
MANUFACTURING & SERVICE
OPERATIONS MANAGEMENT

Vol. 10, No. 3, Summer 2008, pp. 448–467
issn 1523-4614 �eissn 1526-5498 �08 �1003 �0448

informs ®

doi 10.1287/msom.1070.0210
©2008 INFORMS

Computing Virtual Nesting Controls for
Network Revenue Management Under

Customer Choice Behavior

Garrett van Ryzin
Graduate School of Business, Columbia University, New York, New York 10027,

gjv1@columbia.edu

Gustavo Vulcano
Stern School of Business, New York University, New York, New York 10012,

gvulcano@stern.nyu.edu

We consider a revenue management, network capacity control problem in a setting where heterogeneous
customers choose among the various products offered by a firm (e.g., different flight times, fare classes,

and/or routings). Customers may therefore substitute if their preferred products are not offered. These individ-
ual customer choice decisions are modeled as a very general stochastic sequence of customers, each of whom
has an ordered list of preferences. Minimal assumptions are made about the statistical properties of this demand
sequence. We assume that the firm controls the availability of products using a virtual nesting control strat-
egy and would like to optimize the protection levels for its virtual classes accounting for the (potentially quite
complex) choice behavior of its customers.
We formulate a continuous demand and capacity approximation for this problem, which allows for the partial

acceptance of requests for products. The model admits an efficient calculation of the sample path gradient of
the network revenue function. This gradient is then used to construct a stochastic steepest ascent algorithm.
We show the algorithm converges in probability to a stationary point of the expected revenue function under
mild conditions. The algorithm is relatively efficient even on large network problems, and in our simulation
experiments it produces significant revenue increases relative to traditional virtual nesting methods. On a large-
scale, real-world airline example using choice behavior models fit to actual booking data, the method produced
an estimated 10% improvement in revenue relative to the controls used by the airline. The examples also provide
interesting insights into how protection levels should be adjusted to account for choice behavior. Overall, the
results indicate that choice behavior has a significant impact on both capacity control decisions and revenue
performance and that our method is a viable approach for addressing the problem.

Key words : choice behavior; revenue management; network capacity control; stochastic approximation;
stochastic gradients

History : Received: October 21, 2004; accepted: February 22, 2007.

1. Introduction
Optimally rationing the amount of capacity sold
among various products is a central problem in air-
line revenue management (RM). This rationing takes
place by dynamically controlling the availability of
products (ticket types with different restrictions and
fares) in response to factors such as the capacity and
time remaining prior to departure and forecasts of
future demand. The so-called single-resource problem
involves rationing capacity on a single flight leg; net-
work RM problems involve rationing the capacity

of a network of flights among the various products
(itinerary-fare-class combinations) sold on the net-
work. The book by Talluri and van Ryzin (2004b) pro-
vides a good overview of both single-resource and
network RM problems.
Recently, there has been a growing interest in more

accurately modeling customer behavior in RM prob-
lems. Indeed, the traditional models of revenue man-
agement are quite simplistic in this regard; they
assume demand for each product is a stochastic pro-
cess that is unaffected by the availability of other

448

van Ryzin and Vulcano: Computing Virtual Nesting Controls
Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS 449

products. This so-called independent demand model
assumption is made primarily for analytical tractabil-
ity. Yet it has been long recognized that customers
in fact “buy up” to higher fares if discounts are un-
available, or “buy down” to discounted fares when
they are made available (see Belobaba 1987). They
may also “divert” to different flight times or differ-
ent routes if their preferred choice is not available.
With the current industry trend toward simplified,
less-differentiated fare structures (driven largely by
the practices of low-cost carriers such as Jet Blue
in the United States and RyanAir in Europe), the
assumptions of the independent demand model are
becoming even more tenuous.
Representing demand using discrete choice mod-

els of customer purchase behavior has emerged as
an appealing alternative to the independent demand
model, and research in this area of late has been grow-
ing. Several researchers have looked at approximate
analyses of customer choice behavior for single-leg
RM problems. Belobaba (1987) proposed a modifica-
tion of the expected marginal seat revenue (EMSR)
heuristic to account for the probability of a customer
buying a higher fare when a low fare is closed (see
also Belobaba and Weatherford 1996). Phillips (1994)
proposed a “state-contingent” model of revenue man-
agement in which demand for products depends on
the set of available products (the system “state”). Tal-
luri and van Ryzin (2004a) provide an exact analysis
of a single-leg model of RM under a general discrete
choice model of demand. Their work provides a rela-
tively clear picture of the optimal policy in the single-
resource case. Recently, Boyd and Kallesen (2004)
illustrate the effect of considering demand models
for price-sensitive customers in a single-leg setting,
where customers are price sensitive and not perfectly
segmented, and therefore may end-up purchasing a
fare product that costs less than they are actually will-
ing to pay.
Modeling customer choice behavior on networks

leads to considerably more difficult RM problems.
Still, there is a growing body of work on choice-based
network methods. To our knowledge, the earliest
work to consider choice behavior in networks is the
passenger origin and destination simulator (PODS)
study of Belobaba and Hopperstad (1999). The main
aim of this work is to understand how customer

choice behavior affects traditional RM methods (pri-
marily based on the independent demand model).
An interesting industry application of choice mod-
eling in networks is reported by Andersson (1989,
1998) and Algers and Besser (2001), who applied logit
choice models to estimate buy-up and recapture fac-
tors at one of Scandinavian Airline’s hubs. Zhang
and Cooper (2005) analyze choice among different
departure times between the same city pair (so-called
“parallel flights”). Their model assumes that cus-
tomers choose among the same fare class on different
flights, but not among fare classes themselves (e.g.,
customer segments are still effectively separated by
the fare class restrictions). They develop bounds and
approximations to the resulting dynamic program.
Gallego et al. (2004) propose and analyze a natural
choice-based analog of the widely used deterministic
linear programming (DLP) model of traditional net-
work RM. This choice-based DLP model determines
the amount of time to offer each possible subset of
available products under assumptions of determinis-
tic demand. Liu and van Ryzin (2008) further ana-
lyze this model and propose a dynamic programming
decomposition heuristic based on it.
The work of Zhang and Cooper (2005), Gallego

et al. (2004), and Liu and van Ryzin (2008) are similar
in that each tries to determine (or approximate) the
structure of a choice-based network capacity control
policy. That is, they do not assume a policy a priori,
but rather the policy structure is an output of their
analysis. To achieve this, however, requires making
simplifying assumptions or approximations, e.g., that
demand is deterministic as in the LP model analyzed
by Gallego et al. (2004) and Liu and van Ryzin (2008),
or that the network consists exclusively of parallel
flights with customers choosing only among alterna-
tives within the same fare class, as in the work of
Zhang and Cooper (2005).
In this paper, we take a somewhat different ap-

proach. We assume the firm uses a specific parametric
policy, namely a virtual nesting control policy param-
eterized by a set of protection levels (one for each
virtual class on each leg of the network). Virtual nest-
ing was developed at American Airlines in the 1980s
(see Smith et al. 1992), and it remains a popular net-
work control strategy in the airline industry. (Virtual
nesting is described in detail below; see also Talluri

van Ryzin and Vulcano: Computing Virtual Nesting Controls
450 Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS

and van Ryzin 2004b.) We then develop an efficient
simulation-based method to optimize over the param-
eters of this policy. The approach is a direct extension
of the simulation-based method originally proposed
by Bertsimas and de Boer (2005) and later extended
by van Ryzin and Vulcano (2006) for the network RM
problem under the independent demand model.
The restriction to a particular class of policies is

clearly a limitation and no claim is made on the opti-
mality (or near-optimality) of the resulting policy as a
result. But the payoff is a significant increase in gener-
ality in modeling demand. Indeed, the method applies
to essentially any choice behavior and any demand
process one can simulate (within the confines of our
sample path description of demand). As a result, very
complex choice behaviors, statistical correlations, non-
stationarities, etc., can be handled. Moreover, because
the optimization method only requires a “black box”
(oracle) to generate sample paths of demand, it allows
for a clean separation of the demand modeling and
optimization modules of the overall procedure. For
example, one can make essentially arbitrary changes
in the model of demand and customer behavior with-
out impacting the way the optimization algorithm
functions. This level of demand modeling flexibility
is likely to be a significant advantage of the method
in practice. Last, although simulation-based optimiza-
tion methods are notoriously computationally inten-
sive (and ours is no exception in this regard), in
our experience the algorithm runs relatively quickly—
even on moderately large networks. This is due in
large part to the efficiency of our sample path gradi-
ent calculations. Thus, though computationally inten-
sive, the method appears fast enough to have good
practical potential.
Applying our method to several numerical exam-

ples suggests that significant revenue gains are pos-
sible from explicitly accounting for customer choice
behavior. Indeed, whereas revenue gains from im-
provements in optimization methods in traditional
RM problems are typically on the order of 1%–3%,
our examples show gains on the order of 10%–20% (or
more) in revenue using our choice-based RM method
relative to methods based on independent demand
model assumptions. Although many of these exam-
ples are hypothetical, one was obtained from a major

U.S. airline and used choice models fit to actual book-
ing data. In this large, real-world example, we esti-
mated that, relative to the actual controls used by
the airline, the improved protection level produced
by our algorithm would increase revenues 10% over
the last week of the booking horizon. These results
show both qualitatively and quantitatively the impor-
tant impact that customer choice behavior has on RM
decisions.
The remainder of the paper is organized as follows:

In §2 we introduce the discrete model and its con-
tinuous approximation. In §3 we present the way we
improve an initial set of protection levels through a
gradient based method. Section 4 shows some numer-
ical results, and we present our conclusions in §5.

1.1. Notation
We begin by introducing some notational conven-
tions. For a vector x ∈�n, xj denotes its jth compo-
nent, and xT is the vector transpose. The unit vector is
given by ei, having a 1 in position i and 0 elsewhere.
For a number a, we denote a+ =max�a�0	. The letter
� represents the set �1�

 �n	.
We use I�·	 for the indicator function, a.s. means

almost surely; c.d.f. is short for cumulative distribution
function; w.p.1 is short for with probability 1; i.i.d. is
short for independent and identically distributed, and CI
is used for confidence interval. Finally, the symbol ��·
stands for the cumulative distribution function of the
standard normal distribution.

