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Abstract

Motivated by applications in telephone call centers, we consider a service system model with
m customer classes and r server pools. The model is one with doubly stochastic arrivals, which
means that the m-vector λ of instantaneous arrival rates is allowed to vary both temporally and
stochastically. Two levels of dynamic control are considered: customers may be either blocked
or accepted at the time of their arrival, and then accepted customers of each class must be
routed, either immediately upon acceptance or after some period of waiting, to a server pool
that is qualified to handle that class. Customers who are made to wait before commencement
of their service are liable to defect. The objective is to minimize the expected sum of blocking
costs, waiting costs and defection costs over a fixed and finite planning horizon. We consider an
asymptotic parameter regime in which (i) the arrival rates, service rates and defection rates are
uniformly accelerated by a large factor κ, then (ii) arrival rates are increased by an additional
factor g(κ), and the number of servers in each pool is increased by g(κ) as well. This produces
a separation of time scales, justifying a pointwise stationary stochastic fluid approximation for
our original system model. In the stochastic fluid approximation, optimal admission control and
routing decisions are determined by a simple linear program that uses the current arrival rate
vector λ as data. We explain how to implement the fluid model’s optimal control policy in our
original service system context, and prove that the proposed implementation is asymptotically
optimal in the first-order sense.

Short Title: Dynamic Control of High-Volume Service systems

Keywords: call centers, queueing, admission control, dynamic routing, fluid limits, doubly stochas-
tic, asymptotic analysis, performance bounds, abandonments

1 Introduction

Motivated by applications in telephone call centers, we consider in this paper a two-level problem

of dynamic control for large-scale service systems. The two levels of the problem are dynamic
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admission control, whereby some arrivals are accepted for service and others are “blocked,” and

dynamic routing of customers to servers. In a call center context the former type of control is

achieved by means of “busy signals,” and the latter type of control is referred to as skills-based

routing.

Our model of a service system has multiple customer classes and multiple server pools. Each

pool consists of identical servers whose skills determine which customer classes those servers can

process, and the rates at which such services can be delivered. We allow the arrival rates for the

customer classes to vary both temporally and stochastically. Upon arrival a customer is either

blocked or admitted into the system. Customers who are admitted but not served immediately are

stored in infinite-capacity (possibly virtual) buffers. We assume that customers of any given class

will defect if forced to wait too long before the commencement of their service. (In a call center

context such defections are referred to as abandoned calls.)

As the title of this paper indicates, the model that we analyze has potential applications in service

contexts other than call centers, such as systems for processing loan applications, or “customer

contact centers” where agents handle a mix of telephone calls, e-mail correspondence and “web

chat.” However, our model was formulated with call centers in mind, and exclusive use of context-

neutral language makes for a stilted, artificial exposition. Thus, vivid call center terms like “busy

signal” and “abandoned call” will be used frequently hereafter; readers who are interested in other

service contexts should have no trouble substituting appropriate synonyms.

We treat pool sizes as exogenously determined parameters, so personnel costs are uncontrollable,

but three types of congestion-related cost are included in our model. First, there is a blocking

cost for each customer class. This penalizes the system manager for denying access to customers.

Second, there is an abandonment cost for each customer class. This captures the penalty associated

with customer defections. Finally, a (linear) holding cost is incurred at a class-specific rate while

customers wait for commencement of their service, or until they abandon, whichever comes first.

The system manager’s objective is to minimize the sum of these three operating costs.

The dynamic routing problem is as follows. First, whenever a customer is accepted and there

exist several idle servers who can handle that customer’s class, the system manager must either

route the customer to one of them immediately or else have the customer wait for later disposition.

If the customer is to be routed immediately, there may be a further choice regarding the server pool

to which it will be routed. Second, each time a server completes the processing of a customer and

there exist waiting customers of one or more classes that the server can handle, the system manager

must choose between routing one of those customers to the server immediately versus idling the

server in anticipation of future arrivals.

Admission control and routing decisions are made based on information available at the decision
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epoch, which includes the number of customers waiting in the various buffers and the number of

idle servers in the various pools.

Our analysis of the problem described above is in many regards a direct extension of work re-

ported earlier in Bassamboo, Harrison and Zeevi (2004). Following the pattern established there,

we focus on a multi-scale asymptotic regime where (i) the arrival, service and abandonment pro-

cesses are “uniformly accelerated” by a large factor κ, then (ii) arrival rates are increased by an

additional large factor g(κ), and the number of servers in each pool is increased by a factor g(κ)

as well. Roughly speaking, the uniform acceleration in (i) justifies a pointwise stationary approxi-

mation of system behavior; and the additional scale-up in (ii) justifies a fluid approximation. The

separation of time-scales that is characteristic of this regime is discussed in section 3.

To express this in a slightly different way, the asymptotic regime considered here and in Bassam-

boo et al. (2004) has the following key features. First, it involves letting the number of servers grow

without bound, so it is a many-server regime. Second, the stochasticity of the arrival rate process

dominates all other sources of stochastic variability, which leads to a stochastic fluid approximation.

Finally, in the limit regime that we consider, the system “equilibrates instantly,” which leads to a

pointwise stationary approximation. The main contributions of this paper are as follows.

(a) With regard to dynamic control, we extend the analysis in Bassamboo et al. (2004), which

focussed on dynamic routing, to service systems with admission control. As in Bassamboo

et al. (2004), we develop an asymptotic lower bound on achievable expected total cost that

is valid for any admissible control policy (see Theorem 1 in section 4.1). We then show that

a threshold-based policy for admission control, together with a server allocation policy based

on linear programming, achieves the lower bound and hence is asymptotically optimal (see

Theorem 2 in section 4.2). The proposed policy estimates arrival rates “on the fly,” and does

not require prior knowledge of these functions.

(b) With regard to mathematical methods, we make heavy use of strong approximations in prov-

ing our limit theorems. In comparison with the approach taken in Bassamboo et al. (2004),

our current approach is better aligned with the contemporary literature on asymptotic anal-

ysis in applied probability.

(c) As suggested above, the upshot of our limit theory is to motivate or justify a pointwise sta-

tionary fluid approximation to the traditional queueing model with which we start. Section

5 recapitulates the approximating fluid model and explains how to mechanically derive ad-

mission control and server allocation policies via direct analysis of that model. This provides

what might be called a fluid-based calculus for service system control, which can be mastered

and applied without reference to the limit theory that supports it.
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Literature review. The asymptotic regime described in this paper can be viewed as being a

hybrid of many-server fluid limits and the pointwise stationary approximations that have been de-

veloped previously in the literature of applied probability. The many-server regime for a birth and

death process describing a single-class, single-pool system in heavy traffic was first made rigorous by

Halfin and Whitt (1981). Fluid and diffusion approximations for non-stationary Markovian queue-

ing networks with many servers were developed by Mandelbaum, Massey and Reiman (1998), and

Whitt (2004) has recently developed fluid approximations for a non-Markovian single-class/single-

pool system. Pointwise stationary approximations for simple Markovian queueing models with

non-stationary arrivals were first introduced by Green and Kolesar (1991) and subsequently made

rigorous by Whitt (1991); for further refinements see Massey and Whitt (1998). The asymptotic

regime that is used in these papers involves uniform acceleration of transition rates in the underly-

ing Markov chain, i.e., accelerating arrival rates and service rates by the same factor. Recent work

on joint admission control and routing/sequencing in a multi-class/single-pool system includes that

of Plambeck, Kumar and Harrison (2001) which uses heavy-traffic limits, and that of Maglaras

and Van Mieghem (2004) which uses fluid models; see also references therein. Other antecedent

literature relevant to this paper has been thoroughly surveyed in Harrison and Zeevi (2004b) and

Bassamboo et al. (2004).

The remainder of this paper is structured as follows. Section 2 lays out our service system model,

including a specification of its economic objective. Section 3 describes the asymptotic parameter

regime on which we focus, and the separation of time-scales that it involves. Section 4 states

the main results and provides a simple numerical example. Section 5 develops the fluid-based

calculus referred to in (c) above. Those readers interested only in the approximation and not in the

asymptotic analysis that supports it may wish to jump directly from section 2 to section 5, at least

on initial reading. In certain respects, our fluid-based calculus provides only a crude description of

a dynamic control policy; section 5 further describes desirable refinements that are the subject of

continuing research. In section 6, following the template provided in Harrison and Zeevi (2004a)

and Bassamboo et al. (2004), we explain how asymptotically optimal staffing plans for the various

server pools can be developed based on this paper’s analysis of dynamic control policies. Proofs

of the main results are given in Appendix A, while Appendix B contains the proofs of auxiliary

results.

2 Problem Formulation

Preliminaries. There are m customer classes and r server pools in our general call center model.

Server pool k consists of bk identical servers (k = 1, . . . , r); a call center model with m = 3 and

r = 2 is portrayed schematically in Figure 1. Customers of various classes arrive randomly over
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time. Upon arrival a customer may be admitted to the system or may be blocked. Customers who

are blocked leave immediately. Blocked calls and abandoned calls are represented by different sets

of dashed lines in Figure 1.
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abandonments
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Figure 1: Schematic representation of a call center with three customer classes, two agent pools

and four activities.

Several different server pools may be capable of handling a given customer class. By the same

token, servers in a given pool may be cross-trained to handle customers from different classes. To

describe the server capabilities more precisely, we shall use the notion of “activities,” described in

Harrison and Lopez (1999). There are n processing activities, each of which corresponds to servers

from one particular pool serving customers of one particular class. (The activities are denoted by

solid arrows connecting buffers to server pools in Figure 1.) For each activity j = 1, . . . , n we denote

by i(j) and k(j) the customer class being served and the server pool involved, respectively. We

assume that the service times associated with activity j are exponentially distributed with rate µj ,

and that the service times are independent of arrival processes and of one another. It is important

to note that we allow the service time of a customer to depend on both the customer’s class and

server pool where s/he receives service.
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Let R and A be an m × n matrix and an r × n matrix, respectively, defined as follows: for each

j = 1, . . . , n set Rij = µj if i = i(j) and Rij = 0 otherwise, and set Akj = 1 if k = k(j) and

Akj = 0 otherwise. Thus one interprets R as an input-output matrix: its (i, j)th element specifies

the average rate at which activity j removes class i customers from the system. Also, A is a capacity

consumption matrix: its (k,j)th element is 1 if activity j draws on the capacity of server pool k and

is zero otherwise. (The matrices R and A are exactly as in Harrison and Lopez (1999).) We define

an m × n matrix B by setting Bij = 1 if i(j) = i and Bij = 0 otherwise; elements of this matrix

show which server pools conduct which activities.

