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We consider a Markovian model of a multiclass queueing system in which a single large pool of servers attends to the
various customer classes. Customers waiting to be served may abandon the queue, and there is a cost penalty associated
with such abandonments. Service rates, abandonment rates, and abandonment penalties are generally different for the
different classes. The problem studied is that of dynamically scheduling the various classes. We consider the Halfin-Whitt
heavy traffic regime, where the total arrival rate and the number of servers both become large in such a way that the
system’s traffic intensity parameter approaches one. An approximating diffusion control problem is described and justified
as a purely formal (that is, nonrigorous) heavy traffic limit. The Hamilton-Jacobi-Bellman equation associated with the
limiting diffusion control problem is shown to have a smooth (classical) solution, and optimal controls are shown to
have an extremal or “bang-bang” character. Several useful qualitative insights are derived from the mathematical analysis,
including a “square-root rule” for sizing large systems and a sharp contrast between system behavior in the Halfin-Whitt
regime versus that observed in the “conventional” heavy traffic regime. The latter phenomenon is illustrated by means of

a numerical example having two customer classes.
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1. Introduction

This paper is concerned with dynamic control of a
multiclass Markovian service system in which one pool of
servers attends to several customer classes. A schematic
description is given in Figure 1. There are m customer
classes indexed by i =1,2, ..., m and a total of N servers
staffing the system, with identical capabilities that will be
described below. Customers of each class arrive from out-
side the system at rates A; and require a single service
before they depart. The open-ended rectangles in Figure 1
represent (infinite capacity) buffers in which customers of
the various classes reside as they await service, and we
allow the possibility that customers abandon the system if
queueing delays are excessive. Abandonment is represented
by the horizontal arrows in Figure 1, with associated aban-
donment rate y; (per customer) for class i, and the circle
represents the server pool. Precise details of the arrival pro-
cesses and abandonments will be provided in §2.

Servers are capable of processing customers from any
given class, and the service rate w; depends on the class
being processed. Because we assume throughout that cus-
tomers are homogeneous within a given class, there is no
loss of generality in assuming that they are served in the
order they arrive (FIFO). Thus, there are m different pro-
cessing activities available to the system manager, each
of which corresponds to a particular customer class being
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processed by a server. We assume that customer arrivals are
uncontrollable, and with regard to congestion-related costs,
we allow both abandonment penalties and linear holding
costs. That is, we take as given parameters p;, > 0 and
h; 2 0 for each class i, assuming that a penalty of p; is
incurred each time a class i customer abandons, and that
holding costs are continuously incurred at rate h; for each
class i customer who is waiting in the queue (but not for
those being served). Roughly speaking, the system man-
ager wants to allocate servers to waiting customers in such
a way that congestion costs are minimized.

The main motivating example of such a queueing system
is a telephone call center, where a server pool (typically
there are several) consists of agents or operators that have a
particular combination of training and experience, and the
customer classes correspond to different caller streams that
are distinguishable from one another upon arrival. The sort-
ing of callers into different classes may be accomplished
by any of several means, including responses given to an
interactive voice response unit. In the context of call cen-
ters, and of customer contact centers more broadly, aban-
donment rates are commonly cited as key measures of
system performance, and short waits in queue are obviously
preferred to long ones, regardless of whether customers
abandon; this serves to motivate the cost structure assumed
above.
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Figure 1. A schematic model of the system.

A1 )\2 )\m

In the call-center context, the problem of dynamically
allocating customers to server pools is called skills-based
routing, because the classes that agents in a given pool can
process, and the average rates at which they can process
them, are reflective of those agents’ skills. The model that
we study here is suitable in situations where there is only
one such agent pool. Although this is rarely the case in
most call centers, it is certainly an important first step in
studying the skills-based routing problem. Moreover, as we
hope to demonstrate here, it is quite an interesting problem
in its own right.

Our analysis is mainly inspired by the work of Halfin
and Whitt (1981), and its extension in a recent paper by
Garnett et al. (2002), henceforth referred to as GMR. GMR
consider a model that is similar to the one depicted in Fig-
ure 1, with just one customer class and one server pool.
This is considered as a simple operating model of a call
center with one class of customers and a single agent pool.
In their model, as in Halfin and Whitt (1981), there are
no scheduling decisions to be made, but they allow cus-
tomer abandonment. Assuming a Markovian model (that
is, service times, interarrival times, and abandonment times
are all exponentially distributed), they consider the asymp-
totic regime where the number of servers N becomes large.
Assuming that the customer arrival rate is approximately
balanced with the total processing capacity of the server
pool, GMR (Theorem 2) show that a normalized version
of the queue-length process in their single-class model
is well approximated, as N becomes large, by a certain
one-dimensional diffusion process. This extends the pio-
neering work of Halfin and Whitt (1981) on heavy traf-
fic analysis of many-server queueing systems (see also
Whitt 1992), the extension being to incorporate customer
abandonment. Moreover, GMR show that this asymptotic
analysis is useful in deriving certain rules of thumb for
system staffing that strike a good balance between aban-
donments and delays. In particular, the analysis via diffu-
sion approximations supports the well-known “‘square-root
rule” for safety staffing. The stationary distribution of the
GMR Markovian model is known “explicitly” (the asso-
ciated queue-length process is a birth-and-death process),

but their diffusion approximation is still useful because it
yields such ready insights about the relationship between
system staffing and system performance.

The Halfin-Whitt regime has been studied recently in
various contexts. Fleming et al. (1995) use the Halfin-Whitt
approximation in analyzing a wireless access network,
while Fleming and Simon (1999) discuss load balanc-
ing and CDMA communications applications. In a recent
paper, Das and Srikant (2000) develop approximations
for performance of a congested communication link in a
packet-switched data network. Some extensions of the basic
Halfin-Whitt model taking into account phase-type service
distributions and static priorities have been studied recently
by Puhalskii and Reiman (2000). Recent work by Atar et al.
(2001, 2002) also considers dynamic control in the Halfin-
Whitt regime. Atar et al. (2002), which is the more recent
of the two, starts from an “exact” problem formulation
which is similar to the one in our paper. They also focus
on a formal derivation of a diffusion control problem, how-
ever, they consider more general cost structures and derive
asymptotic optimality results for the controls derived from
the (formal) limiting control problem.

Unlike the “conventional” heavy traffic parameter regime
considered in Harrison (1998), Harrison and Lépez (1999),
Williams (2000), and other recent papers, the Halfin-Whitt
regime is one where high utilization goes hand-in-hand
with “small” waiting time. That is, high-quality service
can be achieved together with high-resource utilization in
the Halfin-Whitt regime. Whitt (1992) has argued that this
regime is the “right” one to consider, for purposes of sys-
tem design, in many large-scale service operations, and the
GMR extension to allow customer abandonment is crucial
for modeling call centers.

What we develop in this paper is a multiclass version
of the GMR diffusion model, in the context of which
one can undertake an approximate analysis of the multi-
class scheduling problem. The main contributions are the
following.

1. With regard to system modeling, we describe a mul-
ticlass generalization of the GMR model, one that incorpo-
rates a dynamic control capability, and justify it by means
of a purely formal heavy traffic limit.

2. With regard to mathematical analysis, we assume an
infinite-horizon discounted cost criterion for our diffusion
control problem and prove that the associated Hamilton-
Jacobi-Bellman (HJB) equation admits a smooth (classical)
solution, which is the value function (Theorem 1). More-
over, it is shown that there exists an optimal control policy
having an extremal or “bang-bang” character: in each
state the controller’s optimal action is to hold customers
of at most one class in the queue, but the class that is
so distinguished is generally different in different states
(Theorem 2).

3. With regard to qualitative insights, there are two
findings worthy of note. First, in the Halfin-Whitt heavy
traffic regime where N and the total arrival rate become
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large simultaneously, the amount of “excess capacity”
required to achieve any given level of performance is of
order /N, as Whitt (1992) and GMR have observed for
single-class models without dynamic control. This less-
than-proportional growth in required capacity is consistent
with the general finding that stochastic service systems are
characterized by economies of scale. Second, the charac-
ter of optimal controls and associated system behavior is
very different in the Halfin-Whitt heavy traffic regime from
what one sees in the “conventional” heavy traffic regime.
In particular, one does not see any degree of “asymptotic
state space collapse” in the Halfin-Whitt regime, whereas
such model simplification is the hallmark of analogous con-
trol problems obtained as conventional heavy traffic limits
by Harrison and Lépez (1999) and Kelly and Laws (1993)
among others. (For more on dynamic scheduling in the
conventional heavy traffic regime see the recent paper by
Williams 2000.) This matter is discussed in §6 and is illus-
trated by means of a numerical example in §7, where one
sees that solutions of control problems in the Halfin-Whitt
limiting regime are not simple priority rules of the kind
occurring in “conventional” limiting control problems, such
as the classical cu rule or the generalized cu rule investi-
gated by Van Mieghem (1995).

