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Abstract

We consider importance sampling simulation for estimating rare event probabilities in the
presence of heavy-tailed distributions that have polynomial-like tails. In particular, we prove
the following negative result: there does not exist an asymptotically optimal state-independent
change-of-measure for estimating the probability that a random walk (respectively, queue length
for a single server queue) exceeds a “high” threshold before going below zero (respectively,
becoming empty). Furthermore, we derive explicit bounds on the best asymptotic variance
reduction achieved by state-independent importance sampling relative to näıve simulation. We
illustrate through a simple numerical example that a “good” state-dependent change-of-measure
may be developed based on an approximation of the zero-variance measure.

1 Introduction

Importance sampling (IS) simulation has proven to be an extremely successful method in efficiently

estimating certain rare events associated with light-tailed random variables; see, e.g., [15] and [11]

for queueing applications, and [10] for applications in financial engineering. (Roughly speaking, a

random variable is said to be light-tailed if the tail of the distribution decays at least exponentially

fast.) The main idea of IS algorithms is to perform a change-of-measure, then estimate the rare event

in question by generating independent identically distributed (iid) copies of the underlying random

variables (rv’s) according to this new distribution. Roughly speaking, a “good” IS distribution

should assign high probability to realizations of the rv’s that give rise to the rare event of interest

(while simultaneously not reducing by too much the probability of more likely events).
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Recently, heavy-tailed distributions have become increasingly important in explaining rare event

related phenomena in many fields including data networks and teletraffic models (see, e.g., [14]),

and insurance and risk management (cf. [9]). Unlike the light-tailed case, designing efficient IS

simulation techniques in the presence of heavy-tailed random variables has proven to be quite

challenging. This is mainly due to the fact that the manner in which rare events occur is quite

different than that encountered in the light-tailed context (see, [2] for further discussion).

In this paper we highlight a fundamental difficulty in applying IS techniques in the presence of

heavy-tailed random variables. For a broad class of such distributions having polynomial-like tails,

we prove that if the constituent random variables are independent under an IS change-of-measure

then this measure cannot achieve asymptotic optimality. (Roughly speaking, a change-of-measure

is said to be asymptotically optimal, or efficient, if it asymptotically achieves zero variance on

a logarithmic scale; a precise definition is given in Section 2.) In particular, we give explicit

asymptotic bounds on the level of improvement that state-independent IS can achieve vis-a-vis

näıve simulation. These results are derived for the following two rare events.

i.) A negative drift random walk (RW) Sn =
∑n

i=1 Xi exceeding a large threshold before taking

on a negative value (see Theorem 1).

ii.) A stable GI/GI/1 queue exceeding a large threshold within a busy cycle (see Theorem 2). This

analysis builds on asymptotes for the maximum of the queue length process (see Proposition

1).

The above probabilities are particularly important in estimating steady-state performance measures

related to waiting times and queue lengths in single-server queues, when the regenerative ratio

representations is exploited for estimation (see, e.g., [11]).

Our negative results motivate the development of state-dependent IS techniques (see, e.g., [13]).

In particular, for the probabilities that we consider the zero variance measure has a straightfor-

ward “state-dependent” representation. In the random walk setting this involves generating each

increment Xi using a distribution that depends on the position of the RW prior to that, i.e., the

distribution of Xi depends on Si−1 =
∑i−1

j=1 Xj . For a simple example involving an M/G/1 queue,

we illustrate numerically how one can exploit approximations to the zero-variance measure (see

Proposition 2) to develop state-dependent IS schemes that perform reasonably well.

Related literature. The first algorithm for efficient simulation in the heavy-tailed context was

given in [3] using conditional Monte Carlo. Both [4] and [12] develop successful IS techniques to

estimate level crossing probabilities of the form P (maxn Sn > u), for random walks with heavy tails,

by relying on an alternative ladder height based representation of this probability. (Our negative

results do not apply in such cases since the distribution that is being “twisted” is not that of the

increment but rather that of the ladder height.) It is important to note that the ladder height
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representation is only useful for a restricted class of random walks where each Xi is a difference of a

heavy tailed random variable and an exponentially distributed random variable. The work in [7] also

considers the level crossing problem and obtains positive results for IS simulation in the presence

of Weibull-tails. They avoid the inevitable variance build-up by truncating the generated paths.

However, even with truncation they observe poor results when the associated random variables

have polynomial tails.

