreme point solution. In settings with learning or

with partial demand information, the worst-case distribution retains some of its structural form

by having point masses at distinct valuations, but becomes more dispersed. We give a complete

characterization of the latter and discuss several examples in Section 4.

Second, we highlight that in settings with limited or no market information it is optimal for

the firm to adopt a price skimming policy to minimize the risk of lost sales and foregone revenue

that could result from mis-estimating the market characteristics. To contrast, if the firm knew the

customer WtP distribution, then it would be optimal to charge a static price over the entire sales

horizon. This result suggests that lack of market information could offer one possible justification

for the use of dynamic pricing policies (c.f. footnote 3). Analytically, the precise form of the

resulting pricing policy ensures that both the firm and the adversary are indifferent with regard to

the positioning (i.e., the representative valuation) of the market.

Third, the effect of learning is both significant and quick in the sense that even a few obser-

vations at different price points can provide considerable lift in the revenue performance of the

proposed policies. Both the resulting competitive ratio, which is a worse case bound, and the

actual performance relative to some underlying WtP distribution unknown to the seller, improve

considerably. In the case where the seller is not restricted in the number of price points that she

can experiment at, we show that it is optimal to use a price skimming policy during a “learning”
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period. This achieves full learning of the demand model and allows the seller to price at the optimal

(full-information) price in the remainder of the sales horizon. Often, there may be practical con-

straints that link the firm’s pricing decision over time, e.g. retailers hesitate to increase prices after

an early mark down. We show that in such settings it is still optimal to adopt a price skimming

policy, but in this case the seller is willing to sacrifice performance due to the learning phase so as

to retain adequate pricing flexibility in the remainder of the sales horizon.

Incorporation of partial information is typically done in a Bayesian setting under some para-

metric assumptions for the WtP distribution and using conjugate pairs of distributions to maintain

tractability; see, e.g., Lobo and Boyd (2003), Aviv and Pazgal (2005), Araman and Caldentey

(2005), and Farias and Van Roy (2006). Assuming a parametric family of distributions for the un-

known demand runs the risk of model misspecification due to the arbitrariness of that assumption.

Similar to this paper, another subset of literature uses non-parametric approaches, which make

minimal distributional assumptions and often involve some form of an adaptive learning algorithm;

see, e.g., van Ryzin and McGill (2000), Huh and Rusmevichientong (2006), and Eren and Maglaras

(2006). An interesting recent paper in the latter set is Besbes and Zeevi (2006) that studies a

prototypical dynamic pricing problem in a stochastic environment. Two important insights from

their work for purposes of our paper is that they show that: a) in settings with long sales horizons

and large market sizes, an asymptotically optimal policy in terms of its relative regret is to divide

the sales horizon in two phases that are dedicated to learning and revenue optimization, respec-

tively; and b) the uncertainty due to the stochastic nature of the demand arrival process is indeed

negligible in such settings.

As a closing remark we note that a potential practical shortcoming of an approach based on

the relative performance criteria is that it may loose its analytic and computational tractability

as one tries to incorporate partial information about the unknown demand model primitives. In

that respect, most papers (and ours) that adopt this framework strive for the derivation of insights

about the structure of good policies and the effect of ambiguity on system performance, as opposed

to the computation of implementable policies. One exemption is Perakis and Roels (2007) which

incorporates partial demand information using the probabilistic tight bounds for mean and vari-

ance specifications derived by Bertsimas and Popescu (2005). Another is Bergemann and Schlag
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(2005) which allows for the unknown distribution to be within a distance of a nominal distribution

that could encapsulate prior information. Both papers work with the regret criterion and do not

generalize easily to the competitive ratio criterion, and both frameworks do not seem to allow for a

tractable way in which to incorporate intuitive information extracted from past sales that usually

translate to fractiles of the WtP distribution. Our paper shows how to incorporate the latter type

of demand information in a tractable way.

The remainder of the paper is structured as follows. Section 2 introduces the prototypical

dynamic pricing problem with no market information and no learning. Sections 3 and 4 study two

period extensions that allow for different degrees of learning.

2 Dynamic Pricing with No Market Information

2.1 Problem formulation

We consider a monopolist selling a homogeneous good over a sales horizon that is normalized to

have length one. The firm’s is assumed to have ample capacity. Potential customers arrive at the

firm according to a deterministic arrival process with rate Λ, each with a WtP for one unit of that

product, denoted by v, which is an independent draw from a common discrete distribution F on

the set {p1, . . . , pK} where p1 =
¯
v and pK = v̄. That is the support of the WtP distribution is

an appropriate discretization of the range [
¯
v, v̄], e.g., in $1 or 5% increments.4 Assuming that the

price at time t is equal to p(t), then the sale rate at that instant is given by λ(t) = ΛP(v ≥ p(t)) =

ΛF̄ (p(t)), where F̄ (·) = 1− F (·), and the corresponding revenue rate is p(t)ΛF̄ (p(t)).

The firm’s goal is to maximize the total revenues accrued in [0, 1]. When the WtP distribution F

is known, this problem reduces to a special case of the deterministic relaxation of the single-product

dynamic pricing problem studied by Gallego and van Ryzin (1994) (that paper considered the

capacity constrained case), for which it is optimal to charge a constant price p∗ = argmaxi piF̄ (pi)

throughout the sales horizon. That is, the dynamic nature of the pricing decisions is inconsequential,

and the above problem reduces to the classical monopolist pricing problem.

This paper considers the problem of selecting a pricing policy when the firm only knows the
4It is common to assume that the customer arrival process is Poisson, but in the sequel we will restrict attention

to a deterministic model where, in addition, customers are assumed to arrive continuously as opposed to in unit
increments. The rate Λ can also be interpreted as the “market size.”
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support [
¯
v, v̄] of the distribution function F , but not F itself. Sections 3 and 4 will consider

extensions that incorporate demand learning from early sales. Estimating (or bounding) the support

rather than the distribution itself is much easier in practice; for example,
¯
v might represent the

“cost of goods sold” below which the firm is not willing to engage in trade, and v̄ might represent

the price of a superior substitute in the market.

The firm’s pricing strategy is a vector t ∈ RK , where ti is the length of time over which the

firm will use price pi. Note that the labeling of the price points and the assumption that p1 =
¯
v

and pK = v̄ are innocuous since it is always possible to decide not to offer some particular price pj

by setting the corresponding tj = 0. Given a policy t and a distribution F , the revenue accrued by

the firm is given by R(t, F ) := Λ
∑K

j=1 tj pj P(v ≥ pj) = Λ
∑K

j=1 tj pj F̄ (pj).

The firm selects a strategy t, and then an imaginary adversary selects a distribution F after

he observes the firm’s policy t. The goal of the firm is to optimize its relative performance when

compared to that of a fully informed player, i.e. one that could maximize its revenues with full

knowledge of the distribution F ; this is the so called “competitive ratio” criterion.

Specifically, let t∗(F ) ∈ argmaxt R(t, F ), be the policy that maximizes the total revenue with

full information about F (·), which is given by t∗j (F ) = 1 for j = argmaxi piF̄ (pi) and t∗i (F ) = 0

for all i 6= j . The competitive ratio (CR) problem is given by

c∗ = max
t

min
F





R(t, F )
R(t∗(F ), F )

:
K∑

j=1

tj = 1, t ≥ 0



 . (1)

2.2 Characterization of the optimal pricing policy

For any distribution F , let fj := P(pj+1 > v ≥ pj) for j = 1 . . . K − 1, fK := P(v = v̄),

and f̄j :=
∑

j≤k fk = P(v ≥ pj). This allows us to rewrite the revenue function as R(t, F ) =
∑

k fk
∑

j≤k pj tj =
∑

j tjpj f̄j , and (1) as:

c∗ = max
t

min
f̄





∑
j tjpj f̄j

maxj{pj f̄j}
: 1 = f̄1 ≥ f̄2 ≥ · · · f̄K ≥ 0,

∑

j

tj = 1, t ≥ 0



 , (2)

where the denominator, maxj{pj f̄j} = R(t∗(F ), F ), is the maximum revenue that the firm could

extract, if F (·) was known, by charging the revenue maximizing price throughout the sales horizon.
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The key observation that underlies the solution of (2) is that the objective function is quasi-

concave in f̄ , and as a result, the adversary’s problem admits an extreme point optimal solution

which is easy to characterize and exploit.

