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We consider a joint inventory-pricing problem in which buyers act strategically and bid for units of a firm’s product over
an infinite horizon. The number of bidders in each period as well as the individual bidders’ valuations are random but
stationary over time. There is a holding cost for inventory and a unit cost for ordering more stock from an outside supplier.
Backordering is not allowed. The firm must decide how to conduct its auctions and how to replenish its stock over time to
maximize its profits. We show that the optimal auction and replenishment policy for this problem is quite simple, consisting
of running a standard first-price or second-price auction with a fixed reserve price in each period and following an order-
up-to (basestock) policy for replenishing inventory at the end of each period. Moreover, the optimal basestock level can be
easily computed. We then compare this optimal basestock, reserve-price-auction policy to a traditional basestock, list-price
policy. We prove that in the limiting case of one buyer per period and in the limiting case of a large number of buyers
per period and linear holding cost, list pricing is optimal. List pricing also becomes optimal as the holding cost tends to
zero. Numerical comparisons confirm these theoretical results and show that auctions provide significant benefits when: (1)
the number of buyers is moderate, (2) holding costs are high, or (3) there is high variability in the number of buyers per
period.
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Introduction

With the capabilities of Internet commerce, auctions have
gained renewed popularity in both consumer and industrial
markets (van Ryzin 2000). The new potential to use online
auctions as an alternative to traditional list-price mecha-
nisms raises some important theoretical and practical ques-
tions. In particular, which pricing mechanisms are optimal
for sellers in any given context? How should these mech-
anisms be designed and implemented? How much benefit
can alternative mechanisms provide over list pricing? And
under what conditions are they most beneficial?

In this paper, we provide answers to these questions for
a firm that orders, stores, and sells a homogeneous good
over an infinite horizon. Our model is a stylized represen-
tation of a retailer, distributor, or producer who uses an
auction mechanism for selling a replenishable product. The
firm purchases its good at a constant unit cost from an out-
side supplier and incurs an increasing, convex holding cost
on its inventory. There is zero leadtime for replenishment.
Demand in each period is characterized as a random num-
ber of buyers, each of whom has his own, private value for
the firm’s good. The statistics of demand are assumed sta-
tionary over time and are known to the seller and all buyers.
This demand model follows the assumptions of classical
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auction theory as described in the seminal work of Vickrey
(1961), the influential paper of Milgrom and Weber (1982),
the recent survey by Klemperer (1999), and earlier survey
articles: McAfee and McMillan (1987a), Milgrom (1989),
Rothkopf and Harstad (1994), Matthews (1995), and Wolf-
stetter (1996). As in this auction literature, we assume buy-
ers act strategically to maximize their utility (i.e., their
value minus the price they pay). As a result, the buyers’
behavior depends on the auction and inventory policy of the
firm. The firm must decide on an auction mechanism—that
is, a set of rules for allocating goods to buyers and collect-
ing payments from them—and a strategy for replenishing
its stock that maximize its profits over an infinite horizon.
We consider both the discounted and average profit criteria.

We analyze this problem using results from Maskin and
Riley (2000), who show that the expected revenue for a
seller in an auction depends only on the allocation—that
is, which buyers receive the goods and which do not. By
formulating a dynamic program in these allocation vari-
ables, we are able to characterize the optimal allocation and
replenishment strategy for the firm. We then show that this
optimal allocation can be achieved by conducting a first-
price or second-price auction with a fixed reserve price in
every period. The reserve price is related only to the replen-
ishment cost of the good. The optimal replenishment policy
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is to order up to a fixed basestock level at the end of each
period. Thus, the optimal policy is quite simple and famil-
iar; namely, use a traditional auction with a reserve price as
the selling mechanism and use a traditional basestock pol-
icy for replenishing inventory. We call this policy a base-
stock, reserve-price-auction policy. Moreover, the policy is
easy to compute, and in the average-cost case reduces to a
single parameter search over a closed-form profit function.
We also extend these results to variations of the model,
including the case where the firm sells in two markets—one
fixed-price market and one auction market.

We then compare the basestock, reserve-price-auction
policy to a list-price policy, which uses a fixed posted
price in each period together with a basestock policy for
replenishment. (The price and basestock level are jointly
optimized.) This is the policy derived by Federgruen and
Heching (1999) and shown to be optimal among all
dynamic pricing and ordering policies under a model that
is quite similar to ours. We show that this basestock, list-
price policy is optimal for our problem as well in several
limiting cases, including the case where there is only one
buyer per period, the case where the number of buyers
per period tends to infinity and the holding cost is linear,
and the case where the holding cost is zero. A numeri-
cal study shows how the optimal basestock, reserve-price-
auction policy compares to list pricing more generally. The
results indicate that the auction policy is significantly bet-
ter than list pricing under relatively specialized conditions,
namely when the number of buyers per period is moder-
ate (e.g., 5 to 10), the holding cost is large (e.g., hold-
ing cost rates of 1% of the value of the goods per period
or higher), and when the variation in the number of buy-
ers in a period is high. One can argue that many con-
sumer and industrial markets do not match these conditions;
consumer markets typically have high-volume demand and
holding costs per period are less than 1%, though for spe-
cialty, low-volume products or big-ticket, high-tech prod-
ucts like personal computers, these conditions may hold. In
some industrial markets—the sale of capital equipment for
example—one encounters a modest volume of buyers and
high holding costs, in which case our results suggest that
the optimal auction policy can offer significant improve-
ments in profit. Still, our model shows that list pricing is
near optimal in many cases, which perhaps provides one
explanation for its continued popularity, despite the promise
of Internet-based auctions.'

Literature Review

While there is wide variety of work on auctions (see the
survey articles mentioned above), analyzing joint auction
and inventory decisions is a relatively new topic. In a finite
horizon setting without replenishment, Segev et al. (2001)
analyze a problem in which an auctioneer tries to sell mul-
tiple units of a product using a multiperiod auction; how-
ever, they assume customer bidding behavior is modeled
exogenously by a Markov chain. Pinker et al. (2001) study

how to run a sequence of standard k-unit auctions, using
bidding information to learn about the customer valuation
distribution, and determining the lot size k for each auction,
the number of auctions to run, and the duration of each of
them. Our earlier work, Vulcano et al. (2002), analyzes an
optimal auction for a firm selling a fixed inventory over a
finite horizon, and the approach we use here for the infinite
horizon problem with replenishment closely follows it.

Our work is most closely related to research on stochas-
tic inventory-pricing problems; see, for example, Feder-
gruen and Heching (1999), Li (1998), Amihud and Mendel-
son (1983), Thomas (1974), Thowsen (1975), and Zabel
(1972). Indeed, our problem is in many ways an auction
version of the one studied by Federgruen and Heching
(1999). They considered a problem in which a firm may
choose a state-dependent list price and make replenishment
decisions in each period. They showed that in the infinite
horizon, stationary case, the optimal policy is a so-called
basestock, list-price policy defined by two critical values p*
and z*; if the inventory is above z*, the firm orders nothing
and selects an inventory-dependent price below p*, which
is decreasing in the inventory on hand; if the inventory is
below z*, the optimal policy is to order up to z* and price
at p*. Thus, once the inventory level drops below z*, the
optimal policy is to use a fixed price and a fixed basestock
level in each period. These results are essentially the fixed-
price analogs of our results in Theorems 1 and 2 for our
auction case. We also compare our results to a list-price
policy of this type.

Overview

The remainder of this paper is organized as follows. In §1,
we review the results we use on optimal auction design,
formulate our inventory-pricing problem as a dynamic pro-
gram, and present the main structural results on the base-
stock, reserve-price-auction policy. Section 2 provides the
proofs of these main theorems. In §3, we analyze various
extensions of the model, including the case where the firm
has demand from both a fixed-price and an auction market
and the case of the long-run-average profit criterion. In §4,
we compare the basestock, reserve-price-auction policy to
a basestock, list-price policy. Both theoretical and numer-
ical comparisons are given. Finally, conclusions are given
in §5. Several proofs are presented in the appendix.

Notation

We use the following notation: All vectors are assumed to be
in R’} unless otherwise specified. v; denotes the jth com-
ponent of vector v, and v_; = (v, ..., V;_1, Vj 5 ..., U,) I8
the vector of components other than j. Subscripts between
parentheses stand for reverse order statistics; that is, for
any vector v, vy 2 V) =+ 2 V). Z, denotes the non-
negative integers. The positive part of a number a is a™ =
max{a, 0}. Analogously, a~ = — min{a, 0}.
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The shorthand a.s. stands for almost surely; i.i.d. is short-
hand for independent and identically distributed; and p.m.f.
for probability mass function. A function is said to be
increasing (decreasing) when it is nondecreasing (nonin-
creasing).

For a discrete-valued function G(x), we define the dif-
ference AG(x) = G(x) — G(x — 1), and say that G(-) is
concave (convex) when AG(x) is decreasing (increasing)
in x.

1. Optimal Auctions, Model Formulation,
and Statement of Main Results

In this section, we first review some results from the the-
ory of optimal auctions that are required for our analysis.
Readers familiar with auction theory may skip or only skim
this section. We then formulate an inventory-pricing prob-
lem using this auction theory and state our main theoreti-
cal results on the optimal, dynamic auction-ordering policy.
The proofs of these results are provided in §2.

1.1. Review of Results from the Theory of
Optimal Auctions

The basic results on optimal auctions that we require are
from Myerson (1981), Riley and Samuelson (1981), and
Maskin and Riley (2000). The first two papers give the
mathematical formulation of optimal auction design for a
single good, and the third one extends these results to the
multiunit setting.

Consider an auction in which we are selling one or more
homogeneous objects to n buyers. Each buyer i wants at
most one of the objects, which he values at v;; and pre-
tends to maximize his own expected surplus, defined as his
valuation minus the amount paid to the auctioneer. The val-
ues v; are private information, but it is common knowledge
that they are i.i.d. with distribution F on a support [0, v].
Buyers are assumed to be risk neutral, an assumption we
discuss in more detail below.

An auction mechanism is a description of the auction,
which specifies both allocation and payment rules. It is cho-
sen by the seller, and is common knowledge. For example,
in a k-unit first-price auction mechanism, buyers submit
bids; the k highest bids win (the allocation rule), and all
winners pay the amount offered (the payment rule). In a
second-price auction, buyers submit bids; the k highest bids
win (the allocation rule), but all winners pay the first losing
bid, i.e., the (k + 1)th bid (the payment rule). The buyers’
behavior depends on the auction mechanism. Each buyer
i seeks to maximize their expected surplus, which is the
probability of winning times the difference between their
value v; and the amount they pay under the seller’s mecha-
nism. Assuming that buyers choose their strategies without
collusion, they play a noncooperative game of incomplete
information. The solution concept used in this context is
that of a Bayesian equilibrium of Harsanyi (1967, 1968),
an extension of the ordinary Nash equilibrium (1951).