Recently, in [5] it was shown that performing a change in parameters within the family of Weibull

or Pareto distributions does not result in an asymptotically optimal IS scheme in the random-walk

or in the single server queue example. In [5] the authors also advocate the use of cross-entropy

methods for selecting the “best” change-of-measure for IS purposes. Our paper provides further

evidence that any state-independent change-of-measure (not restricted to just parameter changes

in the original distribution) will not lead to efficient IS simulation algorithms. We also explicitly

bound the loss of efficiency that results from restricting use to iid IS distributions.

The remainder of this paper. In Section 2, we briefly describe IS and the notion of asymptotic

optimality. Section 3 describes the main results of the paper. In Section 4 we illustrate numerically

the performance of a state-dependent approximate zero variance change-of-measure for a simple

discrete time queue. Proofs of the main results (Theorems 1 and 2) are given in Appendix A. For

space considerations we omit the proof of secondary results (Proposition 1 and Proposition 2), the

details of which can be found in [6].

2 Importance Sampling and Asymptotic Optimality

2.1 Two rare events

Random walk. Consider a probability space (Ω,F , P) and a random walk Sn =
∑n

m=1 Xm, S0 = 0

where X1, X2, ... are iid copies of X. We assume that EX < 0, and we denote the cumulative

distribution function of X by F . Define τ to be the time at which the random walk first goes below

zero, i.e.,

τ = inf{n ≥ 1 : Sn < 0}.

Let ζ = Eτ , and Mn = max0≤m≤n Sm. The probability of interest is γu = P(Mτ > u). To estimate

this probability by näıve simulation, we generate m iid samples of the function I{Mτ >u} and average

over them to get an unbiased estimate γ̂m
u . The relative error of this estimator (defined as the ratio

of standard deviation and mean) is given by
√

(1−γu)
mγu

. Since γu → 0 as u → ∞, the number

of simulation runs must increase without bound in order to have fixed small relative error as u

becomes large.

Consider another probability distribution P̃ on the same sample space such that the sequence
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{X1, X2, ...} is iid under P̃ with marginal distribution F̃ , and F is absolutely continuous w.r.t. F̃ .

Let Tu = inf{n : Sn ≥ u}. Define

Zu = LuI{Mτ >u}, (1)

where Lu =

min{τ,Tu}∏

i=1

dF (Xi)

dF̃ (Xi)
,

and let Ẽ[·] be the expectation operator under P̃. Then, using Wald’s likelihood ratio identity

(see [16, Proposition 2.24]), we have that Zu under measure P̃ is an unbiased estimator of the

probability P(Mτ > u). Thus, we can generate iid samples of Zu under the measure P̃, the average

of these would be an unbiased estimate of γu. We refer to P̃ as the IS change-of-measure and Lu

as the likelihood ratio. In many cases, by choosing the IS change-of-measure appropriately, we can

substantially reduce the variance of this estimator.

Note that a similar analysis can be carried out to get an estimator when the sequence {X1, X2, ...}

is not iid under P̃. The likelihood ratio Lu in that case can be expressed as the Radon-Nikodyn

derivative of the original measure w.r.t. the IS measure restricted to the appropriate stopping time.

Queue length process. The second rare event studied in this paper is that of buffer overflow

during a busy cycle. Consider a GI/GI/1 queue, and let the inter-arrival and service times have

finite means λ−1 and µ−1, respectively. Let Q(t) represent the number of customers in the system

(in queue and in service) at time t under FCFS (first come first serve) service discipline. Assume

that the busy cycle starts at time t = 0, i.e., Q(0−) = 0 and Q(0) = 1, and let τ denote the end of

the busy cycle, namely

τ = inf{t ≥ 0 : Q(t) = 0}.

Let the cumulative distribution of inter-arrival times and service times be F and G, respectively.

Let Si be the service time of the ith customer and Ai be the inter-arrival time for the (i + 1)th

customer. The probability of interest is γu = P(max0≤t≤τ Q(t) ≥ u). (We assume that u > 1 is

integer-valued for simplicity.) Again we note that γu → 0 as u → ∞; to estimate this probability

efficiently we can use IS.

Let the number of arrivals until the queue length exceeds (or is equal to) level u − 1 be

M = inf

{
n ≥ 1 :

n∑

i=1

Ai <
n−u+2∑

i=1

Si

}
.