An important feature of our model is the potential for customer abandonments. Each class i

customer is endowed with an exponentially distributed “impatience” random variable τ with mean

1/γi, independent of the impatience random variables of other customers, and of service times and

arrival processes. A customer abandons when her/his waiting time in queue (exclusive of her/his

own service time) exceeds τ time units. Let Γ = diag(γ1, . . . , γm) denote the abandonment rate

matrix.

We shall now spell out the probabilistic structure of arrival processes of the various customer

classes. To this end, we consider a complete probability space (Ω,H, P) on which are defined 3m

mutually independent unit rate Poisson processes denoted by N
(ℓ)
i = (N

(ℓ)
i (t) : 0 ≤ t < ∞) for

i = 1, . . . , m and ℓ = 1, 2, 3. On the same space are defined m continuous, non-negative arrival rate

processes Λi = (Λi(t) : 0 ≤ t ≤ T ) satisfying E[
∫ T

0 Λi(t)dt] < ∞ for i = 1, . . . , m, independent of

the Poisson processes N
(ℓ)
i . We shall use N (1) = (N

(1)
1 , . . . , N

(1)
m ) to construct arrivals. Specifically,

let

Fi(t) = N
(1)
i

(∫ t

0
Λi(s)ds

)
, (1)

where Fi(t) represents the cumulative number of class i arrivals up to time t. This is a standard

construction of a doubly stochastic Poisson process [cf. Bremaud (1981)]. Put F = (F (t) : 0 ≤ t ≤

T ) where F (t) = (F1(t), . . . , Fm(t)). The construction of completed services and abandonments

under a given control will be done in an analogous manner using the Poisson processes N (2) and

N (3).

Control formulation. As in Bassamboo et al. (2004), we shall adopt a general formulation that

allows services to be interrupted at any time without penalty, and further allows control decisions

to be based on information about the future. That is, our definition of an “admissible control” is

overly generous, but that apparent defect simply strengthens the conclusions eventually reached.

This issue will be revisited in the discussion that concludes this section.

In the current context a dynamic control is defined as a pair of stochastic processes (U, X),

where U = (U(t) : 0 ≤ t ≤ T ) takes values in R
m
+ and has sample paths that are nondecreasing

and right-continuous with left limits, and X = (X(t) : 0 ≤ t ≤ T ) takes values in R
n
+ and
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has sample paths that are right-continuous with left limits and are Lebesgue integrable. Writing

U(t) = (U1(t), . . . , Um(t)) for the admission control, and X(t) = (X1(t), . . . , Xn(t)) for the routing

control, we interpret Ui(t) as the cumulative number of blocked class i customers up until time t,

and Xj(t) as the number of servers engaged in activity j at time t. Given the latter interpretation,

it would perhaps be more natural to use a term like “server allocation policy” in describing the

second element of a dynamic control (U, X), but the matching of servers and customers is invariably

described as “call routing” in the literature of call center management.

A dynamic control (U, X) is said to be admissible if there exist processes Z and Q, both taking

values in R
m
+ , both having time domain [0, T ] and both necessarily unique, that jointly satisfy

conditions (2)-(5) below for 0 ≤ t ≤ T . Zi(t) represents the number of class i customers in the

system at time t, and Qi(t) represents the number of class i customers who are waiting for service

at time t. We call Z and Q the headcount process and queue length process, respectively. The

relationships that (U, X, Z, Q) must jointly satisfy for all t ∈ [0, T ] are the following:

U(t) − U(s) ≤ F (t) − F (s) for all s ∈ [0, t), (2)

AX(t) ≤ b, (3)

Q(t) = Z(t) − BX(t) ≥ 0, (4)

Zi(t) = Fi(t) − N
(2)
i

(∫ t

0
(RX)i(s)ds

)
− N

(3)
i

(∫ t

0
γiQi(s)

)
− Ui(t) for i = 1, ..., m. (5)

Condition (5) is the system dynamics equation: the second term on the right-hand side represents

the cumulative number of service completions up to time t, the third term represents the cumulative

number of abandonments up to time t, and the last term represents the cumulative number of

blocked calls up to time t. The instantaneous service rates and abandonment rates for class i

are (RX)i and γiQi, respectively. The first admissibility constraint (2) requires that the number

of blocked customers be less than the number of arrivals during any time interval for each class.

The second constraint (3) requires that the number of servers in a given pool who are engaged

in processing activities at a given time not exceed the total number of servers available in that

pool. In our third constraint, (4), BX(t) is a vector whose components represent the number of

servers allocated to each customer class, and the constraint thus prohibits allocating to a given

class more servers than the headcount in that class. Given a dynamic control (U, X), one can

view the headcount process Z and the queue length process Q as the unique solution of (4) and

(5), which can be constructed jump-to-jump starting from time zero. Since the primitive processes

N
(ℓ)
i are independent Poisson processes, the probability of simultaneous jumps is zero, and hence

there almost surely exists a pair (Z, Q) satisfying the aforementioned relationship. This and other

features of the model formulation are discussed at greater length in Bassamboo et al. (2004).

Economic objective. Let pa = (pa
1, . . . , p

a
m) be the abandonment cost vector, where pa

i is the

cost associated with a class i customer not being served due to abandonment. Let pb = (pb
1, . . . , p

b
m)
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be the blocking cost vector, where pb
i is the cost associated with blocking a class i customer. Finally,

let h = (h1, ..., hm) be the holding cost vector, where hi is the cost of holding for one unit of time

a class i customer who is waiting for his/her service to commence. The total cost of the system

under an admissible control (U, X) is given by

J (U, X) :=

[
m∑

i=1

(
pb

iUi(T ) +

∫ T

0
hiQi(s)ds + pa

i N
(3)
i

(∫ T

0
γiQi(s)ds

))]
, (6)

which represents the sum of holding costs and abandonment and blocking penalties for the various

customer classes. The objective of the system manager is to choose an admissible dynamic control

(U, X) that minimizes the expected total cost E[J (U, X)].

Discussion. Our definition of an admissible control allows services to be interrupted at any

time and resumed later (possibly by a different server) without penalty, and also does not rule out

clairvoyance on the part of the system manager. It turns out that the asymptotic lower bound

on achievable performance derived in Section 4 applies to this broad family of controls. Moreover,

we will subsequently construct a family of LP-based policies that achieve this lower bound and

are both non-preemptive and non-anticipating. Thus, in the asymptotic regime that we consider,

the system manager cannot significantly improve system performance even by interrupting services

or “looking into the future.” With regard to the probabilistic assumptions pertaining to arrivals,

service completions and abandonments, the reader is referred to Harrison and Zeevi (2004b) and

Bassamboo et al. (2004); for further discussion in the context of call center management, see Gans,

Koole and Mandelbaum (2003). In the above problem formulation the staffing is fixed exogenously;

see Section 6 for discussion of optimal staffing.

3 An Asymptotic Parameter Regime

As explained in the discussion that concludes this section, the asymptotic parameter regime de-

scribed immediately below is the same one considered in Bassamboo et al. (2004), except for trivial

distinctions to be noted. The current formulation is slightly more convenient mathematically, and

it is more aligned with standard practice in the literature of applied probability, cf. Whitt (2001).

3.1 A parametric family of system models

We consider a sequence of system models indexed by κ ∈ N. The planning horizon is κT in the κth

system, and the arrival process is doubly stochastic with rate

Λκ(κt) = g(κ)Λ(t) (7)
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for all t ∈ [0, T ], where g(·) is a non-negative function such that g(κ) → ∞ as κ → ∞. Since the

arrival rate is scaled up by a factor g(κ), we also scale the number of servers by a factor of g(κ);

that is, the number of servers in the κth system is

bκ = g(κ)b. (8)

For each system in the sequence indexed by κ, the system manager chooses a dynamic control

(Uκ, Xκ) that meets all the restrictions spelled out in Section 2. In the obvious way, a process

or quantity associated with the κth system is indicated by appending a superscript κ to notation

established earlier in Section 2. For example, J κ(Uκ, Xκ) is the total cost incurred over the interval

[0, κT ] when the dynamic control (Uκ, Xκ) is employed in the κth system.

Definition 1 (first-order asymptotic optimality) A sequence of admissible controls {(Uκ
∗ , Xκ

∗ )}

is said to be asymptotically optimal to first order if, for any other admissible sequence of controls

{(Uκ, Xκ)},

lim sup
κ→∞

E [J κ(Uκ
∗ , Xκ

∗ )]

E [J κ(Uκ, Xκ)]
≤ 1. (9)

3.2 Limiting dynamics

In this section we characterize the limiting system behavior under an admissible control, assuming

that g(κ) satisfies the following growth condition:

log κ

g(κ)
→ 0 as κ → ∞. (10)

Further, we define the following scaled quantities for t ∈ [0, T ]:

Z̄κ(t) =
Zκ(κt)

g(κ)
, Q̄κ(t) =

Qκ(κt)

g(κ)
, X̄κ(t) =

Xκ(κt)

g(κ)
, Ūκ(t) =

Uκ(κt)

κg(κ)
. (11)

Proposition 1 Assume that (10) holds and consider any sequence of admissible dynamic controls

{(Uκ, Xκ)} such that for all t ∈ [0, T ],

(∫ t

0
X̄κ(s)ds, Ūκ(t)

)
→

(∫ t

0
X(s)ds, U(t)

)
a.s. as κ → ∞, (12)

where X(·) is a non-negative Lebesgue integrable function on [0, T ], and U(·) is a non-negative

nondecreasing function on [0, T ]. Then there exist non-negative Lebesgue integrable functions V (·)

and Z(·) on [0, T ] such that for all t ∈ [0, T ],

U(t) =

∫ t

0
V (s)ds (13)
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and

∫ t

0
Z̄κ(s)ds →

∫ t

0
Z(s)ds a.s. as κ → ∞, (14)

where

Z(t) = Γ−1[Λ(t) − RX(t) − V (t)] + BX(t). (15)

Discussion. Our parametric family of models could be specified equivalently as follows. First,

the planning horizon is fixed at T , independent of κ, but the arrival rate process for the κth system

is Λκ(t) = κg(κ)Λ(t), 0 ≤ t ≤ T . Second, all service rates and abandonment rates are scaled up

by a factor of κ in the κth system (that is, Rκ = κR and Γκ = κΓ). Finally, the vector of holding

cost rates in the κth system is hκ = κh. This is precisely the asymptotic regime considered in

Bassamboo et al. (2004), except that holding costs were not explicitly considered in that earlier

paper, and the notation f(κ) was used for the quantity here denoted κg(κ).

Readers can easily verify the equivalence claimed in the preceding paragraph, which is more or

less obvious from the scaling in (11). However, a few more words about holding costs may be in

order. It was observed in section 6 of Harrison and Zeevi (2004b) that a model with abandonment

rates γi, abandonment penalties pa
i and holding cost rates hi is economically equivalent to one with

zero holding costs and modified abandonment penalties pa
i + hi/γi (i = 1, . . . , m). The preceding

paragraph described a κth system with abandonment rates κγi (i = 1, . . . , m), and so as κ grows

large, holding costs will remain balanced with abandonment penalties if and only if the holding

costs grow linearly with κ; otherwise, one of those two cost components will dominate the other as

κ → ∞.