This paper is structured as follows. Section 2 describes
our “conventional” stochastic scheduling problem with
abandonment, as opposed to the approximating diffusion
model emphasized later. Section 3 discusses the natural
parameter regime for diffusion approximations proposed by
Halfin and Whitt (1981). The proposed approximate diffu-
sion control problem is formulated in §4, which contains
the main modeling contributions of this paper. We do not
attempt to justify this approximation by a rigorous limit
theorem, but the limit theory developed by Halfin and Whitt
(1981) and by GMR in their more restrictive settings pro-
vide indirect support for our more complex, multidimen-
sional diffusion model. Section 5 contains the statements of
the main analytical results: the study of the HIB equation
and the characterization of the optimal control policy. In §6,
we discuss the qualitative implications of that analysis and
some insights that it provides. We do not attempt to develop
general numerical methods for solving our diffusion control
problem, but in §7 we undertake a numerical analysis of a
simple example with two classes that illustrates the form of
the optimal policy. Finally, there are two appendices, one
containing proofs of the main results described above, and
another containing proofs of auxiliary results.

2. Conventional Model Formulation

Customers of classes 1, ..., m arrive according to indepen-
dent Poisson processes, the arrival rate for class i being
A; > 0. Also, each class i customer is characterized by an
exponentially distributed service time random variable with
mean 1/u; and an exponentially distributed “patience” ran-
dom variable with mean 1/7y;. A customer departs when

either the total time it has spent “in service” accumu-
lates to equal the former random variable (the departure
is then called a service completion), or else the total time
spent waiting accumulates to the latter random variable (the
departure is then called an abandonment). Thus, we call u;
and v, the service rate and abandonment rate, respectively,
for class i. It is assumed that w; > 0 and v, > 0 for all
i=1,...,m. (Thus, we allow the case with no abandon-
ment for some or even all classes.) The service time random
variable and “patience” random variable for a customer are
independent of one another, independent of those for other
customers, and independent of the arrival process.

The assumption that a customer’s decision to abandon
is independent of the state of the system is driven by the
main motivating example we have in mind, namely, a tele-
phone call center. In these service operations queues are
“invisible,” that is, customers waiting in the queue have no
access to state information. The assumption that customer
“patience” is exponentially distributed has only partial sup-
port in real call-center data, but it greatly simplifies the
analysis. (The recent work by Puhalskii and Reiman 2000
illustrates some implications of relaxing this assumption.)

In the interest of tractability, we assume that the ser-
vice of any customer can be interrupted at any time and
resumed later (perhaps by another server) without penalty
or loss of efficiency. This assumption, of course, is unrea-
sonable in most settings, however, one feels intuitively
that optimal policies would have similar structure with
and without preemptions. Moreover, it is plausible that
the difference between the two problems with and with-
out preemption should be negligible in the heavy traffic
limit, and in fact, such a result is proved in the recent
work of Atar et al. (2002). Given this assumption and the
memoryless character of our arrival processes, service pro-
cesses, and abandonment processes, the state of system
at time ¢ is adequately summarized by the vector Q(¢t) =
(0,(8),...,0,,(1)), where Q;(t) is the number of class i
customers then present in the system, either waiting or
being served. We denote by S := Z' the state space of the
process Q = (Q(¢): t >0), and by ¢ a generic point in S.
For each state g € S, we define an associated action set
A(q) as follows:

A(g)={aecZ?:a<qgand e-a=(e-q) AN}, 1)

where e is the m-vector of ones, x A y := min{x, y}, and
x -y denotes the usual scalar product for vectors x, y € R™.
The ith component of the vector a in (1) is interpreted as
the number of servers assigned to process class i customers
when the system is in state g; the two inequalities appear-
ing in (1) express the following constraints. First, one can-
not assign to class i more servers than there are customers
of this class present in the system. Second, the total num-
bers of servers assigned cannot exceed N, nor do we allow
“idling” of servers when work is present in the system.

If the system is in state g at some point in time and action
a € A(q) is selected, then we have a; customers of class i
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“in service,” and g; — a; customers of that class waiting.
Thus, the probability of a class i service completion in
the next ¢ time units is a;u;t + o(¢) for small ¢, where
f) =o(r) if f(z)/t - 0 as t — 0. The corresponding
probability of class i abandonment is (g; — a;)y;t + o(t).
Of course, the probability of a class i arrival is A,z + o(7)
for small ¢. These transition intensities completely specify
the probabilistic structure of our dynamic control problem.

With respect to the problem’s economic structure, we
shall assume an infinite-horizon discounted cost criterion,
the interest rate for discounting being « > 0. Given that
objective, and the stationary character of our problem data,
attention will be restricted to stationary Markov policies.
That is, a policy is defined as a function 7: S — Z' such
that 7(g) € A(q) for all g € S; in the obvious way, one
interprets 7(g) as the action to be taken when the system
is in state g. We denote by II the set of such stationary,
Markov policies. Given the transition intensities described
above, we have the following relationships for any initial
state Q(0) = g € S and any policy 7 € I1: if 7(g) = a, then
for small # > 0,

E[Q;(1) — q] =[A; — vi(q; — @) — wia;]t + o(2), (2)
and

E[Q:(?) — ('Ii]z =[A +vi(q — a;) + pia;]t +o(1), (3)
whereas

E{[Q:() — q;][Q;(?) — q;]} = o(t) fori#]. 4)

Recall from §1 that &, and p; are the holding cost rate
and abandonment penalty, respectively, for class i. To avoid
trivialities, it is assumed throughout that

c;i=h;+vp;>0 foralli=1,...,m.

(If ¢; were zero, the system manager would have no moti-
vation to ever serve class i, and so that class would be
dropped from the model.) Abusing notation somewhat, we

shall use the letter ¢ to denote both the vector (cy, ..., c,,)
and the instantaneous expected cost rate function
c(g.a)=c-(q—a). ®)

From the discussion of transition intensities above, one
sees that if state g is observed and the action a € A(q) is
selected, then the expected cost incurred during the next ¢
time units is ¢(q, a)t + o(t) for small 7 > 0.

With the instantaneous expected cost rate defined above,
the expected present value of the total future costs under
policy r, given an initial state ¢, is

Jgom) = [E:;{ [ eeom. w0 dr}, ©)

where E7{-} denotes the expectation with respect to the
probability distribution on the path space of Q that corre-
sponds to initial state ¢ and control policy 7. Hereafter,

the function J(-, 7): S+ R will be called the cost function
under policy 7.

Now set
Vig) = in[flJ(q, ) forges. (7
me

We call V() the system manager’s optimal value function,
or simply value function; a policy 7 is said to be optimal
if it achieves the infimum in (7) for each ¢ € S.

It will be convenient for future purposes to define a small
amount of additional notation. First, let

7= A/
' Z?:l /\j/lu“j

The sum appearing as the denominator on the right side
of (8) represents the total workload input rate to our server
pool (that is, average time units of server work arriving
per time unit), so obviously z; is the fraction of that input
attributed to class i. Hereafter, z = (z;,...,z,) Will be
called the vector of relative workload contributions. Also,
we define as usual the system’s traffic intensity parameter

fori=1,...,m. (8)

moa
p=N"'Y - 9)
j=1 M

The problem described in this section is a continuous-
time Markov decision process (MDP), and as such
is amenable to the method of dynamic programming.
Bertsekas (1995) provides a general account of the mathe-
matical theory associated with such problems, and Sennott
(1999) provides a more specialized account focused on
queueing models. At least in theory, our dynamic control
problem can be solved using methods described there, but
the size of the problem and its fine-grained structure (e.g.,
discreteness of the state space) make that task quite com-
plicated. Those factors cause computational difficulty on
the one hand, and overly-detailed characterization of the
optimal policies (assuming that such a characterization is
even possible) on the other. Our analysis will not pursue a
“direct attack” on the above formulation. Rather, we pro-
pose an approximate analysis of the scheduling problem to
obtain more insight.