Let N(t) represent the number of arrivals up until time t. Then N(τ) is the number of customers

arriving during a busy period. Let F̃ and G̃ be the cumulative IS distributions of inter-arrival

and service times, respectively. Then, again using Wald’s likelihood ratio identity, Zu under the
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measure P̃ is an unbiased estimator for the probability P(max0≤t≤τ Q(t) > u), where

Zu = LuI{M≤N(τ)}, (2)

and Lu =
M∏

i=1

dF (Ai)

dF̃ (Ai)

M−u+2∏

j=1

dG(Sj)

dG̃(Sj)
.

2.2 Asymptotic optimality

Consider a sequence of rare-events indexed by a parameter u. Let Iu be the indicator of this rare

event, and suppose E[Iu] → 0 as u → ∞ (e.g., for the first rare event defined above, Iu = I{Mτ >u}).

Let P̃ be an IS distribution and L be the corresponding likelihood ratio. Put Zu = LIu.

Definition 1 (asymptotic optimality [11]) A sequence of IS estimators is said to asymptoti-

cally optimal if

log Ẽ[Z2
u]

log Ẽ[Zu]
→ 2 as u → ∞. (3)

Note that Ẽ[Z2
u] ≥ (Ẽ[Zu])2 and log Ẽ[Zu] < 0, therefore for any sequence of IS estimators we have

lim sup
u→∞

log Ẽ[Z2
u]

log Ẽ[Zu]
≤ 2.

Thus, loosely speaking, asymptotic optimality implies minimal variance on logarithmic scale. Buck-

lew [8] uses the term efficiency to describe this property of a simulation-based estimator.

3 Main Results

3.1 Random walk

Consider the random walk defined in Section 2.1. We assume that the distribution of X satisfies

log P(X > x)

log x
→ −α and

log P(X < −x)

log x
→ −β, as x → ∞, (4)

where α ∈ (1,∞) and β ∈ (1,∞]. Further, we assume that P(X > x) ∼ 1 − B(x) as x → ∞, for

some distribution B on (0,∞) which is subexponential, that is, it satisfies

lim sup
x→∞

1 − (B ∗ B)(x)

1 − B(x)
≤ 2,

(cf. [9]). We write f(u) ∼ g(u) as u → ∞ if f(u)
g(u) → 1 as u → ∞. Thus, distributions with regularly

varying tails are a subset of the class of distributions satisfying our assumptions. (Regularly
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varying distributions have 1−F (x) = L(x)/xα, where α > 1 and L(x) is slowly varying; for further

discussion see [9, Appendix A.3].) Note that (4) allows the tail behavior on the negative side to be

lighter than polynomial as β = ∞ is permitted. We denote the cumulative distribution function of

X by F . From [2] it follows that

P(Mτ > u) ∼ ζP(X > u) as u → ∞, (5)

where ζ is the expected time at which the random walk goes below zero. Consider the IS probability

distribution P̃ such that the sequence {X1, X2, ...} is iid under P̃ with marginal distribution F̃ , and

F is absolutely continuous w.r.t. F̃ . Let P be the collection of all such probability distributions on

the sample space (Ω,F). Let Zu be an unbiased estimator of P(Mτ > u) defined in (1). We then

have the following result.

Theorem 1 For any P̃ ∈ P

lim sup
u→∞

log Ẽ[Z2
u]

−α log u
≤ 2 −

min(α, β)

α(1 + min(α, β))
,

where α and β are defined in (4).

Intuition and proof sketch. The proof follows by contradiction. We consider two disjoint

subsets B and C of the “rare set” A = {ω : Mτ > u} and use the fact that Ẽ[L2
uI{A}] ≥ Ẽ[L2

uI{B}] +

Ẽ[L2
uI{C}]. The first subset, B, consists of sample paths where the first random variable is “large”

and causes the random walk to immediately exceed level u. Assuming that the limit in the above

equation exceeds 2 − min(α,β)
α(1+min(α,β)) , we obtain a lower bound on the probability that X exceeds u

under the IS distribution F̃ . The above, in turn, restricts the mass that can be allocated below

level u. We then consider the subset C which consists of sample paths where the Xi’s are of order

uγ for i = 2, . . . , ⌊u1−γ⌋ followed by one “big” jump. By suitably selecting the parameter γ and

the value of X1, we can show that Ẽ[L2
uI{C}] is infinite, leading to the desired contradiction.