In the fixed-time-horizon view of our limit regime, one can identify three distinct “time scales”

that separate as κ → ∞ : changes in the arrival rate process Λ (these might be described as

“demand shifts”) occur over time intervals of order 1; individual service times and abandonment

times are of order 1/κ ; and inter-arrival times are of order 1/κg(κ). Increasing pool sizes via (8)

restores the original degree of balance between total demand and total service capacity, and by

accelerating all of the arrival, service and abandonment processes we obtain a limiting fluid model

that “equilibrates instantly” in response to demand shifts. Equation (15) is the mathematical

expression of that last phenomenon.

4 Main Results

In this section, we propose a sequence of dynamic controls that is asymptotically optimal in the

sense of Definition 1. We first develop an asymptotic lower bound on expected total cost under any
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admissible sequence of controls, and then describe a policy that asymptotically achieves this lower

bound.

4.1 Lower bound on achievable performance

For λ ∈ R
m
+ and b ∈ R

r
+, let π(λ, b) denote the optimal value of the following linear program (LP):

choose x ∈ R
n, q ∈ R

m
+ and v ∈ R

m to

minimize pa · Γq + h · q + pb · v (16)

subject to λ = Rx + Γq + v,

Ax ≤ b,

x ≥ 0, q ≥ 0, v ≥ 0.

Here R is the input-output matrix, A is the capacity consumption matrix, Γ is the abandonment

matrix, h is the holding cost vector and pa and pb are the abandonment penalty vector and blocking

penalty vector, respectively. The above LP provides a local fluid approximation to the system

manager’s objective, seeking to minimize the (fluid-scale) cost rate associated with abandonments,

holding costs and blocking costs. The first constraint represents the limiting dynamics obtained

via the multi-scale fluid limit in Proposition 1. The second and third constraints follows from the

admissibility conditions given in (3)-(4) in Section 2.

To simplify the LP (16), we define p = (p1, . . . , pm) to be

pi := min

(
pb

i , p
a
i +

hi

γi

)
(17)

for all i = 1, ..., m. Elements of the vector p will be referred to as effective loss penalties, for the

following reason. First, the net penalty associated with an abandonment of a class i customer

is given by the sum of the abandonment penalty cost and the cost of holding a customer until

s/he abandons (which, in expectation, takes 1/γi time units). Thus the net penalty associated

with abandonment is pa
i + hi/γi. In the asymptotic regime that we consider the system manager

can effectively choose whether lost customers will be blocked or will abandon their calls. Thus,

the effective loss penalty for class i customers is the minimum of the net penalty associated with

abandonment and the blocking penalty pb
i . Now consider the following LP: choose x ∈ R

n to

minimize p · (λ − Rx) (18)

subject to Rx ≤ λ, Ax ≤ b, x ≥ 0.

As the following proposition shows, our original LP (16) is essentially equivalent to (18).
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Proposition 2 For any λ ∈ R
m
+ and b ∈ R

r
+, let x∗ be any optimal solution of LP (18), and let

(q∗, v∗) be defined as follows:

(q∗)i =

{
(λ − Rx∗)i/γi if pi = pa

i + hi

γi

0 otherwise
(19)

and

(v∗)i =

{
0 if pi = pa

i + hi

γi

λi − (Rx∗)i otherwise
(20)

for all i = 1, ..., m. Then, (x∗, q∗, v∗) solves LP (16), and the optimal value of LP (18) is equal to

π(λ, b), the optimal value of LP (16).

For each λ ∈ R
m
+ and b ∈ R

n
+, let Φ(λ, b) denote the optimal solution set of LP (18); that is,

Φ(λ, b) consists of all optimal solutions x∗ for LP(18). The following is immediate from Proposition

2 of Bassamboo et al. (2004).

Proposition 3 There exists a Lipschitz continuous mapping φ : R
m
+×R

r
+ 7→ R

n
+ such that φ(λ, b) ∈

Φ(λ, b) for all λ ∈ R
m
+ and b ∈ R

r
+.

Theorem 1 For any sequence of admissible controls {(Uκ, Xκ)},

lim inf
κ→∞

(κg(κ))−1
E[J κ(Uκ, Xκ)] ≥ E

[∫ T

0
π(Λ(t), b)dt

]
, (21)

where π(·, ·) is the optimal value function of the LP (18), and b is the constant vector appearing in

(8).

Theorem 1 shows that as κ grows large, the expected total cost must grow at least at the rate κg(κ)

under any admissible sequence of controls.

4.2 An asymptotically optimal policy

Our main focus in this section is on joint routing and admission control that will achieve the

asymptotic lower bound derived in the previous section. We assume that the system manager

cannot directly observe the arrival rate process; that is, Λ(t) is not known at any instant of time.

We estimate the arrival rate at time t by counting the number of arrivals in a short window of time

ending at t, and normalizing this by the length of the window. Specifically, we use an estimator of

the form

Λ̂κ(t) = l(κ)−1[F κ(t) − F κ(t − l(κ))], (22)
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where l(·) is a non-negative increasing function. Fix t ∈ [0, κT ] and consider the following LP:

choose x ∈ R
n to

minimize p · (Λ̂κ(t) − Rx) (23)

subject to Rx ≤ Λ̂κ(t), Ax ≤ bκ, x ≥ 0,

where bκ is defined in (8). Let φκ be defined as follows:

φκ(λ, b) := g(κ)φ

(
λ

g(κ)
,

b

g(κ)

)
, (24)

where φ is the Lipschitz continuous mapping described in Proposition 3. Using the relationship

between (18) and (23), we have that φκ(Λ̂κ(t), bκ) solves LP (23).

For any t ∈ [0, T ] let

Xκ
∗ (t) = φκ(Λ̂κ(t), bκ), (25)

so that Xκ
∗ (t) is a pointwise solution to LP (23). The solution Xκ

∗ prescribes a control which may

not be admissible. To remedy this, we truncate it. The following definition was introduced in

Bassamboo et al. (2004).

Definition 2 (minimal truncation) Let {Xκ} be a sequence of dynamic controls such that AXκ(t)

≤ bκ for all κ and all t ∈ [0, T ]. (Note that Xκ need not be admissible.) Let {X̃κ} be a sequence of

dynamic controls which is admissible with respect to {bκ}, and let {Z̃κ} denote the corresponding

sequence of headcount processes. We say that {X̃κ} is a minimal truncation of {Xκ} if, for each

time t ∈ [0, T ] and i ∈ {1, ..., m},

X̃κ(t) ≤ Xκ(t),

and

(BX̃κ)i(t) < Z̃κ
i (t) implies X̃κ

j (t) = Xκ
j (t) for all j such that i(j) = i.

For the purpose of admission control, we partition the customer classes into two sets Sa and Sb

defined as follows:

Sa =

{
i ∈ {1, . . . , m} : pi = pa

i +
hi

γi

}

Sb = {1, . . . , m} \ Sa.

Proposition 2 suggests that it is optimal not to block customers from classes belonging to the set

Sa, because for such customers the blocking penalty is more than the net abandonment penalty.

Thus the first property of our proposed admission control policy is that

(Uκ
∗ )i(t) = 0 for all t ∈ [0, κT ] and i ∈ Sa. (26)
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For i ∈ Sb the system manager should use blocking rather than allowing customers to abandon, but

in doing so should also keep enough customers in the system to avoid server idleness. Therefore, to

implement the admission control policy in the set Sb, we consider an appropriate threshold function.

Let L(κ) be such that L(κ)/g(κ) → 0 and log κ/L(κ) → 0 as κ → ∞. In our proposed policy, the

system manager blocks calls whenever Qκ
i (t) > L(κ) and i ∈ Sb. That is, the optimal admission

control (Uκ
∗ )i for i ∈ Sb is the maximal non-decreasing process which satisfies, for all i ∈ Sb,

∫ κT

0
I{Qκ

i (t)<L(κ)}d(Uκ
∗ )i(t) = 0

and Uκ
i (t) − Uκ

i (s) ≤ F κ
i (t) − F κ

i (s) for all 0 ≤ s ≤ t ≤ κT.

(27)

Condition (27) ensures that customers are blocked only when the queue length equals or exceeds

L(κ). (Note that such a process satisfies the admissibility conditions.) Our second main result is

the following.

Theorem 2 Assume (10) holds, let κ−1 log(g(κ)) → 0 as κ → ∞, and l(κ) = κα for some α ∈

[0.5, 1). For each κ ∈ N let X̃κ be any routing control obtained by minimal truncation of the process

Xκ
∗ defined in (25), and let Uκ

∗ be the admission control defined in (26)-(27). Then {(Uκ, X̃κ
∗ )} is

asymptotically optimal.

The policy described in Theorem 2 is non-anticipating but may cause service interruptions. To

alleviate this deficiency, one can modify the above policy using ideas in section 4.4 of Bassamboo

et al. (2004) to get a non-preemptive discrete-review implementation of the above policy. These

controls are also based on the estimation of arrival rates, using the same window size of l(κ).

However, instead of a sliding window, non-overlapping windows are used, and the LP is solved

only at discrete points in time that mark the ends of these estimation windows. Specifically, we

partition the time interval [0, κT ] into review periods of lengths l(κ). In each review period the

arrival rate is estimated based on the arrivals in the last review period. The dynamic control then

uses this estimator, instead of the one in (22). For further discussion see section 4.4 of Bassamboo

et al. (2004).

4.3 A numerical example

In this section we illustrate via a numerical example the lower bound on system performance and

its achievability, described in Theorems 1 and 2. We consider a service system with two customer

classes (m = 2) that are served by two server pools (r = 2). There are three processing activities

(n = 3). Server pool 1 can serve only class 1 customers (activity 1), whereas pool 2 can serve both

class 1 (activity 2) and class 2 customers (activity 3). The arrival rate processes Λi are specified

in Figure 2. The number of servers in each pool is 50, i.e.,the staffing vector is b = (50, 50).

14



For simplicity we take µj = 1 for j = 1, 2, 3. Abandonment rates for the two customer classes,

expressed in customers per minute, are γ1 = 1/3 and γ2 = 1/2. The abandonment costs associated

with class 1 and class 2 are pa
1 = $1.50 per customer and pa

2 = $0.50 per customer. The holding

costs associated with class 1 and class 2 are h1 = $0.50 per customer per minute and h2 = $0.25 per

customer per minute. The cost of blocking customers of both classes is pb
1 = pb

2 = $2 per customer.

The effective loss penalty vector as defined in (17) is p = (2, 1), and we have the sets Sa = {2} and

Sb = {1}. Consequently, under our proposed policy the system manager will not block any class 2

customer.
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Figure 2: Arrival rates for the two-class/two-pool example.