Extending Myerson’s (1981) results from single-unit
auctions, Maskin and Riley (2000) showed the rather
remarkable fact that the expected seller’s revenue can be
expressed only as a function of the allocation rule. Specif-
ically, the allocation functions can be expressed as

1 if bidder i is awarded a unit,

q;(vi,v_;) = { (1)

0 otherwise.

If the functions ¢;(-,v_;) are increasing in v; and buyers
with value zero have zero expected surplus in equilibrium,
then the expected revenue to the seller is given by

E, .., [i J(v)g;(v;, v i|’ 2)
where

1
J(v)=v— Ok 3)

and p(v) = f(v)/[1 — F(v)] is the hazard rate function
associated with the distribution F. The function J(v) is
what Myerson (1981) calls the bidder’s virtual value. From
(2), it follows that all mechanisms that result in the same
allocation ¢ for each realization of v yield the same
expected revenue. This is the so-called Revenue Equiva-
lence Theorem.

For example, in a standard k-unit auction, one can show
that both the first-price and second-price auctions award the
k goods to the buyers with the k highest valuations. Thus,
the allocation g(v) is the same for each v and hence these
two auctions generate the same expected revenue for the
seller. This is true despite the fact that the bidding strategies
and payments in each case are quite different.

Moreover, expression (2) can be used to design an opti-
mal mechanism. This is achieved by simply choosing the
allocation rule ¢*(v) that maximizes ) ;_, J(v;)q;(v;, v_;
subject to any constraints one might have on the alloca-
tion (e.g., we have at most k items to allocate so we may
require that the allocation ¢ satisfies ) g; < k).

The following monotonicity assumption helps to simplify
the analysis:

AsSSUMPTION 1. J(v) is strictly increasing in v.

This assumption simply ensures that higher-value bidders
contribute higher expected revenues in (2). It holds when
the hazard rate p(v) either increases or does not decline
too fast with v (formally speaking, we require p’(v) >
—p(v)? for all v € [0, v]), and is satisfied by most standard
distributions.? To illustrate, define

v, = max{v: J(v) =0} 4)

(and by convention, v, = oo if J(v) <0 Vv). Then, from
(2) it follows that it is never optimal to allocate a unit to a
buyer with valuation v; < v,. This simple observation is the
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basis for determining optimal reserve prices. Indeed, con-
sider a standard k-unit auction with a second-price mecha-
nism and reserve price v,. One can show in this case that
bidders bid their true values v; and the items are awarded
to the k highest bidders with valuations above v,, which in
fact produces the allocation ¢*(v) that maximizes (2) sub-
ject to the constraint that at most k£ items can be awarded.
Thus, the analysis of optimal auctions proceeds in two
steps: (1) First, find an optimal allocation ¢*(v) that maxi-
mizes the revenue (or revenue net of costs) subject to any
constraints one might have on the allocation; and then,
(2) find an auction mechanism that achieves the allocation
g*(v) for each realization v. Each of these steps requires
a separate analysis. In the next section, we apply this two-
step approach to analyze an inventory-pricing problem.
Finally, we note that the Revenue Equivalence Theorem
and the optimal auction results can be extended to the case
where the number of bidders n is random. In this case, all
buyers and the seller know the distribution of #n but buyers
do not know n exactly when they formulate their bidding
strategies. McAfee and McMillan (1987b, §4) analyzed this
extension and showed that for risk-neutral buyers with sym-
metric priors on n, it is still optimal for the seller to allocate
according to (2) and, moreover, that the first and second
price auctions with reserve price v, remain optimal. (The
situation is different if buyers are risk averse or if they have
different priors on n. See McAfee and McMillan 1987b.)
Harstad et al. (1990) derive explicit equilibrium bidding
functions for this random-number-of-bidders case.

1.2. An Inventory-Pricing Model

We are now ready to define and discuss our model. We first
lay out the basic assumptions and problem statement. Once
the basic model is defined, we then discuss the assumptions
and implications in more depth.

1.2.1. Model and Assumptions. A firm stores, sells,
and reorders units of an homogeneous good over an infinite
time horizon, split in a discrete number of periods indexed
by ¢t > 1. The time index runs forward, so larger values of
t represent later points in time. The firm starts a partic-
ular period with an initial (integral) inventory, denoted x,
and sells these units through an auction. The problem is
assumed to be stationary, so the statistics of demand are
the same for all periods ¢.

In each period, N risk-neutral buyers participate in the
auction. N is a nonnegative, discrete-valued random vari-
able, distributed according to a probability mass function
g(+) with support [0, M] for some M > 0, and strictly pos-
itive first moment. We assume that the numbers of buyers
N in each period are independent from one period to the
next.

Each buyer requires one unit and has a reservation
value v;, 1 <i < N, which represents the maximum amount
buyer i is willing to pay for one unit of the good. Reser-
vation values are private information, i.i.d. draws from a

distribution F(-), which is strictly increasing with a con-
tinuous density function f(-) on the support [v, v], with
F(v) =0 and F(v) = 1. Without loss of generality, we
assume v = 0 throughout. We assume that the virtual value
J(-) derived from F(-) satisfies Assumption 1. We will
use v both for the random vector of valuations (from the
seller’s perspective), and for a particular realization. Like
the number of buyers, the valuations v are assumed to be
independent from one period to the next. Thus, each period
is an independent draw of N and v.

At the end of each period, the firm can reorder from
a supplier at a unit cost c. Replenishment orders arrive
instantly and backlogging is not allowed. If the firm decides
to award k units through the auction in the current period
and reorder y units from the supplier, then the initial stock
of the next period will be x — k 4 y. The firm incurs a
holding cost #(x —k+ y) on this inventory, which is paid at
the end of the current period. The function A(-) is assumed
convex and strictly increasing.

In terms of information structure, the distribution func-
tions g and F are constant through time ¢, and are assumed
common knowledge to the firm and all potential buyers.
In terms of the buyer valuations, only buyer i knows his
own (private) valuation v;. Also, buyers cannot observe the
number of other buyers prior to bidding, so they are uncer-
tain about the number of competitors that they face. The
selling firm also does not know the exact number of buy-
ers when announcing the mechanism, but they observe the
number of buyers that submit bids, which is not necessar-
ily the total number of buyers N (e.g., buyers with values
below a reserve price may simply choose not to bid and
may therefore not be observed). Buyers do not have explicit
information about the inventory position of the firm or its
costs. However, they do have full information about the
mechanism the firm selects, which in terms of their strate-
gic behavior is all that matters to them. But effectively, as
shown below, announcing the inventory position becomes
a part of the optimal mechanism, because the firm has an
incentive to sell all its stock if it receives a sufficient num-
ber of high bids, and the mechanism must (at least implic-
itly) reveal this fact.

The firm’s problem is to design an auction mechanism
and find a replenishment policy that maximizes its expected
total discounted profit. As above, the auction mechanism
is a set of rules for allocations and payments accord-
ing to which the auction will be conducted. Each buyer,
based on his private valuation, his knowledge of the dis-
tribution functions F, g, the inventory level x, and set of
rules announced by the auctioneer—e.g., type of auction,
reserve price—chooses his bid (or strategy) to maximize
his expected utility. Then, the firm observes the set of sub-
mitted bids and applies the rules specified earlier to decide
the number of units to award in the current period, whom
to award the units to, and the payments to be made by the
bidders (typically only the winners pay).
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1.2.2. Discussion of the Model. On a theoretical level,
our model is in many ways a natural combination of the
classical, private-value auction model and dynamic inven-
tory models. However, some of the assumptions are restric-
tive from a practical standpoint and their implications are
worth examining in greater detail.

The first concerns the information structure. The assump-
tion that buyers have the same priors on F and g is not
unreasonable; it simply says that they are equally informed
about the market. However, the fact that buyers have the
same priors as the seller is less realistic. In particular,
one might well imagine that the selle—who is conduct-
ing many auctions over an infinite horizon—would tend to
learn over time, and as a result have much better informa-
tion about the number of likely buyers and their reservation
values than would an individual buyer, who may only occa-
sionally participate in the auctions.

However, this assumption can be relaxed for the second-
price auction mechanism discussed in §2.2.1, because
under this mechanism a buyer’s dominant strategy is to
bid his value v;. Thus, buyers do not need any informa-
tion on the number of other buyers or their valuations to
bid optimally in the second-price auction. For the first-price
mechanism, in contrast, the more restrictive assumption that
buyers know g and F is essential.

A second assumption is that the seller and buyers are
risk neutral. That a large selling firm is risk neutral is quite
reasonable, as typically each auction outcome is a small
proportion of their wealth and they are making a very large
number of gambles over an infinite horizon. So the fact
that the firm is maximizing average profits is a quite natu-
ral assumption. In contrast, it is more reasonable to assume
that individual buyers (e.g., consumers) are perhaps risk
averse, because they may only participate in one auction
and the values at risk may be a larger proportion of their
wealth. Unfortunately, however, risk neutrality is a cen-
tral assumption in the optimal auction theory of Myerson
(1981), Riley and Samuelson (1981), and Maskin and Riley
(2000). In this sense, our results share the limitations of
this work.

If buyers are risk averse, then their preferences for the
different types of auctions change, which affects both their
bidding behavior and the seller’s revenues. For example, in
the traditional single-unit auction, risk-averse buyers prefer
a first-price auction to a second-price auction because the
amount they pay if they win in a first-price auction (their
bid) is constant, whereas the amount they pay if they win in
a second-price auction is uncertain (i.e., equals the second-
highest bid). Hence, risk-averse buyers are willing to bid
more in the first-price auction, which means the seller gen-
erates more revenue using a first-price auction. (See Klem-
perer 1999.) It is quite likely that a similar effect would
occur in our context if buyers were risk averse, though we
have not investigated this issue in detail.

However, risk neutrality is likely a better assumption if
the buyers are other firms—perhaps procuring inputs from a

supply auction. If one applies the model to industrial trade,
the risk-neutrality assumption is therefore more realistic.

Another important assumption in our model is that the
selling firm can wait until all bids are received before they
decide on the number of units to allocate. It might arguably
be more familiar to require the selling firm to announce the
number of units they are putting up for auction prior to the
bidding process.

However, the assumption that the number of units
awarded can be varied based on the bid values is not as
unrealistic as it first seems. For example, Lengwiler (1999)
studies a variable-supply auction motivated by the problem
of corporations that issue new securities to finance their
operations. In this setting, the total number of securities
issued is varied based on both the volume and value of
the bids they receive. More to the point, in any auction in
which a seller uses a reserve price, the quantity awarded
is implicitly varied depending on how many bids (if any)
exceed the reserve price. That is, by posting a reserve price
the seller is effectively saying she will not necessarily sell
all the units she has. This situation is quite close to our
assumption. Indeed, we show that the optimal mechanism
in our model in fact reduces to a standard multiunit auction
with fixed reserve price. Hence, the “variable-supply” fea-
ture of the auction results in a quite familiar, k-unit, fixed-
reserve-price auction, and moreover, our results show that
this familiar auction is optimal among all possible variable-
supply auctions.