3.2 Queue length process

Consider a GI/GI/1 queue described in Section 2.1 with service times being iid copies of S and

inter-arrival times being iid copies of A. Put Λ(x) := − log P(S > x) = − log (1 − G(x)). Assume

that

Λ(x)

log x
→ α as x → ∞, (6)

where α ∈ (1,∞), and (S − A) has a subexponential distribution. We then have the following

logarithmic asymptotics for the buffer overflow probability in a busy cycle.
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Proposition 1 Let assumption (6) hold. Then,

lim
u→∞

log P(max0≤t≤τ Q(t) > u)

log u
= −α.

Recall that F̃ and G̃ are the cumulative IS distribution of inter-arrival and service times, respec-

tively, and an unbiased estimator for the probability P(max0≤t≤τ Q(t) > u) is Zu defined in (2).

Let P̃ be the product measure generated by (F̃ , G̃), and let D be the collection of all such measures.

Theorem 2 For any P̃ ∈ D

lim sup
u→∞

log Ẽ[Z2
u]

−α log u
≤ 2 −

1

1 + α
.

The basic idea of the proof is similar to that sketched immediately following Theorem 1.

3.3 Discussion

1. Theorems 1 and 2 imply that for our class of heavy-tailed distributions no state-independent

change-of-measure can be asymptotically optimal, since by Definition 1 such a distribution must

satisfy

lim inf
u→∞

log Ẽ[Z2
u]

−α log u
≥ 2.

Note that Theorems 1 and 2 hold even when the IS distribution is allowed to depend on u, and

Theorem 2 continues to hold when the inter-arrival time distribution is changed in a state-dependent

manner. (The proof is a straightforward modification of the one given in Appendix A.)

2. The bounds given in Theorems 1 and 2 indicate that the asymptotic inefficiency of the “best”

state-independent IS distribution is more severe the heavier the tails of the underlying distributions

are. As these tails become lighter, a state-independent IS distribution may potentially achieve near-

optimal asymptotic variance reduction.

4 A State Dependent Change-of-Measure

In this section we briefly describe the Markovian structure of the “state dependent” zero variance

measure in settings that include the probabilities that we have considered. To keep the analysis

simple we focus on a discrete state process. As an illustrative example, we consider the probability

that the queue length in an M/G/1 queue exceeds a large threshold u in a busy cycle. Here

we develop an asymptotic approximation for the zero variance measure and empirically test the

performance of the corresponding IS estimator. (Such approximations of the zero variance measure

can be developed more generally, see [6].)
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Preliminaries and the proposed approach. Consider a Markov process (Sn : n ≥ 0) taking

integer values. Let {pxy} denote the associated transition matrix. Let A and R be two disjoint

sets in the state space, e.g., A may denote a set of non-positive integers and R may denote the

set {u, u + 1, . . .} for a large integer u. For any set B, let τB = inf{n ≥ 1 : Sn ∈ B}. Let

Jx = P(τR < τA|S0 = x) for an integer x. In this set up, the zero variance measure for estimating

the probability Js0 , for s0 ≥ 1, admits a Markovian structure with transition matrix

p∗xy =
pxyJy

Jx
,

for each x, y (see, e.g., [1]). The fact that the transition matrix is stochastic follows from first step

analysis. Also note that {τR < τA} occurs with probability one under the p∗ distribution, and the

likelihood ratio, due to cancellation of terms, equals Js0 along each generated path. Thus, if good

approximations can be developed for Jx for each x, then the associated approximation of the zero

variance measure may effectively estimate Js0 .

Description of the numerical example. For the purpose of our numerical study, we consider

the M/G/1 queue observed at times of customer departures. The arrival stream is Poisson with

rate λ and service times are iid copies of S having Pareto distribution with parameter α ∈ (1,∞),

i.e.,

P(S ≥ x) =

{
x−α if x ≥ 1

1 otherwise.

}

Let Yn denote the number of arrivals during the service of the nth customer. Note that {Yn}

are iid, and conditioned on the first service time taking a value s, Y1 is distributed as a Poisson

random variable with mean λs. We assume that E[Y1] < 1 to ensure that the system is stable. Let

Xn = Yn−1, Sn =
∑n

i=1 Xi with S0 = x, and τ0 = inf{n ≥ 1 : Sn ≤ 0}. Then τ0 denotes the length

of a busy cycle that commences with x customers in the system, and for 1 ≤ n ≤ τ0, Sn denotes

the number in the system at the departure of the nth customer. Let τu = inf{n ≥ 1 : Sn ≥ u}.

