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This paper considers an overbooking problem with multiple reservation and inventory classes, in which the multiple
inventory classes may be used as substitutes to satisfy the demand of a given reservation class (perhaps at a cost). The
problem is to jointly determine overbooking levels for the reservation classes, taking into account the substitution options.
Such problems arise in a variety of revenue management contexts, including multicabin aircraft, back-to-back scheduled
flights on the same leg, hotels with multiple room types, and mixed-vehicle car rental fleets. We model this problem as
a two-period optimization problem. In the first period, reservations are accepted given only probabilistic knowledge of
cancellations. In the second period, cancellations are realized and surviving customers are assigned to the various inventory
classes to maximize the net benefit of assignments (e.g., minimize penalties). For this formulation, we show that the
expected revenue function is submodular in the overbooking levels, which implies the natural property that the optimal
overbooking level in one reservation class decreases with the number of reservations held in the other reservation classes.
We then propose a stochastic gradient algorithm to find the joint optimal overbooking levels. We compare the decisions
of the model to those produced by more naive heuristics on some examples motivated by airline applications. The results
show that accounting for substitution when setting overbooking levels has a small, but still significant, impact on revenues

and costs.
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1. Introduction

The idea of yield management in general is to improve
revenues by more effectively managing the pricing and
allocation of service capacity. See Belobaba (1989), Kimes
(1989), and Weatherford and Bodily (1992) for gen-
eral introductions to yield management, and McGill and
van Ryzin (1999) for a recent research survey. Over-
booking—that is, accepting more reservations than one has
physical capacity to serve as a hedge against cancella-
tions and no-shows—is one of the oldest and, from a rev-
enue standpoint, most important of yield management tac-
tics. Indeed, Smith et al. (1992) at American Airlines esti-
mate that 15% of seats on sold-out flights would be lost
if overbooking were not practiced and that the benefit of
overbooking at American in 1990 exceeded $225 million.
Rothstein (1985) provides an excellent and very readable
account of the history of overbooking in the airline indus-
try. Early analyses of the problem in the literature are due
to Taylor (1962), Thompson (1961), Rothstein and Stone
(1967), and Rothstein (1971, 1974). See also Alstrup et al.
(1986), Bitran and Gilbert (1996), Chatwin (1992, 1999),
Subramanian et al. (1999), Liberman and Yechiali (1978),
and Shlifer and Vardi (1975).

Most of these past works have considered only a single
“type” of inventory (e.g., coach cabin seats or standard
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hotel rooms). Some exceptions are Thompson’s (1961)
early work, which analyzed the distribution of oversales
for two cabins (first/coach) with a limited substitution
structure and Ladany’s (1976) work on overbooking of
hotel customers that demand single or double rooms.
Ladany (1976) used restricted policies to allocate the rooms
to customers and developed a two-dimensional dynamic
programming model to solve the problem. Alstrup et al.
(1986) also proposed a dynamic programming formula-
tion of a problem with two cabins, in which the terminal
conditions allow for upgrading and downgrading. Interest-
ingly, Rothstein (1971) noted that the (now defunct) Civil
Aviation Board at that time expressly prohibited airlines
from basing reservation policies on the possibility of reas-
signing passengers to a different cabin. Also, Rothstein
(1985) notes that the International Air Transport Associ-
ation (IATA) at one time forbade the practice of putting
a coach passenger in the first-class cabin without extra
charges.

However, there are many examples of real-world oper-
ations that involve overbooking multiple inventory classes
that can substitute for one another. At most airlines, over-
booked business and economy-class passengers are indeed
upgraded to the first-class cabin on an oversold flight.
Similarly, hotel customers are upgraded to luxury rooms;
mid-size cars may be substituted for compact cars, etc.,
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depending on the realized demand and available capac-
ity. See Geraghty and Johnson (1996), Carrol and Grimes
(1995), and Edelstein and Melnyk (1977) for work on car
rental yield management problems. A less obvious, but
important, example occurs in airlines that have frequent
departures on the same route, in which case later depar-
tures can be used to service the overflow from earlier,
overbooked flights (see Ratliff 1998). Of course, inventory
classes are usually not perfect substitutes; a van may not
be a good substitute for a sports car, a noon flight may be
a poor substitute for a morning flight, and so on. Because
substitution may decrease (or increase) the quality of ser-
vice, it has an important impact on customers. At the
same time, substitution is a potentially valuable option to
enhance the effectiveness of overbooking. Therefore, it is
important to understand how to balance its potential bene-
fits and costs.