Our assumption that the number of buyers N and their
values v are i.i.d. also has some important implications. For
one, it largely precludes situations where buyers are strate-
gically attempting to time their purchases. For example, if
a buyer anticipates that there may be a higher number of
units available in the next period, then they might have an
incentive to wait for the next auction. This would create
dependencies between the inventory position and the num-
ber of customers N that arrive. However, we show below
that the optimal policy eventually becomes one of running
a sequence of identical auctions (same starting inventory,
allocation rules, payments, etc.) over time, so the incentive
on the part of customers to strategize over timing gradually
disappears under our optimal policy.?

The independence assumption also precludes the case
where buyers might rebid in later auctions, because in this
case the number of unsuccessful bidders in the past may
influence the distribution of N and v in the future. One
possibility here is that unsuccessful bidders “drop out” of
the market. For example, buyers might be impatient and
buy elsewhere rather than waiting for the next auction. But
this is a somewhat delicate explanation, because it implies
that the periods are short enough that buyers are willing
to wait for the auction result within a period, but the peri-
ods are long enough that they will not wait until the next
period. Another possibility is that N and v are independent
over time simply because buyers are not permitted to rebid.
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For example, this strategy is used by Priceline.com; con-
sumers who bid and fail are not allowed to rebid for seven
days.

Also, the independence of N and v over time would
again not be valid if the firm could learn over time about
the valuations of customers through its repeated observa-
tions of bidding behavior, as is the case in the finite hori-
zon model studied by Pinker et al. (2000). However, in our
infinite horizon, stationary setting, it really does not make
much sense to talk about “learning” because, implicitly, our
model assumes that the firm has already been observing an
infinite history of stationary bidding data. Indeed, in this
sense F and g already reflect the firm’s accumulated expe-
rience and learning over infinitely many past auctions, and
thus repeated draws from F and g provide no new infor-
mation. Of course, stationarity over an infinite horizon is
indeed a strong assumption. As a practical matter, most sys-
tems are not stationary to this degree, and hence exploiting
the information value of bids is a very important issue in
practice. Again, see Pinker et al. (2000) for an analysis and
discussion of learning in a finite horizon, dynamic auction.

Finally, in our model the auction intervals and the reorder
intervals are the same. This is again a limitation, because
the factors that drive the frequency of auctions (provid-
ing convenience to buyers, administrative costs, etc.) are
likely to be different than those that drive the frequency of
reorders (production cycles, delivery schedules, fixed order-
ing costs, etc.). Also, our model assumes zero leadtimes,
while in reality there may be several periods of delay before
orders arrive. Allowing the auction and reorder periods to
be different and allowing for positive leadtimes would be
worthwhile extensions, but would result in a more com-
plicated analysis. Hence, we retain these assumptions as a
starting point.

1.3. Dynamic Programming Formulation

We analyze this problem using a dynamic programming
formulation in terms of the allocation variables ¢(v)
defined by (1). Define the value function V(x) as the max-
imum expected discounted profit given an initial inventory
x=0,1,..., which satisfies the Bellman equation

€{0,1}
YEZ,

V(x>=E[ maxN{ZJ(v,-)qi+aV(x—k+y)

—h(x—k+y)—cy: k=£‘]w kéx}:|, )

i=1

where 0 < a < 1 is the discount factor, k is the total number
of units awarded, and y is the replenishment order for the
next period. Note from first principles the state space can
be bounded by M, because at most M buyers will arrive
in any period, and because we can reorder at the end of
every period, there is no need to stock more than M. Our
objective is finding an optimal stationary policy, denoted

u*(x), consisting of an allocation ¢(-) and a replenishment
order y(-), that achieves V(x).

We can reformulate our dynamic program using the vari-
ables g;. Using Assumption 1, we can take advantage of the
monotonicity of J(-). In this case, when the firm decides
to award k units, it is optimal to assign them to the highest
J(v;)s (i.e., to the highest v;s). Using reverse order statis-
tics, define

0 if k=0,

min{k, N} (6)

R(k) =
> J(vg) k>0,

Note that R(k) is a random function and that

N
max{Z](vi)qi: 0<¢, <L, Y g :min{k,N}} =R(k),

i=1

so we can rewrite (5) in terms of k as follows:

Vix)= E|:OElE§ {(R()+aV(x—k+y)

yeZ,
—h(x—k+y)—cy}:|, x=0,1,.... (7)

Note that above we are assuming free disposal when N <
k < x. This assumption is not essential for our analysis, but
it helps to simplify the notation.

1.4. Statement of Main Theorems

We next state our main theorems, which characterize the
optimal auction and replenishment policy for our problem.
The first statement is presented in algorithmic form and the
proof is provided in the next section.

THEOREM 1. Consider the inventory-pricing problem des-
cribed in (7). Define the optimal basestock level by

Z"=max{ze€Z : aAV(z) — Ah(z) — c > 0}.

Then, the optimal stationary policy u*(x) is to allocate
units to buyers and replenish stock according to the follow-
ing procedure:
Step 1. Allocate Units
For k=1,2,...,min{x, N}, allocate the kth unit if either:
() x—k>z"and J(vy)) > aAV(x —k +1) — Ah(x —
k+1),
(i) x —k <z* and J(v)) > ¢,
else, do not award the kth unit and goto Step 2.
Step 2. Replenish Stock
If x —k < z%, then order up to z*, i.e., y=27"+k — x; else
order nothing (y =0).
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Figure 1. Mlustration of optimal policy.
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The policy says that while the current inventory is above
the optimal basestock level z* (Case (i)), then we will
award the kth unit if the benefit from accepting the kth bid
(its virtual value J(v,)) exceeds the profit of keeping the
kth unit for the next period less the marginal holding cost
for keeping it. The kth unit is not replenished in this case.
Once the inventory reaches the optimal level z* (Case (ii)),
the firm awards a unit as long as the benefit from accepting
a bid exceeds the cost of replacing the unit awarded; each
such unit is replenished.

The optimal allocation policy is illustrated in Figure 1.
There are x units to be auctioned in the current period.
The black dots represent the threshold prices for the units,
given by the marginal value of capacity for the units above
the optimal basestock level z*, and by the ordering cost ¢
for the units up to z*. The seller sorts the virtual value of
the bidders (grey dots) in descending order and compares
them with the threshold prices. In Figure 1, there are four
winners in the auction: one unit is allocated to each of the
top four value bidders, and the process restarts in the next
period with x — 4 units.

An interesting result of this allocation policy is that
when the inventory is no more than the optimal basestock
level z*, the seller can achieve the optimal allocation by
simply running a standard first-price or second-price auc-
tion in each period with a fixed reserve price

e=J"(c). (8)

Indeed, we have the following characterization of the opti-
mal policy in this case:

THEOREM 2. Once the inventory reaches z* units, the opti-
mal policy in all subsequent periods is to use the following
basestock, reserve-price-auction policy: (1) run a stan-
dard first-price or second-price, 7*-unit auction with fixed

reserve price ¢; and then (2) at the end of each period,
order up to the optimal basestock level z7*.

Because the problem is over an infinite horizon and the
optimal policy only calls for ordering when the inventory
drops below z*, the firm eventually reaches a point where
the above basestock, reserve-price-auction policy is optimal
for all remaining time.

This result is significant on several levels. First, it shows
that the classical first-price and second-price mechanisms
remain optimal in the dynamic inventory setting. These are
both familiar auction mechanisms, which are easy for buy-
ers to understand and easy for sellers to implement. The
inventory replenishment policy is also a familiar and sim-
ple basestock policy. This combination makes the optimal
policy quite practical. On a theoretical level, the result is
as simple as one could hope for in this setting. Finally,
it is convenient as well from a computational perspective,
because it reduces the optimal policy to a simple search
over the single parameter z*, as we show below in §3.4.

2. Analysis of the Optimal Policy

As mentioned above, the analysis proceeds in two steps.
We first analyze the theoretical properties of the dyna-
mic program (5) to characterize the optimal allocation of
Theorem 1. We then use the structure of the optimal policy
to define two auction mechanisms that achieve this alloca-
tion. These mechanisms reduce to the standard first-price
and second-price auctions when the inventory is no more
than z*, which is the statement of Theorem 2.

2.1. Proof of Theorem 1

We analyze the infinite horizon dynamic programming for-
mulation (7) as the limit of its corresponding finite hori-
zon version. Defining V,(x) as the cumulative profit up to
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period ¢, we have

v, =EN,U[0rgg§x{R<k>+aw1<x—k+y>

YEZ,
—h(x—k+y)—cy}}, 9)
with boundary conditions
V,(0)=0,7>1 and Vy(x)=0,x2>0.

We require the following lemma, characterizing the inner
optimization in (9):

LEMMA 1. Suppose G(x) is concave and bounded above,
and consider the problem

(ﬁlf‘é{R(k) +aG(x—k+y)—h(x—k+y)—cy}. (10)

Let z* be such that

max{z > 1: «AG(z) — Ah(z) —c > 0}
o= if aAG(1) — Ah(1) —c >0, (11)

0 otherwise.

Thus, the optimal solution (k*, y*) satisfies

(i)
. | gtk > x—k
v 0 otherwise.
(ii)
0 if R(1) 4+ Ah(x) < aAG(x),

max{l <k<x—7*: AR(k)+ Ah(x—k+1)
>aAG(x—k+1)}

k* = if R(1)+ Ah(x) > aAG(x) and

AR(x—z"+1)<c,

max{x —z*+ 1<k <x: AR(k) > c}
otherwise.

ProoF. To prove part (i), take (10) and fix a value of k, the
number of units to award. We are then facing a problem
only in the number of units to order from the supplier, y(k).
Define the inventory position z = z(k) = x — k + y(k). We
can then express (10) as a problem in z:

IZIGIEZIX{R(/C) + aG(z) — h(z) — cz+ cx — ck}.

By the concavity of G(-) and the convexity of A(-), the z*
in (11) is the optimal solution of this reformulated problem.
Then,

yi(k) =

f—x+k ifz*>x—k,
otherwise,

and in particular, y* = y*(k*) for some optimal k* to be
determined.

For part (ii), note that y*(k) = max{z*,x — k} —x +k,
turning (10) into a problem just in decision variable k:

,max {R(k) + aG(max{z*, x — k}) — h(max{z*, x — k})
—cmax{z" —x+k,0}}. (12)

For any 0 < k < x, we consider two cases according to
its value:
(a) If k < x— z*, then we can rewrite (12) as

max {R(k)+ aG(x —k) —h(x —k)},

0<k<x—2z*

which is equivalent to

max {XkZ[AR(i) —aAG(x—i+ 1)+ Ah(x—i+ 1)]}

0<hk<x—z% | %
i=1

+aG(x) — h(x),

where the sum is defined to be 0 if kK =0.
(b) If k > x — z*, then problem (12) turns out to be

max  {R(k) 4+ aG(z*) — h(z*) — cz* + cx — ck},

x—z*4+1<k<x

which is equivalent to

max { > [AR(i) — c]} + aG(z*) — h(z¥).