The event of interest is that the number of customers in the system exceeds level u during the first

busy cycle, conditioned on S0 = x. We denote this probability by Jx(u) = P(τu < τ0|S0 = x). The

following proposition provides an asymptotic for Jx(u). Here, F denotes the distribution function

of X1.

Proposition 2 For all β ∈ (0, 1)

J⌊βu⌋(u) ∼ E[τ0]

[∫ u

x=(1−β)u
(1 − F (x))dx

]
as u → ∞. (7)

This suggests that Jx(u) ≈ E[τ0] g(x), where g(x) =
∑u

z=u−x P(X1 ≥ z). Therefore a reasonable

approximation for the zero variance measure would have transition probabilities

p̃xy =
P(X1 = y − x)g(y)∑∞

z=x−1 P(X1 = z − x)g(z)
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for x ≥ 1 and y ≥ x − 1. These probabilities are easy to compute in this simple setting.

Note that in the existing literature no successful methodology exists for estimating J1(u) by

simulating (X1, X2, . . .) under an IS distribution. As mentioned in the Introduction, [4] and [12]

estimate the related level crossing probabilities by exploiting an alternative ladder height based

representation.

The simulation experiment. We estimate the exceedence of level u in a busy cycle for the

following cases: u = 100 and 1000; tail parameter values α = 2, 9 and 19; and traffic intensities

ρ = 0.3, 0.5 and 0.8. (The traffic intensity ρ equals λα/(α− 1).) The number of simulation runs in

all cases is taken to be 500, 000. To test the precision of the simulation results, we also calculate the

probabilities of interest, J1(u), using first step analysis. Results in Table 1 illustrate the following

points. First, the precision of the proposed IS method decreases as the traffic intensity increases,

and/or the tail becomes “lighter.” Second, accuracy for the problem involving buffer level 1000 is

better than the case of buffer level 100, in accordance with the fact that we are using a “large buffer”

asymptotic approximation to the zero variance measure. Finally, the relative error on logarithmic

scale is quite close to the best possible value of 2, hence we anticipate that our proposed IS scheme

might be asymptotically optimal. (In [6] performance of an adaptive version of this algorithm is

shown to give further improvement in the performance of the IS estimator.) The rigorous derivation

of such results and their generalizations to continuous state space is left for future work.

u α ρ = 0.3 ρ = 0.5 ρ = 0.8

2 3.31 × 10−6 ± 0.019% [1.97] 2.43 × 10−5 ± 0.050% [1.86] 1.00 × 10−4 ± 0.837% [1.26]

100 9 1.57 × 10−23 ± 0.051% [1.97] 1.52 × 10−20 ± 0.119% [1.93] 5.12 × 10−19 ± 2.409% [1.79]†

19 4.70 × 10−48 ± 0.080% [1.98] 5.30 × 10−42 ± 0.543% [1.94]† 4.58 × 10−39 ± 4.182% [1.89]†

2 3.19 × 10−8 ± 0.006% [1.99] 2.25 × 10−7 ± 0.015% [1.98] 8.16 × 10−7 ± 0.079% [1.84]

1000 9 1.02 × 10−32 ± 0.007% [2.00] 9.21 × 10−30 ± 0.032% [1.99] 2.49 × 10−28 ± 0.103% [1.96]

19 7.22 × 10−68 ± 0.022% [2.00] 6.72 × 10−62 ± 0.041% [2.00] 3.30 × 10−59 ± 0.403% [1.96]

Table 1: Performance of the state-dependent IS estimator for the probability of exceeding level u

in a busy cycle: Simulation results are for u = 100 and 1000, using 500, 000 simulation runs. The

±X represents 95% confidence interval, and [Y ] represents the ratio defined in (3) with 2 being the

asymptotically optimal value. † The actual probability, which is calculated using first step analysis,

lies outside the 95% confidence interval.

A Proofs of the main results

We use the following simple lemma repeatedly in the proof of the main results.
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Lemma 1 Let P and P̃ be two probability distribution on the same sample space (Ω,F). Then for

any set A ∈ F if P is absolutely continuous w.r.t. P̃ on the set A, then

P
2(A) ≤ P̃(A)

∫

A

dP

dP̃

dP. (8)

Proof. Fix a set A ∈ F . Using the Cauchy-Schwartz inequality, we have

(∫

A

dP

dP̃

dP̃

)2

≤ P̃(A)

∫

A

(
dP

dP̃

)2

dP̃.

Rearranging terms we get (8).