We now simulate the system to obtain estimates of expected total cost under the proposed

policy. We take the scaling function to be g(κ) = κ. For estimation of the arrival rate, we consider

non-overlapping windows of length l(κ) instead of a sliding window. In particular, we divide the

time horizon into review periods of length l(κ) = 0.2 ∗ κ0.55. At the beginning of each review

period we estimate the arrival rate using (22), and solve LP (23) with this estimator to obtain the

optimal routing vector X∗ = (X1, X2, X3), each coordinate in the vector designates the number

of servers assigned to the respective activity. This nominal allocation of servers to activities is

held fixed until the end of the review period. Each arriving customer of class 1 is assigned to a

server in pool 1 if one is available. If all servers in pool 1 are busy and the number of servers

in pool 2 that are currently processing class 1 customers is less than the nominal allocation X2,

then the arriving customer is assigned a server in pool 2. Otherwise, the arriving customer is

placed in the class 1 queue. Similar logic applies to an arriving class 2 customer. Specifically, if
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the number of servers in pool 2 processing customers of class 2 is below the nominal allocation to

activity 3, X3, then the arriving customer of class 2 is assigned a server in pool 2; otherwise that

customer is placed in the class 2 queue. If X2 + X3 < b2, then (b2 − X2 − X3) servers of pool 2

are used as “flexible servers.” That is, any arriving customer which is to be placed in the queue

by the assignment logic mentioned above is processed by one of these server if one is available.

The admission control policy does not block customers of class 2, and it blocks customers of class

1 when the queue length of class 1 exceeds L(κ) = (log κ)2. (These scaling functions adhere to

the conditions articulated in Theorem 2.) We shall refer to the case κ = 50 as our “reference

system”; that is, the system data provided above corresponds to κ = 50. The performance of

the policy is evaluated for system scales of κ = 10, . . . , 200. Figure 3 depicts a sample path of the

simulated actual queue lengths for the system with κ = 50, juxtaposed with the theoretical limiting

dynamics described in (15); the arrival rate used to generate this plot corresponds to the bottom

graph in Figure 2. The admission control policy prescribes blocking of class 1 customers whenever

Qκ
1 > L(κ), (thus, Qκ

1 → 0 asymptotically). For κ = 50, the threshold L(κ) is 15 customers. The

dynamic behavior of the class 2 queue length is dictated by the dynamic routing policy, and this

follows the limiting fluid trajectory Q2 = (Λ2(t)−X2(t))/γ2. We observe that the simulated queue

length process fluctuates around its limiting trajectory.
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Figure 3: Comparison of the simulated queue length for class 1 and class 2, and the limiting fluid

queue length given by (15).

Figure 4 depicts the performance of the proposed policy relative to the asymptotic lower bound

given in Theorem 1, where the total cost is scaled by (κg(κ))−1. We used stratified sampling
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Figure 4: Scaled expected total cost as a function of the system scale κ for the 2-class/2-pool

example; dotted lines correspond to 95% confidence intervals for the simulated results.

with respect to the arrival rate to reduce the variance of the total cost estimate. The number

of simulation runs for both arrival rates shown in Figure 2 was 100 for κ = 10, . . . , 100, and 50

for κ = 110, . . . , 200. As κ grows, the total cost under the proposed policy tends towards the

asymptotic lower bound as announced in Theorem 2.

5 A Fluid-Based Calculus for Service System Control

Section 2 described a conventional stochastic model of service system dynamics, denoting by U

and X the two elements of the system manager’s control policy, and by Z and Q the associated

headcount and queue length processes. Equation (15) in section 3 defines a pointwise stationary

fluid model (PSFM) that is vastly simpler than the original stochastic model but, according to

the limit theory developed in this paper, provides a good approximation in a parameter regime

of practical interest. Proposition 2 in section 4 shows how to compute an optimal control policy

for the PSFM via linear programming. In this section we recapitulate both the specification and

solution of the PSFM, making no reference to the limit theory that supports or justifies it, and

interpret the solution obtained. Notation introduced in section 2 will be re-used with essentially

the same meaning.

Let b, R, A, B,Γ, pa, pb and h be the vectors and matrices defined in section 2, and let p be the

17



m-vector defined in terms of pa, pb and h via (17). Proceeding as if the m-dimensional arrival rate

process Λ = (Λ(t) : 0 ≤ t ≤ T ) were directly observable, we define an admissible control for the

PSFM as a pair of processes V and X, taking values in R
m
+ and R

n
+ respectively, that jointly satisfy

RX(t) + V (t) ≤ Λ(t) (28)

and

AX(t) ≤ b (29)

for all t ∈ [0, T ]. Writing V (t) = (V1(t), . . . , Vm(t)), we interpret Vi(t) as the rate at which the

customers of class i are blocked at time t. Writing X(t) = (X1(t), . . . , Xn(t)), we interpret Xj(t)

as the number of servers engaged in activity j at time t. We associate with an admissible control

(V, X) a triple of processes (U, Q, Z) defined as follows:

U(t) =

∫ t

0
V (s)ds, (30)

Q(t) = Γ−1[Λ(t) − RX(t) − V (t)], (31)

and

Z(t) = BX(t) + Q(t) (32)

for 0 ≤ t ≤ T . The total cost associated with an admissible control (V, X) is defined to be

J (V, X) =

∫ T

0
[pb · V (t) + h · Q(t) + pa · ΓQ(t)]dt. (33)

The system manager’s objective is to minimize E[J (V, X)], but in fact the optimal policy identified

in the next paragraph minimizes J (V, X) with probability 1, not just in expectation.

As in section 4.1 we denote by π(λ, b) the optimal objective value of the following LP, where

λ ∈ R
m
+ is arbitrary: choose x to

minimize p · (λ − Rx) (34)

subject to Rx ≤ λ, Ax ≤ b, x ≥ 0.

Also as in section 4.1, let φ be a Lipschitz continuous mapping R
m
+ ×R

r
+ 7→ R

n
+ such that φ(λ, b) is

an optimal solution of the LP (34). Now let the subsets Sa and Sb of {1, . . . , m} be defined as in

section 4.2, and consider the admissible control (V∗, X∗) defined as follows for each t ∈ [0, T ]:

X∗(t) = φ(Λ(t), b) (35)

and for i = 1, . . . , m

(V∗(t))i =

{
Λi(t) − (RX∗(t))i if i ∈ Sb,

0 if i ∈ Sa.
(36)
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Proposition 2 of section 4.1 shows that (V∗, X∗) minimizes the integrand on the right side of (33)

for every t ∈ [0, T ] with probability 1 (that is, for every t ∈ [0, T ] and every possible realization of

Λ), the associated total cost being

J (V∗, X∗) =

∫ T

0
π(Λ(t), b)dt. (37)

The definition (36) of our optimal admission control V∗ forbids the blocking of customer classes

i ∈ Sa, because for these classes it is less expensive to let customers abandon of their own accord than

to deny them access. For each i ∈ Sb and each possible arrival rate λ, our definition (36) specifies

the fraction of class i arrivals who are to be blocked, that fraction being (λi − (Rφ(λ, b))i)/λi.

Customers from classes i ∈ Sb who are not blocked are to be served immediately upon arrival.

The definition (35) of X∗ specifies, for each arrival rate vector λ that might be observed, how the

servers in each pool k should be allocated to the various activities for which pool k is responsible.

If the total number of servers thus allocated is less than bk, then the remaining servers in pool k

are simply to be idle.

Of course, these “interpretations” of our optimal solution (35)-(36) for the fluid control problem

do not really provide an implementable plan of action, for several reasons. First, the arrival rate

vector Λ(t) is not actually observable, so one must use as input in the LP computations an estimator

Λ̂(t) of Λ(t) . In Bassamboo et al. (2004) and again in section 4 of this paper, we have described

estimation schemes (based either on sliding windows or on non-overlapping windows) that are

adequate for proving asymptotic optimality, but other methods may be preferable in practical

applications.

A second impediment to literal implementation of our PSFM solution is that the recommended

server allocations X∗(t) may change rapidly as Λ̂(t) changes, so one must “smooth” the control

X∗ to avoid service interruptions and undesirable disruption of the operating environment. In

Bassamboo et al. (2004) and again in section 4 of this paper, reference has been made to discrete-

review policies that avoid such problems but still ensure asymptotic optimality. A separate criticism

of our fluid-based “dynamic routing” control X∗(t) is that its server allocations at time t are based

solely on the demand estimate Λ̂(t), without any consideration of the current system state Z(t). A

noteworthy feature of the asymptotic parameter regime studied here is that asymptotic optimality

can be achieved by such a crude control policy. However, one can undoubtedly achieve lower cost for

any given system by using a more refined policy of state-feedback form. In fact, such a refinement

can be systematically developed within the framework of our PSFM, as we plan to show in future

research.

Finally, note that the threshold-based implementation of the optimal admission control V∗ that

we described in section 4 is of state-feedback form. Our proof of Theorem 2 shows that the
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threshold-based implementation does achieve asymptotically the blocking fractions prescribed in

(36), and such an approach is almost certainly preferable to open-loop enforcement of the blocking

fractions derived from (36).

6 A Fluid-Based Staffing Method

Having restricted attention thus far to dynamic control issues, we conclude this paper with a brief

consideration of the higher-level staffing problem. Exactly as in Harrison and Zeevi (2004b) and

Bassamboo et al. (2004), we suppose that the system manager can choose any capacity vector b ∈

R
r
+ for use over the time interval [0, T ]. The associated personnel cost is c · b where c = (c1, . . . , cr)

and ck is the cost vector of employing one type k server over the entire planning horizon. The vector

b must be chosen at t = 0, before any actual demand is observed, and by assumption it cannot be

changed before time T . (The latter assumption is essentially a definition of the “planning horizon”

T .) Of course, the choice of b constraints dynamic control decisions during the planning period,

and (37) provides an estimate of the minimum achievable cost in the control phase based on our

PSFM. Thus we are led to the following optimization problem: choose b ≥ 0 to

minimize c · b + E

[∫ T

0
π(Λ(t), b)dt

]
, (38)

where π(λ, b) is the value of the LP (34).

This problem is of the type considered in Harrison and Zeevi (2004b) except that the LP that

gives rise to the function π(λ, b) is slightly more complicated in our current setting. Harrison and

Zeevi (2004b) showed that a problem of the form (38) reduces to a standard stochastic program

that is readily solvable, even for systems of realistic scale, by a mixture of linear programming and

Monte Carlo simulation. Bassamboo et al. (2004) showed that the stochastic programming solution

b∗ is asymptotically optimal in a setting without admission control, and that proof extends with

virtually no change to the more general setting of this paper.