3. The Halfin-Whitt Asymptotic Regime

Now, let us consider a sequence of models, each having
the structure described in §2, indexed by N = 1,2, ...,
attaching a superscript N to the notation established pre-
viously to indicate the dependence of a parameter or pro-
cess on N. (Accordingly, the absence of such a superscript
shows that the quantity in question is independent of N.)
For maximum simplicity, we shall vary only one other
model parameter as the number of servers N increases, that
being the total arrival rate. Following the example set by
Halfin and Whitt (1981), we want to do this in such a way
that /N (1 —p") — 0 as N — oo, where 0 is a real-valued
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constant representing the server pool’s “excess capacity”
in a suitable asymptotic sense. (If 6 is negative, then its
absolute value represents a capacity shortfall, in a suit-
able asymptotic sense.) To minimize formulational com-
plexity, we shall construct our sequence in such a way that
VN(1 —p") is simply equal to a fixed constant 6 for all N,
or equivalently,

0
N
p 1 NG foral N=1,2,.... (10)
Given that both the average service rates u,, ..., u,, and
the relative workload contributions z,, ..., z,, are to be held
fixed, one can substitute in (10) the definition (9) of p so
as to obtain the following explicit formula for the arrival
rates of each of the customer classes:

)\fvzzip,i(N—Ox/ﬁ)
fori=1,...,mand N=1,2,.... (11)

It may appear at first glance that a more general analysis
would be obtained by allowing a different parameter 6, for
each class i in (11), but as we shall explain in §6, the
added generality is in fact illusory, and characterizing the
asymptotic regime by means of a single excess capacity
parameter 6 facilitates interpretation and application of the
analysis.

Our “heavy traffic” assumption (10) says that as N gets
large, the total workload input equals the total capacity N
of the server pool plus a perturbation of order +/N. To make
connection with the analysis of Halfin and Whitt (1981) and
GMR it is useful to imagine that each class i=1,...,m
is statically allocated N; = z;N servers for its exclusive
use (that is, servers are dedicated to the various classes in
numbers proportional to those classes’ relative workload
inputs). With this understanding, let a sequence of normal-
ized vector processes XV = (XV,..., XY) be defined as
follows:

XV = LWz (12)

N
forallt >0,i=1,...,m,and N =1,2,.... The following
result is due to GMR (Theorem 2), extending the earlier
analysis by Halfin and Whitt (1981, Theorem 2) for sys-
tems without abandonments; see also Fleming et al. (1995).
Here and later, “=" denotes weak convergence in the
space D[0, o), or the associated product space D™[0, c0),
endowed with the usual Skorohod topology. Also, readers
should recall the definition (8) of z.

ProposITION 1. If XV(0) = £ € R™, then XV = X, where
the limit X = (X,,...,X,,) is an m-dimensional diffusion
process with independent components. Specifically, X is the
unique strong solution of the following stochastic differen-
tial equation:

dX(t) =b(X(t))dt +2dW(t),
X(0)=¢,

where W = (W(¢t): t > 0) is standard Brownian motion
in R™, the infinitesimal drift function b,(-) for the ith
component is

M T '9, i < Os
bl(x) — I'L['xl Ml 'xl
Y% — 0, x>0,

3 :=diag(oy, ..., 0,), and o} =2u,z;.

Each component of the limiting diffusion X in Propo-
sition 1 is essentially obtained by “pasting together” two
Ornstein-Uhlenbeck processes. For further details on dif-
fusions with piecewise-linear drift coefficients, the reader
is referred to Browne and Whitt (1995). The fact that the
properly centered and scaled occupancy process XY has a
weak limit as stated in Proposition 1 has many important
consequences, and quite a bit of insight can be gleaned
from it (for more details, we refer the reader to Whitt 1992
and to the more recent contributions of Fleming et al. 1995,
and GMR). One important observation is that, in the many-
server heavy traffic regime identified by Halfin and Whitt,
the number of idle servers is either zero or else a positive
quantity of order +/N, and the same statement applies to
the total number of customers waiting for service. It follows
(cf. GMR) that both average waiting times and abandon-
ment rates are of order 1/ /N in the Halfin-Whitt regime,
so large service systems can be designed to deliver both
high-quality service and high-server utilization. This is one
of the main powerful messages delivered in Whitt’s (1992)
paper, and further pursued by GMR.

4. The Diffusion Control Model

The Halfin-Whitt scaling in (12), and the resulting diffu-
sion limit appearing in Proposition 1, serve to motivate the
diffusion approximation proposed in this section for our
“original” control problem (see §2). In §6, we shall state as
conjectures two heavy traffic limit theorems which, if true,
would provide a rigorous justification for the proposed dif-
fusion approximations, but the argument provided here is
purely formal.

To form a diffusion approximation for the original
control problem, we first define the normalized state and
control vectors

_ oV(t)—zN

XV(t) = NG
and
UN(T) = AN(I)—_ZIV

N
where z is given in (8), and A" (¢) denotes the allocation of
servers under whatever policy 7" is selected for use in the
Nth system; that is, AV () = 7V (Q" (¢)) for all ¢ > 0. Note
that elements of the vector control UM express dynamic
server allocation as (scaled) deviations from the nomi-
nal server allocations z;N,...,z,N that were fixed in
Proposition 1.
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To motivate the proposed diffusion approximation, let
us consider a fixed N and a fixed but arbitrary policy 7"
for the Nth system, writing A" (¢) = #¥(Q"(¢)) as above.
Let us also fix an initial state g := QV(0) and set a :=
7V (q) = AV (0), then define x; := X" (0) = (¢, — Nz;)/~/N
and u; := U (0) = (a, — Nz;)//N for i=1,...,m. Using
the identity (11), readers can then verify that (2)—(4) are
equivalent to the following. For small # > O, one has

E[X (1) — x;]=[—0m; — vi(x; — ;) — pu;Jt +0(2)  (13)
and

[E[Xz'N(t) —x, P =N [=0m, + v, (x; — w;) + ]t

+2u,z;t + o(t) (14)
fori=1,..., m, whereas
E(XY ()~ x]IXY ()~ xl =o() forizj. (1)

Taking a formal limit as N — oo, we are then led to approx-
imate our original MDP by a classical diffusion control
problem in which the infinitesimal drift function depends
on the observed state x and chosen control u exactly as
in (13), and the infinitesimal covariance matrix is the limit
as N — oo of that computed in (14)—(15). That is, the
infinitesimal drift function b(x, u) is given by

bi(x,u) =—0p; — v,(x; —u;) — piu; (16)

for all i = 1,...,m, while the infinitesimal covariance
matrix is 3? = diag(2u,z;, .., 24,,2,,), independent of x
and u.

The state space for our diffusion control problem is all of
R™, and as above, we denote by x and u a generic state and
control, respectively. To determine for each state x € R”
the associated set of feasible controls U(x), one starts with
the specification (1), then applies the same centering and
scaling that define U (¢) in terms of A"Y(¢), and finally
takes a limit as N — oo to arrive at

Ux)={ueR": u<xand e-u=(e-x) A0}
for all x e R™. (17)

As in §2, we shall restrict attention to stationary, Markov
control policies, and the letter 7 will be reused in this
setting to denote a generic policy. That is, in the con-
text of our proposed diffusion approximation, a policy
is defined as a measurable function 7: R”™ — R” such
that 7(x) € U(x) for all x € R™. Formalizing the con-
clusion reached immediately above about the appropriate
“infinitesimal parameters” for the diffusion control prob-
lem, the state dynamics under an arbitrary policy 7 are
specified in differential form as

dX (1) = b(X (1), w(X(1)))dt +SdW (1), (18)

where W = (W(z): t > 0) is standard Brownian motion
in R™. Again, reusing notation employed in §2, we denote
by II the set of all (stationary, Markov, measurable) control
policies in our diffusion context.