In this paper, we consider an overbooking problem in
which we can accept or deny requests for n different reser-
vation classes. Demands for reservation classes can be sat-
isfied using any one of m different classes of inventory.
The cost (real and/or goodwill cost) of assigning demand
to an inventory class depends on the particular reservation-
inventory class pairing. In our model of the booking pro-
cess, there are two periods: (1) a reservation period, in
which reservations are accepted; and (2) a service period, in
which demand is realized and assigned to the m inventory
classes. Here, “service period” is used to denote the time
interval during which customers with reservations actually
show up and must be served or turned away. It is the time
of flight departure, the time when customers check in at a
hotel, or the time when customers pick up their rental cars.
Given the various substitution options, substitution costs,
and a probabilistic model of realized demand as a func-
tion of the number of reservations on hand, we analyze the
problem of setting optimal joint overbooking levels for the
n reservation classes to maximize revenues net of penalties.

In reality, acceptances and cancellations tend to take
place sequentially over time in most industries. However,
it is common practice to solve a simpler, static problem
periodically as a heuristic for the true sequential problem.
See, for example, Taylor (1962), Thompson (1961), and
Rothstein and Stone (1967). This is the approach we adopt
here. Our two-stage model is the natural multiclass exten-
sion of these traditional static overbooking models.

Several researchers have addressed dynamic models
of overbooking. Chatwin (1992, 1999), Rothstein (1971,
1974), and Subramanian et al. (1999), for example, analyze
single-class, dynamic programming models of overbook-
ing. Alstrup et al. (1986) uses a dynamic programming
model for a sequential problem with two inventory classes
that allows for upgrading and downgrading among the
inventory classes. However, their approach is computation-
ally intensive and the authors had to aggregate the state
space to make it practical. With more than two inventory
classes or more general substitution structure, the rapidly

increasing size of the state space makes an exact dynamic
programming approach intractable. Our two-stage model,
in contrast, is solvable for very large numbers of classes
and very general substitution structures.

The basic mechanics of our model also combine ele-
ments of inventory/production models with random yields
with those of models of substitutable products. The ran-
dom yield in inventory theory is analogous to the num-
ber of reservations remaining after the cancellations in our
case. Yano and Lee (1995) provide a good review of this
literature. Bitran and Gilbert (1994) and Chen (1997) ana-
lyze inventory models with substitutable resources with
deterministic yields. The facility location model in Jones
et al. (1995) and the multilocation inventory problem in
Robinson (1990) can be regarded as generalization of sub-
stitutable inventory problems, again without incorporating
random yield. Bitran and Dasu (1992), on the other hand,
combine substitution with random yields and present an
infinite horizon stochastic programming formulation. They
assume that the number of yield outcomes at each stage
is finite and propose two approximation algorithms for
the problem: a rolling horizon procedure which is fur-
ther simplified by assuming yield becomes determinis-
tic after a few periods and a heuristic to allocate items
to customers. Hsu and Bassok (1999) also work with
random yields and substitutable products. They model
a single-period, multiple-product decision problem that
allows “downward” substitution as a two-stage stochastic
program. They decompose their allocation problem into
a parameterized network problem. They propose different
solution methods and discuss computational issues. In these
last two papers, the authors assume the yield is a random
multiple of the production quantity, which allows them to
use stochastic programming.