A Proof of the Main Results

Let (Ω,H, P) be the probability space on which all processes described in Section 3 are defined. Let

Ft = σ(Λ(s) : 0 ≤ s ≤ t) represent the information set generated by the arrival rate processes up

until time t. Let D[0, T ] denote the space of functions defined over [0, T ] which are right-continuous

with left limits. Finally, proofs of all lemmas cited in this appendix can be found in Appendix B.

Proof of Proposition 1. Consider any sequence admissible control policies {(Uκ, Xκ)} satisfying

(10). Fix a time t ∈ [0, T ] and i ∈ {1, . . . , m} For each κ, the dynamics of the headcount process is
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given by

Zκ
i (κt) = F κ

i (κt)−N
(2)
i

(∫ κt

0
(RXκ)i(s)ds

)
−N

(3)
i

(∫ κt

0
γi(Z

κ(s) − BXκ(s))ids

)
−Uκ

i (κt), (39)

for all t ∈ [0, T ], where F κ
i (κt) denotes the number of class i arrivals until time κt. We now use

the following strong approximation result from Kurtz (1978), which follows directly from Komlós,

Major and Tusnady (1975).

Proposition 4 (Kurtz (1978), Lemma 3.1) A standard (unit rate) Poisson process (N(t) : t ≥

0) can be realized on the same probability space as a standard Brownian motion (W (t) : t ≥ 0) in

such a way that

ξ := sup
t≥0

|N(t) − t − W (t)|

log(max{2, t})

has a finite moment generating function in a neighborhood of the origin.

Using the above proposition, there exist Brownian motions W
(ℓ)
i for ℓ = 1, 2, 3 such that

Zκ
i (κt) =
[∫ κt

0
Λκ

i (s)ds −

∫ κt

0
(RXκ)i(s)ds −

∫ κt

0
γi(Z

κ(s) − BXκ(s))ids − Uκ
i (κt)

]

+

[
W

(1)
i

(∫ κt

0
Λκ

i (s)ds

)
− W

(2)
i

(∫ κt

0
(RXκ)i(s)ds

)
− W

(3)
i

(∫ κt

0
γi(Z

κ(s) − BXκ(s))ids

)]

+

[
O

(
log

(∫ κt

0
Λκ

i (s)ds

))
+ O

(
log

(∫ κt

0
(RXκ)i(s)ds

))
+ O

(
log

(∫ κt

0
γi(Z

κ(s) − BXκ(s))ids

))]

=: Iκ
i,1(t) + Iκ

i,2(t) + Iκ
i,3(t). (40)

where fκ(t) = O(gκ(t)) a.s. if lim supκ→∞ |fκ(t)|/|gκ(t)| < ∞ a.s. We need the following lemma,

which states that Z̄κ
i (t) = Zκ

i (κt)/g(κ) is uniformly bounded.

Lemma 1 If assumption (10) holds, then for any admissible sequence of controls {Uκ, Xκ}

lim sup
κ→∞

sup
0≤t≤T

Z̄κ
i (t) ≤ M < ∞ a.s.,

for all i = 1, . . . , m, where M is an FT -measurable r.v.

The above proposition implies that

Zκ
i (κt)

κg(κ)
→ 0 a.s. as κ → ∞.

Dividing both sides of (40) by κg(κ), we appeal to the following lemma, which establishes the

convergence of the second and third terms as κ → ∞.
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Lemma 2 If assumption (10) holds, then for any admissible sequence of controls {(Uκ, Xκ)}

Iκ
i,2(t) + Iκ

i,3(t)

κg(κ)
→ 0 a.s. as κ → ∞,

for all i = 1, . . . , m.

Thus, we get
Iκ
i,1(t)

κg(κ)
→ 0 a.s. as κ → ∞,

for all i = 1, . . . , m. Using the definition of Λκ in (7) and assumptions (10) we have
∫ t

0
Z̄κ

i (s)ds →

∫ t

0
(γ−1

i [Λi(s) − (RX̄(s))i] + (BX̄(s))i)ds − γ−1
i Ui(t) a.s. as κ → ∞. (41)

Since Z̄κ
i (s) − (BX̄κ(s))i ≥ 0, (41) implies that Ui(t) − Ui(s) ≤

∫ t

s
Λi(s)ds, for all 0 ≤ s ≤ t ≤ T .

Hence, Ui(t) is Lipschitz and thus there exists (a.s.) an integrable function V such that Ui(t) =
∫ t

0 Vi(s)ds for all t ∈ [0, T ]. Substituting
∫ t

0 Vi(s)ds for Ui(t) in (41) completes the proof.

Proof of Proposition 2. Consider any optimal solution x∗ of the LP (18) and let (q∗, v∗) be

defined as in the statement of the proposition. Then (x∗, q∗, v∗) is feasible for LP (16) and pa ·Γq∗+

h ·q∗ +pb ·v∗ = p · (λ−Rx∗). Let (x′, q′, v′) be an optimal solution to LP (16). Construct the vector

(q′′, v′′) from x′ using (19)-(20). Then, we have pa ·Γq′+h ·q′+pb ·v′ ≥ pa ·Γq′′+h ·q′′+pb ·v′′. Since

(x′, q′′, v′′) is feasible, it is optimal for LP (16). Further, note that pa·Γq′′+h·q′′+pb·v′′ = p·(λ−Rx′).

Since x′ is feasible for LP (18), using the optimality of x∗ we get that p · (λ−Rx′) ≥ p · (λ−Rx∗).

Hence pa · Γq′′ + h · q′′ + pb · v′′ ≥ pa · Γq∗ + h · q∗ + pb · v∗. Consequently, (x∗, q∗, v∗) is an optimal

solution of LP (16), which completes the proof.

Proof of Theorem 1. Consider any sequence of admissible controls {(Uκ, Xκ)}. All subsequent

probabilistic statements are to be interpreted in the almost sure sense, and the term is omitted for

brevity. Since {(κg(κ))−1J (Uκ, Xκ) : κ = 1, 2, ...} is a sequence in R+, it has a subsequence {κn :

n = 1, 2, ...} which converges to the lim infκ→∞(κg(κ))−1J (Uκ, Xκ). Further, since {(Uκn , Xκn)} is

admissible, by (3) we have that X̄κn is uniformly bounded. Appealing to Lemma 4 from Bassamboo

et al. (2004) [which is similar to Lemma 3 of this paper], there exists a function X : Ω× [0, T ] 7→ R+

defined for almost all ω ∈ Ω and (Lebesgue) almost all t ∈ [0, T ] and a further subsequence

{κn′ : n′ = 1, 2, ...} such that
∫ t

0
X̄

κn′

j (s)ds →

∫ t

0
Xj(s)ds as n′ → ∞,

for all t ∈ [0, T ] and j ∈ {1, . . . , n}. Using the fact that Λ is continuous and satisfies E[
∫ T

0 Λ(t)] < ∞,

along with the admissibility condition (2), it follows that

lim sup
κn→∞

Ūκn

i (t) ≤

∫ T

0
Λi(s)ds,
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for all t ∈ [0, T ] and i ∈ {1, . . . , m}. Next, we state a general result for uniformly bounded non-

negative functions.

Lemma 3 Let {Y κ} be a sequence of uniformly bounded, non-negative, non-decreasing functions in

D[0, T ]. Then, for every subsequence there exists a further subsequence Y κn and a non-decreasing

function Y , such that Y κn(t) → Y (t) as n → ∞ for almost all t ∈ [0, T ].

Appealing to the lemma above, there exists a non-decreasing function U : Ω × [0, T ] 7→ R+

defined for almost all ω ∈ Ω and (Lebesgue) almost all t ∈ [0, T ] and a further subsequence

{κn′′ : n′′ = 1, 2, ...} such that

Ū
κn′′

i (t) → Ui(t) as n′′ → ∞

for all t ∈ [0, T ] and i ∈ {1, . . . , m}. To simplify notation we shall drop the index of this further

subsequence and assume that the above holds on the initial subsequence. Since Proposition 1

applies to this subsequence, from (41) it follows that for all i ∈ {1, . . . , m}

Ui(T ) +

∫ T

0
γi(Z(s) − BX(s))ids =

∫ T

0
(Λ(s) − RX(s))ids a.s., (42)

where
∫ T

0 Zi(s)ds = limn→∞

∫ T

0 Z̄κn

i (s)ds. We then have,

(κg(κ))−1J κn(Xκn , bκn) → pa · Γ

(
M(T ) −

∫ T

0
BX(s)ds

)
+ h ·

(
M(T ) −

∫ T

0
BX(s)ds

)

+pb · U(T ), as n → ∞ (43)

(a)

≥ p · Γ

(
M(T ) −

∫ T

0
BX(s)ds

)
+ p · U(T )

(b)
=

∫ T

0
p · [Λ(t) − RX(t)]dt a.s.,

where: the limit follows using the same strong approximation arguments used in the proof of

Proposition 1; the inequality (a) follows from the definition of p; and (b) follows from (42). Next,

we show that p · [Λ(t) − RX(t)] ≥ π(Λ(t), b) for almost all t ∈ [0, T ]. Note that X(t) satisfies the

constraints of LP (18). To this end, we have that for almost all t ∈ [0, T ] (with respect to Lebesgue

measure), Λ(t) − RX(t) ≥ 0, AX(t) ≤ b, and X(t) ≥ 0. The first inequality follows from the fact

that

∫ t

0
γi(Z̄

κn(s) − BX̄κn(s))ids + Ūκn

i (t) →

∫ t

0
(Λ(s) − RX(s))i ds a.s. as n → ∞,

for all i = 1, ..., m, and
∫ t

0 γi(Z̄
κn(s)−BX̄κn(s))ids, and Ūκn(t) are non-decreasing in t for each κn.

Thus, we have that
∫ t

0 (Λ(s) − RX(s))i ds is non-decreasing in t. Consequently, Λ(t)−RX(t) ≥ 0 for

almost all t ∈ [0, T ]. The second inequality follows using a similar argument, and since AXκn ≤ bκn
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implies that
∫ t

0 (bκn − AXκn

i (s)) ds is non-decreasing in t for each κn. (The last inequality follows

from the condition Xκn(t) ≥ 0.) The optimality of π(Λ(t), b) together with the above result and

Fatou’s lemma yields that for any admissible sequence of dynamic controls {(Uκ, Xκ)}

lim inf
κ→∞

(κg(κ))−1
E[J κ(Uκ, Xκ)] ≥ c · b + E

[∫ T

0
π(Λ(t), b)dt

]
. (44)

This completes the proof.

Proof of Theorem 2. Let X̂κ
∗ (t) be the optimal solution to the LP (23) with the estimator (22),

i.e., X̂κ
∗ (t) = φκ(Λ̂κ(t), bκ

∗) where φκ is the Lipschitz continuous mapping defined in (24). Let X̃κ
∗

denote a minimal truncation of X̂κ
∗ . Recall that Uκ

∗ satisfies (26) and (27). Let Zκ
∗ denote the

headcount process associated with the admissible control (Uκ
∗ , X̃κ

∗ ).