2. Model Formulation
The network has m resources (flight legs), which can
be used to provide n products (itinerary-fare-class
combinations). Define the incidence matrix A= �aij � ∈
�0�1	m×n. We let aij = 1 if resource i is used by prod-
uct j , and aij = 0 otherwise. Thus, the jth column of A,
Aj , is the incidence vector for product j , and the ith
row, Ai, is the incidence vector for resource i. We use
the notation i ∈Aj to indicate that resource i is used
by product j , and j ∈Ai to mean that product j uses
resource i. The revenue for accepting one unit of prod-
uct j ∈ � is rj . The state of the network is described
by a vector xT = �x1�

 � xm of resource capacities.
If one unit of product j is sold, the state of the net-
work changes to x−Aj . To simplify the analysis, we

van Ryzin and Vulcano: Computing Virtual Nesting Controls
Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS 451

ignore cancelations and no-shows.1 Another essential
assumption we make is that capacity and demand
are continuous quantities. We do this to produce a
model that is sufficiently smooth to admit derivatives.
Hence, the capacity x is continuous.

2.1. Virtual Nesting Policy
We assume the network uses a virtual nesting control
policy, defined as follows: Each product j is mapped
to virtual class ci�j on each resource i used by prod-
uct j as given by a fixed indexing scheme. We assume
there are c̄ protection levels in each resource (i.e.,
c̄ + 1 virtual classes) and that the indexing ci�j is
given. In practice, a variety of heuristic methods are
used for indexing (see Chapter 3 of Talluri and van
Ryzin 2004b), but roughly each attempts to cluster
products based on various estimates of their “net ben-
efit” to the network (e.g., their revenue in excess of
the opportunity cost of capacity they consume).
Capacity is then controlled using nested protection

levels for the virtual classes on each leg (see Chap-
ter 2 of Talluri and van Ryzin 2004b for a detailed
description of nested allocation policies). Specifically,
we assume that virtual classes are ordered, with vir-
tual class 1 the highest in the nesting order, followed
by virtual class 2, etc. Let yic denote the protection
level for virtual classes c and higher on resource i.
Again, because our model is continuous, protection
levels are assumed continuous as well. Requests for
virtual class c + 1 on leg i are then accepted if and
only if the remaining capacity exceeds the protec-
tion level yic for higher virtual classes c� c− 1�

 �1.
In other words, virtual class c + 1 requests only
have access to the capacity in excess of yic on leg i.
A request for a product j is accepted if and only
if capacity is available for its corresponding virtual
classes on each resource i ∈Aj .
Let y = �y11�

 � y1c̄�

 � ym1�

 � ymc̄ denote the

vector of all mc̄ protection levels. Because protection

1 In practice, cancelations and no-shows are normally handled by
first computing “virtual capacities”—capacities that exceed the
physical capacity—on each resource so as to approximately bal-
ance the opportunity cost of excess capacity against the costs of
denied service. These virtual capacities are then used as inputs
to a network capacity control model, which attempts to optimally
ration the virtual capacity. Hence, one can consider capacities in
our model to be these virtual capacities.

levels are nested, we require that

0≤ yi1 ≤ yi2 ≤ · · · ≤ yic̄ ≤ xi� i= 1�

 �m� (1)

where xi is the capacity of resource i, xi > 0, ∀i. Let
� be the set of all y satisfying these constraints. We
assume dummy protection levels yi0 when needed;
i.e., yi0 = 0, ∀i, representing the fact that there is no
protection level for the highest virtual class.
In the description above, we are assuming a form

of nesting called theft nesting. Theft nesting refers
to the case where protection levels y remain con-
stant throughout the booking process. Although our
approach can be modified to work with standard
nesting—a policy in which fixed booking limits,2 rather
than fixed protection levels, are used—the result-
ing formulas are more complex. Hence, for the ease
of presentation, we focus on the former. Both nest-
ing methods are found in airline industry practice,
although standard nesting is more common. See
Talluri and van Ryzin (2004b) for a detailed discus-
sion of theft versus standard nesting.

2.2. Demand Model
As mentioned, we use a very general model of
demand. It is based on a sample path description of
the number of customers, their arrival order and pref-
erences. Let T denote the total number of customers
in a sample path. T is assumed finite w.p.1. Each cus-
tomer t = 1�

 � T has preferences among the set of
products � , which are described by a simple ranking,
lt = �lt1�

 � ltn�, with ltk = j denoting that customer t’s
kth preferred choice is to purchase product j . A value
ltk = 0 denotes that customer t’s kth preferred choice
is to not purchase any product.
This preference list could be the result of a sim-

ple utility maximization mechanism where each cus-
tomer t assigns a utility Ujt to purchasing product j ,
j ∈� , and to not purchase, U 0t . The utility itself is nor-
mally a function of various product attributes, e.g.,
departure day, departure time, fare paid, number of
stopovers, etc. Although this description of prefer-
ences is not perfectly general (e.g., see Kreps 1988 for

2 Booking limits are defined as the difference between the ini-
tial capacity and the corresponding protection levels. Specifically,
the booking limit bic = xi − yi� c−1 represents the number of seats
reserved for virtual class c over leg i.

van Ryzin and Vulcano: Computing Virtual Nesting Controls
452 Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS

a detailed treatment of utility theory and its under-
lying assumptions and limitations), it encompasses a
wide range of choice behaviors that arguably includes
most choice behaviors of practical interest.3 To illus-
trate, suppose that customer t’s first preference is
product 3, her second preference is product 5, and
beyond that she prefers not to purchase any product
at all. Then we would represent her preferences as
lt = �3�5�0�

 �0�.
We further assume each customer requires a con-

tinuous quantity qt > 0, which is a realization of a
random variable, Qt , with support �0� �Q�. Customers
consume products in their preference order until their
desired quantity is met. Again, this demand is treated
as continuous and can be viewed in fluid model terms
as follows: a customer drains their most preferred
fluid (product) first. If this fluid is not available or
runs out, the customer drains the second most pre-
ferred fluid and so on. This process continues until
either the customer’s entire requirement qt is met or
all fluids valued higher than the no-purchase choice
are exhausted.
To illustrate, consider again our customer t with

preferences lt = �3�5�0�

 �0�. Suppose she requires
qt = 3 units and that there is one unit each of prod-
uct 3 and 5 available for sale. (This availability is,
of course, a function of the protection levels and the
capacity at the time customer t arrives.) Then she
would consume one unit of product 3, one unit of
product 5, and not purchase any remaining prod-
ucts (leaving one unit of her demand unmet). Note
that this is clearly not the most realistic assump-
tion (e.g., in the airline case, our customer t might
be buying for her family of three and the above
sequence would imply that she would take one flight,
her husband another and their child would be left
behind! (or some such permutation)). However, it
has the considerable advantage of making the result-
ing model smooth, because a small change in the
available capacity of one product produces only a
slight shift in customer t’s consumption. For example,

3 The approach is essentially the same as that used by Mahajan
and van Ryzin (2001, §2.2.1). They show how the multinomial
logit model, Markovian second choice, universal backup, Lancaster
demand, and independent demand are some special cases of a util-
ity maximization mechanism.

were the available capacity of product 3 to increase
to 1.2, then customer t would consume 1.2 units of
product 3, 1 unit of product 5, and let 0.8 units of
her demand go unmet. In this way, changes in pro-
tection levels produce smooth changes in the quan-
tities purchased. Although this fluid approximation
could potentially distort the results of the algorithm,
our simulation tests in §4 assume customers make
more realistic all-or-nothing decisions. In these tests,
our algorithm produces significant revenue improve-
ments, which suggests the approximation is indeed a
reasonable one.
Each sample path, therefore, is a sequence � =

��l1� q1� �l2� q2�

 � �lT � qT 	, which we assume to be
defined on a probability space � �� �P. Other than
the indicated assumptions above (e.g., that T is finite
w.p.1 and that the random variable Qt is contin-
uously distributed and bounded), no assumptions
about this distribution are required. Customer prefer-
ences may change over time, be correlated with each
other, depend on the total demand T , etc. Indeed, in
essence, all we require is an “oracle” that can generate
sample paths � drawn from some (perhaps implicitly
defined) distribution. For example, the sequence and
preference could be obtained via a detailed simulation
of each individual customer’s decision process, as in
the PODS simulations of Belobaba and Hopperstad
(1999).4

2.3. Sample Path Revenues
To describe the revenues on a sample path basis,
it is convenient to introduce some extra notation.
(The precise description of sample path revenues here
is notationally complex, but it is conceptually quite
straightforward.) For customer t with preferences lt ,
define pt as the number of nonzero entries in lt (the
number of products the customer is willing to pur-
chase). Let b�t� j denote the rank assigned to prod-
uct j by customer t. That is,

b�t� j= k� if j ∈� and ltk = j

For completeness, we define b�t� j= pt + 1 if j is not
in the preference list of customer t. To simplify nota-
tion, we index a product j with �k� when b�t� j= k
4 In the PODS model, customers are assumed to have a given travel
objective with time window constraints on their departure and
arrival times, valuations for their preferred airline, time/price sen-
sitivities, etc.

van Ryzin and Vulcano: Computing Virtual Nesting Controls
Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS 453

(i.e., when j is the kth preferred choice). Continuing
our example, if lt = �3�5�0�

 �0�, then b�t�3 = 1,
b�t�5= 2, and pt = 2.
The amount of capacity of product j purchased by

customer t is the minimum of the customer’s residual
unmet demand (their original demand qt minus the
quantity purchased of more preferred products) and
the capacity available for product j . Let xji �t denote
the capacity available to customer t in product j’s vir-
tual class on resource i, which is the remaining capac-
ity xi�t minus the protection level for virtual classes
higher than the virtual class of j on resource i, less
the amount of capacity already purchased of products
with higher preference that also use resource i. The
column vector representing the acceptance function
for customer t is denoted u�x�t� y� lt� qt ∈�n