Theorem 2.1 Consider the dynamic pricing problem with no market information specified in (1),

or equivalently in (2). The firm’s optimal policy is the following price skimming rule:

t1 =


K −

K−1∑

j=1

pj

pj+1



−1

and tj =
pj − pj−1

pj
t1 for j = 2, . . . , K.

and the resulting competitive ratio is c∗ = t1.

Proof: The denominator in the objective in (2) is the maximum of K linear functions in f̄ , and is

therefore convex in f̄ . The numerator in (2) is linear, and thus concave in f̄ . Thus, for fixed t, the

adversary’s problem is one of minimizing a quasi-concave function over a polyhedron, which admits

an extreme point optimal solution. The polyhedron defined by 1 ≥ f̄2 ≥ · · · f̄K ≥ 0 has K extreme

points, all of which correspond to vectors of the form (1, 0, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . (1, 1, 1, . . . , 1).

Since, for every fixed t the optimal value for the inner minimization occurs at one of these extreme

points, (2) can be reduced to the problem:

c∗ = max
t

{
min

j=1,...,K

∑
i≤j pi ti

pj
:

∑
j tj = 1, t ≥ 0

}
,

which, in turn, is equivalent to the linear program

c∗ = max
t,c

{
c : c ≤ ∑

i≤j
pi

pj
ti ∀j, ∑

j tj = 1, t ≥ 0
}

.

This LP can be solved in closed-form as follows. Consider its dual:

c∗ = min
x,y

{
y : y ≥ pj

∑
i≥j

xi
pi

∀j, ∑
j xj = 1, x ≥ 0

}
.

The first step is to construct a dual feasible solution that satisfies the first set of inequality

constraints with equalities. Solving y = pj
∑

i≥j
xi
pi
∀j, then xK = y and xj = pj+1−pj

pj+1
y for

j = 1, . . . ,K − 1. Substituting these into the normalizing constraint
∑

j xj = 1, yields y =
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(
K −∑K−1

j=1
pj

pj+1

)−1
. This dual objective value is equal to the primal objective value that corre-

sponds to the primal feasible solution given in the body of Theorem 2.1. By strong duality, we

conclude that the solution in the proposition is optimal for the primal problem. 2

Consequently, if the firm does not know the WtP distribution F , it no longer charges a constant

price, but it adopts a price skimming policy that charges each price point for an appropriate amount

of time. As mentioned earlier, an alternative interpretation is to treat the tj ’s as probabilities and

t as a randomized pricing policy; see Bergemann and Schlag (2005). To gain some intuition behind

this result, recall that the worst case scenario for the firm occurs when the market is homogeneous

and every potential customer shares the same WtP. This setting raises two types of opposing risk

for the firm at each price. First, if the firm prices too high for a significant portion of its sales

horizon, it may suffer low sales when the market’s WtP is low. Second, if the firm prices too

low for a significant portion of its sales horizon, it may forego a significant revenue opportunity

when the market’s WtP is high. In both cases, the resulting competitive ratio would be low.

Our analysis specifies how to balance these two effects in constructing the optimal pricing policy,

which essentially makes the adversary indifferent between the extreme market scenarios that is

optimal for him to choose. It is also worth comparing the above behavior against the solution to

the maxmin formulation with objective maxt minF R(t, F ). In this case, the optimal strategy for

the adversary is to put all of the probability at
¯
v, while the firm would also price at

¯
v for the

entire sales horizon, making the result too conservative. Actually, the revenue performance of the

resulting policy is typically much higher than the competitive ratio as illustrated by the numerical

examples in Sections 3 and 4.

The competitive ratio for (2) depends on the discretization of the grid {p1, . . . , pK}. The next

result derives a lower bound for the competitive ratio that is independent of that grid.

Proposition 2.1 For any price grid {p1, . . . , pK} used of any size K, the optimal competitive ratio

c∗ for (2) satisfies the following bound:

c∗ ≥ (1 + ln(v̄/
¯
v))−1 =: cLB.
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Proof: Note that

K −
K−1∑

j=1

pj

pj+1
= 1 +

K−1∑

j=1

pj+1 − pj

pj+1
= 1 +

K−1∑

j=1

∫ pj+1

pj

1
pj+1

dx ≤ 1 +
K−1∑

j=1

∫ pj+1

pj

1
x

dx

= 1 +
∫ v̄

¯
v

1
x

dx = 1 + ln(v̄/
¯
v)

Then, c∗ satisfies

c∗ =


K −

K−1∑

j=1

pj

pj+1



−1

≥ (1 + ln(v̄/
¯
v))−1 = cLB. 2

The lower bound is achieved as the number of prices grows large and {p1, . . . , pK} becomes a dense

covering of the range [
¯
v, v̄]. As intuition would suggest, as the relative difference between the lowest

and the highest valuation decreases, i.e. as
¯
v/v̄ → 1, cLB ↑ 1. That is, as the aggregate uncertainty

about the market preferences decreases, the risk from pricing too low becomes negligible, and the

firm’s revenue approaches the one that is achieved under full knowledge of F .

We note that Ball and Queyranne (2004) recover similar results in their study of the single-

resource (airline) capacity allocation problem under a competitive ratio criterion. Similarly, Berge-

mann and Schlag (2005) obtained analogous results using the maximum regret criterion.

3 The Effect of Learning

We consider a version of the dynamic pricing problem with passive learning where: a) the firm splits

the sales horizon into two periods of length τ1 and τ2 = 1−τ1; b) selects a pricing strategy in [0, τ1]

without any information about F ; and c) subsequently selects a pricing strategy in (τ1, 1] that uses

fractile information extracted in [0, τ1] for all price points charged in that period. Note that the

adversary need only commit to the underlying WtP distribution at the price points where the firm

choose to experiment in period one, and can select the remaining information, i.e. unobserved

specifications of the distribution, in period two. We assume that the demand measurements are

noiseless, i.e. the firm observes F̄ (pj) instead of a random variable with that mean. The term

“passive” learning indicates that the firm cannot update its information set incrementally during

[0, τ1] or (τ1, 1]; instead, it only updates its information at time τ1, and makes use of this new
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information in (τ1, 1]. In that sense, the first period has a dual role of learning and revenue

optimization, while the second period is solely dedicated to revenue optimization. This structure

is suggested due to its simplicity and potential practical appeal, which was recently proposed and

analyzed in an asymptotic setting with large market size and large sales horizon by Besbes and

Zeevi (2006).

An alternative interpretation of our model is one where the firm sells one product through

many potential stores, and where rather than dynamic pricing over time, the fractions tij represent

the fraction of the stores that price at pj in period i for j = 1, . . . , K and i = 1, 2. [This is also

an alternate interpretation for the randomized policy of Bergemann and Schlag (2005).] In that

setting, the firm selects at how many stores to apply each potential price point, and then combines

the information extracted from all these stores to update its demand information and optimize its

downstream pricing decisions. Gaur and Fisher (2005) have studied this problem, although the

emphasis in their paper was the issue of how to combine the demand information from each store

taking into account the differences between the local market conditions faced by each store; this

feature is not considered in our paper.