By Theorem 1 and the definition of asymptotic optimality, it suffices to show that

lim sup
κ→∞

(κg(κ))−1
E[J κ(Uκ

∗ , X̃κ
∗ )] ≤ E

[∫ T

0
π(Λ(t), b)dt

]
. (45)

Consider the subsequence over which the lim sup is achieved for (κg(κ))−1J κ(Uκ
∗ , X̃κ

∗ ). Consider

a further subsequence {κn : n > 0} of this sequence over which both
∫ κnt

0 g(κn)−1X̃κn
∗ (s)ds,

∫ κnt

0 g(κn)−1Z̃κn
∗ (s)ds and (κng(κn))−1Uκn

∗ (κnt) converge to a limit. Let

∫ t

0
(Z∗(s))ids = lim

n→∞

∫ κnt

0

(Z̃κn
∗ (s))i

g(κn)
ds for all i = 1, ..., m,

∫ t

0
(X̃∗(s))jds = lim

n→∞

∫ κnt

0

(X̃κn
∗ (s))j

g(κn)
ds for all j = 1, ..., n,

U∗(t) = lim
n→∞

Uκn
∗ (κnt)

κng(κn)
,

for all t ∈ [0, T ]. Since over this common subsequence condition (12) holds, we have for all i =

1, ..., m,

lim
n→∞

1

κng(κn)

[
pa

i N
(3)
i

(∫ κnT

0
γi(Z̃

κn
∗ (s) − BX̃κn

∗ (s))ids

)
+ hi

∫ κnT

0
(Qκn

∗ (t))idt + pb(Uκn
∗ (κnT ))i

]

= (pa
i γi + hi)

(∫ T

0
(Z∗(s) − BX̃∗(s))ids

)
+ pb

i(U∗(T ))i.

(46)

Let X∗(t) = φ(Λ(t), b) for all t ∈ [0, T ]. Since Λ(t) is continuous and φ is Lipschitz, X∗(t) is also

continuous. Consider any compact set B ⊂ (0, T ]. Using the definition of the mapping φκ we have

X̂κ
∗ (κt)

g(κ)
− X∗(t) = φ

(
Λ̂κ(κt)

g(κ)
, b

)
− φ(Λ(t), b).
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Since the mapping φ is Lipschitz continuous, there exists a finite constant C such that
∥∥∥∥∥
X̂κ

∗ (κt)

g(κ)
− X∗(t)

∥∥∥∥∥ ≤ C

∥∥∥∥∥
Λ̂κ(t)

g(κ)
− Λ(t)

∥∥∥∥∥ ,

for all t ∈ B, where ‖ · ‖ is the Euclidean norm. Taking supremum over t ∈ B, the limit as

κ → ∞, and using the fact that the estimator is uniformly consistent [see Bassamboo et al. (2004,

Proposition 3)], we get

sup
t∈B

∥∥∥∥∥
X̂κ

∗ (κt)

g(κ)
− X∗(t)

∥∥∥∥∥→ 0 a.s. as κ → ∞.

Thus, X̂κ
∗ satisfies the conditions of the following two Lemmas.

Lemma 4 Let Xκ
i (t) be an untruncated control satisfying the admissibility condition (3) such that

g(κ)−1Xκ(κt) → X(t) a.s. as κ → ∞, where the convergence is uniform over compact sets of (0, T ],

and X : [0, T ] 7→ R
n
+ is continuous and such that RX(t) ≤ Λ(t) for all t ∈ [0, T ]. Let Uκ

i (T ) = 0 for

all κ. If X̃κ(t) is a minimal truncation of Xκ(t) and assumption (10) holds, then for all i = 1, ..., m

lim
κ→∞

1

κg(κ)

∫ κT

0
(Λκ(s) − RX̃κ(s))ids = lim

κ→∞

1

κg(κ)

∫ κT

0
(Λκ(s) − RXκ(s))ids a.s.

Lemma 5 Let Xκ
i (t) be an untruncated control satisfying the admissibility condition (3) such that

g(κ)−1Xκ(κt) → X(t) a.s. as κ → ∞, where the convergence is uniform over compact sets of

(0, T ], and X : [0, T ] 7→ R
n
+ is continuous and such that RX(t) ≤ Λ(t) for all t ∈ [0, T ]. Let Uκ

i be

as defined in (27), and L(κ) satisfies the following technical condition

L(κ)

g(κ)
→ 0, and

log(κ)

L(κ)
→ 0 as κ → ∞. (47)

If X̃κ(t) is a minimal truncation of Xκ(t) and assumption (10) holds, then for all i = 1, ..., m

lim
κ→∞

Uκ
i (κT )

κg(κ)
= lim

κ→∞

1

κg(κ)

∫ κT

0
(Λκ(s) − RXκ(s))ids a.s.,

and

∫ κT

0

Zκ
i (s) − (BX̃κ)i

κg(κ)
ds → 0 a.s. as κ → ∞.

For i ∈ Sa, where Sa is defined in section 4.2 to be the set of customer classes for which no

customers are blocked under the proposed policy, i.e., Ui(T ) = 0, we appeal to Proposition 1 and

the definition of p to get that

(pa
i γi + hi)

(∫ T

0
(Z∗(s) − BX̃∗(s))ids

)
+ pb

i(U∗(T ))i = pi

∫ T

0
(Λ(s) − RX̃∗(s))ids

= pi

∫ T

0
(Λ(s) − RX∗(s))ids a.s., (48)
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where X̃κ
∗ is a minimal truncation of X̂κ

∗ , and the second equality above follows from Lemma 4.

Similarly, appealing to Lemma 5 and Proposition 1, we have for all i ∈ Sb, where Sb is defined in

section 4.2 to be the set of customer classes for which customers are blocked based on a threshold,

(pa
i γi + hi)

(∫ T

0
(Z∗(s) − BX̃∗(s))ids

)
+ pb

i(U∗(T ))i = pi

∫ T

0
(Λ(s) − RX̃∗(s))ids

= pi

∫ T

0
(Λ(s) − RX∗(s))ids a.s. (49)

Using (46), (48) and (49) we have

lim
n→∞

J κn(Uκn
∗ , X̃κn

∗ )

κg(κ)
=

m∑

i=1

pi

∫ T

0
(Λ(s) − RX∗(s))ids

=

∫ T

0
π(Λ(s), b)ds a.s.,

where π is the mapping defined for LP (18). Consequently, we have

lim sup
κ→∞

(κg(κ))−1J κ(Uκ
∗ , X̃κ

∗ ) =

∫ T

0
π(Λ(s), b)ds a.s.

Since J κ(Uκ
∗ , X̃κ

∗ ) is non-negative and bounded, using the reverse Fatou lemma we get (45). This

completes the proof.

B Auxiliary Results

Proof of Lemma 1. The proof follows straightforwardly from Bassamboo et al. (2004, Lemma 3)

who establish the result for the same system considered here only without admission control; the

added blocking can only decrease the headcount.

Proof of Lemma 2. Fix i ∈ {1, . . . , m}. Using the definition of Λκ in (7) and the fact

E

[∫ T

0 Λi(t)
]

< ∞ we have

∫ κt

0
Λκ

i (s)ds = κg(κ)

∫ t

0
Λi(s)ds ≤ M1κg(κ), (50)

for some M1 such that M1 < ∞ a.s. Also since the admissible control {Xκ} satisfies AXκ ≤ bκ,

using the definition of bκ in (8) we have

∫ κt

0
(RXκ)i(s)ds ≤ M2κg(κ) (51)

for some M2 < ∞. Lastly, using Lemma 1, we also have for κ large

∫ κt

0
γi(Z

κ(s) − BXκ(s))ids ≤ M3κg(κ) (52)
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for some M3 such that M3 < ∞ a.s. Using (50),(51) and (52) along with the fact that

sup
0≤s≤t

|W (s)|

s
→ 0 a.s. as t → ∞,

where (W (s) : 0 ≤ s ≤ T ) is a standard Brownian motion, we get the desired result. This completes

the proof.

Proof of Lemma 3. It suffices to prove that there exists a subsequence for which the desired

result holds. Consider the sequence Y κ = (Y κ(t) : t ∈ [0, T ]) of uniformly bounded nonnegative

functions on D[0, T ]. In particular, suppose that Y κ(t) ≤ M for all t ∈ [0, T ] and for all κ > 0.

Consider an extension of these functions to D[0, 2T ] such that

Y κ(t) =

{
Y κ(t) if t ∈ [0, T ]

Y κ(T ) + (2M − Y κ(T )(t − T ) if t ∈ (T, 2T ]

Since Y κ is a nonnegative function which is right-continuous and non-decreasing, we can view it as

the cumulative distribution function associated with a measure µκ on [0, 2T ], where

µκ(a, b) :=
1

2M
(Y κ(b) − Y κ(a))

for all 0 ≤ a ≤ b ≤ 2T , and µκ(a, b) represents the measure of the open set (a, b) ⊂ [0, 2T ]. Since

the sequence of measures {µκ : κ > 0} is tight, Prohorov’s theorem [cf. Billingsley (1999)] states

that these measures are relatively compact. Thus, there exists a subsequence {µκℓ
} which converges

weakly to a measure µ. Define Y as following

Y κ(t) = µ(0, t) for all t ∈ [0, 2T ].

The proof then follows from the Portmanteau Theorem [cf. Billingsley (1999)].

Proof of Lemma 4. Since Uκ
i (T ) = 0 for all κ, no customer is blocked. The proof then follows

directly from Bassamboo et al. (2004, Lemma 5).

Proof of Lemma 5. Fix an i ∈ Sb. Since any continuous function on a compact set can be

approximated to arbitrary accuracy from above or below by a piecewise constant function with

finite number of discontinuities, we can approximate X and Λ as follows. Given an ǫ > 0, there

exists N < ∞, 0 = t0 < t1 < .... < tN = T and constants X1, ..., XN , Λ1, ...,ΛN such that

ǫ < X(t) − Xℓ < 2ǫe, ǫ < Λℓ − Λ(t) < 2ǫe for all t ∈ [tℓ−1, tℓ) (53)

for all ℓ = 1, ..., N , where e is a vector of ones in R
n. Let Y (t) and Λ̄(t) be defined as follows

Y (t) = Xℓ for all t ∈ [tℓ−1, tℓ),

Λ̄(t) = Λℓ for all t ∈ [tℓ−1, tℓ).
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Put Λ̄ = (Λ̄(t) : 0 ≤ t ≤ T ) and Y = (Y (t) : 0 ≤ t ≤ T ), and consider a sequence of systems

referred to as System I’s. The κth System I has an arrival rate g(κ)Λ̄i(κ
−1t) and rate of service

completion given by

(
net rate of service completion

for class i customer at time t

)
=

{
g(κ)(RY (κ−1t))i if ζ̄κ

i ≥ g(κ)(BY (κ−1t) + 2ǫBe)i + L(κ)

0 otherwise,
(54)

for all t ∈ [0, κT ], where ζ̄κ
i (t) represents the headcount process in this system. The net abandon-

ment rate at time t ∈ [0, κT ] is γi(ζ̄
κ(t)−g(κ)BY (κ−1t)−2g(κ)ǫBe−L(κ))+i , where x+ = max{0, x}.