As above, let W = (W(t): t > 0) be standard Brownian
motion in R, with ¢ € [0, 00), and fix a reference com-
plete filtered probability system (Q, F, {Z,}, P), such that
the Brownian motion is adapted to 7,, and the filtration sat-
isfies the usual conditions (cf. Karatzas and Shreve 1991).
The state process X solving (18) will be considered with
respect to this probability system. Due to the structure of
the constraints in the feasible control set U(x), Girsanov’s
theorem can be applied (as in Karatzas and Shreve 1991,
Proposition 5.3.6) even though the control set is not uni-
formly bounded; this yields the existence of a weak solu-
tion. Moreover, the law of this solution is unique; see the
proof of Theorem 2. For the future purpose of proving our
main contributions we would like to establish a stronger
result, namely, that the solution to (18) exists in a pathwise
sense. (The proof of this result is technical and is therefore
given in Appendix B.)

PROPOSITION 2. For any initial state X (0) = x and any pol-
icy m € 11, the stochastic differential equation (18) admits
a strong solution.

Hereafter, E7{-} denotes expectation with respect to the
probability distribution on the path space of X that cor-
responds to the solution of (18) with initial state x and
policy 7. Using the same centering and scaling of the state
and control processes, we can now write the dynamic opti-
mization problem as a formal limit of the original one (6) as

F(x, ) =rE;T{/0°°ewc(X(z), W(X(t)))dt}, (19)

with ¢: R” x R” > R, defined exactly as in (5). Note
that #(-, 7) is always well defined as an extended positive
real number. (As one might expect, any “reasonable” policy
7 € I1 will render a finite cost.)

The main goal is thus to solve the approximating diffu-
sion control problem by seeking an admissible policy that
minimizes (19), with the associated value function given by

V(x)= irelgj(x, ). (20)

5. Analytical Characterization of
Optimal Controls

Following standard practice, we proceed with the analysis
of the control problem by formally writing down the asso-
ciated HIB equation. The latter is a nonlinear partial dif-
ferential equation that should have as its solution the
value function V. If the solution is sufficiently smooth,
then this should lead to a sharp characterization of the
optimal control policy. Because the economic framework
we have introduced uses an infinite horizon discounted cost
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criterion (19), the associated HJB equation is given by
(cf. Fleming and Soner 1993, §1V.5)

12 ,PV(x)
520'1.27—I—%(x,VV(x))—aV(x)zo. (21)

i=1

Here, #: R" x R™ > R is the Hamiltonian
#(x,8) :=inf{b(x,u) -6+ c(x,u): ueU(x)}, (22)

where b(x, u) is given by (16).

Unlike many stochastic control problems, our formula-
tion poses several potential difficulties in that: (1) the con-
trols have pathwise state constraints, (2) the feasible control
set is not compact or even bounded, (3) the HIB equa-
tion is solved over all of R” with no boundary conditions,
and (4) the cost function is not bounded. Consequently,
more generic results, surveyed for example in Fleming and
Soner (1993), Bensoussan (1982), and Krylov (1980) do
not cover this case.

Before stating the main result we need the following def-
initions. Let C*(R™) denote the class of functions which
are twice continuously differentiable over R”, and set

€= {f € C*(R™): f >0 and sup S) < oo}.
xern 1+ |||

Note that if V € €2, it is nonnegative and can exhibit at

most linear growth. The following are our main results.

THEOREM 1. The HJB Equation (21) has a unique solu-
tion in ‘€2, and that solution is the value function defined
by (20).

THEOREM 2. Let V € €2 be as in Theorem 1, and define
0(x) = VV(x), x € R™. For each x € R™, let i*(x) be
the largest element i € {1,...,m} that minimizes c;,+
(m; — v:)6;(x). The following policy m* is optimal:

X —=[(e-x) VO] ifi=i"(x),

X; otherwise.

() = (23)

6. Discussion and Qualitative Insights

Construction and Interpretation of the Optimal Con-
trol. To see that the policy 7* defined mathematically
by (23) corresponds to the verbal description provided ear-
lier in §1, recall that the (scaled) queue length for class i
in state x is x; — 7}*(x). Thus, the optimal policy 7* main-
tains a positive queue for at most one class i, that being the
“least costly” class i*(x) identified in Theorem 2.

Now, let us consider the question of how to “interpret”
the policy 7* in the context of a single system with N large
and p near 1, taking as given the model data and derived
quantities (like ¢, z, and p) identified in §2. The first step is
to calculate the data for our “approximating diffusion con-
trol problem.” Inverting (10), the drift parameter 6 is com-
puted as @ = +/N(1 — p), and then the infinitesimal drift

rate function b(x, u), covariance matrix 3, and cost rate
function c(x, u) are as specified in §§2 and 3. Given this
data plus the interest rate «, one can in principle solve the
approximating diffusion control problem to determine the
gradient function 6(x) = VV(x) that appears in the speci-
fication of our optimal policy 7* (Theorem 2).

Given an observed state g € S, one first determines the
corresponding normalized state vector x = (¢ — Nz)/+/N,
then determines for each class i the index k; := ¢; +
(u; — v:)6;(x). Numbering the classes so that k, > --- >
K, the obvious way to implement 77* is by giving class 1
highest priority, ..., and class m lowest priority in the allo-
cation of servers. That is, one sets a; =q, AN, a, =q, A
(N—-a)),...,and a,, =g, A[N—(a,+---+a,_,)]

Asymptotic Optimality. Given a family of models
indexed by N =1, 2, ... that satisfy the hypotheses of §3
(that is, a family of models approaching heavy traffic in
the Halfin-Whitt sense), let us denote by VV(-) the value
function for the Nth model. Because of the simple way in
which we have specified our parametric family of models,
with (11) determining the average arrival rates in terms of
a single parameter 0 and all else fixed, our approximating
diffusion control problem is the same for every N. Let us
denote by 7" the implementation of its optimal policy 7*
for purposes of the Nth system, as described in the two
paragraphs preceding this one. Also, let J¥ (¢", ") denote
the cost function associated with the policy 7" in the Nth
system, and let ¢¥ = Q" (0) be the sequence of initial states
such that
:L(qN—Nz)axeR’" as N — oo.

VN

In the original version of this paper, we conjectured the
asymptotic optimality of our proposed policy, as expressed
by the following two statements:

N.

ﬁVN(xN) — V(x) as N — oo, (24)

where V(-) is the value function for the diffusion control
model of §5, and

ﬁ[vN(xN)—JN(qN,TrN)]eo as N — oo. (25)

Together, (24) and (25) imply that the percentage devia-
tion from optimal performance under our proposed policy
vanishes as N — oo, because V(x) > 0. Subject to addi-

tional technical restrictions, the above conjecture has been
verified in subsequent work of Atar et al. (2002).

Scaling Relations and Capacity Decisions. Assuming
that they are true, (24) and (25) extend to our dynamic
control setting the important qualitative insights obtained
in Halfin and Whitt (1981) and GMR about “scaling rela-
tionships” in the Halfin-Whitt heavy traffic regime, as fol-
lows. First, the vector Q of population sizes for the various
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classes varies about its “nominal value” of zN by amounts
of order /N, and because instantaneous expected cost rates
are proportional to the queue lengths in our formulation,
the best achievable performance (in terms of expected dis-
counted cost) is of order ~/N as well. The conjectured
asymptotic relationship (25) says that performance under
our proposed policy differs from the best achievable per-
formance by an amount that is o(v/N).

Of course, our whole theory is predicated on the crucial
“heavy traffic” assumption (10), which deserves further dis-
cussion. Taking the time unit to be hours for the sake of
concreteness, the quantity R = A, /u, +---+ A, /M, rep-
resents the average amount of work, expressed in server
hours, that arrives per hour. In telecommunications it is said
that R represents the offered load (in Erlangs). Alterna-
tively, one can describe R as the nominal capacity require-
ment (in servers) to handle the incoming workload. We
originally defined the traffic intensity parameter p as p =
R/N, and assumption (10) says that p =1 — §/+/N for
each of the systems in our parametric family, where 0
is a fixed constant. Combining those two relationships,
readers can confirm that N = R + 6+/R 4 o(R) in our
family of models, which can be interpreted as follows.
We are considering systems in which capacity is set using
roughly the square-root rule advocated by Whitt (1992).
That is, the excess capacity N — R is taken to be approxi-
mately proportional to +/R, but nothing has been said thus
far about how the constant of proportionality 8 might be
chosen.