An important consideration is whether the prices used during the first period constrain the

firm’s pricing options in the second period. We study two variants:

a) Unconstrained learning : no downstream pricing constraints in period two; i.e., both markups

and markdowns are allowed.

b) Constrained learning : the firm can only apply price markdowns in period two. This is easiest

understood through the interpretation of a firm selecting how to price a product across many stores,

in which case in a constrained setting, if a particular store priced at pj in period one, then the

same store can only price at pj or lower in period two. This constraint -or slight variation thereof-

is plausible from a practical viewpoint, and creates a clear trade-off between the pricing decisions

in the two periods. Algebraically, this constraint translates into
∑

j≥k t1j ≥
∑

j≥k t2j for all k, where

t1j and t2j are the fractions of the intervals [0, τ1] and (τ1, 1] respectively dedicated to price pj and
∑

j tij = 1 for i = 1, 2.

These two variants are analyzed in the following subsections. As it will be apparent, an im-

portant feature of the emerging solution for both variants is that the firm chooses to experiment

12



on all possible price points in {p1, . . . , pK} in period one, so as to price under full information in

period two. Section 4 will study more restricted settings where the firm can only experiment on a

few price points in period one.

3.1 Unconstrained learning

Adopting our previous notation, we will normalize the length of each period to one but scale the

market size that corresponds to each period to Λ1 and Λ2, where Λi = Λτ i for i = 1, 2. This

problem can be formulated as the following two-stage dynamic game:

c∗ = max
t1

min
f̄1

max
t2

min
f̄2

Λ1
∑

t1jpj f̄
1
j + Λ2

∑
t2jpj f̄

2
j

(Λ1 + Λ2)maxj{pj f̄2
j }

(3)

s.t.
∑

j

tij = 1, ti ≥ 0 i = 1, 2

1 = f̄ i
1 ≥ f̄ i

2 ≥ · · · f̄ i
K ≥ 0 i = 1, 2

t1j (f̄
2
j − f̄1

j ) = 0, ∀j

where tij is the proportion of time spent at price j during period i for j = 1, . . . ,K and i = 1, 2.

f̄2
j , j = 1, . . . , K are the fractiles of the WtP distribution chosen by the adversary in period two,

while f̄1
j represent the information revealed to the firm at the end of period one. The constraints

t1j (f̄
2
j − f̄1

j ) = 0 force the adversary to be consistent in the choice of the WtP distribution and the

information revealed to the firm in the first period. There are no constraints linking the pricing

decisions in periods one and two.

We first prove that the firm tests all prices in period one. (The proof is relegated to the

appendix.)

Proposition 3.1 Let (t1∗, t2∗) denote the solution of (3). Then, t1∗,j > 0 for j = 1, . . . , K.

This allows the firm to price under full information in period two such that

max
t2



Λ2

∑
t2jpj f̄

1
j :

∑

j

t2j = 1, t2 ≥ 0



 = Λ2 max

j
{pj f̄

1
j },

i.e. the firm extracts the maximum possible revenue in period two, same as the adversary. Given
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this observation the problem reduces to

max
t1

min
f̄1





Λ1
∑

t1jpj f̄
1
j

(Λ1 + Λ2)maxj{pj f̄1
j }

+
Λ2

(Λ1 + Λ2)
:
∑

j

t1j = 1, t1 ≥ 0, 1 = f̄1
1 ≥ · · · f̄1

K ≥ 0



 , (4)

which is equivalent to the single period problem studied in Section 2. Using Theorem 2.1, we

conclude the following:

Theorem 3.1 For the two period dynamic pricing problem with “unconstrained learning” described

in (3), the firm’s optimal decision is the following

• Period one: adopt a price skimming policy for which

t1 =


K −

K−1∑

j=1

pj

pj+1



−1

and tj =
pj − pj−1

pj
t1 for j = 2, . . . , K.

• Period two: price at pj∗, where j∗ = argmaxj{pj f̄
1
j }.

Let λi := Λi/(Λ1 + Λ2), i = 1, 2. The competitive ratio is

c∗ = λ1


K −

K−1∑

j=1

pj

pj+1



−1

+ λ2. (5)

That is the competitive ratio is a weighted average of the one for the single period problem identified

in Theorem 2.1 and 1 with respective weights of λ1 and λ2. As we shrink the length of the learning

period λ1 → 0, λ2 → 1 and c → 1. This follows from the assumption that allows for perfect

learning of the demand at each tested price point irrespective of the time spent on it. In reality, as

the length of the learning phase decreases, the accuracy of the firm’s observations diminishes due

to the inherent uncertainty of the demand realization, which may lead to an error in the estimation

of the underlying WtP distribution and of the firm’s downstream pricing decisions.

As mentioned earlier, Besbes and Zeevi (2006) studied a stochastic variant of what we call here

the “unconstrained” problem in settings where the market size is large, and showed that the firm

can select the learning period to be short and still ensure that the estimation error due to the

stochastic nature of the demand is asymptotically negligible. As λ1 → 0, the pricing policy in

the first period becomes irrelevant as long as the firm does try all K price points; indeed Besbes
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and Zeevi (2006) prescribes a uniform pricing policy in period one, since its effect on the overall

performance becomes negligible.

3.2 Constrained learning

As explained earlier the downstream pricing constraints can be succinctly summarized by the set

of conditions
∑

j≥k t1j ≥
∑

j≥k t2j for all k. The resulting formulation becomes:

c∗ = max
t1

min
f̄1

max
t2

min
f̄2

Λ1
∑

t1jpj f̄
1
j + Λ2

∑
t2jpj f̄

2
j

(Λ1 + Λ2)maxj{pj f̄2
j }

(6)

s.t.
∑

j

tij = 1, ti ≥ 0 i = 1, 2

1 = f̄ i
1 ≥ f̄ i

2 ≥ · · · f̄ i
K ≥ 0 i = 1, 2

t1j (f̄
2
j − f̄1

j ) = 0, ∀j
∑

j≥k

t1j ≥
∑

j≥k

t2j ∀k.

We state the following result without proof (which follows the steps of Proposition 3.1).

Proposition 3.2 Let (t1∗, t2∗) denote the solution to (6). Then, t1∗,j > 0 for j = 1, . . . , K.

Using this result, the problem can be reduced to the following formulation:

max
t1

min
f̄1

Λ1
∑

t1jpj f̄
1
j + maxt2

{
Λ2

∑
t2jpj f̄

1
j :

∑
j≥k t1j ≥

∑
j≥k t2j ∀k,

∑
j t2j = 1, t2 ≥ 0

}

(Λ1 + Λ2)maxj{pj f̄1
j }

(7)

s.t.
∑

j

t1j = 1, t1 ≥ 0, 1 = f̄1
1 ≥ f̄1

2 ≥ · · · f̄1
K ≥ 0 .

The optimization in the second term of the numerator reflects the revenue maximization prob-

lem of the firm in the second period under full information but with the downstream pricing

constraints. It is easy to show that in period two the firm adopts the revenue maximizing price

pj∗ = argmax{pj f̄1
j } for as long as possible, while marginally satisfying the downstream pric-

ing constraints for all prices below pj∗ ; at the optimal solution, t2j = t1j for j < j∗ and t2j∗ =
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(
1−∑

i<j∗ t1i

)
. As a result, we can rewrite (7) as

c∗ = max
t1

min
f̄

Λ1
∑

t1jpj f̄j + Λ2
[∑

i<j∗ t1i pif̄i +
(
1−∑

i<j∗ t1i

)
pj∗ f̄j∗

]

(Λ1 + Λ2)maxj{pj f̄j}
(8)

s.t.
∑

j

t1j = 1, t1 ≥ 0, 1 = f̄1
1 ≥ f̄1

2 ≥ · · · f̄1
K ≥ 0 .