— I <k<x
xSk i=x—z*+1

Essentially, the optimality of the proposed k* is based
on proving that the expression to maximize in (12) has
decreasing increments in k. According to both observations
above, we split the analysis in two cases. For case (a),
note that AR(k) — aAG(x —k + 1) + Ah(x —k + 1) is
decreasing in k (AR(k) is decreasing by Assumption 1,
AG(-) is increasing in k by its concavity, and Ah(-) is
decreasing in k by its convexity). For case (b), observe that
by (6),

J(vg) If1I<kSN,

AR(k) =
0 otherwise.

Then, AR(k) — ¢ is also decreasing in k.

To complete the proof, we have to check what happens
at the transition point k = x — z*. That is, we need to check
if the last increment to its left is greater or equal than the
first increment to its right, or in symbols, if

AR(x —z") —aAG(Z*+ 1)+ Ah(z* + 1)
>AR(x—Z"+1)—c. (13)

By optimality of z* (see formula (11)),

aAG(Z"+1)—Ah(z"+1) —c<0.
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Because we also know that AR(-) is decreasing, then

aAG(Z*+1)—Ah(z"+1)—c
<O AR(x—z) —AR(x — 7" +1)

and Equation (13) is verified. Hence, the expression
between the large brackets in (12) has decreasing incre-
ments in k, and k* is the largest k for which this increment
remains positive. [

To apply Lemma 1 to the finite horizon problem (9), we
must verify that V,_,(-) is bounded and concave. Indeed,
take a realization (n, v) for problem (9), and assume that
V,_;(-) is concave and bounded. By letting G(-) =V,_,(+),
Lemma 1 gives closed-form expressions for the optimal
inventory level z7_, = z*, the optimal number of items to
award k*(x) = k*, and the optimal number of units to
replenish, y*(x) = y*.

The next lemma establishes the boundedness of the value
function. The proof is in the appendix.

LEMMA 2. For all t > 0, there exists K > 0 such that
V,(x) <K Vax

We will also require the following lemma, which states
that under the concavity condition if we have one more unit
available to sell, we allocate at most one more unit to the
buyers. It also relates the optimal allocation number to the
optimal replenishment number. These properties are helpful
both theoretically and computationally. The proof is in the
appendix.

LEMMA 3. If AV,_,(x) is decreasing in x, then for any real-
ization (n,v), k*(x) <k*(x+ 1) <k*(x)+ 1 for all x = 0.
Moreover, if k*(x+ 1) = k*(x), then

Y@E+D=0"x) -1,

while if k*(x + 1) =k*(x) + 1, then

VD) =y ().

The following lemma establishes that V,(-) is indeed con-
cave; that is, the marginal value of capacity, AV,(x), is
decreasing in the remaining inventory. The proof is in the
appendix.

LEMMA 4. AV,(x) is decreasing in x.

Proceeding with the finite horizon version in (9), we next
show that we can constrain the feasible set for y so that
the per-period profit is bounded both above and below. The
proof is in the appendix.

LEMMA 5. There exist y € Z, and L > 0 such that y* <y
and |R(k) — h(x —k+y) —cy| <L Yk, x,y: 0<k < x,
0 <y < y. In particular, we can consider y = 7, where
z=max{z € Z,: av — ¢ > Ah(z)} is an upper bound for
any optimal per-period inventory level.*

Because both the per-period profit and initial function
V,(x) are bounded, from Bertsekas (1995, §1.2, Assump-
tion D and Proposition 2.1), we have that

V(x)= }L% Vi(x) Vx=0. (14)

Furthermore, from Proposition 2.2 in Bertsekas (1995,
§1.2), the limiting function V(x) is the unique solution to
Bellman’s Equation (7). This limit allows us to extend the
concavity to the infinite horizon profit function.

LEMMA 6. AV(x) is decreasing in x.

ProoF. Because AV,(x) > AV,(x + 1), taking the limit of
both sides as t — oo, and using the property described
by (14), AV(x) 2 AV(x+1) as well. O

From Lemma 2, V(-) is bounded above. Because it is
also concave, Lemma 1 gives a complete characterization
of the minimizer for the right-hand side in that formulation,
by taking the function G(-) = V(-). Following Bertsekas
(1995, §1.2, Proposition 2.3), that minimizer is an optimal
stationary policy. Indeed, we get the following technical
description of the optimal policy, which translates algorith-
mically into our main Theorem 1:

0 if R(1) 4+ Ah(x) < aAV(x),

max{l <k<x—7"AR(k) + Ah(x—k+1)
>aAV(x—k+ 1)}

k= if R(1) +Ah(x) > aAV(x) and
AR(x—z*+1)<c,
max{x —z* + 1 <k < x: AR(k) > c}
otherwise,
where

Z"=max{z €Z,: aAV(z) — Ah(z) — c > 0}.

Afterwards, order y* units for replenishment, with
i x4k ifZF>x—k",

a { 0 otherwise.

Finally, observe that our system can be viewed as a finite
state Markov chain, with states {0, 1,...,z*,...,Z}. The
dynamics of the system are driven by the random variables
(N, v), which induce a change in state through the decision
variables k* and y*. Because of the structure of the optimal
policy, it can be shown that the unique recurrent state is z*
(i.e., z* is an absorbing state).

2.2. Analysis of the Optimal Auction Mechanism

The next step in our analysis of the problem is to construct
auction mechanisms that implement the optimal allocation
policy derived above. We will follow ideas introduced in
Vulcano et al. (2002) to demonstrate that modified versions
of two standard procedures—the first-price and second-
price auctions—achieve the optimal allocation. We only
outline the basic result for each mechanism in turn, and the
reader is referred to Vulcano et al. (2002) for more details.
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2.2.1. Second-Price Auction. In a traditional open,
k-unit, ascending price auction or in the sealed-bid, second-
price-Vickrey-auction, where all winners pay the maximum
between the (k + 1)th highest bid and the fixed reserve
price (4), the dominant strategy for a buyer is to bid his
true value. However, if one uses a straightforward applica-
tion of the second-price mechanism in our setting, this is
no longer true.

The following modified second-price mechanism avoids
this pitfall: For i > 1, let

J Y aAV(x—i+1)—Ah(x —i+1))
ifl1<i<x—2z% (15)

J7(c)

The thresholds 9; are directly computable from the solution
of (7), which uses common knowledge information, and is
in principle known to all buyers and the seller. Following
the argument in Vulcano et al. (2002, §3.3.1), suppose the
firm acts as if a customer’s bid is equal to his value. Then,
given the vector of submitted bids b, the seller will award
k items, where

<>
|

ifx—z+1<i<x.

k=max{i > 1: b, > v;}
and k =0 if by < V. All winners will pay

b((lfidl)) = max{b(k+l)’ Ui},

where b, ) is the (k+ 1)th highest bid and 9, is the thresh-
old to award the kth unit. Ties between bids are broken by
randomization.

Under this modified second-price mechanism, one can
show that it is a dominant strategy for buyers to bid their
own values. (See Vulcano et al. 2002, §3.3.1 for a detailed
argument.) Moreover, because bids are equal to values, this
mechanism achieves the optimal allocation of Theorem 1.
Note that this fact makes it feasible to relax the assump-
tion that bidders know the distributions F and g, because
the dominant strategy of bidding one’s own value holds
regardless of the number of other buyers or their valuations.
Also, note that when x < z*, this mechanism is equivalent
to a standard second-price auction with fixed reserve price
J7!(c), because bids are awarded to the x highest value
customers with virtual values in excess of ¢, which proves
first part of Theorem 2.

Yet despite the many desirable properties of a second-
price auction, Rothkopf et al. (1990) point out that they are
somewhat uncommon in practice. Two possible explana-
tions are: (1) bidders may fear truthful revelation of infor-
mation to third parties with whom they will interact after
the auction finishes, and (2) bidders may fear the auction-
eer cheating, in the sense that the auctioneer could intro-
duce “artificial” bids to raise the price paid. (Again, see
Rothkopf et al. 1990 for a discussion of these issues.) In
contrast, Lucking-Reiley (2000) argues that second-price
auctions are indeed used, for example, for selling stamps or
through the form of proxy bidding used in online auctions
such as eBay.

2.2.2. First-Price Auction. In a first-price auction,
items are awarded to the highest bidders and winners pay
their bids. Note that if we can show that there exists a
symmetric equilibrium bidding strategy B(-) that is strictly
increasing in the bidders’ values, then the firm can invert
this bid function to infer each bidder’s value, which it can
then use to optimally award items.

Regarding the auction setup, the bidders are informed
of the current inventory x, and of the following alloca-
tion rule: Given a vector of bids b, the seller will award k
items, where k = max{i > 1: B~'(b;) > 0;} and k =0 if
B~'(b(;)) < v, where ¥, is defined by (15). The items are
awarded to the highest bidders, and winners pay their bids.
Our first result is the following (see Vulcano et al. 2002,
§3.3.2 and the appendix for a proof):

PrROPOSITION 1. The first-price auction has a symmetric
equilibrium, strictly increasing, bidding strategy b, = B(v;).
The strategy B depends on the current value of x as given
by

B(v)=v,— —fﬁ':((:; w and
B(v) = lir(1)1+l§(vi — &), (16)

where P(v) is the probability that a bidder with value v is
among the winners,

0 ifk*(v)=0,

o=t 3l 5 (" - rorror

n=1 k=0

ifk(v) > 1,

and k*(v) = max{0 < i < min{x, N}: v > 0;}, and by con-
vention, 0, < 0.

Again, given this strictly increasing bidding function, the
seller can invert the bids to determine a buyer’s value. This
information can then be used to implement the optimal
allocation by checking for k =1, 2, ..., min{x, N} whether
B~'(b,) > ¥, and stopping once this condition is violated.
This proves the remaining part of Theorem 2.

Note that (16) shows, as one would expect, that under our
first-price mechanism, because winners pay what they bid,
buyers shade their values to make some positive surplus.

3. Some Extensions to the Basic Model

In this section, we consider some natural extensions to our
auction model. We look at these in increasing order of
difficulty.
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3.1. Charging Holding Cost on
the Ending Inventory

Suppose now that we charge the holding cost on the final
inventory of each period, rather than on the starting level of
the next period as in our original formulation. The dynamic
program in this case is the same as (7), but the term
h(x —k+y) is replaced by h(x — k). A basestock policy
remains optimal for replenishment, but now the optimal
basestock level is given by

. max{z 2 1: aAG(z) —c >0} if aAG(1) —c>0,
7 =
0 otherwise.

Regarding the number of units to award, we follow
Lemma 1, part (ii). For case (a) in its proof, the allocation
rule is the same, but it changes for case (b) by introducing
the marginal holding cost. The optimal policy in Theorem 1
becomes:

Step 1. Allocate Units
For k=1,2, ..., min{x, N}, allocate the kth unit if either:

(i) x —k>z" and J(vy)) > @AV (x —k+1) — Ah(x —
k+1),

(i) x—k <z* and J(vy)) > c — Ah(x —k+1),
else, do not award the kth unit and goto Step 2.

Step 2. Replenish Stock
If x —k < z*, then order up to z*, i.e., y =2+ k — x; else
order nothing (y = 0).