In our limiting diffusion control problem (see §4), for
any initial state x it is intuitively clear that V(x) | O as
0 1 oo, because for large 6 the controlled diffusion pro-
cess X can be very nearly confined to the nonpositive
orthant (where congestion costs are zero). This suggests
that the value function in the “original system” (with large
but finite N) can be made arbitrarily small by the capac-
ity choice N = R + 6+/R with 6 sufficiently large. In
practice, the value of 6 should be chosen to optimize the
trade-off between congestion costs on the one hand and
capacity costs on the other. Assuming that the cost of
capacity is proportional to the number of servers employed,
the analysis presented here suggests the following: if both
static capacity decisions and dynamic control decisions are
made optimally, then both congestion costs and the cost of
“excess capacity” are asymptotically proportional to v/R as
R — oo.

Dynamic Control in the Halfin-Whitt Regime vs.
“Conventional” Heavy Traffic. The diffusion control
problem described in §5 is one of drift rate control, or
“bounded control,” as opposed to the “singular” diffusion
control problems obtained as heavy traffic limits in papers
like Harrison and Lépez (1999). In any given state x, the
set of available controls U(x) is compact, so the rate at
which the system manager can drive state changes is locally
bounded. In contrast, it is instructive to consider a model

exactly like the one laid out in §2, except that there is a
single server who processes class i customers at rate Nu;
(i=1,...,m). Allowing the arrival rates A, to increase
with N according to (11) as before, and dividing all popu-
lation sizes by +/N (there is no need for centering in this
setting), one approaches a “conventional” heavy traffic limit
without any scaling of time. The acceleration of both arrival
rates and service rates by a factor of N is equivalent to the
scaling of time that one usually sees in the conventional
heavy traffic theory.

Even without considering in detail the limiting diffu-
sion control problem obtained in this alternate setup, one
can readily see the distinction between the conventional
heavy traffic regime and the Halfin-Whitt regime. In each
case there exists a total service capacity of order N, and
in the conventional regime it is concentrated in a “point
source,” so the full-service capacity can be applied to a
single nonempty buffer if the system manager so desires.
The effect of such a deployment is to drain the targeted
buffer at a rate of order N, while other buffer contents
increase at a similar rate, because their input processes
are no longer balanced against comparable capacity alloca-
tions. Thus, the system manager in the conventional model
can effectively exchange customers of one class for cus-
tomers of another class (the exchange rate depends on the
ratio of the two classes’ average service rates) in a time
span of order 1/N. Such exchanges can be effected instan-
taneously in the limiting control problem, and so it is char-
acterized by a dramatic “state space collapse” (Harrison
and Van Mieghem 1997). In the Halfin-Whitt regime con-
sidered here, the amount of service capacity that can be
directed to any one customer class is limited by the number
of such customers present, so instantaneous state changes
cannot be effected, even in the limit as N — oo, and the
phenomenon of state space collapse is absent.

Why Is There a Single Drift Parameter 6§? Now, let
us return to the question of what happens if we allow each
class i to have its own “drift parameter” 6, in the relation-
ship (11) that specifies average input rates for our paramet-
ric family of models. To avoid excessive complexity, we
shall again take the average service rates u; to be indepen-
dent of N, but readers will readily see how that restriction
can be relaxed in the argument that follows. Also, we take
as given a vector z=(zy,...,z,) Withz;>0and e-z=1,
interpreting its components as [limiting relative workload
contributions for the various customer classes. Now for
each N=1,2,..., let AY be defined by (11) with 6; in
place of 6, where 6,, ..., 0,, are arbitrary scalars. Defining
the “traffic intensity parameter” p" via the obvious exten-
sion of (10), it follows that /N(1 —pV) — 6 as N — oo,
where

This parameter 6 represents, in a suitable asymptotic sense,
the aggregate excess capacity of our server pool, so it is
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precisely analogous to the single parameter 6 used to con-
struct a parametric family of models in §3.

Now, one constructs relative workload contributions zf’
for the N'th system by means of (8), but using A and A}
in place of A; and A, respectively. Defining vectors Z¥ in
the obvious way, it is easy to check that z¥ — z as N — oo.
In defining the normalized processes X" and UV (see §4),
it is now natural to use Nz" rather than Nz as the center-
ing term. That is, for each system N, we express popula-
tion sizes and server allocations as (scaled) deviations from
nominal values that reflect relative workload contributions
for that particular system. After tedious, but straightforward
calculations, one then arrives at exactly the same limiting
diffusion control problem described in §4 except that, in
the specification of the infinitesimal drift function (16) for
an arbitrary class i, 6 is replaced by 6. That is, we arrive
again at a limiting diffusion control problem having the
apparently special structure exhibited in §4; the individual
parameters 6,,...,0,,, having been accounted for in the
normalization, appear in the limiting problem only through
their weighted average 6.

To see this conclusion from a different perspective, sup-
pose that we use Nz rather then NzV as the centering term
in defining X" and UV (that is, we center about nomi-
nal server allocations based on limiting relative workload
contributions). The limiting diffusion control problem even-
tually obtained has —u,;0; as the first term on the right
side of (8), but it can be converted to the limiting prob-
lem described immediately above by means of a simple
transformation of state and control variables (of course the
translation involves 6,,...,0,,).

A Special Symmetric Case and a “Greedy” Heuristic.
An illuminating special case of our model is that, where
uy=--=u,=pmand y, =--- =1y, =vy. Given our
restriction to full-allocation policies (that is, policies which
never have idle servers and positive queues simultane-
ously), the dynamics of the total population size e- Q(t) are
then independent of the policy chosen. In the limiting diffu-
sion control problem of §4, this translates as follows: defin-
ing the driftless Brownian motion £(z) = e - W(¢) and the
normalized total “population size” Z(t) = e- X(t), one has

dZ(t) =[—mpb —pnZ(t) —yZ(tr) v O0ldt + dé(z),

independent of the policy chosen. Given that the instanta-
neous cost rate is ¢ - X(¢), it follows that for every x € R"
the designated class i*(x) in Theorem 2 is simply that
class i for which ¢; is minimal. In the limiting diffusion
control problem, this policy is actually optimal in the path-
wise sense, meaning that it minimizes total cost incurred
up to time ¢ for all ¢ simultaneously (with probability 1).
In terms of the original model, this is the greedy heuris-
tic that minimizes the instantaneous expected cost rate at
each point in time, giving highest priority to the class i
with largest c; value,..., and lowest priority to the class
with smallest ¢; value. As we shall see in the example that

follows, the greedy heuristic is not generally optimal, at
least in the limiting diffusion control problem.

7. Numerical Solution of a
Two-Class Model

Armed with the analytical characterization of the optimal
policy developed in §5, the objective now is to explicitly
compute it. This section discusses a simple two-class exam-
ple, for which the optimal policy is calculated numerically.
We make no attempt to present a full exposition of the
numerical methods that are used, nor do we describe imple-
mentation details; these topics are quite interesting in their
own right, but both are well beyond the scope of this paper.

Because the optimal index rule described in Theorem 2
uses the gradient of the value function, clearly the key is to
calculate the latter. (All other parameters defining the opti-
mal policy are assumed to be known.) Our starting point is
the nonlinear partial differential equation (PDE) (21). The
first task in computing the value function is to linearize
this equation, for instance, by fixing an initial “guess” of
the optimal policy. The Hamiltonian (22) is consequently
reduced to a linear function of the gradient, and the result-
ing equation can now be solved numerically, leading to a
solution VO for the value function. This, in turn, is used
to derive a revised estimate of the optimal policy via The-
orem 2, and the process repeats itself. These policy iter-
ations (see, e.g., Bertsekas 1995) generate a sequence of
policies {7*} that, under reasonable conditions, should con-
verge to an optimal policy, that is, 7% — 7r*, in which case
the associated sequence of solutions of (21) {V*} should
converge to the value function V. (Precise notions of con-
vergence will not be rigorously addressed here.) The only
remaining algorithmic detail is the method by which the
linearized version of (21) is solved. To this end, we use the
so-called finite element method (FEM), which is a standard
numerical tool in solving PDEs. For a general description
of the method see, for example, Becker et al. (1981), and
for recent work involving FEM in the context of numerical
solutions to dynamic control problems in queueing systems,
see Kumar and Muthukumar (2004). An alternative method
which is often used is the Markov chain approach described
in Kushner and Dupuis (1992).