Theorem 3.2 For the two period dynamic pricing problem with “constrained learning” described

in (6), the firm’s optimal decision is the following

• Period one: adopt a price skimming policy for which

t11 =


1 +

p2 − p1

p2
+

K∑

j=3

(pj − pj−1)
∏j−1

i=2 [pi − λ2pi−1]∏j
i=2 pi (λ1)j−1



−1

and t12 =
p2 − p1

p2
,

t1j =
(pj − pj−1)[pj−1 − λ2pj−2]

(pj−1 − pj−2)pjλ1
t1j−1 for j = 3, . . . , K.

• Period two: price at pj∗ for t2j∗ =
(
1−∑

i<j∗ t1i

)
and at pj for t1j for j < j∗, where j∗ =

argmaxj{pj f̄
1
j }.

Let λi = Λi/(Λ1 + Λ2), i = 1, 2. The competitive ratio is

c∗ = λ1


1 +

p2 − p1

p2
+

K∑

j=3

(pj − pj−1)
∏j−1

i=2 [pi − λ2pi−1]∏j
i=2 pi (λ1)j−1



−1

+ λ2 . (9)

Proof: The proof makes use of the following result, which we prove in the appendix.

Lemma 3.1 For any feasible t1, the optimal solution for the inner minimization in (8) occurs at

an extreme point of the simplex 1 ≥ f̄2 ≥ · · · f̄K ≥ 0.

There are K extreme points to consider for the inner minimization in problem (8) above corre-

sponding to vectors of the form (1, 0, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . (1, 1, 1, . . . , 1). Using Lemma 3.1,

we can rewrite (8) as follows:

c∗ = max
t

min
j=1···K





Λ1
∑

i≤j pit
1
i + Λ2

[∑
i<j pit

1
i +

(
1−∑

i<j t1i

)
pj

]

(Λ1 + Λ2)pj
:

∑

j

t1j = 1, t1 ≥ 0



 ,
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which, in turn, is equivalent to:

c∗ = max
t,c

c

s.t. c ≤ Λ1p1t
1
1 + Λ2p1

(Λ1 + Λ2)p1

c ≤
Λ1

∑
i≤j pit

1
i + Λ2

[∑
i<j pit

1
i +

(
1−∑

i<j t1i

)
pj

]

(Λ1 + Λ2)pj
j = 2 · · ·K

∑

j

t1j = 1, t1 ≥ 0 .

This LP can be solved in closed form using its dual. This completes the proof. 2

We make three observations. First, irrespective of whether the firm has downstream pricing

constraints, it is optimal to adopt a price skimming policy which charges all prices for a positive

amount of time in period one. Consequently, the optimal decision of the firm again decomposes

into two parts: in the first period, the firm tests all prices in an optimal manner to learn the

WtP distribution. In the second period, the firm maximizes its revenue under full information by

charging pj∗ as long as possible and meeting the downstream pricing constraints marginally.

Second, the effect of downstream pricing constraints makes the firm charge higher prices in the

first period, compared to the unconstrained case, to hedge against foregone revenues in the second

period from not being able to charge higher prices.

Third, the constrained formulation offers a natural extension to the model studied in Besbes

and Zeevi (2006) in the sense that one could adopt their style of analysis to prove the asymptotic

optimality of our proposed policy. In contrast to our comments after the analysis of the uncon-

strained learning case, the pricing policy adopted during the learning phase has a crucial effect on

the overall system performance even if the length of the learning phase is shrunk to zero.

3.3 Discussion and numerical results

The numerical results reported next give a rough indication of the theoretical performance improve-

ment under these two learning schemes when compared to the results in Section 2 with no learning.

Specifically, for a fixed price grid with K price points that uniformly span the support [
¯
v, v̄] and

given Λ1, Λ2, the solution of the single period problem with Λ = Λ1 + Λ2, identified by Theorem
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2.1, is compared to the solutions of the two learning schemes identified in Theorems 3.1 and 3.2.

The main observation from these results is that the effect of learning is most pronounced in

settings with higher ambiguity as measured by v̄/
¯
v. This is intuitive, as in these cases the risks

associated with worst-case pricing are accentuated5. The same conclusions hold for the constrained

learning case. The second period problem reduces to the monopolist’s revenue maximization prob-

lem for both the unconstrained and constrained learning formulations. But while the effect of the

first period revenue diminishes as λ1 → 0, its impact on the second period revenue does not in the

case with downstream pricing constraints. Table 1 below provides a numerical example of these

gains for different parameters.

Table 1: Competitive ratios of Single Period, Constrained Learning, and Unconstrained Learning
cases, and respective gains due to learning. K = 20 prices uniformly spanning the support.

(λ1, v̄/
¯
v) Single Period CR Const. CR Gain% Unconst. CR Gain%

( 0.1 , 2 ) 0.595 0.900 51% 0.960 61%
( 0.1 , 6 ) 0.372 0.900 142% 0.937 152%
( 0.1 , 10 ) 0.322 0.900 180% 0.932 190%
( 0.4 , 2 ) 0.595 0.706 19% 0.838 41%
( 0.4 , 6 ) 0.372 0.624 68% 0.749 101%
( 0.4 , 10 ) 0.322 0.614 91% 0.729 126%
( 0.7 , 2 ) 0.595 0.634 7% 0.717 20%
( 0.7 , 6 ) 0.372 0.461 24% 0.560 51%
( 0.7 , 10 ) 0.322 0.427 33% 0.525 63%

4 Learning with Limited Price Experimentation

From a practical viewpoint, firms typically have a limited time and budget for learning, and as

a result try to gauge the WtP distribution only at certain price points. This section extends our

analysis to cover settings where the firm can experiment with only a small number of price points

in the first period.
5Analytically, the competitive ratio for the unconstrained learning case is cl := λ1 c + λ2, and the relative gain

is (cl/c− 1) = λ2(c−1 − 1). Using the lower bound cLB = (1 + ln(v̄/
¯
v))−1 derived in Proposition 2.1, we see that the

gain can be close to λ2 ln(v̄/
¯
v), which is increasing in v̄/

¯
v.
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4.1 Single price in period one

The first case we study is one where the firm can only experiment with one price in period one,

which we denote by pn. It will consequently, observe the fractile of the WtP distribution at that

point, denoted by f̄n. The adversary needs to commit to only f̄n in period one and is free to choose

the remainder of the distribution in period two. The firm can use its knowledge of f̄n in its pricing

decision for period two. This is formulated as follows:

c∗ = max
n∈{1,...,K}

min
f̄n∈[0,1]

max
t

min
f̄

Λ1pnf̄n + Λ2
∑

tjpj f̄j

(Λ1 + Λ2) maxj{pj f̄j}
(10)

s.t.
∑

j

tj = 1, t ≥ 0

1 = f̄1 ≥ f̄2 ≥ · · · ≥ f̄n

f̄n ≥ f̄n+1 ≥ · · · ≥ f̄K ≥ 0,

where tj is the proportion of time spent at pj in the second period. Note that for the inner maxmin

problem, f̄n is a given constant rather than an optimization variable. The solution to the inner

subproblem is of independent interest as it demonstrates how to price and what is the worst-case

WtP distribution in settings where the firm has partial demand information in the form of a sales

observation at one price point. This is extended later in Section 4.2 to allow for multiple such

observations.

The blueprint of our analysis is to show that given (pn, f̄n), the problem of the firm decouples

into two related subproblems similar to that of Section 2: one on the grid {p1, . . . , pn−1} with a

probability mass of 1− f̄n, and the other on the grid {pn, . . . , pK} with probability mass of f̄n. For

each subproblem, results of Section 2 such as the extreme point optimality for adversary’s decision

continue to hold. The strategy of the firm is again a price skimming policy for each subinterval

[
¯
v, pn) and [pn, v̄] and then pn to balance the potential revenue loss due to each subinterval.