The case x — k < z*, corresponding to the steady state
of the system, can lead to more complicated auction mech-
anisms (see §2.2) than the ones presented in Theorem 2.
However, if the holding cost is linear, so that i(z) = a+ hz,
then Ah(x —k + 1) = h, a positive constant, and it is again
optimal to run a first-price or second-price auction with
a fixed reserve price, though the optimal reserve price is
now J~!(c — h). This lowered reserve price (with respect
to & =J~!(c)) reflects the fact that now the seller is willing
to accept lower bids to avoid one period of holding cost.

3.2. Backorders

Consider the infinite horizon problem of §§1.2 and 1.3,
but suppose the firm could award units beyond the cur-
rent inventory level by backordering, incurring a penalty
cost of b(k) when k is the number of buyers backlogged.
We assume that the function b(-) is convex increasing with
b(0)=0.

Following formulation (7), the dynamic programming
formulation for this case is

V(x)=Ey, |:k,r§12)zc+{R(k) +aV(x—k+y)

—h(x—k+y)—cy—b((k—x)*)}].

All the analyses developed can be extended to this set-
ting, and we get similar formulas for z* and y* to the ones
found in Lemma 1:

max{z > 1: «AV(z) — Ah(z) — ¢ > 0}
* if AV (1) —Ah(1) —c >0,

0 otherwise,

and

. Y —x+k* if 7 >x—k*,
y =
0 otherwise.

The main change is that the calculation of k* involves
the backorder cost once the seller goes beyond the stock
on hand. Following the outline in the proof of Lemma 1,
in this case we have cases (a) and (b) as before, plus a
new case (c) corresponding to the situation k > x. It can
be checked that when N bidders show up in a particular
period, the optimal k is then

0 if R(1) 4+ Ah(x) < aAV(x),

max{l <k<x—z" AR(k)+Ah(x—k+1)
>aAV(x—k+1)}
if R(1) + Ah(x) > aAV(x) and
- AR(x —z"+1) <c,

max{x —z* + 1 <k < x: AR(k) > c}
if AR(x—z*)+Ah(z*+1) > aAV(z*+1)
and AR(x+1) < c+Ab(1),

max{x+ 1<k <N: AR(k) > c+ Ab(k — x)}
otherwise.

Regarding the mechanism design for this case, we should
modify the definition of ¥; in (15) to account for the back-
order cost. So, suppose that the backorder cost is linear, of
the form b(w) = bw, with b > ¢. Then,

J N aAV,_(x—i+1)—Ah(x—i+1))

A ifl1<i<x—2z",
v, =

J7(c)
J7(b)

fx—z+1<i<x,

fx+1<i<N.

That means that once the inventory drops below the optimal
stationary inventory z*, the firm essentially sets two reserve
prices: one for the available on-hand units, and a higher one
for the backlogged units. Both the first-price and second-
price mechanisms can be extended to work in this case as
well.

3.3. Combined Auction and List-Price Model

Often, firms that sell with an auction mechanism also use
a regular, fixed-price mechanism in parallel. In the retail



van Ryzin and Vulcano: Optimal Auctioning and Ordering in an Infinite Horizon Inventory-Pricing System

Operations Research 52(3), pp. 346-367, © 2004 INFORMS

357

setting, this is often achieved by using each mechanism
in a different channel (e.g., catalogue and web channels).’
In industrial settings, a firm may have fixed-price demand
as a result of long-term contracts, while at the same time
participates in auctions from spot-purchase customers.®

We model this situation as follows: Consider the infi-
nite horizon problem described in §§1.2 and 1.3, but
assume that demand comes from two independent streams
of customers—one stream for the auction channel and one
for the list-price channel. In each period, there are N,
potential buyers that participate in the auction market, with
valuations v drawn from a strictly increasing distribution F
as before, and N, buyers that participate in the list-price
market. We assume that N, follows a g,(-) and that N,
follows a p.m.f. g, (). Distribution functions F, g,, and g,
are common knowledge.

In the list-price market, we assume all N, buyers are
willing to purchase at a list price r > ¢, but the firm may
ration its supply and only sell to a subset of these customers
(or none at all). Let V(x) denotes the seller’s expected dis-
counted profit given a starting inventory of x as before. Let
q; be the allocation binary variables for the auction and &,
be the number of units to award to the list-price buyers.
The value function satisfies the Bellman equation

gefo, ) 0]
vk €Zy

V) =E[ max {%f(vi)%—i-rkL FaV(x—k+y)

Ny

—h(x—k+y)—cy: ks =) gk, <N,

i=1

k:kA+kL,k<x”, (17)

where 0 < a < 1 is the discount factor.

In essence, the idea in analyzing this problem is simply
to treat the NV, buyers in the list-price market as if they all
had virtual values of » and combine them with the buyers in
the auction market. Then, one finds the optimal allocation
as before.

Following our previous arguments, relax the integrality
of the variables ¢; and redefine the function R(k) as in (6).
We rank the bidders’ virtual values together with the price
r, and if k is the total number of units to award through
both channels, then R(k) will represent the profit obtainable
by optimally awarding those k units (not accounting for
costs). Let

Ny(r)=|{vi: J(v) > r, V1 <i < Ny

be the random variable representing the number of buyers
in the auction market with virtual values above the list price
r. If v, is the ith reverse order statistic in the auction

market, define

0 if k=0,
k

> J(v) if 0 <k <N,(7),
i—1

Ny(r)

RUIY=1 3" T (v +r(k — Ny(r),
i=1
N,(r) <k < N,(r)+ N,
k—Ny,
> J(y)+rNy, Ny(r)+N,<k<N,+N,.
i=1
Note that

Ny
R(k) :mE}(x{ZJ(vi)qi +rk,:0<qg <1,
9is KL | =

Ny
kAZZqi’kLgNL’k:kA"_kL}?
i=1

so we can rewrite (17) in terms of k as follows:
V(x)

= E|:or<n/?§x {R(k)+aV(x—k+y)—h(x—k+y)— cy}i|.

yEZ,

We have thus reduced this case to a form essentially
identical to our formula (7) in §1.3, observing that AR(k)
is by construction decreasing in k. The allocation policy is
therefore the same as before, again assuming we treat the
fixed-price market buyers as if they are simply buyers with
virtual valuations of r. For example, suppose r > J(v) so
that the list price is greater than any virtual value observed
in the auction market (e.g., the auction is a “deep discount”
market). Then, the optimal policy (assuming the starting
inventory is at its steady state value of z*) is to award as
many units to the fixed-price market as possible. If there is
any excess, it is sold in the auction market to the highest
bidders with virtual values in excess of c. Afterwards, the
firm replenishes its stock to bring its inventory up to z* and
the process repeats.

3.4. Average Profit Criterion

We next examine the long-run average profit per stage
objective. This criterion leads to further simplification in
computing the optimal policy and is useful in its own
right.

Let k, and y, be the optimal number of units to award and
replenish in period ¢, respectively, with ¢ > 1. We denote
by x, the inventory level at the end of period ¢ (i.e., ini-
tial inventory of period ¢ + 1). Let V(x) be the maximum
expected average profit when starting with x, = x units of
inventory in period ¢ = 1. This version of the problem can
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then be formulated as finding (nonanticipating) values &, y,
that maximize

tim 2 [ { SUR) - hx) -1

t=1

x,:xtl—k,+y,,k,<x,I,VlgtéT:|, (18)

where the function R(-) is defined in (6).

One can show that the optimal policy for our a-dis-
counted problem is in fact Blackwell optimal (see Bertsekas
1995, §4.2, Definition 1.1); that is, it is simultaneously opti-
mal for all discounted problems with discount factors o €
(a, 1) for some 0 < & < 1. Therefore, using Proposition 2.2
in Bertsekas (1995, §4.2), u*(x) is optimal for the average
profit problem within the class of all stationary policies.
Moreover, because we have seen that u*(x) involves just
one recurrent state, represented by the optimal inventory
level z*, then it is unichain.” Thus, by Proposition 2.6, con-
dition 1, in Bertsekas (1995, §4.2), u*(x) is optimal within
the class of all admissible policies. Furthermore, the cor-
responding average profit in Equation (18) is independent
of the initial state x. As a result, the optimal average profit
policy will again be a basestock, reserve-price-auction pol-
icy with reserve price J~!'(c¢) and basestock level z*.

Indeed, as a result from this fact, we can develop a quite
simple procedure for finding the optimal basestock level z*
in the average profit case. Let I1(z), described by

I(z) = E|: max

0<k<min{z,N}{R(k) B Ck}i| —h), (19)
be the average profit when following a policy of reordering
up to a fixed basestock level z. We know that such a policy
will be optimal for some z*, so we simply need to search
for a value z that maximizes TI(z). In fact, the search is
quite simple as the profit function is concave. The proof is
in the appendix.

PROPOSITION 2. The profit function 11(z) is concave in z.

We know that 0 < z* < z, where z=max{z€Z_: v —
¢ > Ah(z)} (see Lemma 5) or z =M if h(-) is not strictly
convex. For a fixed z, we could use Monte Carlo simulation
to calculate I1(z): just sample instances for (N, v) and take
the average. In some cases, however, this can be avoided.
Specifically, we can rewrite (19) conditioning on N and on
the number of values above the ¢ given in (8). For a given
realization n of N, and assuming by convention v, =0,
we have

I(z) = Xn: E[R(min{k, z}) — ¢ min{k, z}]

k=1

: P(U(k) > ¢, Viggn) S ¢) — h(z),

where it can be easily checked that

A n

P(v(k) > ¢, Vi) < c) = (k) [1 - F(@)]kF(é)n—k_

This closed form for the expected profit reduces to a
simple expression when the buyer’s values are uniformly
distributed. Also, while computing the sum from term k to
k + 1, we can use the fact that

n _n—k n
k+1) k+1\k)’

to reduce the complexity introduced by the combinato-
rial numbers. Finally, taking advantage of the concavity of
I1(z), a binary search over the range for z* gives an over-
all algorithm complexity of O(nlogz). Henceforth, we will
denote the optimal objective value TT* = TI(z*).

4. Comparisons to a List-Price Policy

We next consider how the optimal basestock, reserve-price-
auction policy compares to a traditional, basestock, list-
price policy. Specifically, we consider the case where the
seller sets a fixed list price p in each period, and then
replenish by ordering up to a fixed basestock level z. To
be consistent with §3.4, the holding cost is charged on the
initial inventory of the next period and we assume buyers
who are interested in acquiring one unit at the posted list
price submit “acceptances.” If the number of acceptances
exceeds the current inventory of the seller, the units are
randomly rationed to the buyers. It is easy to see that under
this pricing mechanism, a dominant strategy for the buyers
is to submit an “acceptance” if and only if their own values
are higher than the list price.

We will compare the profits earned under our optimal
auction policy with those under the list-price policy for an
optimal choice of p and z. Theoretical comparisons are
provided first, followed by a numerical study of the two
policies. The comparisons give some insight into when an
auction-based policy has advantages over list pricing, and
how much more beneficial it is.