For a numerical example, consider a system with two
customer classes and the following parameter values: ser-
vice rates u; = 1 and u, = 1.5; abandonment rates y, = 0.5
and vy, = 1; holding cost rates #; =1 and h, = 1.5; aban-
donment penalties p;, = 1 and p, = 1.5; interest rate for
discounting a = 0.1; and asymptotic excess capacity 6 = 1.
Given the characterization of the optimal policy in Theo-
rem 2, we define

(x5 %) = ¢y + (o — ¥2)8,(xy, x) — ¢
— (1 =¥ (x1, x5),

where 8,(x,, x,) = V,V(x,, x,) is ith component of the gra-
dient of the value function and ¢; = h; + p;y; for i =1, 2.
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Figure 2.

The test quantity (x,, x,) as a function of
the state.

The function ¢ is the “test quantity” that determines the
optimal action, as follows:

o If x, +x, 20 and ¢(x,,x,) > 0, then class 1 gets
priority; the resulting allocation is ,(x,, x,) = x, and
™ (X, Xp) = —x;.

o If x, +x, >0 and ¢¥(x,,x,) <O, then class 2 gets
priority; the resulting allocation is ,(x,, x,) = —x, and
m (X1, %) = X,

o If x; + x, <0, the system has excess capacity and
there are no server allocation decisions to make.

Figure 2 gives a plot of the test quantity ¢(x,, x,) as
a function of the state. Recall that the state corresponds
roughly to the excess (or shortfall) of customers in the orig-
inal system, relative to the nominal (fluid scale) allocation
of servers. Figure 3 depicts the corresponding optimal index
rule, which partitions the state space into three disjoint

Figure 3. Priority regions for the optimal index policy
*(xy, X,).
3
2r cla&js 2 priority
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po O fmmmmmm e s e e
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regions where the optimal action is prescribed. This exam-
ple shows that the optimal policy derived from our diffusion
control problem is generally not a static priority policy.

Appendix A. Proof of the Main Results

PrOOF OF THEOREM 1. Because the proof is somewhat
lengthy and proceeds in several steps, we first sketch briefly
the main ingredients. The starting point is to apply a stan-
dard truncation idea (see, e.g., Kushner 1967). This enables
us to study a sequence of quasilinear PDEs with a Dirichlet
boundary condition. The results given in Ladyzhenskaya
and Uraltseva (1968) describe the required regularity which
the PDE should possess for solvability. Essentially, this
amounts to the Hamiltonian # in (22) having proper
Lipschitz regularity. We then take a sequence of Dirichlet
problems such that the boundary condition vanishes in the
limit. The unique solutions to this sequence of truncated
problems, denote them by {V,}, are smooth and moreover,
we show that these functions along with their first and sec-
ond derivatives constitute an equicontinuous family. Hence,
they are precompact in the class of continuous functions
equipped with the topology of uniform convergence on
compact sets. Consequently, we can extract a subsequence
that converges uniformly on compact sets with the limit
being the sought value function which satisfies the original
HJB Equation (21). We now proceed with the proof.

Step 1. We apply the aforementioned truncation argu-
ment, and consider properties of the “truncated problem.”
Fix n € N and let B(0,n) = {y: ||yl < n}. Fix a policy
7r € Il and an initial condition X(0) = x € B(0, n). We
will be considering the diffusion X which solves (18)
“killed” at the boundary of B(0,n). Set T = inf{r > 0:
X(t) € dB(0, n)}, where for a set S we let dS denote its
boundary. Where no ambiguity arises, we use T, :=T," for
brevity. Let

T,
g,(r,m) =7 [ e e(X (1), m(X (1)) dr
0
and set
V. (x):=inf %, (x, 7).
mell
LEMMA 1. V,(x) is the unique bounded solution in
CZ(Rm) Of

62W( ) +#(x, VW(x)) —aW(x) =0, (26)

1 m
L

W(x) =0, xe&B(O,n),

where (-, -) is defined in (22).

The proof, which is based on existence results for quasi-
linear PDEs is deferred to Appendix B.

Fix r > 0, and set B(0,r) = {y Iyl < r}, the ball of
radius r in R™. Then, for all n > |r] 4+ 1, we have by the
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standard interior estimates of Ladyzhenskaya and Uraltseva
(1968, pp. 298-300) that ||VV,(x)| < C, for all x € B(0, r),
where C; is a constant depending on r but indepen-
dent of n. A similar estimate holds for V,(x), which we
make explicit using the following argument. First, note that
V. (x) < V(x), and the latter can be bounded using Fubini’s
theorem as follows: V(x) < Cfooo E7[||X(2)||]dt for some
constant C independent of n. We now appeal to Lemma 2
which asserts that E7[|| X (7)|]] < C(1+|x|))(1+¢). Thus,
we have V(x) < C,(1+ ||x||) and this implies the uniform
bound on V,(x).

Step 2. We consider a sequence of truncated problems
and their limit. The results stated so far imply that {V,}
and {VV,} are bounded uniformly on compact sets, inde-
pendent of n. Because V, satisfies the HIB equation asso-
ciated with the truncated problem, and the Hamiltonian
is Lipschitz (as established in the proof of Lemma 1), it
follows that {A_V,} is also bounded on compact sets, inde-
pendent of n. Here A (-) denotes the second-order operator
in the HIB equation, that is, the Laplacian operator, with
weights 07, i=1,2,..., m. Because {A,V,} and {VV,} are
uniformly bounded on B(0, r), it follows that both V, and
VV, are Holder continuous, in the ball B(0, r), uniformly
in n. Again, because the Hamiltonian is Lipschitz in its
arguments, and because V,, satisfies the PDE with boundary
conditions, it must be that AV, is also Holder continu-
ous uniformly in n. Hence, the families {V,}, {VV,}, and
{A,V,} are equicontinuous and bounded. Consequently,
Arzela-Ascoli (see, e.g., Rudin 1987) establishes that for
the former there exist convergent subsequences, denoted
for brevity still by subscript n. Standard results concern-
ing interchange of derivatives and limits establish the exis-
tence of a V € C' such that V, — V, VV, — VV, and
AV, — A,V uniformly on B(0,r). Standard PDE argu-
ments (cf. Ladyzhenskaya and Uraltseva 1968) then give
the improved smoothness of V. Now, V, satisfies the HIB
equation with boundary condition and V, — V uniformly
on B(0, r). Because the Hamiltonian (22) is Lipschitz (see
the proof of Lemma 1) we can “pass” the above limits
“through” the truncated HJB equation to establish that V
satisfies the original HIB PDE on B(0, r). Because r was
arbitrary, V must satisfy the original HIB Equation (21)
in R™. Now, observe that by definition of V, and V, mono-
tone convergence implies

V@) V) = inf ET [ e e(X(). m(X (1)) dr.
Thus, the proposed limit V is the value function of the orig-
inal control problem. That V is finite for all x follows from
the bound established above, namely, V(x) < C(1+ ||x|).
Step 3. The main task here is to apply a verification
argument for functions in the class €%. Fix W € €2, and a
policy 7 € II. Now, application of the It6 differential rule
to exp(—at)W(X(t)) gives (see, e.g., the verification proof
in Fleming and Soner 1993, p. 173)

W(x) < F(x,m)+ “'flio?f e YET[W (X (1))]. (27)

The following result is proved in Appendix B. (We note
that the original proof of this lemma contained an error
that was pointed out to us by Rami Atar; the current proof
is similar to one in Atar et al. 2002 but was developed
independently.)

LEMMA 2. For any x € R™ and policy m €11,
EVIIX ()] < €1+ [lx[) (L +1)
for some positive finite constant C.