With regard to the admission control, the system manager blocks an arriving job at time t if

ζ̄κ
i (t) > g(κ)(BY (κ−1t)+2ǫBe)i +2L(κ). By Lemma 1, there exists a finite M which is measurable

with respect to FT and such that lim supκ→∞ sup0≤s≤κT {g(κ)−1Zκ
i (s)} ≤ M . For each time κtℓ,

ℓ = 1, ..., N, we increase the headcount in buffer i for this system to Mκ = Mg(κ).

Let Zκ
i , Uκ

i be the headcount process and admission control in the original system for class i

and let Ψ̄κ
i (t) be the number of customers blocked in this alternate system up until time t. The

following lemma asserts that Zκ
i (t) is dominated by ζ̄κ

i (t)

Lemma 6 There exists a construction of a sequence of System I’s on the same probability space

as the original system, such that for κ sufficiently large

Zκ
i (t) ≤ ζ̄κ

i (t) a.s.,

for all t ∈ [0, κT ] and i = 1, . . . , m.

Using the above lemma we have, for κ sufficiently large, that

∫ κT

0 (Zκ(t) − BX̃κ(t))idt

κg(κ)
≤

∫ κT

0 (ζ̄κ(t) − g(κ)BY (κ−1t))+i dt

κg(κ)
a.s.

Thus, we have

lim sup
κ→∞

∫ κT

0 (Zκ(t) − BX̃κ(t))idt

κg(κ)
≤ lim sup

κ→∞

∫ κT

0 (ζ̄κ(t) − g(κ)BY (κ−1t))+i dt

κg(κ)
a.s.

We next appeal to the following lemma which gives a bound on the right-hand-side above.

Lemma 7 For the sequence of System I’s described above we have for all i = 1, . . . , m that

lim sup
κ→∞

∫ κT

0 (ζ̄κ(t) − g(κ)BY (κ−1t))+i dt

κg(κ)
≤ 2ǫ(Be)iT.

Using Lemma 7 and letting ǫ go to zero we have

lim sup
κ→∞

∫ κT

0

(Zκ(t) − BX̃κ(t))idt

κg(κ)
= 0.
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Now, we consider another sequence of systems referred to as System II’s. The κth System II has

an arrival rate Λ̄ and rate of service completion given by

(
net rate of service completion

for class i customer at time t

)
=

{
g(κ)(R(Y (κ−1t) − 2ǫe))+i if ζ̂κ

i ≥ g(κ)(BY (κ−1t))i

0 otherwise,
(55)

for all t ∈ [0, κT ], where ζ̂κ
i (t) represents the headcount process in this system. There are no

abandonments in System II. In addition, the system manager blocks a job if ζ̂κ
i > g(κ)(BY (t) +

L(κ). Again by Lemma 1, there exists a finite M which is measurable with respect to FT such

that lim supκ→∞ sup0≤s≤κT {g(κ)−1Zκ
i (s)} < M . For each time κtℓ, ℓ = 1, ..., N, we increase the

headcount in buffer i for this system to Mκ = Mg(κ). Let Ψ̂κ
i (t) be the number of customers

blocked in this system up until time t. We now use the following two lemmas.

Lemma 8 There exists a construction of a sequence of System II’s on the same probability space

as the original system, such that for κ sufficiently large,

Uκ
i (κT ) ≤ Ψ̂κ

i (κT ) a.s.,

for all i = 1, . . . , m.

Lemma 9 For the sequence of System II’s defined above we have

lim sup
κ→∞

Ψ̂κ
i (κT )

κg(κ)
=

N∑

ℓ=1

[(Λ̄ℓ − RXℓ − 2ǫRe)+i ][tℓ−1 − tℓ] a.s.,

for all i = 1, . . . , m.

Thus, we have the following inequalities

lim sup
κ→∞

Uκ
i (κT )

κg(κ)
≤

N∑

ℓ=1

[(Λ̄ℓ − RXℓ − 2ǫRe)+i ][tℓ−1 − tℓ]

=

∫ T

0
(Λ̄(t) − R(Y (t) − 2ǫe))+i dt

≤

∫ T

0
(Λ(t) − RX(t))idt + M2ǫT a.s.,

where M2 is a constant independent of ǫ. Letting ǫ go to zero, completes the proof.

Proof of Lemma 6. Using uniform convergence of g(κ)−1Xκ(·) to X(·) and (53), we have for κ

sufficiently large that

g(κ)Y (κ−1s) ≤ Xκ(s) ≤ g(κ)Y (κ−1s) + 2ǫe (56)
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for all s ∈ [0, κT ]. Fix ℓ ∈ {1, . . . , N}. We shall prove the assertion for the interval [κtℓ−1, κtℓ).

First note that for all t ∈ [κtℓ−1, κtℓ) we have ζ̄κ
i (t) ≥ g(κ)(BY (κ−1t) + 2ǫBe)i + L(κ). Define

t∗ℓ,κ = min
{
inf{t ≥ κtℓ−1 : Zκ

i (t) ≤ g(κ)(BY (κ−1t) + 2ǫBe)i + 2L(κ)}, κtℓ
}

.

Then we have Zκ
i (t) ≤ g(κ)(BY (κ−1t) + 2ǫBe)i + L(κ) for all t ∈ [t∗ℓ,κ, κtℓ). Thus, the result holds

trivially for the interval [t∗ℓ,κ, κtℓ). Now, we consider the interval [κtℓ−1, t
∗
ℓ,κ), using the definition

of minimal truncation for the routing control, and the definition of t∗ℓ,κ, we have X̃κ
j (t) = Xκ

j (t) for

[κtℓ−1, t
∗
ℓ,κ) and i(j) = i. We shall construct the original system and System I on the same space

in the following manner: if Zκ
i (t) = ζ̄κ

i (t) we use the same Poisson processes to generate the next

arrival, service completion and abandonment; otherwise we let them evolve independently. (Similar

constructions are discussed in Whitt (1981) and Appendix B.2 of Bassamboo et al. (2004).) Now

consider any time t ∈ [κtℓ−1, t
∗
ℓ,κ) at which Zκ

i (t) = ζ̄κ
i (t). The arrival rate in System I is higher

than the arrival rate in the original system, i.e., g(κ)Λ̄i(κ
−1t) ≥ g(κ)Λi(κ

−1t). Using (56), we have

for sufficiently large κ the service rate in System I is less than the service rate in original system,

i.e., g(κ)(RY (κ−1t))i ≤ (RXκ(t))i, and finally the abandonment rate in System I is less than that

in the original system, i.e.,

γi(ζ̄
κ(t) − g(κ)BY (κ−1t) − 2g(κ)ǫBe − L(κ))+i ≤ γi(Z

κ(t) − BXκ(t) − L(κ))+i .

Since the arrival rates are higher, and the service rates and abandonment rates are both smaller

for System I compared to the original system when Zκ
i (t) = ζ̄κ

i (t), and the same Poisson processes

are used for generating arrivals and service times and abandonments, we have that Zκ will have

a downward jump before ζ̄κ
i whenever Zκ

i (t) = ζ̄κ
i (t). Since for κ sufficiently large ζ̄κ

i (κtℓ−1) ≥

Zκ
i (κtℓ−1), the result holds for t ∈ [0, κT ]. This completes the proof.

Proof of Lemma 7. Fix ℓ ∈ {1, . . . , N}. Consider the interval [κtℓ−1, κtℓ). It suffices to show

lim sup
κ→∞

∫ κtℓ
κtℓ−1

(ζ̄κ(t) − g(κ)BY (κ−1t))+i dt

κg(κ)
≤ 2ǫ(Be)i(tℓ − tℓ−1) a.s.

Define

t∗ℓ,κ = min
{
inf{t ≥ κtℓ−1 : ζ̄κ

i (t) ≤ g(κ)(BY (κ−1t) + 2ǫBe)i + 2L(κ)}, κtℓ
}

.

Note that for t ∈ [t∗ℓ,κ, κtℓ] we have (ζ̄κ(t)− g(κ)BY (κ−1t))+i ≤ 2g(κ)ǫ(Be)i + 2L(κ). Note that all

customers arriving in [κtℓ−1, t
∗
ℓ,κ] are blocked and ζ̄κ

i (κtℓ) = Mg(κ). Thus,

∫ κtℓ
κtℓ−1

(ζ̄κ(t) − g(κ)BY (κ−1t))+i dt

κg(κ)
≤ 2ǫ(Be)i(tℓ − tℓ−1) +

2L(κ)

g(κ)
+

M(t∗ℓ,κ − tℓ−1)

g(κ)
. (57)
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Taking limsup as κ → ∞ of both sides of (57) and using the growth condition L(κ)/g(κ) → 0 as

κ → ∞ for the second term on the right-hand-side we get

lim sup
κ→∞

∫ κtℓ
κtℓ−1

(ζ̄κ(t) − g(κ)BY (κ−1t))+i dt

κg(κ)
≤ 2ǫ(Be)i(tℓ − tℓ−1) + lim sup

κ→∞

Mg(κ)(t∗ℓ,κ − tℓ−1)

κg(κ)
a.s.

To complete the proof we shall prove

lim sup
κ→∞

t∗ℓ,κ − κtℓ

κ
= 0 a.s.

For this we shall consider two cases as follows:

Case I: Let (RY (tℓ−1))i > 0. Consider a r.v. Sκ
ℓ which is the sum of Mg(κ) exponentials with rate

g(κ)(RY (tℓ−1))i. Sκ
ℓ can be constructed on the same probability space as the sequence of System

I’s such that t∗ℓ,κ − κtℓ ≤ Sκ
ℓ . We also have the following relations

E

[
Sκ

ℓ

κ

]
=

M

κ(RY (tℓ−1))i
, V ar

[
Sκ

ℓ

κ

]
=

M

κ2g(κ)(RY (tℓ−1))
2
i

.

Thus, by the Chebychev bound we have for any δ > 0

∞∑

κ=1

P

(∣∣∣∣
Sκ

ℓ

κ
−

M

κ(RY (tℓ−1))i

∣∣∣∣ > δ

)
≤

∞∑

κ=1

M

δκ2g(κ)(RY (tℓ−1))
2
i

< ∞.