The remainder of this paper is organized as follows: The
model and formulation are given in §2. In §3.1, we ana-
lyze properties of the deterministic (ex post) service period
allocation problem, the most important of which are that
its value is submodular and componentwise concave with
respect to the realized demand levels. This means that an
increase in the realized demand of one class reduces the
marginal benefit of additional demand in any other class.
In §3.2, we extend these properties to the expected net
revenue function of the overbooking problem in the reser-
vation period using stochastic convexity ideas. Specifically,
we show that the expected net revenue function is com-
ponentwise concave in each booking level and that the
marginal benefit of accepting an additional booking in any
class i is nonincreasing in the level of bookings for all other
reservation classes. This means that optimal booking lev-
els for class i will decline as the number of reservations
on hand for the other classes increases. This property is
quite natural, because reservations indirectly compete for
the same capacity due to substitution. It also shows qual-
itatively how reservation levels of one class should affect
the optimal overbooking levels of other classes. Finally,
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in §4, we develop a simulation-based optimization method
for determining joint overbooking levels. The algorithm is
applied to several examples in §5 to determine what effect
the substitution option has on revenue performance and
service levels. Our conclusions are given in §6.

2. Model and Formulation

As mentioned, we model the overbooking problem as a
two-period problem, consisting of a reservation period
followed by a service period. At the start of the reservation
period, we assume that for each reservation class i, there
are x; reservations currently on hand. The problem is to
decide how many additional reservation requests to accept.
The decision variables, u;, i =1,...,n, are the number
of class i reservations to hold at the end of the reserva-
tion period, which we call the overbooking levels. Dispos-
ing of reservations on hand is not allowed, so u; > x; for
all i=1,...,n. In our theoretical analysis, we assume the
reservation demand is sufficient to allow any set of over-
booking levels u to be chosen. That is, the overbooking
levels are not constrained by future demand. However, in
our numerical algorithm and testing, we show how limited
future demand can be incorporated (at least heuristically)
into the model, either by using explicit bounds on the deci-
sion variables u or by an appropriate modification of our
simulation-based optimization method.

Following the reservation period, cancellations and no-
shows are realized, and all remaining customers are either
assigned to an inventory class or are denied service. This
assignment of customers to reservation classes is mod-
eled as a network flow problem, which is described further
in §2.2.

Let the random variable Z; be the number of customers
from reservation class i that actually show up for service.
These are the accepted customers who survive from the
reservation period to the service period. The number of
survivals Z; is a function of the overbooking level u;, so
we denote Z; = Z;(u;). Therefore, the number of cancel-
lations and no-shows is u; — Z;(u;). Henceforth, we use
vector notation whenever we refer to all reservation classes,
such as x for (x,,...,x,), u for (u,...,u,), and Z(u)
for (Z,(u,),...,Z,(u,)). We do not distinguish between
cancellations and no-shows in our model; the fact that a
customer does not survive to the service period could be
due to either one.

The revenue gained by accepting a reservation of class i
is denoted r;. We allow for the fact that cancellations may
be partially refundable and let the refund associated with
a cancellation of reservation class i be denoted g, We
assume ¢; < r;. We let r and g denote the vector of revenues
and refunds, respectively. Let V,(z, ¢) denote the value of
the service period allocation when the vector of inventory
capacities is ¢ and the vector of number of customers who
survive is z. This function is defined and analyzed in §2.2.
Finally, let G(u) be the expected value of future revenues

and costs (net revenue) as a function of the overbooking
levels, u. (In this formulation, revenues due to the reserva-
tions already on hand, x, are considered sunk.)

The single-period problem is then,

max G(u), 1)

u>x

where

G = Y~ x) - E[Zq< - z,»(u,»»]
T E[Vy(Z(u). )] @

and the expectation above is with respect to the random
vector of survivals Z(u). This model can be used sequen-
tially over time by updating the problem parameters as they
change or as more information becomes available, to update
the overbooking levels u.

To understand the overbooking levels produced by this
model, we need to analyze the properties of the objective
function. The first term in G(u) is linear in u. The second
term, however, depends on the probabilistic model of sur-
vivals. The third term is even more complicated, depending
on both the probabilistic model of survivals and the prop-
erties of the service period value function V,,.