Before proceeding, we note as mentioned in the Intro-
duction that the dynamic list-price and inventory problem
was studied extensively by Federgruen and Heching (1999,
§4). They showed that in the infinite horizon, stationary
case, the optimal policy is in fact a basestock, list-price pol-
icy of this form. However, there are differences between the
problem Federgruen and Heching (1999) analyzed and our
setting. The first, which is minor, is that the authors assume
that the holding cost is incurred at the end of the period,
resulting in an expected inventory-backorder cost function
G(y, p), where y is the inventory level at the beginning of
the period, and p is the unit price. This can be mapped into
our case by defining G(y, p) = h(y) — E[b([y — D(p)]")],
where b(-) is a backlog penalty function, and D(p) is the
random demand faced at price p. Second, and more funda-
mentally, ours is a lost sales model while Federgruen and
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Heching allow backorders, and they do not provide a proof
of the optimality of the basestock, list-price policy in the
lost sales case. Still, this policy provides a useful bench-
mark for comparison.

4.1. Theoretical Comparisons

We first look at some theoretical comparisons of the opti-
mal auction and list-price policies. We will restrict our-
selves to the average-cost case, where the optimal profit is
given by optimizing (19) over z, though similar results can
be developed for the discounted case. Our analysis shows
that in several important cases, the list-price policy is prov-
ably either optimal or asymptotically optimal, so there may
be no benefit to the seller in using an auction policy in
these (not unrealistic) settings.

To begin, let IIf, denote the seller’s average per-period
expected profit under this list-price setting. Let s denote the
reserve price set by the seller, and let

N(s)=|{v;: v; > 5, VI<i < N}

be the random variable representing the number of buyers
with valuations exceeding the reserve price s. The seller
solves

I}, = max E[(s — c)min{N(s), z}] — h(z).

z€Z4

Fix a value of z, and define the corresponding function
H;p(2) as

Ip(2) = r£1>ao><E[(s —c)ymin{N(s), z}] — h(z)

- nsglox{(s —c) % g(n) []2::) min{j, z} (j)

n=0

- F(s)]fF@)"-f} } “h). (0)

where the last equality follows by conditioning on the out-
come of N(s). Note that the objective in (20) is continuous
in s, positive for all s € (¢, v), and zero when s = ¢ or
s =v. So, the maximum is guaranteed to exist in the inter-
val (c,v) and we can find it through standard line search
methods.

In the next step, the seller must solve

I}y = max Tl p(2).
€Ly

The search space for zj is clearly bounded between 0 and
M: the seller will not stock units beyond the maximum
number of bidders that can show up in a particular period.
We will keep the notation ITf, =TI, p(z}}).

4.1.1. Small Number of Buyers per Period. The first
case where list pricing is optimal is when there is at most
one buyer per period; we have the following proposition.
The proof is in the appendix.

ProPoSITION 3. If N <1, then IT* =11} .

This shows that if the firm is receiving isolated bids (for
example, as in Priceline.com’s pricing mechanism), there is
no inherent advantage to using auctions over list pricing—
some aggregation of buyers is needed to gain a strict advan-
tage through an auction policy. Intuitively, this is due to the
fact that one needs to generate some bidding competition
among buyers to realize a benefit from an auction. With at
most one buyer bidding, no competition is created.

4.1.2. Large Number of Buyers per Period and Lin-
ear Holding Cost. While an auction is not beneficial if
there are too few buyers per period, we next show that it is
not beneficial if there are too many buyers either. Specif-
ically, we show that if the holding cost is linear, list pric-
ing becomes optimal for the limiting problem where the
number of buyers per period tends to infinity. An analo-
gous result was shown for the finite horizon optimal auc-
tion design problem in Vulcano et al. (2002, §5.1). Broadly
speaking, as the number of buyers increases, the bid real-
izations become an accurate and dense sample of the value
distribution F. As a result, the order statistics, which deter-
mine the winning set and price to be paid, will converge to
appropriate fractiles of this distribution. The scaled auction
profit then approaches a deterministic function of the base-
stock level z and of the minimum reserve price ¢, making
it asymptotically equivalent to the list-price profit.

To proceed, we consider a sequence of problems indexed
by n. Without loss of generality, we analyze the profits from
using a second-price auction with fixed reserve price ¢ and
an order-up-to policy with basestock level z”, because we
know from §3.4 that such a policy optimizes the long-run
average profit for a suitable choice of z". The number of
buyers in a period is denoted by N". For some z > 0 and
N >0, we assume

n n

— —>z and — N.
n n

If N" is random, we assume that N"/n converges to a deter-
ministic limit almost surely. The next proposition states the
result. A detailed proof is in the appendix.

PRrROPOSITION 4. Consider a sequence of auction problems
as described above with linear holding cost h(z) = a + hz.
Then, the list-price policy is optimal for the limiting prob-
lem as n becomes large.

4.1.3. Zero Holding Cost. Finally, the list-price policy
is also optimal in the limit as the holding cost tends to zero.
Specifically, we have (see the appendix for a proof):

PROPOSITION 5. Ifthe holding cost h(z) =0, then 11}, = IT*.
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Table 1. Profits for different numbers of buyers per period.
Auction List Price

Buyers Profit
per Period Profit z* Fillrate (%) Profit Zp Fillrate (%) Gap (%)

1 0.021 1 100.00 0.021 1 100.00 0.00

5 0.128 2 90.39 0.124 3 98.74 3.20

10 0.268 4 95.93 0.261 4 96.62 2.50

50 1.404 14 95.03 1.381 16 98.88 1.62

100 2.835 26 94.90 2.798 30 99.32 1.31

1,000 28.723 242 95.86 28.544 259 99.80 0.62

The intuitive reason for this result is that with no hold-
ing cost, the firm will stock the maximum inventory M
at the start of each period under both the optimal auction
and list-price policies. As a result, there is no rationing of
product, and thus buyers do not face any bidding compe-
tition. Without bidding competition, the auction produces
the same profits as the list-price policy.

4.2. Numerical Comparisons

We next look at the results of some numerical examples that
illustrate cases in which an auction policy is more profitable
than a list-price policy. We restrict attention to the average
profit versions of the problems as discussed in §3.4 and the
beginning of §4.1, because the average profit criterion is
quite natural, easier to compare than a discounted criterion,
and the computations are quite straightforward. In every
experiment that follows, we have solved the corresponding
formulations (19) and (20) in closed form.

To study the impact of different parameters on the profits
earned under both pricing mechanisms, we perturbed the
parameters of the following base case: The ordering cost is
normalized at ¢ = 1; buyers’ values are assumed uniform
of width A = 0.5 centered at ¢ (i.e., buyers’ values are
centered at the cost, with A representing the dispersion in
valuations); there are a constant N = 50 buyers per period,;
and the holding cost is linear of the form A(z) = hcz, where
h =1% is the one-period holding cost rate.

We then varied individual parameters of this base case
to see the effect on the absolute and relative performance
of each policy. Along with expected profit, we computed a
“fillrate” for each policy, defined as the expected number
of buyers who get an item awarded divided by the expected
number who attempt to purchase (e.g., those with values
above the reserve price in the auction, or those with val-
ues above the fixed price in the list-price case). Formally,
the fillrate is the ratio E[min{N(¢), z*}]/E[N(¢)] in the
auction case, and E[min{N (s*), zjp}]/E[N(s*)] in the list-
price case, where s* is the optimal price calculated by the
algorithm. The fillrate gives a measure of the scarcity of
inventory relative to demand and is a traditional service
measure in inventory problems.

4.2.1. The Effect of the Number of Buyers per Period.
In our first experiment, we studied how the profit is affected
by the number of buyers in each period. The number of
buyers N was assumed constant, but N was varied from 1

to 1,000. All other parameters are the same as in the base
case. The results are summarized in Table 1.

As one would expect, the profits and inventory levels
increase in both policies as the number of buyers increases.
Also, as shown theoretically in Proposition 3, the list-price
policy is optimal in the limiting case of just one buyer
per period. In the other extreme as n gets large, again
the list-price profit approaches the optimal auction profit,
as predicted by the asymptotic result of Proposition 4.
In particular, for our parameters, the limiting dynamic con-
trol problem (see formula (26) in the appendix) gives an
estimate of the optimal auction basestock level of z* =
0.24N, which is quite close to the values in the third col-
umn of Table 1 for the cases N =100 and N = 1,000. The
biggest benefit from the auction occurs at a moderate value
of 5 buyers per period, where it achieves a 3.2% increase
in profits over list pricing.

Note the fillrate and inventory level is higher in the list-
price case. The intuition here is that the auction policy
deliberately introduces some scarcity in the available goods
to create more bidding competition among the buyers. This
is consistent with the findings of Vakrat and Seidmann
(2000), who study the impact of the number of units offered
in online auctions on the total firm profits and find that
profits are a unimodal function of the quantity available
(our inventory level).?

4.2.2. The Effect of Variability in the Number of Buy-
ers per Period. In our second experiment, we assumed
that the number of bidders is uniformly distributed with
mean 50. The variance of this distribution was then var-
ied by changing the range of this discrete uniform random
variable. All other parameters are the same as in the base
case. Results are shown in Table 2.

The main observation here is that as the variance in the
number of buyers increases, the seller’s profit decreases
under both the auction and the list-price policy and the auc-
tion becomes relatively more profitable. Thus, high levels
of uncertainty about the number of bidders appears to favor
the use of the auction policy. As in the previous experi-
ment, we observe higher inventory levels and fillrates for
the list-price case.

4.2.3. The Effect of Different Holding Costs. We
next consider varying the holding cost through a change
in the holding cost rate coefficient &, namely h(z) = hcz.
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Table 2. Profits for different variances in the number of buyers per period.
Range of Buyers Auction List Price
Profit

Min Max Profit z* Fillrate (%) Profit ip Fillrate (%) Gap (%)
50 50 1.404 14 95.03 1.381 16 98.88 1.62
40 60 1.398 15 96.10 1.374 17 98.99 1.74
30 70 1.386 15 93.69 1.358 18 98.69 2.03
20 80 1.371 17 94.59 1.339 20 98.73 2.33
10 90 1.354 18 93.31 1.319 21 98.29 2.59

Typically, this holding cost rate represents a cost of capital
plus a rate of depreciation in the product’s value over time.
Table 3 shows the results.

The small difference in the expected profits for the low-
est holding cost confirms the result of Proposition 5; low
holding cost leads to high inventory levels, which reduces
the bidding competition and hence the benefit of the auc-
tion. As the holding cost rises, the auction performs rela-
tively better, achieving a large 21.67% improvement when
the holding cost rate reaches 10%. This is simply the
reverse effect: A high holding cost means that the firm is
unwilling to stock much inventory. Because the number
of buyers per period is unchanged, the number of buyers
per unit of inventory increases; more competition among
buyers is created and hence the auction policy performs
relatively better.