+, where
the jth component corresponds to consumed quantity
of product j . In symbols,

x
j
i �t =

(
xi�t− yi� ci�j−1

−
b�t� j−1∑
k=1

�u�k��x�t� y� lt� qtI�i ∈A�k�	�
)+
� (2)

where the sum is defined to be empty when b�t� j= 1.
The formal definition for the capacity allocated to a

product j is then

uj�x�t� y� lt� qt

=

min
{
qt −

b�t� j−1∑
k=1

u�k��x�t� y� lt� qt�

x
j
i �t$ i ∈Aj

}
� if 1≤ b�t� j≤ pt%

0� if b�t� j= pt + 1

(3)

In words, if product j is the customer’s first pref-
erence, then we drain as much of it as possible (up
to the customer’s total demand qt). If j is not the first
preference, we first drain from the more preferred
options first and then satisfy any residual demand as
much of this as possible from j . When b�t� j= pt + 1,
this implies that the no-purchase option is preferred
to product j , so product j is not consumed at all. (Note
that this means that the demand qt may be not fully
satisfied as discussed above.)
Define Rt�x�t� y�� to be the revenue-to-go over

periods t� t + 1�

 � T , starting with a vector x�t of

remaining capacities and protection levels y. We then
have the following set of recursive forward equations
for determining the revenues

Rt�x�t� y��= rT ·u�x�t� y� lt� qt
+Rt+1�x�t+ 1� y�� (4)

x�t+ 1= x�t−A ·u�x�t� y� lt� qt% (5)

for t = 1�

 � T , with boundary conditions
x�' + 1= 0

RT+1�x�y��= 0 for all x�y��% and

x�1= x

The total sample path revenue is given by

R�y��=R1�x�y��
 (6)

Our objective is to maximize the expected revenue
function, g�y= E�R�y���, over the set � of feasible
protection levels:

max
y∈�

g�y
 (7)

Here, and in what follows, expectation is taken with
respect to the random sample path �.

3. Stochastic Approximation
Algorithm

Our computational approach is a generalization of
that used by van Ryzin and Vulcano (2006). Indeed,
if pt = 1 for all customers in our model (i.e., all cus-
tomers have only one preferred product), then we in
fact recover the problem studied by van Ryzin and
Vulcano (2006). The technical details of the approach
are given in the appendix and in the online appendix;5

here, we only give a high-level overview of the essen-
tial ideas.

3.1. Algorithm Overview
The first key idea of the algorithm is to differenti-
ate (4)–(5) to obtain an efficient recursion for com-
puting the sample path gradients)xR1�x�y�� and
)yR1�x�y��. (Some additional “smoothing” of the
recursion using a random perturbation of capacity
is required to ensure these sample path gradients
exist w.p.1.; see the appendix for technical details.)

5 An online appendix to this paper is available on the Manufactur-
ing & Service Operations Management website (http://msom.pubs.
informs.org/ecompanion.html).

van Ryzin and Vulcano: Computing Virtual Nesting Controls
454 Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS

Although these gradient calculations are complex to
express algebraically, they are simple and efficient
to implement algorithmically. Online Appendix C
provides a complete pseudocode for this calcula-
tion along with a complexity analysis, which shows
that computing the entire gradient has essentially the
same complexity as simulating the sample path in the
first place. The differentiability properties and effi-
ciency of this recursion are the main payoffs for the
lack of realism introduced by the continuous capacity
and demand assumptions.
As shown in online Appendix B, because the rev-

enue function R1�x�y�� is Lipschitz continuous in
x�y, we can justify the interchange of differentiation
and expectation; hence,

)yg�y=)yE�R�y���= E�)yR�y���

Therefore,)yR�y�� is an unbiased estimator of
)yg�y. This stochastic gradient can then be used
in place of the actual gradient in a steepest ascent
type algorithm to search for a stationary point y
of g�·. This is the essential idea behind stochas-
tic approximation (SA), a method originating in the
work of Robbins and Monro (1951). Kushner and
Clark (1978), Benveniste et al. (1990), and the recent
book by Kushner and Yin (2003) contain expositions
of its theory.
To maximize g�y = E�R�y��� over the convex

compact set � defined by constraint set (1), we require
an initial feasible point y�0 ∈ �, and a sequence of
step sizes �*�k	 satisfying

*�k > 0� lim
k→

*�k = 0�
∑
k=1
*�k =+� and

∑
k=1

�*�k�2 <+
 (8)

We used step sizes *�k = a/k, where a > 0 is a con-
stant (chosen in our case based on experimentation
with the method). For simulated demand streams
��1�

 ���N, the stochastic gradient method pro-
ceeds as follows:

Stochastic Gradient Algorithm.
Step 1. Compute an initial feasible set of protection

levels y�0.
Step 2. For k $= 1 to N do:
(a) Calculate the sample path gradient over

demand stream ��k:)yR�y�k−1���k.

(b) Set new step size *�k $= a/k.
(c) Update the protection levels for the next iter-

ation, using the equation

y�k $=.��y�k−1+*�k)yR�y�k−1���k�

where .��· is the orthogonal projection into the fea-
sible set �.
Step 3. Return y�N. Stop.

Some comments about our implementation choices
are in order. First, we ran a fixed number, N , of iter-
ations to improve an initial feasible set of protec-
tion levels obtained in Step 1 (typically, N was on
the order of thousands). Alternatively, various stop-
ping criterion could be employed to terminate the
algorithm, although one weakness of stochastic gra-
dient methods is that they lack good stopping cri-
teria (Shapiro 2000). Second, the step size chosen in
Step 2(b) is a simple and popular choice. Alternative
step size rules for more general stochastic quasigradi-
ent methods can be found in Pflug (1988). Third, note
that the projection in Step 2(c) is of the form:

y =.��z ⇔ y = argmin
y′∈�

�y′ − z�

For each resource i, this projection is given by a
quadratic program with linear constraints, which can
be solved efficiently using standard methods like
barrier-type algorithms (see Bertsekas 1999, Chap-
ter 4). This projection typically involves a small num-
ber of variables and a small number of constraints.
Last, we note that in a commercial implementation the
simulations could be run on parallel processors, with
each CPU generating its own sequence of demand
and calculating the resulting sample path gradient. In
this sense, the algorithm is highly parallelizable.

3.2. Convergence
Theorem B1 in online Appendix B shows that the rev-
enue function of our model is not quasiconcave in gen-
eral; hence, our SA algorithm is unlikely to be glob-
ally convergent. However, it has at least robust local
convergence properties. This convergence is based
on a smoothed version of the problem presented in
Appendix A. Here we only state the main result.
Recall that the gradient)yR�y�k−1�w�k is a noisy rep-
resentation of the gradient of g�y�k−1. Let the noise

van Ryzin and Vulcano: Computing Virtual Nesting Controls
Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS 455

(error) in the gradient at iteration k be the vector
1�k ≡)yR�y�k−1�w�k−)g�y�k−1. From Lemma B1 in
online Appendix B, E�1�k � y�0�

 � y�k−1� = 0, w.p.1.
Let the cumulative step sizes be defined as sk =∑k−1
i=1 *

�i, and define a function m�s such that m�s=
max�k$ sk ≤ s	 for s ≥ 0, and m�s= 0 otherwise. Sup-
pose the following conditions hold:
Condition 1 (C1). �*�k	 is a sequence of positive

real numbers such that *�k→ 0� ∑
k=1 *

�k =+.
Condition 2 (C2). Let the constraint set for the

problem be defined by �= �y$ 3j �y≤ 0� j = 1�

 � z	.
The set � is closed and bounded. The 3j�·, j =
1�

 � z, are continuously differentiable. At each y
that is on the boundary of �, the gradients of the
active constraints are linearly independent.
Condition 3 (C3).

lim
k→

P

(
sup

m�sk+s≥l≥k

∣∣∣∣
l∑
i=k
*�k1�k

∣∣∣∣> 4
)
= 0

for each 4 > 0 and s > 0.
Condition 4 (C4). g�· is a continuously differen-

tiable real valued function.
Condition 5 (C5). *�kE�1�k�2→ 0 as k→.
Then, we have:

Theorem 1. Let �∗ be the set of Kuhn-Tucker points for
the continuous problem (A1)–(A2) stated in Appendix A.
Then, the stochastic gradient algorithm described above
verify Conditions 1–5. Moreover, if �∗ is a connected set,
the sequence of points y�k→�∗ in probability as k→.

Proof. The proof follows from properties of the
revenue function discussed in online Appendix B. C1
is satisfied by our choice of the step sizes *�k in (8).
C2 is satisfied by our constraint set (1). C3 holds for
our gradient estimator by choice of *�k, boundedness
of)yR�y�k−1��, 1�k, and)g�y, and by Lemma B2 in
online Appendix B. C4 holds by Theorem B2 in online
Appendix B. C5 holds by choice of *�k and Lemma B2
in online Appendix B. The convergence result follows
from Theorem 6.3.1 in Kushner and Clark (1978). �

A weaker convergence result holds when �∗ is not
connected. To show it, we first define an interpolation
for the sequence �y�k	. Define the continuous function
y�s by:

y�s=

y�k if s = sk
sk+1− s
*�k

y�k+ s− sk
*�k

y�k+1 if s ∈ �sk� sk+1

Observe that y�s is just a linear interpolation of
the values y�k as a function of the cumulative step
sizes sk. Let N4��∗ denote the epsilon neighborhood
of the set �∗. Kushner and Clark (1978, Theorem 6.3.1)
show that under Conditions 1–5, if �∗ is not con-
nected, then for each 6 > 0 and 4 > 0, there exists a
finite constant s0 such that s > s0 implies

lim
k→

P

(
1
2s

∫ s

−s
I�y�sk+ v ∈�m×c̄\N4��∗	dv≥ 6

)
≤ 6

Roughly, this result says that the “the average
amount of time” the iterates y�k lie more than 4
away from a point in �∗ (averaging over a sufficiently
large but finite interval) becomes arbitrarily small as k
increases. It is basically a convergence in probability
of a “moving average” of y�k rather than a conver-
gence of y�k itself.
Summarizing, the algorithm we proposed satisfies

the conditions for the convergence to a Kuhn-Tucker
point. When �∗ is connected, we have convergence
in probability. Even if �∗ is not connected, we still
have a guarantee of convergence of the average of
iterates to a point arbitrarily close to �∗. We empha-
size again, though, that all these are only local con-
vergence guarantees.