2.1. Cancellation Models

We assume that the probability of cancellation over a given
period is independent of the time the reservation is made.
(This memoryless property has been tested empirically in
the airline industry; see Martinez and Sanchez 1970.) Thus,
the number of surviving reservations is only a function
of the overbooking level u at the end of the reservation
period. Further, we will assume that the random variables
{Z;(u;) | u; = 0} have the semigroup property: If Y, and Y,
are independent and Y, and Y, are stochastically equivalent
to (have the same probability distribution as) Z;(u;) and
Z.(s;), respectively, then Y, +7, is stochastically equivalent
to Z;(u; + ;). Finally, we also assume Z,(u;),i=1,...,n,
are mutually independent and nonnegative.

One model that satisfies these assumptions—and is com-
monly used in traditional overbooking models—is the
binomial model. In the binomial model, let p; denote the
probability of survival for reservation class i over a given
period of time (usually the current time until the end of
the horizon). Then, the total number of survivals, Z;(u;),
is binomial distributed with parameters p; and u; where u;
is a nonnegative integer. We will also consider a Poisson
model as a continuous approximation to the binomial. This
model assumes Z;(u;) is Poisson with mean u,p;. We are
assuming that the probability of survival for a reservation,
p;, 1s independent of u;. Thus, both the binomial and the
Poisson models satisfy the semigroup property (see Shaked
and Shanthikumar 1988).
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2.2. The Service Period

The service period is modeled as a deterministic allocation
problem, in which surviving customers are allocated to
inventory classes to maximize the total net benefit. The fol-
lowing notation is used in formulating this deterministic
problem:

a;;: The net benefit of assigning a customer of reserva-
tion class i to inventory class j during the service period
(objective function coefficients).

¢;: The capacity of inventory class j.

z;> The number of customers of reservation class i that
show up at the service period (number of survivals).

¥;+ The number of customers of reservation class i
assigned to inventory class j during the service period
(decision variables).

The objective function coefficients, a;, take into account
any real costs and loss of goodwill incurred in case of
downgrading and any real revenues or gain in goodwill
received in case of upgrading the service required. Note
that this formulation allows for a general substitution struc-
ture, where any inventory class can provide service (at a
cost/benefit) to any reservation class. (This can be modi-
fied as discussed below to allow for various restrictions on
the assignments.) Fundamentally, however, ours is a cost-
based model, and we cannot directly model service-level
constraints (e.g., percent of customers denied service less
than a given threshold).

We add a virtual inventory class, class j =0, to account
for denied service. This class has finite but very high capac-
ity, and assigning a customer to that class means that the
customer is denied service. Assuming high capacity for
inventory class 0 and assuming nonnegativity for z and for
¢ ensures feasibility of the problem. The assignment vari-
ables corresponding to the virtual class are y;), and the
objective function coefficients, a;,, take into account the
loss of goodwill cost incurred by denying service to cus-
tomers of reservation class i, as well as any other direct
compensation costs.

Let z denote the n-vector of the number of surviving
customers and ¢ denote the (m + 1)-vector of inventory
class capacities (including the denied-service, virtual-class
capacity, ¢,). The maximum value obtained during the ser-
vice period is denoted by V,(z,c). It should be kept in
mind that the vector z is actually a realization of the vec-
tor of random variables Z(u). Although the ex post service
allocation problem is analyzed here in isolation, the results
ultimately have important implications for the booking lev-
els in the ex ante reservation period problem.

The allocation problem can be represented as:

n m

(TP)  Vo(z, ¢) = Max Z Z a;;yij

i=1 j=0

subject to

Yoyi=z, i=1,....n, 3)
j=0

Yy < J=0lm @)
i=1

yij20, i=1,...,n,

j=0,1,...,m.

This is a transportation problem (TP) in which the supplies
are the available inventories, demands are the customers
requesting service, and we are maximizing the objective
function rather than minimizing. The total supply exceeds
the total demand in our formulation.

Let the dual variables associated with constraints (3)
and (4) in TP be p = (4, ..., ,) and A= (Ay, ..., A,,),
respectively. The dual of the transportation problem is

(DTP) Min)_z;u; + ) c;A;

i=1 Jj=0

subject to

Looking at the constraint sets of TP and DTP, we see that
both problems have feasible solutions for z > 0. Therefore,
the optimal objective function values are equal and finite.
Notice that the feasible region of DTP is independent of
z and c; it only depends on the network structure and the
revenues and costs of the service allocation problem.