Proof of Theorem 1. Let

Λ+(x) := − log P(X > x), (9)

Λ−(x) := − log P(X < −x). (10)

Assumption (4) on the distribution of X states that

Λ+(x)

log x
→ α,

Λ−(x)

log x
→ β, as x → ∞. (11)

and α ∈ (1,∞) and β ∈ (1,∞]. Fix P̃ ∈ P. Let c be defined as follows

c = lim sup
u→∞

log Ẽ[Z2
u]

−α log u
, (12)

where Zu is defined in (1). Then, there exists a subsequence {un : n = 1, 2, . . .} over which c is

achieved; for brevity, simply assume that the limit holds on the original sequence. Appealing to

(5), we have

Ẽ(Z2
u) ≥ (Ẽ(Zu))2 = P

2(Mτ > u) ∼ ζ2e−2Λ+(u),

hence c cannot be greater than 2. Put

κ =
min(α, β)

α(1 + min(α, β))
< 1,

and assume towards a contradiction that in (12), c ∈ (2 − κ, 2]. Let B = {ω : X1(ω) > u}. Then

by Lemma 1 we have

P̃(B) ≥
P

2(B)

Ẽ[Z2
uI{B}]

.

Now, using (11) and (12) to lower bound the right-hand-side above we get that for sufficiently large

u, 1 − F̃ (u) ≥ e−(2−c′)Λ+(u) where c′ ∈ (2 − κ, c). Here we use the fact that P(B) = 1 − F (u) and

P̃(B) = 1 − F̃ (u). Thus, for u sufficiently large,

F̃ (u) ≤ 1 − e−(2−c′)Λ+(u). (13)

10



Appealing to Lemma 1, and using the definitions of Λ+ and Λ−, and (13) for any 0 < a < b < u

and −a′ < 0 < b′ < u, we have

∫ b

a

dF (s)

dF̃ (s)
dF (s) ≥

(F (b) − F (a))2

F̃ (u)

≥ (e−Λ+(a) − e−Λ+(b))2, (14)

and

∫ b′

−a′

dF (s)

dF̃ (s)
dF (s) ≥

(F (b′) − F (−a′))2

F̃ (u)

≥
(1 − e−Λ+(b′) − e−Λ−(a′))2

(1 − e−(2−c′)Λ+(u))

≥ (1 − 2e−Λ+(b′) − 2e−Λ−(a′))(1 + e−(2−c′)Λ+(u)). (15)

Now consider the following set C of sample paths, X1 ∈ [2u1−ǫ, 3u1−ǫ′ ], and Xi ∈ [−uγ−ǫ, uγ ] for

i = 2, ..., ⌊0.5u1−γ⌋ and X⌊0.5u1−γ⌋+1 ∈ [u,∞), where

ǫ =

{
β−α

(1+α)β if α < β

1 − (2−c′)(1+β)α
β

otherwise,
(16)

ǫ′ ∈ (0, ǫ), (17)

γ =

{
1

1+α
if α < β

1+ǫβ
1+β

otherwise.
(18)

Note that on the set of sample paths C, we have 0 < Sn < u for all n = 1, ..., ⌊0.5u1−γ⌋ and

S⌊0.5u1−γ⌋+1 > u. Hence, I{Mτ >u} = 1 on this set. Then,

Ẽ(Z2
u) ≥

∫

C

(
dF (x1)

dF̃ (x1)
. . .

dF (x⌊0.5u1−γ⌋+1)

dF̃ (x⌊0.5u1−γ⌋+1)

)2

dF̃ (x1) . . . dF̃ (x⌊0.5u1−γ⌋+1)

(a)
=

∫

x1∈[2u1−ǫ,3u1−ǫ′ ]

dF (x1)

dF̃ (x1)
dF (x1)




⌊0.5u1−γ⌋∏

i=2

∫

xi∈[−uγ−ǫ,uγ ]

dF (xi)

dF̃ (xi)
dF (xi)




×

∫

x⌊0.5u1−γ⌋+1∈[u,∞)

dF (x⌊0.5u1−γ⌋+1)

dF̃ (x⌊0.5u1−γ⌋+1)
dF (x⌊0.5u1−γ⌋+1)

(b)

≥ (e−Λ+(2u1−ǫ) − e−Λ+(3u1−ǫ′ ))2
[
(1 − 2e−Λ+(uγ) − 2e−Λ−(uγ−ǫ))(1 + e−(2−c′)Λ+(u))

]⌊0.5u1−γ⌋

×e−2Λ+(u) for sufficiently large u,

where (a) follows due to independence of the Xi’s, and (b) follows from the inequalities (14) and

(15) and the following application of Lemma 1

∫ ∞

u

dF

dF̃
dF ≥

P
2(X1 ≥ u)

P̃(X1 > u)
≥ P

2(X1 ≥ u).