4. Numerical Experiments
In this section, we illustrate our method on sev-
eral numerical examples. These examples both give
a sense of the revenue improvements obtainable by
accounting for choice behavior as well as a qualita-
tive understanding of the differences in the capac-
ity control decisions that result. We start with several
small examples, where it is easy to see intuitively how
(and why) the algorithm modifies the initial protec-
tion levels. The later examples are larger networks
in which it is quite difficult to intuitively understand
the changes made by the algorithm. The last exam-
ple is based on actual airline data and gives a sense
of the real-world performance of the method. Collec-
tively, these examples illustrate the potential revenue
improvements and also give a sense of the computa-
tion time required by the algorithm.
We implemented the stochastic gradient algorithm

in C++, and ran our experiments on a Pentium IV
Workstation (CPU of 2.00 GHZ, and RAM of 512 Mb),

van Ryzin and Vulcano: Computing Virtual Nesting Controls
456 Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS

under Windows 2000.6 For the computation, we used
a step size of *k = 0
9/k in Step 2(c). Kleywegt and
Shapiro (2001) point out that methods like ours are
very sensitive to the choice of the step sizes; small
step sizes result in very slow progress towards the
optimum, while large step sizes make the iterations
quite volatile. We have tried with *k = a/k, with a=
0
1�0
5�0
8�0
9�1
0, and 1
5. The best results were
obtained in general with a= 0
9.
As for the gradient estimate, in Appendix A we

perturb the remaining capacity in our original prob-
lem by a random noise term to smooth out the rev-
enue function for theoretical convenience. However,
in our computational test we did not implement this
perturbation, which, as a practical matter, does not
significantly affect the recursion. (See van Ryzin and
Vulcano (2006, §4.1) for further discussion of this
issue.) Pseudocode for our gradient recursive calcula-
tion for the special case of parallel flights is provided
in online Appendix C.
For Examples 1 through 5, we generated the pref-

erence lists of arriving customers as follows: First, we
consider each arriving customer to belong to one of
several different customer types (or segments), where
each type is characterized by a given preference order
for the products. Aggregate demand from each cus-
tomer type j is assumed normal with mean 8j and
standard deviation 9j =

√
8j . This distribution was

then truncated between 0 and 28j to avoid nega-
tive demand. From the demand parameters, we then
calculated discrete distributions (a probability mass
function is calculated from the normal c.d.f.). One
thousand streams of demand were simulated offline
(using MATLAB, from MathWorks, Inc.), and the
stochastic gradient algorithm was applied starting
from an initial set of protection levels, computed as
described in the examples below.
Once the protection levels were computed, we

compared the decisions made under the original
and improved protection levels in coupled simula-
tions runs (common random numbers). Although our

6 We used Microsoft Visual C++ 6.0 to build a Win32 console appli-
cation. We linked our code with a LINDO application programming
interface (Lindo Systems, Inc.) to make the projection in Step 2(c).
This routine uses a barrier-type algorithm to solve the resulting
quadratic program.

model assumes customers have continuous demand
and are willing to partially purchase products, in the
simulations we assumed unit demand requests and
that customers buy only integral numbers of seats
(all-or-nothing purchase behavior). Protection levels
were not reoptimized during the booking process.
Example 1. This first example is a simple illustra-

tion of buy-up behavior. It considers the simplest case
of a single-leg flight with two fare classes. Revenues
are r = �$200�$100, with capacity x = 100. There are
three types of customers: Type 1 are only willing to
buy the low fare, Type 2 are only willing to buy
the high fare, and Type 3 are “buy-up” customers—
customers whose first preference is the low fare class,
but are willing to pay the high fare if it is the only
choice offered. Demands for the customer types have
means 8 = �50�10�50. Types 1 and 3 arrive first, in
random order, followed by Type 2 customers. Note
that 81+83 = x.
Applying Littlewood’s (1972) rule7 by aggregating

both low fare Types 1 and 3 we get an initial protec-
tion level of y�0 = 10. Note that again the ratio r1/r2
equals 0.5, giving a protection level for the high class
equal to its demand mean. The stochastic algorithm
then brings this protection level up to y�N = 100, i.e.,
up to the entire capacity of the flight. In other words,
only the high fare is offered for this flight. The intu-
ition here is that if we offer the low fare then Type 3
customers will end up paying just $100 when they
are willing to pay $200. This new protection level is
in fact optimal according to the buy-up formula pre-
sented by Belobaba and Weatherford (1996), which is
exact in the simple two-class case.8

The revenue obtained rises from $10,993 up to
$12,003, representing an increase of 9.18% with a 95%

7 Recall that Littlewood’s rule (see Littlewood 1972) establishes that
if the cumulative distribution of the demand D1 for the high fare
class is continuous, then the optimal protection level y∗1 is given by
the solution to the simple expression: r2 = r1P�D1 >y1.
8 The buy-up formula says that for high class demand D1 and pro-
tection level y1, it is optimal to accept class 2 as long as

r2 ≥ �1− sr1P�D1 >y1+ sr1�
where s is the probability that a customer for class 2 will buy a
class 1 fare if class 2 is closed. The optimal protection level is the
y1 such that the formula is verified for equality. In our case, s =
83/�83 + 81 = 0
5, r1 = 200, and r2 = 100, leading to y∗1 = , or
practically, y∗1 = x.

van Ryzin and Vulcano: Computing Virtual Nesting Controls
Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS 457

CI of �−2
39%�20
76%. In this case, the load factor
drops from 1.0 down to 0.60. This occurs because we
lose all Type 1 customers (those only willing to pay
the low fare), yet increase revenues by forcing Type 3
customers to pay the high fare.
Example 2. This next example is a simple network

with two parallel single-leg flights between a given
origin–destination (O–D) pair—a 7 a.m. flight and a
1 p.m. flight. (This is the sort of network studied by
Zhang and Cooper 2005.) We consider two classes
(high and low) per flight (i.e., there are n = 4 prod-
ucts), with r = �$200�$100, and aircraft capacity of
x1 = x2 = 100.
There are three types of customers: Type 1 cus-

tomers are customers who can qualify for the low fare
(e.g., leisure customers). They have a preference for
the early morning flight, but are willing to take the
afternoon flight (i.e., their first choice is the low fare
class on the first flight, and the second choice is the
low fare class on the afternoon flight). Type 2 and 3
customers cannot meet the restrictions of the low fares
and have a strong time preference (e.g., business trav-
elers). Type 2 only wants the early morning flight
and Type 3 only wants the afternoon flight. Mean
demands for the customer types are 81 = 100, 82 = 30,
and 83 = 10. The Type 1 customers arrive first, fol-
lowed by Types 2 and 3 (in randomly mixed order of
arrival).
The initial set of protection levels was calculated

using Littlewood’s (1972) rule disregarding the choice
behavior. Given that the ratio r2/r1 = 0
5, the protec-
tion level for the high class in each flight was set
at the mean for the high class demand: y�011 = 30,
y
�0
21 = 10. This would be the optimal policy if there
was no choice behavior.
We then applied the stochastic gradient algorithm

using these protection levels as a starting point. The
algorithm produced new protection levels of y�N11 =
47, y�N21 = 18. Note, these are significantly higher than
the protection levels recommended by Littlewood’s
(1972) rule. Intuitively, this is because there is a high
likelihood that rejected low fare demand on one flight
will be recaptured on the other parallel flight. The
expected revenue increased by 2.32% (from 17,562 to
17,970) with a 95% CI for the gap of �−4
52%�9
17%.
The load factor slightly increased from 0.69 up to 0.70.

The increase in protection levels produced by our
algorithm is quite intuitive here. Littlewood’s (1972)
rule assumes that if we reject a low fare demand, we
lose $100. This loss is worth taking if the expected
revenue from reserving the marginal seat for a high-
fare customer exceeds $100. But if low-fare customers
are willing to take an alternate flight (as they are in
this example), then rejecting a low fare demand on
one flight does not necessarily result in a loss of rev-
enue; rather, the customer may simply chose the other
departure time (i.e., they may be “recaptured” on
another flight). Hence, the expected loss is, in reality,
less than $100. (Exactly how much less is hard to say,
but this is what our algorithm implicitly computes.)
Example 3. This next example is also a two-

parallel-flight network with 7 a.m. and a 1 p.m. flights.
However, now there are three classes per flight: high
fare (HF), middle fare (MF), and low fare (LF), with
r = �$100�$70�$50, giving a total of six products.
To simplify notation, products are labeled HF, MF,
or LF, followed by the departure time (e.g., LF7AM
is the low fare class for the 7 a.m. flight). (In the
tables below, we have omitted listing the no-purchase
option in the preference vector for simplicity.) We
take x1 = x2 = 100. The booking horizon is divided
into four periods, where period 1 is the earliest one,
and period 4 is the closest to the departure date.
The customer behavior is also different. All customers
are able to purchase the low fares and differ only in
their willingness to pay higher fares and their prefer-
ence for departure time. Details of each customer type
and the demand in each period are given in Table 1.
This example is motivated by the undifferentiated fare
structures offered by low-cost carriers flying point-
to-point routes (e.g., JetBlue). For these carriers, cus-
tomers always choose the lowest available price and
the problem is effectively one of dynamic pricing.
The initial set of protection levels for the morning

flight was chosen as y�01 = �25�65 based on a sim-
ple mean-demand calculation: customer Type 5 (fifth
row in Table 1) is eventually willing to pay the full
fare and, hence, 25 seats are reserved for this type (its
mean demand is 25); customer Type 3 is eventually
willing to pay the middle fare and, hence, an addi-
tional 40 seats are reserved for this type (its mean
demand is 40). Analogously, y�02 = �30�65.