We start our analysis by noting that the adversary’s inner problem in (10) is one of minimizing

a quasi-concave function in f̄ over a polyhedron, as in Section 2.2, which admits an extreme point

optimal solution. However, instead of C(K, 1) = K extreme points, the partitioned constraints

above admits C(n−1, 1)∗C(K−n+1, 1) = (n−1)(K−n+1) extreme points. For example, one such

extreme point corresponds to the f̄ vector of the form ((1, 1, f̄n, f̄n, . . . , f̄n), (f̄n, f̄n, f̄n, 0, 0, . . . , 0)),
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which corresponds to a point mass of size 1− f̄n at price pj1 and a point mass of size f̄n at price

pj2 for 1 ≤ j1 < n ≤ j2 ≤ K. Exploiting this concave minimization structure, and defining

cj1,j2 =
Λ1pnf̄n + Λ2(

∑j1
j=1 tjpj +

∑j2
j=j1+1 tjpj f̄n)

(Λ1 + Λ2)max{pj1 , pj2 f̄n}
, 1 ≤ j1 < n ≤ j2 ≤ K,

the problem in (10) can be rewritten as

c∗ = max
n∈{1,...,K}

min
f̄n∈[0,1]

max∑
tj=1, t≥0

min
1≤j1<n≤j2≤K

cj1,j2 . (11)

That is, the adversary now selects two point masses, the first of size (1− f̄n) that is positioned in

[
¯
v, pn), and the second of size f̄n that is positioned in [pn, v̄].

Proposition 4.1 For given pn, f̄n, and t, the extreme points of the inner minimization problem

min1≤j1<n≤j2≤K cj1,j2 in (11) is characterized by a pair of indices (j1, j2) that correspond to posi-

tioning of the point masses 1− f̄n at pj1 with 1 ≤ j1 < n and f̄n at pj2 with n ≤ j2 ≤ K respectively.

There exists an optimal solution to (11) that places 1− f̄n probability at p1 or f̄n probability at pn.

Consequently, the optimal choice of (j1, j2) is of the form (j1, n) or (1, j2).

Proof: The proof is divided into two cases. Let us first suppose that pj1 < pj2 f̄n and j1 > 1 at the

optimal solution. Then, the optimal ratio for fixed n, f̄n, and t, denoted by c(n, f̄n, t), is

c(n, f̄n, t) = cj1,j2 =
Λ1pnf̄n + Λ2(

∑j1
j=1 tjpj +

∑j2
j=j1+1 tjpj f̄n)

(Λ1 + Λ2)pj2 f̄n

≥Λ1pnf̄n + Λ2(t1p1 +
∑j1

j=2 tjpj f̄n +
∑j2

j=j1+1 tjpj f̄n)

(Λ1 + Λ2)pj2 f̄n

=
Λ1pnf̄n + Λ2(t1p1 +

∑j2
j=2 tjpj f̄n)

(Λ1 + Λ2)pj2 f̄n

=c1,j2 , (12)

so c1,j2 is also optimal whenever pj1 < pj2 f̄n.

Second, suppose that pj1 ≥ pj2 f̄n and j2 > n at the optimal solution. Consequently, the optimal
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ratio is

c(n, f̄n, t) = cj1,j2 =
Λ1pnf̄n + Λ2(

∑j1
j=1 tjpj +

∑j2
j=j1+1 tjpj f̄n)

(Λ1 + Λ2)pj1

≥Λ1pnf̄n + Λ2(
∑j1

j=1 tjpj +
∑n

j=j1+1 tjpj f̄n)
(Λ1 + Λ2)pj1

=cj1,n, (13)

and cj1,n is also optimal whenever pj1 ≥ pj2 f̄n. 2

As a result the problem can be reduced to

c∗ = max
n∈{1,...,K}

min
f̄n∈[0,1]

max
t,c

c (14)

s.t. c ≤ cj1,n 1 ≤ j1 < n

c ≤ c1,j2 , n ≤ j2 ≤ K

∑
tj = 1, t ≥ 0 .

The next proposition characterizes the worst-case f̄n that the firm can observe and Corollary

4.1 formulates the corresponding problem of choosing pn to experiment at according to this.

Proposition 4.2 For fixed pn, there exists an optimal solution of the outer minimization in (10)

with f̄n = 0 or 1. Hence, it is sufficient to restrict attention to K extreme points where the unit

probability mass is allocated to a single price.

Propositions 4.1 and 4.2 together imply that for a given price pn in period one, the adversary’s

problem decomposes into two subproblems: a) an upper problem where the unit probability mass

is placed at some price pj ∈ [pn, v̄], and b) a lower problem where the unit mass is placed at some

price pj ∈ [
¯
v, pn−1]. The adversary selects the solution that yields a smaller ratio. In return, the

firms’ problem in period one is to choose the price point pn that balance the ratios in subproblems

a) and b).

Corollary 4.1 Let

cu(n) = max∑
tj=1, t≥0

min
n≤j2≤K

Λ1pn + Λ2
∑j2

j=1 tjpj

(Λ1 + Λ2)pj2

and cl(n) = max∑
tj=1, t≥0

min
1≤j1<n

Λ2
∑j1

j=1 tjpj

(Λ1 + Λ2)pj1
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the competitive ratio problem in (10) reduces to

c∗ = max
n∈{1,...,K}

min{cu(n), cl(n)} . (15)

Observe that both cu(n) and cl(n) are equivalent to simple linear programs as demonstrated in

Section 2.2. Furthermore, cl(n) is directly equivalent to the single period problem in Section 2.2

using only prices p1 =
¯
v to pn−1, and has its solution readily available.

v pn v

t

x

j n

t
<
∑

j n

t
≥
∑+ = 1

(a) A representative policy

v pn

1-fn

v

1

F(x)

x

(b) A candidate WtP distribution

Figure 1: Structure of the worst-case distribution with one test price

The choice of pn balances two types of risk: a) the firm faces the risks of lost sales and foregone

revenue in period one; b) the exposure faced by the seller in each of the subintervals [
¯
v, pn) and

[pn, v̄], which increases with the ambiguity measured by
¯
v/pn and pn/v̄. As Λ1 decreases, i.e., the

emphasis shifts on balancing these risks in period two. Hence, as Λ1 → 0 and as {p1, . . . , pK}
becomes a dense covering of [

¯
v, v̄] with K ↑ ∞, the optimal price at which to experiment is such

that the relative ambiguity of the two subproblem becomes equal: specifically optimal pn is satisfies

¯
v/pn = pn/v̄, i.e. optimal pn is the geometric mean of

¯
v and v̄. This result directly follows from

Proposition 2.1.

4.2 Multiple prices and incorporating partial demand information

Let N be the number of price points used in the first period with 1 ≤ N < K, and label these

prices by pi1 , pi2 , . . . , piN . In this subsection we will focus on the following practically important

problem: given a testing schedule {pi1 , . . . , piN } and the associated fractiles {f̄i1 , . . . , f̄iN }, how

should the firm exploit and incorporate information into its pricing decision? As a byproduct,
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we will characterize the worst-case market condition based on the observed demand information,

which is of interest on its own. Specifically, we will not carry through the full analysis as we did in

Section 4.1. We illustrate below that analogues of Propositions 4.1 and 4.2 can be derived and the

structure of Corollary 4.1 still holds. The solution, however, to the problem of selecting the optimal

set of prices {pi1 , . . . , piN } for testing is combinatorial and does not seem to simplify significantly.

For a given set of indices of test prices, N = {i1, . . . , iN}, we formulate the problem as:

cN = max
t1

min
f̄in∈[0,1]

max
t2

min
f̄

Λ1
∑

in∈N pin f̄int1in + Λ2
∑K

j=1 t2jpj f̄j

(Λ1 + Λ2) maxj{pj f̄j}
(16)

s.t.
∑

in∈N
t1in = 1, t1 ≥ 0

K∑

j=1

t2j = 1, t2 ≥ 0

1 = f̄1 ≥ · · · ≥ f̄K ≥ 0

f̄j = f̄in ∀ j = in ∈ N .