11



Taking the logarithm of both sides, we have for sufficiently large u

log(Ẽ(Z2
u)) ≥ 2 log(e−Λ+(2u1−ǫ) − e−Λ+(3u1−ǫ′ ))

+⌊0.5u1−γ⌋
[
log(1 − 2e−Λ+(uγ) − 2e−Λ−(uγ−ǫ)) + log(1 + e−(2−c′)Λ+(u))

]

−2Λ+(u)

=: I1(u) + ⌊0.5u1−γ⌋I2(u) + I3(u).

Now, using (11) we have

(I1(u) + I3(u))

− log u
=

2Λ+(2u1−ǫ) − 2 log(1 − eΛ+(2u1−ǫ)−Λ+(3u1−ǫ′ )) + 2Λ+(u)

log u

→ 2α(2 − ǫ) as u → ∞.

Using the choice of ǫ, ǫ′ and γ in (16)-(18), a straight forward calculation shows that −u1−γI2(u)/log u →

∞, as u → ∞. Thus, we have, in contradiction, that

lim
u→∞

log(Ẽ(Z2
u))

− log u
= ∞.

This completes the proof.

Proof of Theorem 2. Suppose, towards a contradiction, that there exist (F̃ , G̃) ∈ D such that

the corresponding IS change-of-measure for the probability P (max0≤t≤τ Q(t) > u) satisfies

lim sup
u→∞

log Ẽ[Z2
u]

−α log u
= c,

and c ∈ (2− 1
1+α

, 2]. Then, there exists a subsequence {un : n = 1, 2, . . .} over which c is achieved;

for brevity, assume the limit holds for the original sequence. (Note that c cannot be greater than

2, using the same reasoning as in the proof of Theorem 1.) Thus, there exists c′ ∈ (2− 1
1+α

, c) such

that for sufficiently large u, Ẽ[Z2
u] ≤ e−c′Λ(u). In what follows, assume without loss of generality that

u is integer valued. We represent the original probability distribution by P and the IS probability

distribution by P̃.

Next we describe another representation of the likelihood ratio which will be used in the proof.

Consider any set of sample path B, which can be decomposed into the sample paths for inter-arrival

times, Ba, and service times, Bs, such that, B = Ba∩Bs. Since under the IS distribution the services

times and inter-arrival times are iid random variables, we have
∫

B

dP

dP̃

dP =

∫

Ba

dP
a

dP̃a
dP

a

∫

Bs

dP
s

dP̃s
dP

s. (19)

In the above equality, P
a and P

s represent the probability measure associated with the inter-arrival

and service time process and services respectively. Hence, P = P
a × P

s. We define P̃, P̃
a and P̃

s in

a similar manner.

12



Consider the set of sample paths on which {S1(ω) > 2uλ−1} and {
∑u

i=1 Ai(ω) < 2uλ−1}. Put

Ba = {ω :
∑u

i=1 Ai(ω) < 2uλ−1} and Bs = {ω : S1(ω) > 2uλ−1}. Using Markov’s inequality we

have P
a(Ba) ≥ 1/2. Using Lemma 1, we have

∫

Ba

dP
a

dP̃a
dP

a ≥
(Pa(Ba))

2

P̃a(Ba)
≥ (Pa(Ba))

2 ≥

(
1

2

)2

.

Since the buffer overflows on the set Ba ∩ Bs we have

Ẽ[Z2
u] ≥

∫

Ba

dP
a

dP̃a
dP

a

∫

Bs

dP
s

dP̃s
dP

s

≥

(
1

2

)2 ∫ ∞

2uλ−1

dG(x)

dG̃(x)
dG(x).

Thus, we have for large enough u that

e−c′Λ(u) ≥
1

4

∫ ∞

2uλ−1

dG(x)

dG̃(x)
dG(x).

Appealing to Lemma 1 and (6) we have for u sufficiently large

1 − G̃(2uλ−1) ≥
e−2Λ(2uλ−1)+c′Λ(u)

4
.