van Ryzin and Vulcano: Computing Virtual Nesting Controls
458 Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS

Table 1 Description of Customer Types for Example 3

Description Type (preference order) Mean demand Booking periods

Price sensitive, early preference [LF7AM, LF1PM] 50 1, 4
Price sensitive, late preference [LF1PM, LF7AM] 40 1, 4

Buy-up, early preference [LF7AM, LF1PM, MF7AM, MF1PM] 40 2
Buy-up, late preference [LF1PM, LF7AM, MF1PM, MF7AM] 35 2

Price insensitive, morning [LF7AM, MF7AM, HF7AM] 25 2, 3
Price insensitive, afternoon [LF1PM, MF1PM, HF1PM] 30 2, 3

After applying the stochastic gradient algorithm,
these protection levels were changed to y�N1 = �18�90
and y�N2 = �40�62. Note that the controls reserve
more seats for the high class on the afternoon flight,
and more seats for the middle class on the morning
flight. This is taking advantage of the fact that more
customers with late departure time preferences are
willing to buy-up, whereas relatively fewer customers
with early departure time preferences are willing to
pay more for their preferred time. The load factor
is maintained at 0.86 after applying the stochastic
algorithm. The total revenue from the change in pol-
icy is quite clear indeed: revenues increase by 5.34%
(from $11,374 to $11,982 with a gap 95% CI of (0.77%,
9.92%)).
Example 4. This is a slightly larger parallel flight

network. It consists of four flights serving a given
O–D pair with different departure times (7 a.m.,
10 a.m., 1 p.m., and 4 p.m.). The capacity for the flights
is xi = 100, i= 1�

 �4. Each flight has two fare classes
with revenues r = �$200�$100, creating n = 8 prod-
ucts in total. We consider 12 customer types, arriving
during three stages of the booking process as detailed

Table 2 Description of Customer Types for Example 4

Order of arrival Description Type (preference order) Mean demand

Price sensitive Early preference [LF7AM, LF10AM, LF1PM, LF4PM] 40
(1st) Middle (early) preference [LF10AM, LF1PM, LF7AM, LF4PM] 80

Middle (late) preference [LF1PM, LF10AM, LF4PM, LF7AM] 80
Late preference [LF4PM, LF1PM, LF10AM, LF7AM] 60

Buy-up Early preference [LF7AM, HF7AM] 40
(2nd) Middle (early) preference [LF10AM, HF10AM] 30

Middle (late) preference [LF1PM, HF1PM] 25
Late preference [LF4PM, HF4PM] 40

Full fare Early preference [HF7AM] 20
(3rd) Middle (early) preference [HF10AM] 17

Middle (late) preference [HF1PM] 15
Late preference [HF4PM] 25

in Table 2. Within each stage, customer types are ran-
domly mixed.
Initial protection levels were computed by Little-

wood’s (1972) rule disregarding the choice behav-
ior (i.e., just considering the first preference of each
customer type and then aggregating these types by
product to get the mean demands). This resulted in
the protection levels y�0T = �20�17�15�25. In words,
there are 20 seats reserved for class 1 in the 7 a.m.
flight, 17 in the 10 a.m. flight, 15 in the 1 p.m. flight,
and 25 in the 4 p.m. flight. This produced an expected
revenue of $47,270 with a load factor of 0.99. Our
stochastic gradient algorithm produced the set of pro-
tection levels y�NT = �60�47�39�65 and generated an
expected revenue of $58,923 and a load factor of 0.97.
This represents a revenue gain of 24.65% with a 95%
CI of (18.24%, 31.06%). To see intuitively why the
algorithm produces these protection levels, note that
if we aggregate the mean demand from those cus-
tomers willing to pay the high fare (the buy-up and
full fare customer types), we almost get the same pro-
tection levels: �60�47�40�65. This is because the ratio
between the low and high fares is 0.5; hence, it is

van Ryzin and Vulcano: Computing Virtual Nesting Controls
Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS 459

Figure 1 Network for Numerical Example 5, with Three Legs and Two
Classes Per Leg

A B

C

x1 = 100

x2 = 100 x3 = 100

Note. Protection levels are for scenario 1.

reasonable to set protection levels equal to the mean
demand of all those customers willing to pay the high
fare. Note, however, that the mean demand heuristic
that works well here can also perform significantly
worse than the algorithm (see Example 3).
Example 5. This example is based on the small net-

work of Figure 1 and illustrates a simple case of
path choice between a connecting and nonstop flight.
The are m= 3 resources, with capacity xi = 100, and
2 classes per resource. We consider n = 7 products
labeled with a prefix HF or LF (high or low fare,
respectively) followed by the cities involved in the
itinerary (e.g., LF-ACB represents the low fare class
for the itinerary joining cities A and B with a connec-
tion at C). The products are listed in Table 3.
There are 10 customer types arriving over three

booking periods. The booking periods are labeled
from the earliest to the latest. We also consider two
different demand scenarios. The behavioral descrip-
tion of each customer type, their booking order, and
mean demands under each scenario are specified in
Table 4.
For both scenarios, we use the displacement-adjusted

virtual nesting (DAVN) scheme as described by
Williamson (1992) to define the indexing and com-
pute an initial set of protection levels. The method
solves a deterministic linear program based on the
mean demand of the first choice of all customer types.
The dual variables from this linear program are used

Table 3 Description of Products for Example 5

Product Revenue ($) Product Revenue ($)

HF-AB 300 HF-CB 200
LF-AB 180 LF-CB 100
HF-AC 200 LF-ACB 130
LF-AC 100

Table 4 Description of Customer Types for Example 5

Demand mean
Type Booking
(preference order) Description order Scenario 1 Scenario 2

[HF-AB] Only want direct flight 3 30 10
[LF-AB, LF-ACB] Moderately prefer direct 1 60 10
[LF-ACB, LF-AB] Price sensitive 1 20 30
[HF-AC] High fare, AC 3 10 30
[HF-CB] High fare, CB 3 10 10
[LF-AC, HF-AC] AC buy-up 2 10 30
[LF-CB, HF-CB] CB buy-up 2 10 10
[LF-AC] AC price sensitive 1 10 60
[LF-CB] CB price sensitive 1 10 10
[LF-AB, HF-AB] AB buy-up 2 30 20

to compute displacement-adjusted revenues and clus-
ter products into virtual classes. Then, a single-leg
stochastic model is solved to determine protection
levels for the virtual classes (in our case, Belobaba’s
EMSR-b heuristic (Belobaba and Weatherford 1996)).
A detailed description of the implemented version of
DAVN can be found in our previous paper. (See van
Ryzin and Vulcano 2006, Appendix C.)
Scenario 1. The first scenario corresponds to a sit-

uation in which flight A-B is congested and we would
like to force traffic onto the connecting route A-C-B.
Note that direct flight A-B is congested because of
demand from the first, second, and last customer
types (the sum of their mean demands based on their
first preference gives 120, whereas capacity is x1 =
100). However, the second customer type (which has
the highest mean demand) is willing to switch to the
connecting flight A-C-B.
The initial solution provided by the DAVN algo-

rithm was y�0T = �29�9�9 for the three legs, respec-
tively, with two virtual classes per leg. The expected
revenue produced is $32,058. After applying our
stochastic gradient algorithm, we obtain revised pro-
tection levels of y�NT = �68�42�43, which produce an
expected revenue of $38,381. The improvement in
expected revenue is 19.72% with 95% CI (5.83%,
33.60%), and the network load factor rises from 0.67
to 0.79. Intuitively, the increase in the protection levels
forces the second type of customer onto the connect-
ing flight (thereby increasing the load factor) and also
induces the buy-up types to pay the full fare. Both
effects increase revenues.
Scenario 2. The second scenario illustrates a case

where there is little demand for the direct flight A-B,

van Ryzin and Vulcano: Computing Virtual Nesting Controls
460 Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS

but the connecting flight A-C is congested due to high
local demand. The initial solution provided by the
DAVN algorithm was

y�0 =

9 −
29 −
10 34

for the three legs, respectively (i.e, there are two vir-
tual classes in legs 1 and 2, and three virtual classes
in leg 3), leading to an expected revenue of $27,112.
After applying the stochastic algorithm, we obtained
new protection levels of

y�N =

9 −
65 −
10 34

 �

producing an expected revenue of $31,237. The
improvement in this case is 15.22% with a 95% CI of
�5
66%�24
78%. The network load factor decreased,
however, from 0.67 to 0.64. This is because the cus-
tomer mix changed, especially in the A-C leg, where
more room is reserved for the high fare class. Hence,
here most of the revenue gain is obtained by forc-
ing buy-up of local customers on the A-C leg, which
increases revenues but lowers load factors.
Example 6. This example is based on a real-world

data set for a collection of flights between New York
(with departures from LGA and JFK) and a major air-
port in Florida. It was obtained from a U.S. commer-
cial airline as part of a sponsored research study into
choice-based revenue management. For confidential-
ity reasons, we can only provide summary informa-
tion about the example, but the network and choice
behavior estimates are all based on actual commer-
cial data. Hence, this example provides a good test of
the feasibility and performance of our method on a
large-scale, real-world problem.
The market considered had 320 products (itinerary

fare classes) and 20 flight legs. The airline used 16
(virtual) classes on each flight. In our tests here, we
focused only on the booking decisions during the last
week prior to departure. This reduced the computa-
tion and estimation complexity and, moreover, was
considered the most critical time period for making
revenue-management decisions. Given that there are

few seats left (between 1 and 41) during the last week,
there are also few classes open (from 1 to 5 per flight).
Customer choice behavior was estimated using

a multinomial logit (MNL) model that included
attributes such as flight arrival time, fare paid, depar-
ture day, and origin airport (customers can choose
between LGA and JFK). This MNL model was fit
to booking data using maximum-likelihood meth-
ods. Details of the estimation method and estimation
results are presented in Vulcano et al. (2008). The
booking data were collected during the peak spring
break travel period of 2005. Both arrival rates and
the MNL model were fit to these data. We then used
the fitted model to simulate sequences of customer
arrivals and their preferences for 1,000 instances of the
network booking process. This resulted in 480,497 dif-
ferent preference list orders. The instances consisted
of an average of 572 arrivals during the last week
prior to departure. We assumed that each customer
required a single seat because our data did not have
information on group sizes.
The initial set of protection levels (described in