It is worth pointing out, however, that there are few
practical situations where holding cost rates of over 1%
per period are observed, especially if one is considering
auctions that are held relatively frequently (e.g., weekly).
Rates this high are observed for products such as personal
computers which become obsolete quickly, but for most
goods weekly rates of less than 1% are the norm. Thus, the
experiment suggests that either the product has to suffer
fairly rapid depreciation or selling events have to be rela-
tively infrequent (e.g., monthly or semiannual periods, not
weekly) for the firm to realize a significant benefit from
using auctions over list pricing.

4.2.4. The Effect of Different Levels of Variability
in Buyers’ Valuations. Finally, we looked at the effect
of different levels of variability in the buyers’ valuations
for items. Recall that these values are assumed to be uni-
formly distributed with mean one (i.e., centered around the
ordering cost ¢ = 1) with range A. Thus, the values are

U(c—A/2,c+ A/2). We then varied A. All other param-
eters are the same as in the base case. Table 4 shows the
results.

The main observation is that the seller benefits, both in
the auction and in the list-price setting, from increased vari-
ability in the buyer’s valuations. This is to be expected,
because the firm can extract more consumer surplus from
high-value buyers as the variation increases.

The inventory level is also increasing with the variance,
and the relative benefit from the auction policy is decreas-
ing. Intuitively, there are two effects at work here. The first
one is that with higher variation in valuations, there is more
potential for profit gain through using the auction because
it can potentially capture more consumer surplus. However,
as the variability of the valuations increases, the level of
inventory increases as well, reducing the bidding competi-
tion among buyers. In this example, this latter effect domi-
nates the former. One can construct other cases where more
variation in valuations increases the relative benefit of the
auction, for example, when valuations are strictly higher
than the cost ¢ (rather than being centered at ¢ as in this
experiment).

5. Conclusions

With the rise of Internet commerce, auctions are increas-
ingly viewed as a viable mechanism for pricing goods in
retail and distribution businesses. Our results show that
the optimal auction and replenishment policy in a stylized
model of such systems is relatively simple, consisting of
running a series of standard first-price or second-price
auctions with fixed reserve price and following a simple
order-up-to (basestock) policy for replenishment. More-
over, especially under the average profit criterion, this opti-
mal basestock, reserve-price-auction policy is very easy to

Table 3. Profits for different levels of holding cost.
Auction List Price
Holding Cost Profit
Rate (%) Profit z* Fillrate (%) Profit Zp Fillrate (%) Gap (%)
0.01 1.560 21 99.97 1.560 23 100.00 0.01
0.10 1.543 18 99.58 1.541 20 99.92 0.14
1.00 1.404 14 95.03 1.381 16 98.88 1.62
5.00 0.932 10 77.36 0.845 11 93.10 9.37
10.00 0.502 7 55.77 0.393 7 82.41 21.67
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Table 4. Profits for different variances in buyers’ valuations.
Auction List Price

Values’ Range Profit

A Profit z* Fillrate (%) Profit Zp Fillrate (%) Gap (%)

0.1 0.186 10 77.36 0.168 11 93.09 9.39

0.5 1.404 14 95.03 1.381 16 98.88 1.62

1.0 2.955 15 97.04 2.933 18 99.64 0.76

1.5 4.512 16 98.35 4.489 18 99.64 0.51

2.0 6.070 17 99.13 6.048 19 99.82 0.36

compute. Thus, the structure and computation of an optimal
policy is surprisingly simple, familiar, and practical.

In addition, our comparisons with list pricing provide
some insight into when an auction is likely to be benefi-
cial. The somewhat notable finding here is that there are
relatively few cases in which auctions provide large ben-
efits. If the number of buyers per auction is either very
small or very large, list pricing is provably optimal; if hold-
ing costs tend to zero, list pricing again becomes optimal.
Auctions provided large benefits in our experiments only
when (1) the number of buyers is moderate, (2) the holding
cost per period is large, and (3) there is significant vari-
ability in the number of bidders. Thus, while auctions are
quite fashionable in e-commerce, perhaps there are sound
theoretical reasons why list pricing remains popular. But
when the conditions are right, auctions can indeed provide
significant improvements in profits over list pricing.

Appendix

ProOF OF LEMMA 2. Note that it is enough to prove it for a
particular instance (n, v). Actually, we will first prove that
for all ¢ > 0, there exist a K, > 0 such that V,(x) < K,. By
induction, the result is true for 7 = 0, because V,(x) =0.
Suppose it is true for V,_, (), and define

H,(x,k,y)=R(k)+aV,_(x—k+y)—h(x—k+y)—cy.

Observe that H,(x,k,y) < Mv+ aK,_,;, because R(k) <
Mv VO <k<x. So, define

K,=Mv+aK, |,

with K, = 0, to have a time-dependent bound for the
profit function. This sequence of bounds is increasing,
with limsup, K, = Mv/(1 — a), leading to K = Mv -
(1-)t. O

ProOoF OF LEMMA 3. Recall that when referring to
Lemma 1, we will be replacing the generic function G(-)
by V,_,(); and accordingly, we will be talking about z}_,
instead of z*.

We start with the left-hand side inequality. If k*(x) =0,
the statement immediately holds true. If £*(x) > 0, the next
lines show that in fact k*(x) is a feasible allocation quantity
when the inventory is x + 1. Following cases (a) and (b)
of the proof of Lemma 1, the transition value for k here

will be k =x+1—z7 ,. Now, if k*(x) <x—z/_, — 1, then
using the decreasing increments of R(-) and V,_,(-), and
the convexity of A(-), we get

AR(K*(x)) —aAV,_(x+1—k*(x)+1)
+Ar(x+1—-k"(x)+1)
> AR(k*(x)) — aAV,_ (x —k*(x) + 1)
+Ah(x—k*(x)+1) > 0.

If k*(x) =x —z_,, using Lemma 1, part (ii) for the

x + l-inventory case, we want to see that
AR(x—z;_ ) —aAV, (zj_+2)+Ah(z;_, +2) > 0.

But this holds because AR(x —z} ;) > ¢ by optimality of
k*(x) in the x-inventory case; and because of the optimality
of i, in (11), which gives

c—alAV,_ (2 +2)+Ah(zf ,+2)=0.

The case k*(x) > x —z;_, + 1 is easy: because of the
optimality of k*(x) when k > x —z |, AR(k*(x)) > c.

The optimal allocation k*(x+ 1) may be higher, however,
due to the additional unit in stock. Hence, k*(x + 1) >
k*(x).

For the right-hand side inequality, suppose by contradic-
tion that k*(x + 1) > k*(x) + 1.

First, take the case k*(x) < x—z , —2. From Lemma 1,
part (ii),

AR(K*(x)+2)+Ah(x+1—[k"(x)+2]+ 1)
>aAV,_ (x+1—[k"(x)+2]+1).

But because AR(-) is decreasing,

AR(K*(x)+ 1)+ Ah(x —[k*(x)+ 1]+ 1)
> AR(k*(x) +2) + Ah(x — k*(x))
> AV, (x —[k*(x) + 1]+ 1),
contradicting the optimality of k*(x).
On the other hand, when k*(x) > x —z}_, — 1, then from

our supposition, k*(x + 1) > x+ 1 —z/_,. So, we are in
the last case of Lemma 1, part (ii) for the x + 1-inventory
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case, and so AR(k*(x) 4+ 2) > ¢, contradicting again the
optimality of k*(x). Furthermore, this tells us that in most
cases where k*(x) > x —z" , — 1, then k*(x + 1) = k*(x),
except possibly when k*(x) is binding (i.e., k£*(x) = x).

Regarding the relation between y*(x + 1) and y*(x), it
follows by inspection from Lemma 1, part (i). O

PrOOF OF LEMMA 4. Again, recall that when referring to
Lemma 1, we will be replacing G(-) by V,_,(-); and accord-
ingly, 27 |, =z".

We proceed by induction on t. For ¢t = 0, the theorem
trivially holds because V,(x) = 0 for all x. For period # —1,
the inductive hypothesis (IH) is that AV, ,(x) > AV,_, -
(x4 1). Moreover, from (11), this assures the existence of
the optimal inventory position z;_,. We will then show that
if the IH holds, then AV,(x) is decreasing as well.

To do so, fix the number of bidders n and consider a
given realization v = (v, ..., v,) of bidders’s valuations.
Define the maximized value in (12) as

H,(x,n,v)
= max {R(k) +aV,_ (max{z;

o<k<x =

x—k})
—h(max{z}_,x—k})—cmax{z}_, —x+k,0}}, (21)

and take the difference function

AH,(x,n,v)=H,(x,n,v)—H,(x—1,n,v).

Note that for random N and v,

AV,(x)=Ey [AH,(x,N,v)].

Thus, it suffices to establish that AH,(x, n, v) is decreasing
in x to prove that AV,(x) is decreasing in x. For notational
simplicity, we henceforth suppress the arguments n, v in
AH,(x, n,v) and simply use AH,(x).

Using (21), cases (a) and (b) in the proof of Lemma 1
and Lemma 3, we make the following observations:

OBSERVATION 1. If k*(x + 1) = k*(x) =k* and k* < x —
Z;_,, then

AH(x+1)=a AV, (x + 1 — k") — Ah(x + 1 — k*).

OBSERVATION 2. If k*(x + 1) = k*(x) =k* and k* > x +
1 -2z}, then

1
AH.(x+1)=c.

OBSERVATION 3. If k*(x 4+ 1) =k*(x) + 1, then
AH,(x+ 1) =AR(k*(x) + 1).

Consider now AH,(x + 1) and AH,(x). Given the dif-
ferent combinations of values that k*(x — 1), k*(x), and
k*(x + 1) can take by Lemma 3, there are several cases
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to analyze:
Case 1. k*(x+1)=k*(x) =k*(x—1)=k* and k* < x—
=z

In this scenario,
AH,(x) =aAV,_(x —k*) — Ah(x — k¥)
(by observation 1)

> aAV,_(x+1—k*)—Ah(x+1—k%)
(by the IH and convexity of A(-))

=AH,(x+1) (by observation 1)

Then, AH,(x) > AH,(x+1).

Case 2. k*(x+1)=k*(x) =k*(x — 1) =k* and k* =
X=7

Here,

AH,(x) =c¢ (by observation 2)

ZaAV,_(z; +1) = Ah(z7 + 1)
(by Equation (11))

=AH,(x+1) (by observation 1).

Then, AH,(x) > AH,(x+1).

Case 3. K*(x+ 1) =k*(x) =k*(x — 1) =k* and k* >
x+1-z7,.

By Observation 2, AH,(x) =c=AH,(x+1).

Case 4. k*(x + 1) = k*(x) = k*, k" > k*(x — 1), and

K <x—=2z}_,.

From Lemma 3, k* = k*(x — 1) + 1. Thus,
AH,(x) =AR(k*(x—1)+1) (by observation 3)
= AR(k¥)

>aAV,_(x+1—k*)—Ah(x+1—£k%)
(by optimality of k*)

=AH,(x+1) (by observation 1).

Then, AH,(x) > AH,(x+1).

Case 5. k*(x + 1) = k*(x) = k*, k* > k*(x — 1), and
K*Zzx+1-27,.