The network model can also be extended to allow for
piecewise and linear, increasing, and convex overbooking
costs. This is handled by simply adding additional virtual
inventory nodes with upper bounds on capacity that cor-
respond to the break points of the cost function, and with
arc costs that equal the increasing marginal costs of over-
booking. Customers that are denied service in the TP are
then assigned to the lowest-cost virtual classes first up to
the capacity limits, producing the desired increasing and
convex cost structure.

Note that by using this network formulation, we are
making the assumption that the service provider can make
a joint allocation decision with perfect knowledge of the
number of survivals in each class. Needless to say, this
should be considered only an approximation of reality.
While is some cases assignments are made with near-
perfect knowledge (e.g., airlines managing two cabins of
service in which upgrades are used to handle oversales),
more often the assignment process itself is sequential and
must be made with imperfect information about the total
number of survivals of each class. Indeed, Bitran and
Gilbert (1996) specifically focus on the sequential subprob-
lem of “walking” early-arriving customers prior to observ-
ing the number of guaranteed, late-arriving customers, the
latter being more costly and difficult to relocate. However,
we view the network model in our formulation as simply
a means of approximating the cost structure of the ser-
vice period—not as a method for making service period
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decisions directly. As a cost approximation, the network
model has the advantage of being computationally effi-
cient, yet capable of capturing the essential substitution
costs in a quite general framework. It therefore represents,
we believe, a reasonable trade-off between realism and
tractability.

3. Structural Properties

In this section, we study properties of the TP, which is a
deterministic problem, and provide the extension of those
properties to the expected value of the service period
value function. We primarily show the natural relationship
between overbooking levels of different reservation classes
by establishing the submodularity property of the service
period value function. The following definitions and
theorem—taken from Sundaram (1996)—are needed to
establish the result.

DEFINITION 1 (DECREASING DIFFERENCES). Let S C R".
For s € §, we denote (s_j;, s, sj’) the vector s, with s; and
s; replaced by s; and s, respectively. A function f: § — R
is said to satisfy decreasing differences on S if for all s € S,
for all distinct i and j in {1, ..., n}, and for all s; and s}
such that s; > s; and s} > 5;, the following relation holds:

f(s—ij’ s S;) _f(sfij’ 55 sj) < f(sfij’ Sis S;) _f(s—ij’ Sis Sj)'

THEOREM 1. A function f: S C R" — R is submodular on
S if and only if f has decreasing differences on S.

DEFINITION 2. A function f: § C R" — R is supermodu-
lar on § if —f is submodular.

3.1. The Service Period Value Function

Our structural results ultimately derive from the network
structure of the TP. Samuelson (1952) showed that the opti-
mal dual solution to a transportation problem is mono-
tonic with respect to the supply capacities. Shapley (1962)
showed a similar result for the assignment problem: The
optimal objective function of an assignment problem has
increasing differences with respect to any two supply nodes
or two demand nodes, and it has decreasing differences
with respect to a supply node and a demand node. Shapley
(1962) stated that the same result can be generalized to
a transportation problem. Erlenkotter (1970) showed the
monotonicity of dual variables with respect to supply and
demand in the transportation problem.

An extension of these properties is the submodular-
ity (supermodularity) of the service period value func-
tion (objective function of a transportation problem) with
respect to the number of reservations (demand). We pro-
vide that result without a proof. It follows from Theorem
3.4.1 of Topkis (1998). In our formulation, TP and DTP
are both feasible, so the optimal solution exists for both
problems. The set of feasible solutions (w, A) for DTP is a
sublattice of R"™™ and does not depend on (z, ¢). Hence,

all properties required by the proof in Theorem 3.4.1 of
Topkis (1998) are satisfied. An alternative proof which uses
monotonicity of dual variables and is based on Erlenkotter’s
(1970) proof is presented in Karaesmen (2001).