Table 5) were the protetion levels actually used by
the airline as computed by a their current revenue-
management system. Table 6 describes the improved
protection levels computed by our algorithm.
Comparing Tables 5 and 6, we see that the most

significant difference is that the lowest classes are
kept closed (i.e. protection levels 5�6�

 �15 remain
unchanged). For the highest classes, there are changes
in some of the legs. For example, over leg 1, class 3
is closed (namely, y12 equals capacity), and more
seats are protected for the highest class. Over leg 2,
classes 3 and 4 become slightly opened. There are
minor changes over legs 6 and 8. Leg 11 seems to
have been underprotected because just the highest
class is open with the improved protection levels.
Leg 12 is more closed now, whereas legs 13 to 16
become more open. Finally, leg 20 becomes available
just for its highest class. Note that there is no clear
pattern in terms of the change in the protection lev-
els, and all the substitution effects that underlie the
choice model are captured by our stochastic gradient
algorithm when computing the new set of protection
levels.
Comparing the improved protection levels to the

original ones for this market, our simulations showed

van Ryzin and Vulcano: Computing Virtual Nesting Controls
Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS 461

Table 5 Initial Protection Levels for Example 6

Protection levels Yi
Remaining

Leg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 capacity

1 2 7 13 13 13 13 13 13 13 13 13 13 13 13 13 13
2 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
8 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
11 0 0 2 21 21 21 21 21 21 21 21 21 21 21 21 21
12 14 27 32 40 41 41 41 41 41 41 41 41 41 41 41 41
13 23 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
14 8 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
15 0 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
16 5 22 25 25 25 25 25 25 25 25 25 25 25 25 25 25
17 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
18 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
19 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
20 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

a revenue improvement of 10.3%, from $46,917 to
$51,750, with a 95% CI for the gap of �4
91%�15
69%.
This is a very large increase in practical terms. The
load factor was slightly increased from 0.88 to 0.90.

Table 6 Improved Protection Levels for Example 6

Protection levels Yi
Remaining

Leg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 capacity

1 11 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
2 0 1 5 7 7 7 7 7 7 7 7 7 7 7 7 7
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
11 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21
12 27 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
13 27 32 33 33 33 33 33 33 33 33 33 33 33 33 33 33
14 2 10 12 13 13 13 13 13 13 13 13 13 13 13 13 13
15 2 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12
16 4 16 20 25 25 25 25 25 25 25 25 25 25 25 25 25
17 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
18 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
19 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

For this example, our algorithm took 95.7 seconds
to run. Although we are not considering the time for
generating each sample paths, as mentioned above in
a commercial implementation, this simulation could

van Ryzin and Vulcano: Computing Virtual Nesting Controls
462 Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS

be run on parallel processors with each CPU generat-
ing its own sequence of demand and calculating the
resulting sample path gradient.
Overall, the example shows that our method works

efficiently and effectively on real-world-size problem.
Again, full details on this study are contained in a
forthcoming paper.

5. Conclusions
We have proposed a model and method to find locally
optimal nested protection levels for network capac-
ity control under a very general model of customer
choice behavior. The overall approach is appealing for
two main reasons. First, the stochastic process that
characterize the demand and choice processes can
be completely general. Indeed, almost any simulation
model of customer behavior can be used to generate
the requisite sequences of customer and their prefer-
ences, which drive the optimization algorithm. This
provides a great degree of flexibility in modeling cus-
tomer behavior and allows for a clean separation of
the choice modeling and optimization parts of the
method, which is a very desirable feature in practice.
Second, the proposed algorithm is easy to implement,
relatively fast even when applied to large networks,
and has shown promising improvement in revenue in
all our computational tests. In this sense, the method
appears to have the computational properties neces-
sary for practical implementation.

Acknowledgments
The authors would like to thank Richard Ratliff and Wassim
Chaar, from Sabre Holdings, for helpful feedback on earlier
drafts of this work. They also thank two anonymous refer-
ees and a senior editor for their constructive comments and
suggestions.

Appendix A. Smoothing the Revenue Function
We analyze the sample path revenue function Rt�x�t� y��
as a function of the protection levels y. In particular,
by allowing partial acceptance of requests, the function
uj�x�t� y� lt� qt defined by (3) is continuous and piecewise-
linear in y. Assuming pt = 1 for all requests t, then
yi� ci�j−1 = xi�t− qt and yi� ci�j−1 = xi�t are points of nondif-
ferentiability, which makes R�y�� a continuous but non-
smooth function of y. Indeed, we cannot even guarantee
that Rt�x�t� y�� is differentiable with respect to y w.p.1,
because the event yi� ci�j−1 = xi�t can occur with some pos-
itive probability (e.g., with positive probability we can get
a sequence of high-quantity requests such that the value

uj�x�t� y� lt� qt = 0 in (3) for a sequence of consecutive ts
is determined by the fact that yi� ci�j−1 = xi�t). This fact
violates well known sufficient conditions for the differen-
tiability of g�y, and in particular for interchanging differ-
entiation and expectation. (See Glasserman 1994 for a good
reference on this topic.)
To overcome these technical difficulties, we redefine the

sample path � as �= ��lt� qt� ;t$ t = 1�

 � T 	, where each
;t� i is an i.i.d. random variable uniformly distributed on
�0� 4�, for some small 4. Although ;t is a function of �, we
do not explicity express this dependence to simplify the
notation. Then, we consider the following variation of the
problem:

Rt�x�t� y��= rT ·u�x�t− ;t� y� lt� qt
+Rt+1�x�t+ 1� y�� (A1)

x�t+ 1= x�t− ;t −A ·u�x�t− ;t� y� lt� qt% (A2)

The purpose is to smooth the acceptance function by ran-
domly perturbing the remaining capacity. With this new
formulation, following with the argument in the previ-
ous paragraph, the event yi� ci�j−1 = xi�t− ;t� i occurs with
probability zero. Therefore, the control u�· defined in (A2)
becomes differentiable w.p.1. Using the composition defined
by (A1), it is not hard to see that the revenue function
becomes differentiable w.p.1. as well.
Using the chain rule, we then obtain the set of backward

equations for the derivatives with respect to yic :

<

<yic
Rt�x�t� y��

= �rT−)x�t+1Rt+1�x�t+1�y��·A·
<

<yic
u�x�t−;t�y�lt�qt

+ <

<yic
Rt+1�x�t+ 1� y��� ∀ i� c� t
 (A3)

We get a similar set of backward equations for the deriva-
tives with respect to xi:

<

<xi�t
Rt�x�t� y��

= �rT −)x�t+1Rt+1�x�t+ 1� y�� ·A

· <

<xi�t
u�x�t− ;t� y� lt� qt

+ <

<xi�t+ 1
Rt+1�x�t+ 1� y��� ∀ i� t% (A4)

with boundary conditions

<

<yic
RT+1�x�T + 1� y��= 0� ∀ i� c%

<

<xi�t+ 1
RT+1�x�T + 1� y��= 0� ∀ i

van Ryzin and Vulcano: Computing Virtual Nesting Controls
Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS 463

(In the next subsection, we include a detailed derivation of
the partial derivatives for the revenue function.)
Note that the general form of the two gradients is very

similar. The term in the parentheses is simply the marginal
revenue for accepting one extra unit of product j minus
the marginal displacement cost over the legs used by prod-
uct j—in other words, product j’s displacement-adjusted
revenue value. This quantity is multiplied by the gra-
dients of the acceptance function (�</<yicuj �x�y� l� q or
�</<xiuj �x�y� l� q) to give the marginal value in the current
period. Adding this to the marginal revenue-to-go gives the
total gradient.

Appendix B. Derivation of the Partial Derivatives
for the Revenue Function
From Equation (A1), the derivation of the partial deriva-
tive of the revenue function with respect to yic proceeds as
follows:

<

<yic
Rt�x�t� y��

= rT · <
<yic

u�x�t− ;t� y� lt� qt

+)x�t+1Rt+1�x�t+ 1� y�� ·
<

<yic
x�t+ 1

+ <

<yic
Rt+1�x�t+ 1� y���

where

<

<yic
x�t+ 1=−A · <

<yic
u�x�t− ;t� y� lt� qt

Then,

<

<yic
Rt�x�t�y��

= �rT−)x�t+1Rt+1�x�t+1�y��×A ·
<

<yic
u�x�t−;t�y�lt�qt

+ <

<yic
Rt+1�x�t+1�y��
 (B1)

Now we have to solve for the partial derivative with
respect to capacity. Taking again Equation (A1):

<

<xi�t
Rt�x�t� y��

= rT · <

<xi�t
u�x�t− ;t� y� lt� qt

+)x�t+1Rt+1�x�t+ 1� y�� ·
<

<xi�t+ 1
x�t+ 1

The partial derivative of the remaining capacity function is

<

<xi�t+ 1
x�t+ 1= ei −A · <

<xi�t
u�x�t− ;t� y� lt� qt

Regrouping terms, we have that

<

<xi�t
Rt�x�t� y��

= �rT −)x�t+1Rt+1�x�t+ 1� y��×A

· <

<xi�t
u�x�t− ;t� y� lt� qt

+ <

<xi�t+ 1
Rt+1�x�t+ 1� y��
 (B2)

Appendix C. Gradients of uj
We next determine the gradients of uj�x�y� lt� qt. To ensure
that partial derivatives are well defined on the boundary of
the feasible set (1), we redefine (2) as follows.

x
j
i �t=min

{(
xi�t−yi�c−

b�t�j−1∑
k=1

�u�k��x�t�y�lt�qtI�i∈A�k�	�
)+
$

i ∈Aj� c < ci�j
}

(C1)

Assuming there is a unique minimum in definition (3), then
from (C1), one can determine for all i and c the following
partial derivative.