Hence using Borel-Cantelli we have
∣∣∣∣
Sκ

ℓ

κ
−

M

κ(RY (tℓ−1))i

∣∣∣∣→ 0 a.s. as κ → ∞.

Since M < ∞ a.s. and (RY (tℓ−1))i > 0 we have M/(RY (tℓ−1))i < ∞ a.s., thus we have

lim sup
κ→∞

t∗ℓ,κ − κtℓ

κ
≤ lim sup

κ→∞

Sκ
ℓ

κ
= 0 a.s.

Case II: Let (RY (tℓ−1))i = 0. Consider a r.v. Ŝκ
ℓ which is the maximum of Mg(κ) exponentials

with rate γi. Ŝκ
ℓ can be constructed on the same probability space as the sequence of System I’s

such that t∗ℓ,κ − κtℓ ≤ Ŝκ
ℓ . We also have the following relations

E

[
Ŝκ

ℓ

κ

]
≤

C1 log(g(κ)M)

κγi
, V ar

[
Ŝκ

ℓ

κ

]
=

C2

κ2γi
,

where C1 and C2 are constants. Thus, by the Chebychev bound we have for any δ > 0

∞∑

κ=1

P

(∣∣∣∣∣
Ŝκ

ℓ

κ
− E

[
Ŝκ

ℓ

κ

]∣∣∣∣∣ > δ

)
≤

∞∑

κ=1

C2

δκ2
< ∞.

Hence using Borel-Cantelli we have
∣∣∣∣∣
Ŝκ

ℓ

κ
− E

[
Ŝκ

ℓ

κ

]∣∣∣∣∣→ 0 a.s. as κ → ∞.
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Since M < ∞ a.s. and κ−1 log(g(κ)) → 0 as κ → ∞ we have (κγi)
−1(C1 log(g(κ)M)) → 0 a.s. as

κ → ∞, which in turn implies

lim sup
κ→∞

t∗ℓ,κ − κtℓ

κ
≤ lim sup

κ→∞

Ŝκ
ℓ

κ
= 0 a.s.

This completes the proof.

Proof of Lemma 8. We shall prove the result by considering following modification of System II

defined in the proof of lemma 5. (The modified system is referred to as System III.) All parameters

are identical to System II except that the system manager rejects a customer if ζ̌κ
i (s) > (BXκ(t))i+

L(κ), where ζ̌κ
i (s) is the headcount in System III. Let Ψ̌κ

i be the admission control for System III. We

shall construct the original system and System III on the same space in the following manner: we use

same Poisson process to generate arrivals; and if Zκ
i (t) = ζ̄κ

i (t) we use the same Poisson processes

to generate the service completion and abandonment; otherwise we let the service completion and

abandonments occur independently. We note that if Zκ
i (s) = ζ̌κ

i (s) at some time instant, then the

arrival rate into System III, g(κ)Λ̄i(κ
−1t), is higher than rate of arrival into the original system,

g(κ)Λi(κ
−1t), i.e., g(κ)Λ̄i(κ

−1t) ≥ g(κ)Λi(κ
−1t). Further, for κ sufficiently large, the service rate

in the original system is greater than that in System III since

(RX̃κ(t))i ≥ g(κ)(RY (κ−1t) − 2ǫe)+i if Zκ
i (t) > g(κ)(BY (t))i, (58)

for all t ∈ [0, κT ]. The above follows from the fact that g(κ)−1Xκ(κ−1t) converges to X(t) uniformly.

Also, there are no abandonments in System III. Since the arrival rate is higher and the service

rate and abandonment rates are smaller for System III compared to the original system whenever

Zκ
i (s) = ζ̌κ

i (s), then there exists a construction of System III on the same probability space such

that Zκ
i (s) jumps downward before ζ̌κ

i (s) if Zκ
i (s) = ζ̌κ

i (s). Hence if Zκ
i (s) = ζ̌κ

i (s) then for all t > s

we have Zκ
i (s) ≤ ζ̌κ

i (s). Since for κ large Zκ
i (0) ≤ ζ̌κ

i (0) = Mg(κ), these systems are constructed

on the same probability space such that Zκ
i (t) ≤ ζ̌κ

i (t) for all t ∈ [0, κT ] and any arrival to the

original system also correspond to an arrival to System III. Since any arrival in original system that

is blocked implies that the corresponding arrival in System III is also blocked, we have that

Uκ
i (T ) ≤ Ψ̌κ

i (T ) a.s. (59)

Next we shall prove that there exists a construction of System II on the same probability space

such that Ψ̂κ
i (T ) ≥ Ψ̌κ

i (T ). For this we shall describe a construction such that

Ψ̂κ
i (t) + ζ̂κ

i (t) ≥ Ψ̌κ
i (t) + ζ̌κ

i (t), (60)

and ζ̂κ
i (t) ≤ ζ̌κ

i (t) a.s., (61)

for all t ∈ [0, κT ]. We use the same Poisson processes to generate arrivals and services times in

System II and III. It is easy to verify that the relationship described in (60)-(61) holds at time
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t = 0. To show that (61) holds at all times, consider any time t at which ζ̂κ
i (t) = ζ̌κ

i (t). The

arrival rate and the service rate for both systems are identical, and since the buffer size in System

III is larger than System II we have that any arrival blocked by System II will also be blocked by

System III. Thus, the stated inequality ζ̂κ
i (s) ≤ ζ̌κ

i (s) holds for all s > t. For (60) we note that

any arrival to the system will increase either the headcount or the number of customers blocked,

hence an arrival maintains the inequality in (60). Further, since any time instant corresponding

to a service completion in System II also corresponds to a service completion in System III, we

have that the inequality Ψ̂κ
i (t) + ζ̂κ

i (t) ≥ Ψ̌κ
i (t) + ζ̌κ

i (t) holds for all t ∈ [0, κT ]. Thus, we have

Uκ
i (T ) ≤ Ψ̌κ

i (T ) ≤ Ψ̂κ
i (T ), and the proof is complete.

Proof of Lemma 9. Fix an ℓ ∈ {1, . . . , N} and i ∈ {1, . . . , m}. It suffices to show that

lim sup
κ→∞

Ψ̂κ
i (κtℓ) − Ψ̂κ

i (κtℓ−1)

κg(κ)
≤ (Λℓ − R(Xℓ − 2ǫe))+i [tℓ − tℓ−1] a.s.

Note the numerator of the left-hand-side is the number of class i customers blocked during

[κtℓ−1, κtℓ]. We assume R(Xℓ − 2ǫe))+i > 0, otherwise all the jobs are simply blocked and the

result then follows from the strong approximation result given in Proposition 4. Consider the

process (ζ̂κ(t) − g(κ)BY (κ−1t))i. The dynamics of this process is the same as an M/M/1 queue

with finite buffer of size L(κ) having arrival rate g(κ)(Λℓ)i and service rate is g(κ)(R(Xℓ − 2ǫe))+i .

Consider the following modified M/M/1 queue where the initial number of customers is (Mg(κ)−

g(κ)BY (κ−1tℓ−1))
+
i and all the jobs are blocked up until the time the queue becomes empty. We

denote the time when the queue becomes empty by t̂ℓ,κ. For all t ∈ [t̂ℓ,κ, κtℓ], this system operates

as the aforementioned M/M/1 queue. Let the number of customers blocked during the time interval

[κtℓ−1, κtℓ] be represented by Gκ
i . Since all the jobs are blocked during the interval [κtℓ−1, t̂ℓ,κ], we

have

Ψ̂κ
i (κtℓ) − Ψ̂κ

i (κtℓ−1) ≤ Gκ
i a.s.

Using arguments similar to that in Lemma 7, we have

lim sup
κ→∞

t̂ℓ,κ − κtℓ−1

κg(κ)
→ 0 a.s.

Next, combining the strong approximation result stated in Proposition 4 with the above, we have

N
(1),κ
i

(∫ t̂ℓ,κ

κtℓ−1

g(κ)Λ̄i(κ
−1s)ds

)

κg(κ)
→ 0 a.s. as κ → ∞, (62)

where N
(1),κ
i is the unit rate Poisson process that generates arrivals for System II. Fix a δ > 0. Next

we consider a system consisting of two buffers: Buffer A and Buffer B. For Buffer A, the arrival

rate is g(κ)(min{(Λ̄ℓ)i, (R(Xℓ − 2ǫe))i − δ})+ and service rate g(κ)(R(Xℓ − 2ǫe))+i and the buffer

size is L(κ). Let Zκ
A(t) be the headcount in Buffer A. We initialize Buffer A with its steady-state
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distribution. Note that Buffer A is an M/M/1 queue with finite buffer size and traffic intensity

ρ < 1 independent of κ. Buffer B has arrival rate of g(κ)((Λ̄ℓ − R(Xℓ − 2ǫe))i − δ)+ and all the

customers are blocked. Let Uκ
A and Uκ

B represent the customers blocked at Buffer A and B during

the time [κtℓ−1, κtℓ]. Then using (62) and the fact that the number of blocked customers in this

two-buffer system is greater than
(
Gκ

i − N
(1),κ
i

(∫ t̂ℓ,κ

κtℓ−1

Λ̄i(κ
−1s)ds

))
, we have that

lim sup
κ→∞

Ψ̌κ
i

κg(κ)
≤ lim sup

κ→∞

Uκ
A + Uκ

B

κg(κ)
a.s.

Since all the customers arriving to buffer B are blocked, then Uκ
B is given by the number of jumps

in a Poisson process with rate g(κ)((Λℓ −R(Xℓ − 2ǫe))i − δ)+ in time interval [κtℓ−1, κtℓ−1]. Using

the strong approximation result stated in Proposition 4 we have that

Uκ
B

κg(κ)
→ [tℓ − tℓ−1]((Λℓ − R(Xℓ − 2ǫe))i − δ)+ a.s. as κ → ∞.

Next, since Buffer A is in steady-state, we have

E

[
Uκ

A

κg(κ)

]
=

ρL(κ)(1 − ρL(κ)+1)

1 − ρ
Λℓ.

Thus, for any ν > 0 using the growth condition L(κ)/(log κ) → 0 as κ → ∞ and Markov’s inequality,

we have
∞∑

κ=1

P

(
Uκ

A

κg(κ)
> ν

)
≤

∞∑

κ=1

CρL(κ)

ν
< ∞,

for some constant C, given ρ < 1 independent of κ. Using Borel-Cantelli we have that

Uκ
A

κg(κ)
→ 0 a.s. as κ → ∞.

Thus, we have

lim sup
κ→∞

Ψ̂κ
i (κtℓ) − Ψ̂κ

i (κtℓ−1)

κg(κ)
≤ [tℓ − tℓ−1]((Λℓ − R(Xℓ − 2ǫe))i − δ)+ a.s.

We now get the desired result by letting δ → 0. This completes the proof.
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