LEMMA 1. Function Vy(z, ¢) is submodular with respect to
(45 v 2p)-

The submodularity property is intuitive. It says that the
marginal benefit of an additional customer of a certain
booking class is nonincreasing in the number of customers
that show up from other classes when capacity for inventory
classes is fixed. Likewise, the marginal benefit of an addi-
tional inventory unit in one class is nonincreasing in the
number of units available in other inventory classes. This
is because, under substitution, class k customers compete
with class / customers for the same scarce capacity.

The next structural property, joint concavity, is elemen-
tary and follows from standard linear programming theory.

LEMMA 2. V| (z, ¢) is jointly concave in z,, ..
CynnnsC

.2, and in
e

Both submodularity and concavity hold for other substi-
tution structures, as long as there is a bipartite graph under-
lying the allocation problem and there is excess capacity
in the virtual inventory class (which ensures feasibility of
TP and DTP). For instance, if we allowed only upgrading
but no downgrading, then we would still have a submodu-
lar and concave net revenue function. One can also assign
very high overbooking costs to certain reservation classes
and penalize their assignment to class O if overbooking for
those classes is not desirable.

Because capacity is typically fixed, we henceforth drop
the capacity ¢ from our notation and denote the service
period net revenue function by V,(z), where z is the vector
of number of surviving reservations.

3.2. Properties of the Expected Value Function

We next show that the properties of componentwise con-
cavity and submodularity extend to the expected profit
function G(u) provided the random number of survivals
Z.(u;) have the semigroup property, such as the binomial
or the Poisson models (see §2.1 for earlier discussion).

THEOREM 2. For each i = 1,...,n, the nonnegative ran-
dom variable {Z;(u;) | u; = 0} has the semigroup property
with respect to the parameter u;, then the function, G(u),
defined by (2) is componentwise concave in each u,, i =
1,...,n, and submodular in (u,, u,, ..., u,).

PrOOF. We prove the result for the case n = 2 to avoid
excessive notation. The extension to n > 2 is straight-
forward.

First, G(u) is componentwise concave iff

G((u; +€,uy)) — G((uy, u,))
> G((u1+e+a,u2)) —G((u1 +a,u2)), (6)
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for all nonnegative u = (u,, u,), € and a. By (2), and
E[Z;(u;)] being linear in u; with the semigroup property,
this is equivalent to
E[VO((ZI (1) +€), Zz(”z)))] - E[VO((ZI (1), Zz(”z)))]

> E[VO((ZI (4, +e+a), Zz(”z)))]

- E[VO((ZI(MI +a), Zz(”z)))]-

There exist three independent random variables Y;, Y,, and
Y, that have the same distribution as Z,(u,), Z,(€), and
Z,(a), respectively. Now, since Z,(-) has the semigroup
property, Z,(u, + €) has the same distribution as Y, + Y,

and Z, (u, + € + «) has the same distribution as Y, + Y, + Y;.
Thus, we need to show

E[VO((YI +Y,, Z,(uy))) — Vo (Y, Zz(”z)))]
> E[VO((YI + Y+ Y5, Z,(uy))) — Vo (Y, + Y5, Zz(”z)))]-
But this is clearly true because for any realization Y; =k,
Y, =k,, Y=k, and Z,(u,) = we have by the concavity
of V,(z) that
Vo((ky +ky, 1)) = Vo ((ky, 1)
2 Vo((ky +ky + k3, 1) = Vo ((ky + k3, 1))
Taking expectations on both sides with respect to all the
random variables Y, Y,, ¥; and Z,(u,), preserves this
inequality, so (6) holds.
We next show G(u) is submodular in a similar way. It
is enough to show
G((“l +e€,u+ 52)) - G((“l? U + 62))
< G((“l +51”42)) = G((uy, uy)), (M

or

E[Vo((Z,(uy + €), Z,(u, + ,)))]
—E[Vo(Z,(uy), Z,(uy + €,))) ]
SE[Vo((Zi(u; +€), Z,(uy)))]
— E[Vo((Z,(uy), Z5(u2))) ] (®)

for any nonnegative u = (u,, u,), €, and €,.