<

<yic
uj �x�y� lt� qt

=

−1 if protection level yic is uniquely binding
for product j , i.e., if simultaneously

(i) i ∈Aj

(ii) xi − yi�c −
b�t�j−1∑
k=1

�u�k��x�y� lt� qtI�i ∈A�k�	�

< xh− yh�c′ −
b�t�j−1∑
k=1

�u�k��x�y� lt� qtI�h ∈A�k�	��

∀h ∈Aj , and ∀ c′ < ch�j� with �i� c �= �h� c′

(iii) 0< xi − yi�c −
b�t�j−1∑
k=1

�u�k��x�y� lt� qtI�i ∈A�k�	�

< qt −
b�t�j−1∑
k=1

u�k��x�y� lt� qt

(iv) c < ci�j

−
b�t�j−1∑
k=1

[
<

<yic
u�k��x�y� lt� qtI�l ∈A�k�	

]

if for some l� l ∈Aj� there exists a d < cl�j� such
that the protection level yld�with �l� d �= �i� c�

van Ryzin and Vulcano: Computing Virtual Nesting Controls
464 Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS

is uniquely binding for j� i.e., the following hold:

(i) xl − yld −
b�t�j−1∑
k=1

�u�k��x�y� lt� qtI�l ∈A�k�	�

< xh− yh�c′ −
b�t�j−1∑
k=1

�u�k��x�y� lt� qtI�h ∈A�k�	��

∀h ∈Aj� and ∀ c′ < ch�j�with �l� d �= �h� c′

(ii) 0< xl − yld −
b�t�j−1∑
k=1

�u�k��x�y� lt� qtI�l ∈A�k�	�

< qt −
b�t�j−1∑
k=1

u�k��x�y� lt� qt

−
b�t�j−1∑
k=1

<

<yic
u�k��x�y� lt� qt

if there is a positive amount allocated to j , but no
constrained by a binding protection level, i.e.,

0<uj�x�y� lt� qt= qt −
b�t�j−1∑
k=1

u�k��x�y� lt� qt

< x
j
h� ∀h ∈Aj

0 if uj�x�y� lt� qt= 0
(C2)

If there is no unique minimum in definition (3), then the
derivative does not exist.
In the first case of (C2), the quantity of demand accepted

of product j for customer t in state x is reduced (one-for-
one) by a slight increase in the protection level yic if and
only if all of the following hold: (i) resource i is used by
j , (ii) the capacity available for product j on resource i is a
binding constraint, (iii) the amount accepted is positive but
constrained by the protection level associated to product j
over resource i, and (iv) class c is higher in the nesting order
than the virtual class of product j over resource i. Note that
the complete form of this first case for the derivative in
Equation (C2) should be:

<

<yic
uj �x�y� lt� qt

=−1−
b�t�j−1∑
k=1

[
<

<yic
u�k��x�y� lt� qtI�i ∈A�k�	

]

However, each term in the sum is null: if protection level yic
is binding at time t for product j , and j is allocated a pos-
itive amount yie, it could not have been binding for prod-
ucts higher than j in the preference order, for which also
the quantity qt had not been exhausted yet. So, the partial
derivative is just −1.

Cases 2 and 3 in (C2) take care of cross-network effects.
The second case occurs when the amount of product j
accepted is positive and determined by a uniquely bind-
ing protection level yld where �l� d �= �i� c. Here, if we
marginally increase the protection level yic , which could be
binding for a product that uses leg l ∈Aj but that is located
higher than j in the preference list, the marginal quantity
spilled from above could be received by product j . The third
case occurs when the quantity qt is exhausted at product j
and there is no binding protection level. Here, product j
will receive any spillover from above.
A similar reasoning provides the derivatives with respect

to xi: Assuming there is a unique minimum in definition (3),
then from (C1), one can determine for each resource i the
following partial derivative.
<

<xi
uj �x�y� lt� qt

=

1 if resource i is uniquely binding for product j ,
i.e., if i ∈Aj�and for some c < ci�j�
the following hold:

(i) xi − yi�c −
b�t�j−1∑
k=1

�u�k��x�y� lt� qtI�i ∈A�k�	�

< xh− yh�c′ −
b�t�j−1∑
k=1

�u�k��x�y� lt� qtI�h ∈A�k�	��

∀h ∈Aj� and ∀ c′ < ch�j� with �i� c �= �h� c′

(ii) 0< xi − yi�c −
b�t�j−1∑
k=1

�u�k��x�y� lt� qtI�i ∈A�k�	�

< qt −
b�t�j−1∑
k=1

u�k��x�y� lt� qt

−
b�t�j−1∑
k=1

[
<

<xi
u�k��x�y� lt� qtI�l ∈A�k�	

]

if for some l� l ∈Aj� l �= i� there exists a d < cl�j�
such that the protection level yld is uniquely
binding for j , i.e., the following hold:

(i) xl − yld −
b�t�j−1∑
k=1

�u�k��x�y� lt� qtI�l ∈A�k�	�

< xh− yh�c′ −
b�t�j−1∑
k=1

�u�k��x�y� lt� qtI�h ∈A�k�	��

∀h ∈Aj�and ∀ c′ < ch�j� with �l� d �= �h� c′

(ii) 0< xl − yld −
b�t�j−1∑
k=1

�u�k��x�y� lt� qtI�l ∈A�k�	�

< qt −
b�t�j−1∑
k=1

u�k��x�y� lt� qt

van Ryzin and Vulcano: Computing Virtual Nesting Controls
Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS 465

−
b�t�j−1∑
k=1

<

<xi
u�k��x�y� lt� qt

if there is a positive amount allocated to j ,
but no constrained by a binding protection level, i.e.,

0<uj�x�y� lt� qt= qt −
b�t�j−1∑
k=1

u�k��x�y� lt� qt

< x
j
h� ∀h ∈Aj

0 if uj�x�y� lt� qt= 0
(C3)

If there is no unique minimum in definition (3), then the
derivative does not exist. The interpretation is analogous to
the derivative with respect to yic .
Conditions for the partial derivatives of the acceptance

function are further illustrated in Figure A.1. The height of
the bars represents the capacity remaining at time t, and the
quantities yi�ci�j−1 represent the protection levels for product
j on each resource i. Customer t requests qt = 3 seats. His
first choice is product 5, which uses legs 1 and 2; his second
choice is product 6, which uses legs 2 and 3, and the last
choice is product 7, which uses leg 4. Following the notation
we introduced in §2: lt1 = 5, lt2 = 6, lt3 = 7, and pt = 3. Note
in Figure A.1 that leg 1 is binding for product 5, and leg 2
is binding for product 6. These binding constraints forces
the allocation of the third seat to product 7. Some straight
forward partial derivatives are:

<

<y1� c1�5−1
u5�x�y� lt�3=−1� <

<y2� c2�5−1
u5�x�y� lt�3= 0�

<

<y2� c2�6−1
u6�x�y� lt�3=−1� <

<y3� c3�6−1
u6�x�y� lt�3= 0�

<

<y4� c4�7−1
u7�x�y� lt�3= 0

Figure A.1 Acceptance Function for Customer t, Requesting qt = 3
with Preferences lt = �5�6�7�0� � � � �0	

x1

y2, c2(5) –1
y3, c3(6) –1

x2
x3

x4

5 5 6

6

7

y2, c2(6) –1

y4, c4(7) –1

y1, c1(5) –1

Note. Product 5 uses legs 1 and 2; product 6 uses legs 2 and 3, and prod-
uct 7 uses leg 4.

The cross network effects make some derivatives not so
straightforward. For example, it can be verified that

<

<y1� c1�5−1
u6�x�y� lt�3= 1�

meaning that when slightly incrementing the protection
level y1� c1�5−1, the reduction in the number of product 5
accepted is compensated by an increase in the number
of product 6 accepted. This is captured by case 2 in for-
mula (C2). Another cross-network effect is given by case 3
in formula (C2), from where it can be verified that

<

<y1� c1�5−1
u7�x�y� lt�3= 0

Case 3 also leads to the partial derivative

<

<y2� c2�6−1
u7�x�y� lt�3= 1

Analogously, we can compute the partial derivatives with
respect to capacity. For instance, from formula (C3), it can
be verified that

<

<x1
u5�x�y� lt�3= 1�

<

<x2
u5�x�y� lt�3= 0�

<

<x2
u6�x�y� lt�3= 1�

<

<x3
u6�x�y� lt�3= 0�

<

<x4
u7�x�y� lt�3= 0

Appendix D. Example Calculation of Revenue
Function Gradients
We will analyze the gradients of the revenue function for
three toy examples.

Example 1. Take a single leg problem, with 3 prod-
ucts, 3 virtual classes (one per product) and revenues r =
�25�19�10. Suppose x = 8, and protection levels are y =
�2�4. Consider a sample path � with four requests:

�= ���3�2�0��3���3�2�0��2���2�1�0��2���2�1�0��2

The sample path is processed as follows: the first booking
is fulfilled using product 3. The second request is assigned
one seat of product 3, but then product 3 meets a binding
constraint (e.g., after the realization of the random variable
; , x�2− ; = 4
993) because 4 seats out of 8 are reserved for
classes 1 and 2. Hence, the second seat is allocated to prod-
uct 2. Something similar occurs with the third customer: her
first seat is sold on product 2, but the protection level y1 is
hit (e.g., x�3− ; = 2
986, and then the second seat is allo-
cated to product 1. There is just one seat left for the fourth
customer, and a product 1 is sold to him. Figure A.2 illus-
trates the selling process, where seats are filled from right
to left.
In this case, when marginally decreasing capacity x, we

will be marginally decreasing the quantity of product 3

van Ryzin and Vulcano: Computing Virtual Nesting Controls
466 Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS

Figure A.2 Selling Process for Example 1 in Appendix D

1 1

4th cust. 3rd cust. 2nd cust. 1st cust.