Note that problem (16) mimics the unconstrained learning problem previously studied, which is

indeed a special case of (16) with N = K.

The essence of the single price analysis carries through in the following sense. First, the in-

ner maxmin problem that pertains to the second period pricing problem decomposes into N + 1

subproblems in intervals [
¯
v, pi1), [pi1 , pi2), . . . , [piN , pK ] that can be studied using the results of

Section 2: the firm uses a price skimming policy within that interval, and the adversary selects

a point mass distribution for the probability that belongs to the respective interval. Second, one

can “piece” together the above results to characterize the first period behavior which only requires

comparing these N + 1 subproblems. Furthermore, complexity-wise, this overall method requires

concentrating at only K extreme points in total. Together these results yield the solution to (16).

The main idea in the proof of Proposition 4.1 for the single price analysis is that there exists a

price point yielding a maximum revenue rate for a given distribution and information constraint, and

allocating the probability mass at all other intervals to the lowest possible price can only improve

the objective function of the adversary (i.e. reduce the ratio), because it potentially reduces the

numerator with the denominator unchanged (see equations (12) and (13)). The same argument
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goes through when we have more fractile observations with the same steps for each interval. We

state this in the following, the proof of which follows similar steps to Proposition 4.1 and is therefore

omitted.

Proposition 4.3 If fractile information at N < K points are given, one can still restrict attention

to K extreme points for the inner minimization problem. For η = 1 . . . N − 1, each extreme point

is of the form fj = f̄iη − f̄iη+1 for some iη ≤ j < iη+1 and fin = f̄in − f̄in+1 for all other n 6= η.

That is we consider a price interval [piη , piη+1) one at a time and fix the probability mass for all

other intervals at the lowest price possible, ie. fin = f̄in − f̄in+1 , n 6= η, while assuming the mass

at this interval is at one of the price points within the interval. Consequently, it is sufficient again

to concentrate on a total of K extreme points.

This seemingly simple result is important because the number of extreme points can in general

grow exponentially with additional information as explained before. For example, while adding

a constraint on the mean of the WtP distribution will increase the number of extreme points

to O(K2), fractile information can be incorporated without effectively increasing the number of

extreme points to consider. Furthermore, given the fractile information the resulting competitive

ratio problem for the remaining sales horizon can be solved using a simple LP formulation which

will be illustrated later in this section.

Proposition 4.4 For any feasible t1, there exists an optimal solution for the outer minimization

in (16) which occurs at an extreme point of the simplex 1 ≥ f̄2 ≥ · · · f̄K ≥ 0. In other words, the

adversary chooses a distribution which allocates the unit probability mass to a single price in the

first period problem.

Proof: Fix some t1, let the optimal solution to the inner maximization be t2 and to the inner

minimization be f̄ , and denote the resulting optimal ratio by c(t1) := n(t1)/d(t1), where n(t1) and

d(t1) denote the corresponding values of the numerator and the denominator respectively in (16) at

the optimal solution. Also, let j∗ := argmaxj{pj f̄j} be the index of the revenue maximizing price.

First, observe that there exists an optimal distribution with f̄j = 0 for j > j∗ for the inner

problem. To see this, consider the constraints 1 = f̄1 ≥ f̄2 ≥ · · · f̄j∗ ≥ f̄j∗+1 ≥ · · · f̄K ≥ 0. Suppose

that for any fixed values of f̄1, . . . , f̄j∗ , some of the variables f̄j∗+1, . . . , f̄K have positive values.
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Then, by reducing them to zero, we do not change the value of pj∗ f̄j∗ = maxj{pj f̄j}, and hence

the the value of the denominator in (16), while potentially reducing the value of the numerator.

This would yield a lower competitive ratio. It follows that f̄j∗+1 = . . . f̄K = 0 for some optimal

solution.

Now, we also show that there exists an optimal distribution with f̄j∗ = 1 for the inner problem.

Suppose that the optimal solution has f̄j∗ < 1. Then increasing f̄j∗ by ε := 1− f̄j∗ would increase

the numerator n(t1) at most by ε
(
Λ1

∑
in≤j∗,in∈N pint1in + Λ2

∑
j≤j∗ t2jpj

)
while increasing the

denominator exactly by ε (Λ1 + Λ2)pj∗ . The new competitive ratio, denoted by cε, with f̄j∗ = 1

and f̄j = 0 for j > j∗, satisfies

cε ≤
n(t1) + ε

(
Λ1

∑
in≤j∗,in∈N pint1in + Λ2

∑
j≤j∗ t2jpj

)

d(t1) + ε (Λ1 + Λ2)pj∗
≤ n(t1)

d(t1)
= c(t1) , (17)

which shows that setting f̄j∗ = 1 is also optimal. The second inequality above follows from

ε
(
Λ1

∑
in≤j∗,in∈N pint1in + Λ2

∑
j≤j∗ t2jpj

)

ε (Λ1 + Λ2)pj∗
≤ Λ1

∑
in≤j∗,in∈N pin f̄int1in + Λ2

∑
j≤j∗ t2jpj f̄j

(Λ1 + Λ2)pj∗ f̄j∗
=

n(t1)
d(t1)

,

as 1 = f̄1 ≥ f̄2 ≥ · · · ≥ f̄j∗ and f̄j = 0 for j > j∗; the inequality holds with equality if and only if

1 = f̄1 = f̄2 = · · · = f̄j∗ . 2

Propositions 4.3 and 4.4 together imply that for a given set N of first period prices chosen by

the firm, the problem of the adversary again decomposes into N + 1 subproblems corresponding to

each of the intervals [
¯
v, pi1), [pi1 , pi2), . . . , [piN , pK ]. In each subproblem, the adversary positions

the corresponding probability mass at a single price point that belongs the respective interval in a

way that minimizes the ratio.

Corollary 4.2

Let c0 = max
t1, t2

min
1≤j0<1n

Λ2
∑

j≤j0 t2jpj

(Λ1 + Λ2)pj0
,

cn = max
t1, t2

min
in≤jn<in+1

Λ1
∑

in≤jn,in∈N pint1in + Λ2
∑

j≤jn
t2jpj

(Λ1 + Λ2)pjn

, n = 1 . . . N ,
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the competitive ratio problem in (16) reduces to

cN = min
n∈{0,...,N}

{cn} . (18)

Once again each subproblem cn is equivalent to a linear program. The next step would ideally

be optimizing the set of test prices N ⊂ {1, . . . ,K} in period one. However, this is purely a com-

binatorial problem that requires numerical techniques, and therefore, is left out of our discussion.

A practically important special case to the problem (16) above can be used to incorporate

additional information available to the dynamic pricing problem of Section 2. The overall setting

is the same, but instead of a learning period, the fractile information is assumed to be readily

available for a subset N of prices. This limited information could represent an expert opinion, an

industry forecast, past experience, or the result of price testing. Mathematically, this problem,

which is equivalent to the inner minimax formulation of (16) with Λ1 = 0, is given by:

cN = max
t

min
f̄

∑K
j=1 tjpj f̄j

maxj{pj f̄j}
(19)

s.t.
K∑

j=1

tj = 1, t ≥ 0

1 = f̄1 ≥ · · · ≥ f̄K ≥ 0

f̄j = f̄in ∀ j = in ∈ N .