Consequently, using W(x) < C(1 + ||x||), we have that
the last term on the right side of (27) converges to zero.
Thus, we have W(x) < #(x, 7), and because 7 € Il was
arbitrarily chosen, we have W(x) < V(x), where V is the
value function. On the other hand, the optimal policy 7*
described in Theorem 2 satisfies

7 (x) € argmin{b(x, u) - VW (x) + c(x, u): u e U(x)}

for all x € R™, and is measurable. Thus, for X solving (18)
under the policy 7*, we have

7 (X(1)) € argmin{b(X (1), u) - VW (X (1))
+e(X(1), u): ueUX(1))},

almost surely for all ¢. Applying Itd6’s differential
rule as before, we have that W(x) = ¥(x, 7*). Thus,
W(x) = V(x), and together with the previous bound estab-
lishes that W is the value function and 7* is an optimal
policy. This concludes the proof. O

PROOF OF THEOREM 2. In the proof of Theorem 1 we estab-
lished that V(x) < #(x, o) for all 7 € I1. It was also shown
there that for a solution W € €2 of the HIB Equation (21),
and policy 7* satisfying

7 (x) € argmin{b(x, u) - VW (x) + c(x, u): u € U(x)}

for all x € R™, we have V(x) = ¥(x, 7). It is easy to check
that the explicit expression for the policy given in Theo-
rem 2 is obtained by substituting the drift function » and
feasible control set U into the above optimization problem.
The mapping defined by 7: R” = R™ is clearly measur-
able (thus, we do not need to invoke a measurable selection
theorem). Therefore, U*(t) = w*(X(t)) is by construction
an optimal control. The existence of a weak solution of
the stochastic differential equation (SDE) (18) under the
policy 7* follows from Karatzas and Shreve (1991, Propo-
sition 5.3.6). Uniqueness in law follows from an appli-
cation of the Girsanov transformation as in Karatzas and
Shreve (1991, Proposition 5.3.10), given that we can show
that for all T < oo, [/ [|b(X (1), m(X(1)))||*dt is finite, P,
almost surely. This, in turn, can be verified by applying
It6’s lemma to the process X2, using the crude bound
|[7(x)|| < C|lx||, and finally applying Gronwall’s inequal-
ity. The reader may also consult Karatzas and Shreve
(1991, Problem 5.3.15) for further details. Thus, 7* defines
an admissible stationary Markov policy, the associated
(optimal) diffusion is well defined, and its law is unique
which suffices for defining the value function. This con-
cludes the proof. [
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Appendix B. Technical Proofs and
Auxiliary Results

PROOF OF PROPOSITION 2. Because the proof is rather tech-
nical, we first describe the main idea which essentially
relies on a localization argument. We first suitably trun-
cate the drift function b(x, u) in (18) to b"(x, u), which is
bounded. We then consider the SDE with drift b”, the “trun-
cated version” of the original problem, displayed below
in (28). Existence and uniqueness of a strong solution to
the truncated version (28) is due to the drift being bounded
(see, e.g., Karatzas and Shreve 1991, Proposition 5.5.17
and Veretennikov 1980 for the multidimensional analogue).
We then restrict attention to a region in R™ such that the
truncated drift is equal to the original drift (that is, b" = b
for x values in that region). The solution of the original
problem (18) is then given as the solution to the truncated
problem up to a random “exit time” of the aforementioned
region. That is, the process solving (18) is defined as the
solution to the truncated problem (28), up until the time it
exits the bounded domain where the truncated drift 5" is
equal to the original b. Finally, we prove that this exit time
occurs eventually (a.s.) after time 7, for any T < oo, thus
proving the existence of a strong solution to the original
problems (18) on [0, o).

Step 1. For each n > 1, we define the truncated version
of (18) to be

dX"(t) = b"(X"(t), w(X"()))dt + 2dW (1),
X"(0) = x, (28)

with the drift coefficient truncated coordinatewise as
follows:

b(x;, u;) if |b;(x;, u;)| < n,
b (xpu) =4 . .
nsign(b;(x;, u;)) if |b;(x;, u;)| > n,

where sign(x) =1 if x >0 and —1 if x <0. Fix T < oo,
m € II, and note that for all x € R” the truncated prob-
lem (28) admits a unique strong solution X" = (X"(¢): t €
[0, T]) (see, e.g., Karatzas and Shreve 1991, Proposition
5.5.17). Let us now define a region in R™ such that
b"(x, u) = b(x, u), where b(x, u) is the drift in the original
problem (18). To this end, note that by definition of the
drift function b and the feasible control set U, there exists
a positive constant R < oo such that |b(x, u)| < R(1+ ||x|))
for all u € U(x). Put R, :=n/R — 1, and consider the ball
of radius R, centered at the origin, B(0, R,). By construc-
tion, ||b(x, u)|| < n for all x € B(0, R,) and u € U(x). Fix
n,l €N such that n > [, x € B(0, R)), 7 €11, and let

T!:=inf{r >0: X"(t) € B(0, R))} (29)
denote the exit time of X" from the ball B(0, R,;). Define

X(1) := X"(t) for 0 < r < T'. Note that X () is well defined
because up to the exit time 7', X"(¢) is the unique strong

solution to (28). Moreover, note that b" is equal to ' in
B(0,R)), so X"(t) = X'(¢) (a.s.) until the exit time from
B(0,R)), and T/ = T' (as.) for all [ < n. But note that
b"(X"(t), w(X"(t))) <n(as.) for 0< ¢t < T,:=T}. Thus,
we have constructed a strong solution, X(7), to the original
problem (18), up to the “explosion time” T, :=1lim,_, T,.
(Note that 7, 1 oo as n — oo so the limit 7, exists, almost
surely.)

Step 2. Our main objective here is to prove that 7, > T,
eventually, P -almost surely. First, note that {7, < T} €
{sup,co.r] IX"(M)| > R,}. Now, we take the function
g(x) =log(1+ ||x||*) so that

2x
Ve(x) = ——,
S =T
1 m aZg(x)
EZO’? e <Cym. (30)

i=1

Here, and in what follows C; are constants independent
of n. By Itd’s formula, we have

SO W) =0+ [ o'g(X(5)) ds

+/th(X”(s))2 AW (s), 31)
0

M, (1)

where " is the generator corresponding to the truncated
problem (28). But note that by (30) and the fact that
|6(x, u)|| < R(1+ ||x||), we have that

. 1 & ,98(x)

23
]2

L[] =

+ Ve(x) - 0" (x, m(x))

<Cm+C, (32)

Now, the quadratic variation of the stochastic integral M, ()
is bounded almost surely, (M,)(¢) < C,(1 + ), which fol-
lows from the boundedness of Vg. Thus, we also have
EM?*(r) < C;(1 + 1), and therefore, M, = (M, (1): t €
[0, T]) is an L,-martingale (with respect to the Brownian
filtration %,). Moreover, note that for all k > 0, we have
sup, Eexp{k(M,) (1)} < oo for all ¢t > 0. Thus, Novikov’s
condition holds (see, e.g., Karatzas and Shreve 1991,
Proposition 3.5.12) and therefore,

M, (1, k) = exp{ KM, (1) — %(M,)(t)}

is a martingale, in particular, Eﬁn(T, k) = 1. Going back
to (31), we have

log(1+ [ X"(1)|1*) <log(1+ [lx[*) 4+ C\T + M, (1)
= (1/2){M,) (1) + (1/2)(M,) (1)
<log(1+ ||x|I*) + Co(1+T) + M, (1)
—(1/2){M,)(1),
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almost surely for all 7 € [0, T]. Exponentiating both sides,
taking the supremum over ¢ € [0, T], and taking expecta-
tions, we have

E, sup [|X"(1)]?
t€[0, T]

X

<+ ||x||2)eC4T[E[ sup exp{M, (1)~ (1/2><M,1><r)}].

We now bound the expectation on the right side as follows.
First, by Jensen’s inequality,

[E[ sup exp{M, (1) — (1/2)<Mn>(r>}]

t€l0,T]

< (g] sup exotin, o) - (1/2)<M,,><r>}}2)1/2,

t€[0, T
and for the term on the right side, we have
E| sup (explt, (1)~ (1/2) (4,0 |
t€[0, T
< CEexp{2M,(T) — (M, )(T)}
< GEexp{2M,(T) —2(M,)(T)} exp{C5T}
=C,eST.