2 2 3 3 3 3

y2y1

Note. The numbers in the grey boxes indicate the product allocated to the
corresponding customer.

accepted. Missing a marginal unit of product 3 translates
into:

)xR1�x�y��= 10

Regarding the partial derivatives with respect to the pro-

tection levels, note that by marginally incrementing y2, we
will reject a marginal unit of product 3, but will accept
a marginal unit of product 2, changing the revenue in
r2− r3 = 9. Likewise, by marginally incrementing y1, we will
accept an additional increment of product 1 for the third
customer (at the expense of a marginal unit of product 2),
leading to a revenue change of r1− r2 = 6. Hence,

)yR1�x�y��= �6�9

Example 2. Again, consider the same single leg problem:

3 products, 3 virtual classes (one per product) and revenues
r = �25�19�10, with capacity x = 8, and protection levels
y = �2�4. Now, take the following sample path � with three
requests:

�= ���3�0�0��3� ��3�2�1��3� ��2�0�0��2

The selling process is represented in Figure A.3. In a non-
perturbed framework, the first customer gets three prod-
ucts 3. The second customer is assigned one product 3, and
two products 2. There is no availability for the last customer.
Here, when processing the second customer and per-

turbing capacity (e.g., x�2− ; = 4
989), a marginal unit of
product 3 is compensated with an increment of product 1,
changing the revenue by r3− r1 =−15.

)xR1�x�y��=−15

Figure A.3 Selling Process for Example 2 in Appendix D

2nd cust. 1st cust.

2 2 3 3 3 3

y2y1

Note. The numbers in the grey boxes indicate the product allocated to the
corresponding customer.

Observe that this translates into an increase in the sample
path revenue. The main point here is that by taking advan-
tage of the substitution effect, it could be worthwhile for the
seller to introduce some scarcity in the availability of lower
classes to improve revenue performance.
Fixing x= 8, when studying the derivative with respect to

y2, request from the second customer will be fully processed
with an additional increment of product 2, allowing for an
increase of r2− r3 = 9. Regarding the derivative with respect
to y1 (fixing y2), the second customer will get a marginal
unit of product 1 at the expense of a marginal unit of prod-
uct 2, leading to an increase of r1 − r2 = 6. The gradient of
the revenue with respect to y is then

)yR1�x�y��= �6�9

Example 3. Assume that there are two alternatives cov-

ering an origin-destination pair (e.g., two direct flights
between cities A and B: first one is at 7 a.m.; the second is
at 10 a.m.). Consider the same capacity for both: x1 = x2 = 5.
There are two products (classes) per flight, which for sim-
plicity are denoted: LFk (low fare class for flight k) and HFk
(high fare class for flight k), with k = 1�2. The protection
level for HF1 is y11 = 2; and the protection level for HF2 is
y21 = 3. The revenues are 150 for HF1, 170 for HF2, and 100
for both LF1 and LF2.
Take the following sample path � with four requests (fol-

lowing the notation of Example 1):

� = ���LF1�LF2�0�0��2� ��LF2�LF1�0�0��3�
��HF1�HF2�0�0��3� ��HF2�HF1�0�0��3

The selling process in a nonperturbed setting is represented
in Figure A.4. The first customer gets her first choice. The
second customer gets two seats in the second flight, and
one in the early morning flight. The third customer gets
two seats in the first flight, and one in the second one. The
last customer can be allocated just two seats in the second
flight.

Figure A.4 Selling Process for Example 3 in Appendix D

3rd cust.

3rd cust.

2nd cust.

2nd cust.4th cust.

1st cust.

1st Flight

2nd Flight

Y11 = 2

Y21 = 3

HF1 HF1 LF1 LF1 LF1

HF2 HF2 HF2 LF2 LF2

Note. The labels in the grey boxes indicate the product allocated to the cus-
tomer in the brackets below.

van Ryzin and Vulcano: Computing Virtual Nesting Controls
Manufacturing & Service Operations Management 10(3), pp. 448–467, © 2008 INFORMS 467

Suppose we slightly increase the value of y11. In this case,
the third unit of the second customer will be marginally
decreased, but both customers 3 and 4 will be marginally
more satisfied with their first choice. That is, in terms of
marginal units, we lose one LF1, we accommodate one
current of HF2 as HF1, and we assign one extra HF2 for
customer 4.

<

<y11
R1�x�y��= 170+ �150− 170− 100= 50

If we slightly increase the value of y21, we basically reject
one marginal unit for the second customer, and we are able
to meet an additional demand unit of the fourth customer:

<

<y21
R1�x�y��= 170− 100= 70

Regarding the partial with respect to capacities: If we
decrease either x1 or x2 by one marginal unit, we lose one
marginal seat for the second customer, leading to

<

<x1
R1�x�y��=

<

<x2
R1�x�y��= 100

References
Algers, S., M. Besser. 2001. Modeling choice of flight and booking

class: A study using stated preference and revealed preference
data. Internat. J. Services Tech. Management 2 28–45.

Andersson, S. E. 1989. Operational planning in airline business—
Can science improve efficiency? Experiences from SAS. Eur. J.
Oper. Res. 43 3–12.

Andersson, S. E. 1998. Passenger choice analysis for seat capacity
control: A pilot project in Scandinavian Airlines. Internat. Trans.
Oper. Res. 5 471–486.

Belobaba, P. 1987. Air travel demand and airline seat inventory
management. Ph.D. thesis, Flight Transportation Laboratory,
MIT, Cambridge, MA.

Belobaba, P., C. Hopperstad. 1999. Boeing/MIT simulation study:
PODS results update. Proc. 1999 AGIFORS Reservations Yield
Management Study Group Sympos. London, UK.

Belobaba, P. P., L. R. Weatherford. 1996. Comparing decision rules
that incorporate customer diversion in perishable asset rev-
enue management situations. Decision Sci. 27 343–363.

Benveniste, A., M. Métivier, P. Priouret. 1990. Adaptive Algorithms
and Stochastic Approximations. Springer-Verlag, Berlin.

Bertsekas, D. 1999. Nonlinear Programming, 2nd ed. Athena Scien-
tific, Nashua, NH.

Bertsimas, D., S. de Boer. 2005. Simulation-based booking-limits for
airline revenue management. Oper. Res. 53 90–106.

Boyd, E. A., R. Kallesen. 2004. The science of revenue management
when passengers purchase the lowest available fare. J. Revenue
Pricing Management 3 171–177.

Gallego, G., G. Iyengar, R. Phillips, A. Dubey. 2004. Manag-
ing flexible products on a network. Technical Report CORC
TR-2004-01, Department of Industrial Engineering and Opera-
tions Research, Columbia University, New York.

Glasserman, P. 1994. Perturbation analysis of production networks.
D. D. Yao, ed. Stochastic Modeling and Analysis of Manufacturing
Systems, Chapter 6. Springer, New York, 233–280.

Kleywegt, A. J., A. Shapiro. 2001. Stochastic optimization.
G. Salvendy, ed. Handbook of Industrial Engineering, 3rd ed. John
Wiley and Sons, New York, 2625–2650.

Kreps, D. M. 1988. Notes on the Theory of Choice. Westview Press,
London.

Kushner, H., G. Yin. 2003. Stochastic Approximation and Recursive
Algorithms and Applications. Springer-Verlag, New York.

Kushner, H. J., D. S. Clark. 1978. Stochastic Approximation Meth-
ods for Constrained and Unconstrained Systems. Springer-Verlag,
Berlin.

Littlewood, K. 1972. Forecasting and control of passengers book-
ings. 12th AGIFORS Sympos. Proc. Nathanya, Israel, 95–128.

Liu, Q., G. J. van Ryzin. 2008. On the choice-based linear program-
ming model for network revenue management. Manufacturing
Service Operations Management 10(2) 288–310.

Mahajan, S., G. J. van Ryzin. 2001. Stocking retail assortments under
dynamic consumer substitution. Oper. Res. 49 334–351.

Pflug, G. 1988. Step size rules, stopping times and their imple-
mentation in stochastic quasigradient methods. Y. Ermoliev,
R. J.-B. Wets, eds. Numerical Techniques in Stochastic Optimiza-
tion, Chap. 17. Springer-Verlag, Berlin, 353–372.

Phillips, R. L. 1994. State-contingent airline yield management. Pre-
sentation, Session TC33.4, INFORMS, Detroit.

Robbins, H., S. Monro. 1951. On a stochastic approximation
method. Ann. Math. Statist. 22 400–407.

Shapiro, A. 2000. Stochastic programming by Monte Carlo simu-
lation methods. Stochastic Programming E-Prints Series, Article
2000-03.

Smith, B., J. Leimkuhler, R. Darrow. 1992. Yield management at
American airlines. Interfaces 22 8–31.

Talluri, K. T., G. J. van Ryzin. 2004a. Revenue management under a
general discrete choice model of consumer behavior. Manage-
ment Sci. 50(January) 15–33.

Talluri, K. T., G. J. van Ryzin. 2004b. The Theory and Practice of Rev-
enue Management. Kluwer Academic Press, New York.

van Ryzin, G. J., G. Vulcano. 2006. Simulation-based optimization
of virtual nesting controls for network revenue management.
Oper. Res. Forthcoming.

Vulcano, G., G. J. van Ryzin. 2008. Choice-based revenue man-
agement: An empirical study of estimation and optimization.
Working paper, Stern School of Business, New York University.

Williamson, E. 1992. Airline network seat inventory control:
Methodologies and revenue impacts. Ph.D. thesis, Flight Trans-
portation Laboratory, MIT, Cambridge, MA.

Zhang, D., W. L. Cooper. 2005. Revenue management for parallel
flights with customer choice behavior. Oper. Res. 53 414–431.