From Lemma 3, k* = k*(x — 1) + 1. Thus,

AH,(x)=AR(k*(x—1)+1) (by observation 3)
= AR(k")
> ¢ (by case (b) in the proof of Lemma 1)
=AH,(x+1) (by observation 2).

Then, AH,(x) > AH,(x+1).

Case 6. k*(x+1) > k*(x) > k*(x —1).

From Lemma 3, k*(x + 1) = k*(x) + 1 and k*(x) =
k*(x — 1)+ 1. Then,

AH,(x) =AR(k*(x—1)+1) (by observation 3)
> AR(K*(x—1)+2)
=AR(k*(x)+1)
=AH,(x+1) (by observation 3).
Therefore, AH,(x) > AH,(x+1).
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Case 7. k*(x +1) > k*(x) = k*(x — 1) =k* and k* <
x—1-zF,.
Note that k*(x+ 1) =k*+ 1. So,

AH,(x)=aAV,_(x—k*)—Ah(x—k")
(by observation 1)
=alAV,_ (x+1—-[k"+1])—Ah(x+1—-[k"(x)+1])
>AR(k*+1) (by Lemma 1, part (ii))
=AH,(x+1) (by observation 3).
Then, AH,(x) > AH,(x+1).
Case 8. k*(x 4+ 1) > k*(x) = k*(x — 1) = k* and k* >
X—=2Z;_.
AH,(x)=c (by observation 2)
> AR(k*4+1) (by Lemma 1, part (ii))
=AH,(x+1) (by observation 3).
Then, AH,(x) > AH,(x +1).
Thus, AH,(x) is decreasing. Taking expected value over
all possible realizations of (n, v) preserves this monotone

property, and hence AV,(x) is decreasing as well, which
completes the induction. O

ProOF OF LEMMA 5. We will work on a sample path
argument, taking a realization (n, v). Start by noting that
AV,(x) < v Vt,x: To this end, consider observations 1-3
of the proof of Lemma 4. From Observation 1 (for our
purposes here, when k* = k*(x — 1) = k*(x)), we know that

AV, (x) =aAV,_(x —k*(x—1)) = Ah(x —k*(x — 1))
<AR(k*(x—1)) (by Lemma 1, part (ii))
< J(v) (by Equation (6))
< v (by Equation (3)).
Together with the other two observations, we get
AV,(x) < max{c, AR(k")} < v.

This is intuitive: the profit from an extra unit in inventory
cannot exceed the maximum possible bid.
Now, take (11), and define

Z=max{z€Z,: av—c > Ah(z)}.
Clearly, z >z} Vt.
Take y = z, and consider the following bounds for the

per-period profit:

min{—h(x), —h(y) —cy} SR(k) —h(x—k+y) —cy < Mv
VX,k,y: ngg)ﬁog)’gi

Hence, its modulus is bounded.

Moreover, because y; <z}, then y; <y. O

PROOF OF PrOPOSITION 2. Once more, we will argue on a
sample path base. We start by defining

>

N(s)=|{v:v;>s, VI<Ki< N}

and let
0 if k=0,

Q(k) = 4 min{k, N}
[J(vg) —c] if k>0.
1

i=

Note that Q(k) is concave in k, because the increments
AQ(k) are decreasing because of the ordering of the virtual
values J(v;)).

By letting ¢ = J~!(c), we can rewrite (19) as

I1(z) = Ey ,[@(min{z, N(&)}] = (2). (22)

The composition Q(min{z, N(¢)}) turns out to be con-
cave in z, and jointly with the convexity of /(-), we get the
result. O

PrROOF OF PROPOSITION 3. The proof follows the guidelines
of the one for an analogous result in the finite horizon
problem described in Vulcano et al. (2002, Proposition 2,
part (a)). We will show the result by proving the equality
II(z) =1 p(z) VO < z< z. For z=0, I1(0) =I1,,(0) =
—h(0). For z > 1, from (22),

() =E[(J() —olfv > 3P(N=1)—h(z)  (23)
and from (20),

Mp(2) = max{E, [(s — v > s}P(N = 1) = h(2)}. (24)

For the latter, note that we can express the maximization
problem as

max{(s —c)(1 = F(s))}P(N =1) = h(z).

The optimal s* is the solution to the first-order condition

1 —F(s)
fls)

Using the definition of J(-) (see formula (3)), we can alter-
natively write

s=c+

s*=J"1(c)=¢.
The list-price problem (24) becomes

p(2) = E,[(¢ — o)lfv > ¢}P(N = 1) — h(2).
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Now, it will be enough to show that E,[J(v)I{v > ¢}] =
E,[¢XI{v > ¢}

E[J()I{v> &)] = f;](v)f(v) dv

- ﬁivf(v) dv— /ﬁa —F(v))dv
— E[ul{v> &}] — E[(v — O)I{v > &}]
= E[c{v > ¢}]. (25)

Because both expressions (23) and (24) are equivalent for
every z, the optimal values are the same. [l

PrROOF OF PrOPOSITION 4. Recall that in a second-price
auction, the bidders’ dominant strategy is to bid their own
values independently of the number of items z" and the
number of bidders N". Consider the profit as a function of
Z" and N", and note that for any realization v, the seller
will award x* V" (v) units given by

x*M (v) = max{i < min{z", N"}: v > &}

and each winner will pay

7N (v) = max{¢, VeV )41 )

for a total single-period profit of

X"V () = N () (7N (v) = ¢) — h" — a.

Asymptotically, both (1/n)x™V"(v) and 7% (v) con-
verge to deterministic limits that depend on z and N. This
leads to the following lemma characterizing the limiting,
per-period profit (see Vulcano et al. (2002, Proposition 3 in
the Appendix) for a proof of a similar result).

LEMMA 7. Let F(x) =1—F(x), and assume that the hold-
ing cost is linear of the form h(z) =a+ hz. If z< NF(?),
then as n — oo,

| R
XN () > z[F'(1—z/N)—c]—hz as.,
n

else if z> NF(¢),

1 n n —_ S ~

X" N (v) > NF(¢)[¢ —c]—hz a.s.
n

When the number of units_ z" and the number of bidders
N" are large and z" < N"F(¢), the firm’s profit will be
given by

XN () =7"[F'(1 = 2"/N") — ¢] — hZ" + o(n),

which is independent of the particular instance of v. Divid-
ing by n and letting n — oo, the limiting dynamic control
problem can be written as

I9= max {z[F'(1-2z/N)—c]—hz}. (26)

0<zKNF ()

Note that because the number of units to award is
min{z, NF(¢)} but the holding cost is proportional to z, it
is never optimal to use z > NF(¢).

Solving the limiting problem (26) provides a simple
approximation of the optimal basestock level. For exam-
ple, when bidders’ valuations are uniformly distributed,
this average profit function reduces to a concave quadratic
maximization problem that is readily solvable. Numerical
results show that the approximate basestock level is quite
accurate when N and z are large (see §4.2.1).

To see that this scaled auction problem is equivalent to
the list-price policy, consider a similar sequence of prob-
lems for the list-price case. Let x75" (v, 5) be the number
of units that the firm awards when facing an instance v for
a given list price s. Then,

x5 (v, 5) = max{i < min{z", N"}: v > s}
for a total single-period profit of
XNV (v,5) = (s —o)x "V (v, 5) — hZ" — a.

Asymptotically, (1/n)x 5" (v, s) reaches a deterministic
limit that depends on z, N, and s. An identical argument to
Lemma 7 shows that for z < NF(s), as n — oo,

1 on
—Xip’N (v,8) > z(s—c)—hz as.;
n

and for z > NF(s),

1 on _
— X" (v,s) > NF(s)(s—c)—hz as.
n

In other words, when the number of units z" and the num-
ber of buyers N" become large, and z” < N"F(s) (note
that it is enough to focus on this case), the seller’s profit
becomes

XN (v, 8) =7"(s — ¢) — hz" + o(n).

So, take a particular z" in that range, and observe that

7" <N"F(s)©s<Fl<l— ;)

Hence, maximizing over s yields

s*:F_1<l— < )
Nn

The limiting dynamic control problem in this case becomes

) = @Bg({z[F’l (1—2z/N) —c] — hz).

It is_again sufficient to focus on maximizing over 0 <
7 < NF(¢), which yields the same limiting expression as
(26). Thus, we have

gy =1,

which concludes the proof. [
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PROOF OF PROPOSITION 5. We will prove that if h(z) =0,
then IIj, = II*. For the auction case, consider the benefit
for a particular inventory level z:

1(z) = EN,U[ max  (R(K) - ck}].

0<k<min{z, N

We can then take z* = M, the maximum possible value
for the random variable N. Then,

<

I*=E, _OIQ@V{R(k) — ck}:|
- k

=Ey ,| max Z[J(v(i)) - c]:|

0<k<SN
L i=1

=gy [ S0 - ot > é}}

= E[N](E,[J (I[v > ¢]] - cE,[I{v > ¢}])
(because N and v are independent)

— EINI(E,[1{v > )] - cE,[1{v > ¢]])
(by (25) in the proof of Proposition 3)

= E[N](¢ —c)E,[I{v > ¢}]. (27)
For the list-price case,
Ip(2) = r_{l;gi[(s —¢)Ey, ,[min{N(s), z}]]-

As in the auction case, we can argue that z{, = M. Thus,
we get

17 = max{(s — ¢) Ey,,[min{N (s), z{p}1}

= I?fg({(s — C)EN,U[N(S)]}

~narf- 0[St

= max{(s ~ DEINIE [1{v, > s}])

(because N and v are independent).

Now, because IT* dominates 11}, then from the expression
in (27), it turns out that s* = ¢, and hence, II* =1II;,. O

Endnotes

1. Of course, list pricing has many other advantages,
including familiarity, ease of use, lack of delays, reduced
risk for buyers, etc.

2. In particular, distributions that have increasing hazard
rate include the uniform, normal, logistic, exponential, and
extreme value (double exponential) distributions, etc. (See
Bagnoli and Bergstrom 1989.)

3. Though this reasoning is admittedly circular, if buyers
did indeed strategize over timing, the optimal policy might
attempt to exploit this fact rather than mitigate it as our
policy does.

4. This upper bound 7z only makes sense when the function
h(-) is strictly convex. Otherwise, we can set z = M: it
could not be optimal to stock units beyond the maximum
number of bidders that could eventually show up in one
particular period.

5. See Vakrat and Seidmann (1999) for an experimental
study comparing prices paid through online auctions and
catalogs.

6. There is also another interesting case, in which a single
stream of customers chooses which of the two channels to
use based on maximizing their own utility. This question
raises more complex behavioral issues that are beyond the
scope of this paper, though worth further research.

7. A stationary policy is unichain if its associated Markov
chain has a single recurrent class and a possibly empty set
of transient states.

8. Vakrat and Seidmann (2000) build a theoretical model
based on transaction data from 324 business-to-consumer
online auctions. In their Figures 6.a and 6.b, the optimal
number of units put through the auction is roughly speaking
half of the mean demand.
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