Thus, for sufficiently large u we have G̃(uγ) ≤ 1 − e−2Λ(2uλ−1)+c′Λ(u)

4 where γ < 1. Using Lemma 1,

this in turn implies that

∫ 0.5uγλ−1

0

dG(x)

dG̃(x)
dG(x) ≥

(1 − e−Λ(0.5uγλ−1))2

1 − e−2Λ(2uλ−1)+c′Λ(u)

4

(20)

≥

(
1 +

e−2Λ(2uλ−1)+c′Λ(u)

4

)(
1 − 2e−Λ(0.5uγλ−1)

)
. (21)

Now, consider the following set of sample paths represented by B′.

1. The first service time S1 ∈ [2u1−γλ−1, 3u1−γλ−1].

2. The sum of the first ⌊u1−γ⌋ inter-arrival times is less than 2u1−γλ−1, i.e.,
∑⌊u1−γ⌋

i=1 Ai ≤

2u1−γλ−1. This ensures that by the end of service of the first customer at least ⌊u1−γ⌋

customers are in the queue.

3. The next ⌊u1−γ⌋ − 1 services lie in the interval [0, 0.5uγλ−1]. This ensures that at most

0.5uλ−1 time has elapsed before the beginning of service of customer ⌊u1−γ⌋.

4. The service time for customer ⌊u1−γ⌋ exceeds 2uλ−1.

5. The next ⌊0.6u⌋ arrivals are such that 0.5uλ−1 ≤
∑⌊u1−γ⌋+⌊0.6u⌋

i=⌊u1−γ⌋+1
Ai ≤ 0.75uλ−1. This ensures

that the buffer does not overflow before the beginning of service of customer ⌊u1−γ⌋.

13



6. The next ⌊0.4u⌋ arrivals are such that 0.3uλ−1 ≤
∑⌊u1−γ⌋+⌊u⌋

i=⌊u1−γ⌋+⌊0.6u⌋
Ai ≤ 0.75uλ−1. This

ensures that the buffer overflows during the service of customer ⌊u1−γ⌋.

The services in condition 3 are assigned sufficiently less probability under the new measure so that

the second moment of the estimator builds up along such realizations. The remaining conditions

ensures that the buffer overflows for the paths in this set. Note that the set B′ can be decomposed

into sample paths for arrivals (satisfying 2, 5 and 6 above), represented by B′
a and sample paths

for service times (satisfying 1, 3 and 4 above), represented by B′
s.

First we focus on the contribution of the arrival paths in B′
a to the likelihood ratio. Using

Markov’s inequality we have

P




⌊u1−γ⌋∑

i=1

Ai ≥ 2u1−γλ−1


 ≤

1

2
.

By the strong law of large numbers we get for sufficiently large u

P


0.5uλ−1 ≤

⌊u1−γ⌋+⌊0.6u⌋∑

i=⌊u1−γ⌋+1

Ai ≤ 0.75uλ−1


 ≥

1

2
,

P


0.3uλ−1 ≤

⌊u1−γ⌋+⌊u⌋∑

i=⌊u1−γ⌋+⌊0.6u⌋

Ai ≤ 0.75uλ−1


 ≥

1

2
.

Thus, we have P
a(B′

a) ≥
1
8 , which using Lemma 1 implies that

∫

B′
a

dP
a

dP̃a
dP

a ≥
1

82
. (22)

We now focus on the contribution of the service time paths in B′
s to the likelihood ratio. In

particular, using (20) we have

∫

B′
s

dP
s

dP̃s
dP

s ≥
[
e−Λ(2uλ−1) − e−Λ(3uλ−1)

]2
·

×

[(
1 +

e−2Λ(2uλ−1)+c′Λ(u)

4

)(
1 − 2e−Λ(0.5uγλ−1)

)]⌊u1−γ⌋−1 [
e−2Λ(2uλ−1)

]
.(23)

Combining (22) and (23) with (19), and taking a logarithm on both sides we have

log Ẽ[Z2
u] ≥ 2 log(e−Λ(2uλ−1) − e−Λ(3uλ−1))

+
[
u1−γ − 1

]
[
log(1 +

e−2Λ(2uλ−1)+c′Λ(u)

4
) + log(1 − 2e−Λ(0.5uγλ−1))

]

−2Λ(2uλ−1) − log 64.
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Repeating the arguments in the proof of Theorem 1 with the specific choice of c and γ, we get the

desired contradiction

lim
u→∞

log(Ẽ[Z2
u])

− log u
= ∞,

which completes the proof.
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