Fractile information for a subset of prices {pi1 , . . . , piN } can be incorporated without increasing the

complexity of the problem, as explained by Proposition 4.3. The resulting problem can be reduced

to an LP with K constraints. Each extreme point identified in Proposition 4.3 corresponds to a

linear upper bound constraint on the objective function of the following equivalent LP formulation:

max
t, c

c (20)

s.t. c ≤ tjpj f̄iη +
∑

n 6=η, in∈N tinpin f̄in

max{pj f̄iη , maxn 6=η, in∈N {pin f̄in}}
η = 1 . . . N − 1, iη ≤ j < iη+1

K∑

j=1

tj = 1, t ≥ 0 .
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The solution of this LP provides both a pricing policy recommendation and the corresponding

optimal competitive ratio. The actual revenue performance of the policy t is quite good across

many common demand functions as illustrated with the numerical examples reported below, even

when the fractile/sales information is available at only a few price points.

4.3 Numerical examples

We conclude this section with a set of numerical results that highlight the revenue improvement

that is achieved through partial learning under our policy. Our experiments contrast the “no

information” policy of Sections 2 to the partial information policy extracted via (20) if one is

given fractile information at a set of price points. The fractile data was generated using four

common WtP distributions, each of which corresponds to common demand model listed in Table

2. We restricted the WtP to the range [
¯
v, v̄] for each distribution. For the Normal and Gumbel

distributions we extracted the mean as the midpoint of the range and that standard deviation by

assuming that the range is equal to ±3σ. For the exponential distribution we assumed that the

WtP of a typical consumer is given by
¯
v + w, where w is an exponentially distributed in [0, v̄ −

¯
v]

and its rate parameter is selected so that the probability that w lies in that range is 99.5% (this is

consistent with the ±3σ assumption of the Normal distribution).

In each test case, we also compared against a policy that tries to make use of the observed

fractile information by first fitting an exponential demand model to this data, and then use this

model to compute a static price to be used throughout the sales horizon. The latter heuristic

will, of course, turn out to be optimal in test cases that correspond to an underlying exponential

WtP distribution, but its performance on the other three test cases will give a rough idea of the

performance loss due to the wrong parametrization of the demand model.

WtP distribution Demand model
Uniform Linear demand
Exponential Exponential demand
Normal Probit demand
Gumbel Logit demand

Table 2: WtP distributions and corresponding demand models.

The three sets of results summarized in Tables 3 - 5 illustrate the performance of the policy
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derived using the competitive ratio analysis in a variety of settings as we varied the range of the

WtP distribution, the number of test prices for which the seller has observed information, and

also as we varied the ambiguity of the range information, which is captured by the ratio v̄/
¯
v. The

last example reported in Table 6 illustrates the performance of the pricing policy extracted form

the competitive ratio analysis when only one price point is tested in period one and as we vary

the positioning of the price point within the predefined range [
¯
v, v̄]. Note that the range of WtP

distribution for that last example coincides with that in Table 4.

There are several observations to be made. First, although the competitive ratio is conservative,

the actual revenue performance of the policy across different distributions is significantly higher.

Actually, as the ambiguity ratio v̄/
¯
v gets smaller the performance of the policy derived from the

competitive ratio analysis increases significantly, e.g. from 19.3% to 48.3% between the second

and third examples . Second, partial information (and learning) significantly increases both the

performance guarantee of the competitive ratio policy and the actual revenue performance across

distributions. Third, the revenue performance of the competitive ratio policy with partial informa-

tion is very good across all distributions. Significant gains are achieved even when experimenting

at a small number of price points: sampling at just 3 prices out of 500 achieves in excess of 85% of

the maximum achievable revenues under full information across all distributions tested even when

the ambiguity ratio is very high. Decreasing the ambiguity ratio, from 500 to 100, and increasing

the number of test prices slightly, from 3 to 5 points, increases the guaranteed performance to

95% across all test cases. Fourth, using partial information to fit an incorrect parametric model

to the unknown distribution can lead to substantial revenue loss. For example, in Table 3 above,

fitting an exponential distribution for the underlying Gumbel distribution results in only 42.4% of

the maximum achievable revenues, whereas the competitive ratio policy can use the partial infor-

mation to capture 85.7%. In fact, competitive ratio policy with partial information outperforms

parametric fitting across all distributions, except for the exponential case, for which exponential

fitting is optimal.

Finally, in all of our experiments we observed that the performance of the policy extracted via

the competitive ratio analysis performed very well even when the test prices did not happen to

fall close to the optimal price for the underlying WtP distribution. The results in Table 6 provide
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WtP Dist. CR w/o Rev Perf CR with Rev Perf Rev Perf under
Info CR Policy Fractile Info CR Pol w Frac. Exponential Fit

Uniform 14.7 29.4 71.0 96.0 89.1
Exponential 14.7 39.6 47.1 90.9 100
Normal 14.7 25.2 65.0 87.4 47.7
Gumbel 14.7 24.4 64.8 85.7 42.4

Table 3: Competitive ratio with and without fractile information, and corresponding revenue per-
formance under common WtP distributions. K = 500 prices, price grid [1, 500] in increments of 1.
Sales (fractile) information at 3 price points: 125, 250, and 375.

WtP Dist. CR w/o Rev Perf CR with Rev Perf Rev Perf under
Info CR Policy Fractile Info CR Pol w Frac. Exponential Fit

Uniform 19.3 38.2 80.3 98.1 91.8
Exponential 19.3 38.4 80.1 98.1 100
Normal 19.3 32.6 77.5 95.8 54.0
Gumbel 19.3 31.6 77.6 95.3 50.8

Table 4: K = 100 prices, price grid [1, 100] in increments of 1. Sales (fractile) information at 5
price points: 16, 33, 50, 66, and 83.

WtP Dist. CR w/o Rev Perf CR with Rev Perf Rev Perf under
Info CR Policy Fractile Info CR Pol w Frac. Exponential Fit

Uniform 48.3 85.1 84.7 98.0 98.0
Exponential 48.3 65.6 82.5 92.2 100
Normal 48.3 67.5 85.7 96.6 84.7
Gumbel 48.3 66.3 86.0 96.8 81.8

Table 5: K = 100 prices, price grid [51, 150] in increments of 1. Sales (fractile) information at 5
price points: 66, 83, 100, 116, and 133.

Test Price (in $) 20 40 60 80
Uniform (38, 73) (50, 87) (57, 95) (50, 84)
Exponential (35, 77) (35, 75) (30, 70) (25, 62)
Normal (39, 65) (51, 76) (51, 74) (30, 49)
Gumbel (39, 63) (52, 75) (49, 71) (29, 47)

Table 6: Competitive Ratio and actual revenue performance as % from optimal when the firm only
experiments with one price. K = 100 prices, price grid [1, 100] in increments of 1.

an illustration of this last comment by focusing at the performance of the policy extracted via

the competitive ratio analysis as we vary the position of a single price point for which the seller

has fractile information. As a benchmark we note that the competitive ratio and actual revenue

performance of the policy based on the competitive ratio analysis without the fractile information

was reported in the first and second columns of Table 4. In addition, the optimal prices that would

correspond to each of the WtP distributions that we tried were 50 for the Uniform, 19 for the
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Exponential, 39 for the Normal and the Gumbel distributions. This observation is robust in the

sense that it holds even if the WtP distribution is such that the revenue function is not unimodal,

which a structural property that could, of course, help in narrowing down the region in which the

optimal may be.
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5 Appendix

Proof of Proposition 3.1: We first establish an upper-bound by interchanging the order of the

inner maximization and minimization, and using the minimax inequality. That is, we have that

c ≤ ĉ, where

ĉ = max
t1

min
f̄1

min
f̄2

max
t2

Λ1
∑

t1jpj f̄
1
j + Λ2

∑
t2jpj f̄

2
j

(Λ1 + Λ2)maxj pj f̄2
j

s.t.
∑

tij = 1, ti ≥ 0 i = 1, 2

1 = f̄ i
1 ≥ f̄ i

2 ≥ · · · f̄ i
K ≥ 0 i = 1, 2

t1j (f̄
2
j − f̄1

j ) = 0, ∀j

However, the information about f̄1 and f̄2 is revealed successively, and f̄1 can be different from

f̄2 only at points j where t1j = 0, i.e. even if f̄1 can be different from f̄2, this difference does not

32



change the objective function value. Therefore, we can assume f̄2 contains the information of f̄1.