The first step above uses the L?-maximal inequality for
martingales, the second step follows by adding and sub-
tracting (M,)(T) in the exponent and using the previous
bounds on this process, and the third step follows on noting
that exp{2M,,(T) —2(M,,)(T)} is a martingale (indeed, the
exponential martingale M, (¢, k) with k = 2). Combining
these arguments, we have that

sup [[X"(1)|P < 2,
t€[0, T
with
Y= Cy(1+ [1x]) exp{C, T}
: Sup]exp{Mn(t) —(1/2)(M,)(1)}

tel0, T

independent of 7. Also, note that EY? < C,(1 + |x|?)-
exp{C,T} independent of ¢ and n.
Step 3. To finish the proof, let

A, = {w:
and note that

SP(4,) <SP, >R,)

n=1

swp X (1, )] > Rn}
t€[0, T

and the latter is finite by the above bounds on EY? which
assert that EY? < C, independent of n. Thus, an application
of the Borel-Cantelli lemma yields that || X"(¢)|| < R,, for
all but finitely many n, PP.-almost surely for all 7 € [0, T'].
But, by definition of the exit time 7,,, this implies that 7, >
T, eventually, P.-almost surely. Because 7, 4+ oo as n —
o0, it follows that P, (T,, < T) = 0. Because T was arbi-
trary, this proves that the strong solution to (18), X(z), can
be constructed on [0, 00). This concludes the proof. O

ProOF OF LEMMA 1. We appeal to the general existence
theory in Ladyzhenskaya and Uraltseva (1968), specifically,
their Theorem 8.3, p. 301 lists the conditions that one
needs to verify for the differential operator in the HIB
equation, so that a smooth solution exists. In particular,
the HIB equation in our case is uniformly elliptic and the
obvious solvability condition « > 0 holds. In addition, the
Dirichlet boundary condition is regular (recall, it is zero),
and involves a smooth boundary surface (the sphere of
radius n in R™). The only condition that requires verifi-
cation concerns the regularity of the Hamiltonian % (x, p)
defined in (22). First, we prove that #(x,-) is Lipschitz
continuous. Fix p, g € R™ and x € B(0, n). Then,

% (x, p) =#(x, )| < |p—qll sup [|b(x, u)

uel(x)

S GO+ xIDIP —4ll,

which follows from the structure of the feasible control
set U(x). We now show that #(-,p) is Lipschitz
continuous. To facilitate the following derivation, we make
a change of variable and set w; = (x; — u;)/((e - x) v 0)
fori=1,...,m, where e =(1,...,1) € R". Thus, u < x
implies w > 0, and (e-u) = (e - x) AO implies ¢ - w = 1.
With this parameterization, we have that b(x, w) = —6u —
px—+(n—v)(w((e-x)Vv0)) and c(x, w) = c-w((e-x)VvO0).
The key observation is that both b(x, w) and c(x, w) are
Lipschitz continuous, uniformly in x and w. (This follows
upon observing that f(x) = (e-x) v 0 is Lipschitz contin-
uous.) Now, fix p € R™, and x, y € B(0, n). For any é > 0,
it is possible to choose a u* € U(y) such that b(y, u*) -
p+c(y,u*) < #(y, p) + 6. Alternatively, b(y, w*) - p +
c(y,w*) < #(y, p)+ 6. Note that #(x, p) < b(x, w*)-p+
c(x, w*) is obvious because the Hamiltonian is the infimum
over all feasible w. Consequently, we have that

#(x,p) = H(y, p) < b(x,w") - p+c(x, w")
— (b, w") - p+c(y, w) —95)
<C(+lpDlx =yl +9,

where C is a constant that is independent of x, y, and p.
The reverse inequality is obtained in an analogous manner.
Finally, because 6 > 0 is arbitrary, we may set it to zero
to obtain the desired result |#(x, p) — #(y, p)| < C(1 +
lpIDllx — y|l. Thus, #(-, p) is Lipschitz. Because x, y are
restricted to B(0, n), and the differential operator is uni-
formly elliptic, we also have that the gradient of the solu-
tion is bounded (cf. Ladyzhenskaya and Uraltseva 1968,
p. 296), which implies boundedness of p, g. This, and the
local Lipschitz result above suffice to verify the remain-
ing regularity conditions in Ladyzhenskaya and Uraltseva
(1968, Theorem 8.3). Thus, by the cited theorem, we have
existence of a C? solution to the PDE. Standard argu-
ments yield that V,, the value function for the truncated
problem, is the unique bounded solution of the truncated
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HIJB equation. For details see, e.g., Fleming and Soner
(1993, pp. 172-174). We omit the details; more general
arguments appear in the verification step (Step 3) used in
the proof of Theorem 1, and the proof of existence of
optimal Markov policies (Theorem 2). This concludes the
proof. [

ProoF oF LEmMMA 2. It suffices to seek upper and
lower bounds on the individual coordinates of the con-
trolled diffusion, in terms of “nice” processes which yield
the requisite growth rate stated in the lemma. To this
end, let .F, ={ie{l,....m}:y, <} and ¥, ={i €
{1,...,m}: y; > u,;} (allowing for the possibility that one
of the two sets is empty). Note that for i € .7, we have for
all x € R™ and admissible u € U(x), that the drift of the
controlled diffusion is bounded as follows:

bi(x,u) =—0p; — v,(x; —u;) — pu;

=—0p; — ¥ix; — (1 — YU
=2 —0u; — pix;, (33)

where the inequality is a consequence of u; < x; for
all admissible u € U(x). Similarly, we have for i € .%,,
that b;(x,u) < —0p; — p;x;. Now, fix a complete fil-
tered probability space and an m-dimensional standard
Brownian motion W = (W(¢): t > 0), where W(t) =
(W, (2),...,W,(2)). Fix xeR™ and let Y; = (Y;(¢): t 2 0)
be the solution of the SDE

dY,(1) = —(Op; + w,Y(0)dt + o, d W, (1),

with ¥;(0)=x, fori=1,...,m. Fix m €Il and let X be a
solution of the controlled diffusion (18). Fix i € .7,, assum-
ing this set is nonempty, and let A, (1) = Y;(z) — X,(¢). Then,
we have that

A1) = [ 1=00 = wY,(5) = BX(). (X ()] ds.

Note that the drift ordering in (33) is policy independent
and, moreover, does not depend on {xj: Jj #i}. Also, Y,
has linear drift which does not depend on 7. In this set-
ting, we can replicate the comparison proof in Karatzas
and Shreve (1991, Proposition 5.2.18) yielding (A(#))* <
,u,-fot(A(s))Jr ds, P -almost surely for all 7 > 0. Gronwall’s
inequality implies that (A(z))" = 0, thus Y.(¢) < X,(¢),
P,-almost surely for all # > 0. The same argument yields
Y, (1) > X,(t) for i € .7, P,-almost surely for all > 0.
Observe that for any x € R and u € U(x), we have

Ab(x, u)

by (x, 1)
==
i€, M

=Z&xi_”i)+2”i_z X+ u

e G i i q i q ;T i H q
i€y, 1 €9, ied, /1 i i€,

n Z b;(x, u)

ied, Yi — M

(@

=2

m
X+ Z u;
i=1

i€y, 7, M
(2 - Z:iej‘y %Z" ‘_X,- Zlm=1 X; > 0, (34)
_Zie7 ” M, +Zzei'x >in % <0,

where (a) follows from x; > u;, and (b) follows from the
fact that > 7" u; = (30, x;) A0, Now, fix a policy 7 €Il
and an index j € .¥,, assuming this set is nonempty. Then,
for some finite positive constants C, ..., C,, we have

X,(0)
Yi — K
Xi(1) X;(t) X;(1) X;(t)
=) ——= > —=> +2 —
ies, i iedyizj Vi T i ey, M iey, Yi T M

G0~ o+ [ ADOK(s), w(x(5)) ds
— Y oW1+ Y oW, (1)

IS i€,

m t m
~G YOI =Gt = ¢ [ Y1)l ds
i=1

—C, ) IW ()], (35)
i=1

where (c) follows from X,(7) > —|Y;(z)| for i € .7, and
X;(1) < |Yi(2)] for i € ¥,; and (d) follows from (34). For
i € J,, we already have the upper bound X; < Y;, where
the processes {Y;} are stable Ornstein-Uhlenbeck processes.
In particular, E,|Y;(¢)] < Cs(1 + ||x||) for some finite pos-
itive constant independent of ¢. Consequently, using (35)
we have that for all i € .7, E7|X,;(1)| < C(1 + [ x[)(1 +1)
for some finite positive constant C independent of x, ¢ and
the policy 7. For i € .¥,, we can derive a lower bound
on —X;(t)/u; by essentially repeating the above arguments
verbatim. This, in turn, yields an upper bound on X;(7)
that together with the lower bound X; > Y, establishes that
E7|X:()] < C(1 + [|x[))(1 + ¢) for all i € .7,. This con-
cludes the proof. O
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