Consequently, letting f̄ := f̄2 = f̄1, the formulation of ĉ can be written as follows:

ĉ = max
t1

min
f̄

max
t2

Λ1
∑

t1jpj f̄j + Λ2
∑

t2jpj f̄j

(Λ1 + Λ2)maxj pj f̄j

s.t.
∑

tij = 1, ti ≥ 0, i = 1, 2, 1 = f̄1 ≥ · · · f̄K ≥ 0.

Now, fix t1 and f̄ , and consider the inner maximization. The denominator and the first part of

the numerator is fixed, and therefore, the inner maximization is simply equivalent to maximizing

the second part of the numerator, i.e. maximizing the second period revenue. Therefore, the upper

bound problem is equivalent to:

ĉ = max
t1

min
f̄

Λ1
∑

t1jpj f̄j + maxt2

{
Λ2

∑
t2jpj f̄j :

∑
j t2j = 1, t2 ≥ 0

}

(Λ1 + Λ2)maxj pj f̄j

s.t.
∑

j

t1j = 1, t1 ≥ 0, 1 = f̄1 ≥ · · · f̄K ≥ 0,

As, maxt2

{
Λ2

∑
t2jpj f̄j :

∑
j t2j = 1, t2 ≥ 0

}
= Λ2 maxj{pj f̄j}, the upper bound problem reduces

to

ĉ = max
t1

min
f̄





Λ1
∑

t1jpj f̄j

(Λ1 + Λ2)maxj{pj f̄j}
+

Λ2

(Λ1 + Λ2)
:
∑

j

t1j = 1, t1 ≥ 0, 1 = f̄1 ≥ · · · f̄K ≥ 0



 ,

which is exactly the problem (4), whose solution is also the optimal solution of c and satisfies t1∗ > 0

componentwise as identified by Theorem 3.1 above. In other words, the optimal solution of ĉ is

(t1∗, t2∗) identified by Theorem 3.1, at this point the value c achieves its upper-bound ĉ, i.e. c = ĉ.

Therefore this point is also optimal for c and t1∗ > 0 componentwise. 2

Proof of Lemma 3.1: Fix some t1, let the optimal solution to the inner minimization be f̄∗, and

the resulting optimal ratio be c(t1) := n(t1)/d(t1) where n(t1) and d(t1) denote the corresponding

values of the numerator and the denominator respectively in (8) at the optimal solution.

First observe that f̄j = 0 for j > j∗ must hold at the optimal solution for the inner problem.

To see this, consider the constraints 1 = f̄1 ≥ f̄2 ≥ · · · f̄j∗ ≥ f̄j∗+1 ≥ · · · f̄K ≥ 0. For any fixed

values of f̄1, · · · , f̄j∗ , if some of the variables f̄j∗+1, · · · , f̄K have positive values, reducing them
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does not change the value of pj∗ f̄j∗ = maxj{pj f̄j}, and hence the the value of the denominator in

(8), while strictly reducing the value of the numerator, which would yield a lower competitive ratio

than the optimal one, yielding a contradiction.

Now, we show that f̄j∗ = 1 must hold at the optimal solution of the inner problem, which

requires a little more work. Again, assume by contradiction that f̄j∗ < 1, then increasing f̄j∗

by ε increases n(t1) at most by ε
(
Λ1

∑
i≤j∗ t1i pi + Λ2

[∑
i<j∗ t1i pi +

(
1−∑

i<j∗ t1i

)
pj∗

])
, while

increasing the denominator exactly by ε (Λ1 + Λ2)pj∗ . Therefore, the resulting new ratio, denoted

by cε, satisfies

cε ≤
n(t1) + ε

(
Λ1

∑
i≤j∗ t1i pi + Λ2

[∑
i<j∗ t1i pi +

(
1−∑

i<j∗ t1i

)
pj∗

])

d(t1) + ε (Λ1 + Λ2)pj∗
<

n(t1)
d(t1)

= c(t1) , (21)

which results in a contradiction. The strict inequality above holds because, in general we have,

ε
(
Λ1

∑
i≤j∗ t1i pi + Λ2

[∑
i<j∗ t1i pi +

(
1−∑

i<j∗ t1i

)
pj∗

])

ε (Λ1 + Λ2)pj∗

≤ n(t1)
d(t1)

= c(t1) =
Λ1

∑
i≤j∗ t1i pif̄i + Λ2

[∑
i<j∗ t1i pif̄i +

(
1−∑

i<j∗ t1i

)
pj∗ f̄j∗

]

(Λ1 + Λ2)pj∗ f̄j∗
,

as 1 = f̄1 ≥ f̄2 ≥ · · · ≥ f̄j∗ and the inequality holds with equality iff 1 = f̄1 = f̄2 = · · · = f̄j∗ which

is not possible by the contradictory assumption. 2

Proof of Proposition 4.2: Suppose that for fixed n, the adversary selects f̄n ∈ (0, 1).Using the

result of Proposition 4.1, if pj1 < pj2 f̄n, then for any vector t, the competitive ratio is of the form

c(n, f̄n, t) = c1,j2 =
Λ1pnf̄n + Λ2(t1p1 +

∑j2
j=2 tjpj f̄n)

(Λ1 + Λ2)pj2 f̄n
,
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for some j2, n ≤ j2 ≤ K. But, for fixed n and f̄n ∈ (0, 1),

c(n, f̄n, t) =
Λ1pnf̄n + Λ2(t1p1 +

∑j2
j=2 tjpj f̄n)

(Λ1 + Λ2)pj2 f̄n

=
Λ1pn

(Λ1 + Λ2)pj2

+
Λ2

(Λ1 + Λ2)
t1p1

pj2 f̄n
+

Λ2

(Λ1 + Λ2)

∑j2
j=2 tjpj

pj2

≥ Λ1pn

(Λ1 + Λ2)pj2

+
Λ2

(Λ1 + Λ2)
t1p1

pj2

+
Λ2

(Λ1 + Λ2)

∑j2
j=2 tjpj

pj2

=c(n, 1, t) ∀t, j2 . (22)

That is, whenever it is optimal for the adversary to place f̄n ∈ (0, 1) at price pj2 satisfying pj1 <

pj2 f̄n, it is also optimal to place the whole unit mass at pj2 , considering pj1 < pj2 for all j1, j2 as

1 ≤ j1 < n ≤ j2 ≤ K.

If pj1 ≥ pj2 f̄n, for any vector t the competitive ratio is of the form

c(n, f̄n, t) = cj1,n =
Λ1pnf̄n + Λ2(

∑j1
j=1 tjpj +

∑n
j=j1+1 tjpj f̄n)

(Λ1 + Λ2)pj1

,

for some j1, 1 ≤ j1 ≤ n− 1. And, for fixed n and f̄n ∈ (0, 1),

c(n, f̄n, t) =
Λ1pnf̄n + Λ2(

∑j1
j=1 tjpj +

∑n
j=j1+1 tjpj f̄n)

(Λ1 + Λ2)pj1

≥Λ2
∑j1

j=1 tjpj

(Λ1 + Λ2)pj1

=c(n, 0, t) ∀t, j1 . (23)

That is, whenever it is optimal for the adversary to place f̄n ∈ (0, 1) at price pj2 satisfying pj1 ≥
pj2 f̄n, it is also optimal to place the whole unit mass at pj1 . That is, (22) and (23) show that

irrespective of the value of t and the indices j1, j2 in the inner problems, there exists a weakly

dominant strategy for the adversary that allocates the whole probability mass to a single price. 2
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