Let Y,,, Y},, ¥,,, and Y,, be independent random vari-
ables with the same distribution as Z,(«,), Z,(€,), Z,(u,),
and Z,(e,), respectively. Using the semigroup property,

E[Vo((Z,(u + ). Z,(w)))]
= E[VO((YII + 7Y, Y21))]'

Similarly, we have

E[VO((ZI(MI)’ Z,(uy + 52)))] = E[Vo((yn’ Y, + Yzz))]’

and

E[Vo((Z,(u; + €)), Z,(u, + 6,)))]
= E[Vo((Yy; + Yy, Yoy + Y)) |-

Then, we can write the inequality in (8) as

E[Vo((Yll + Y12, Yoy + Y0)) = Vo (Y11, Yoy + ¥0))]
< E[Vo((Yn + Y12, Y1) = Vo((Y1y, Yzl))]-

Again, we only to need to make a sample path comparison
to see that the above inequality holds. Take any realization
Z;, k;, z,, and k, of the random variables Y,,, Y,, Y,,
and Y,,, respectively, and we know

Vo((Zl +ki,z, +k2)) - VO((ZI’ %) +k2))
<Vo((zy +k+1,20) = Vo((21. 20))

holds because Vj, is submodular. Therefore, (7) holds and
G (u) is submodular with respect to u; and u,. O

The above structural results give useful insights into
the optimal joint-booking policies. The componentwise
concavity of the expected net revenue function implies
that there are critical booking levels for each reservation
class beyond which the expected value does not increase,
provided booking levels of other reservation classes are
kept constant. The submodularity property implies that
these optimal booking levels for each reservation class are
nonincreasing in the level of bookings accepted for any
other class. These are natural and intuitive properties. They
simply reflect the fact that low reservation levels in one
class mean that capacity will be less constrained in the ser-
vice period, and this in turn reduces the potential costs of
overbooking in other classes because more (or at least less
costly) substitution options will be available.

4. Optimization

In this section, we provide procedures to compute the opti-
mal overbooking levels. The problem in (1) has simple con-
straints (only lower bounds on the decision variables) and
a two-stage objective function. The model resembles two-
stage stochastic programming problems, for which there are
well-known solution procedures (see Birge and Louveaux
1997). However, the recourse function is complicated in our
case: The probability distribution is a nonlinear function of
the decision variables. In that respect, we propose stochas-
tic gradient algorithms to solve the problem and discuss
their properties in this section. The submodularity prop-
erty discussed above and the algorithm are used to define
heuristic solution methods later in §5.
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4.1. Poisson Approximation

The binomial model is a good model of real cancellation
processes, but it is not well suited to continuous opti-
mization methods. Therefore, in this section we consider
a Poisson model that has continuous on-hand reservation
values u;. Specifically, we assume Z,(u;) is a Poisson
random variable with mean p;u;.

It is well known that there are certain problems with
using this Poisson model of survivals. In particular, the
number of surviving customers, Z;(u;), could exceed the
booking level; equivalently, the number of cancellations,
u; — Z,(u;), can take on negative values. Such outcomes
are clearly unrealistic. However, there are well-established
bounds on the Poisson approximation to the binomial dis-
tribution (see Ross 1996), and it becomes arbitrarily good
as u; becomes large. Therefore, for problems with large
booking levels, the approximation is justified. Also, the
binomial model can be used heuristically in essentially the
same continuous optimization method as described below.

4.2. Stochastic Gradient Algorithm

Our optimization algorithm is based on using an estimator
of the gradient of the objective function G(u) (a stochastic
gradient) within a gradient projection iteration. Let a vector
D* denote the estimator of the gradient at the kth iteration
of the algorithm. The algorithm requires a sequence of step

sizes, {b,}, satisfying
Zbkz—}—oo, Zb§<+oo;
k=1 k=1

for example, b, = 1/k. Then, the algorithm proceeds as
follows:

Step 0. Initialize: k =1 and u* := x.

Step 1. Get the stochastic gradient:

e Randomly generate a new vector Z(u).
e Compute the gradient estimate D*.

Step 2. Compute u**! = II(u* + b, D¥), where TI(-) is
the projection of u* + b, D* onto {u: u > x}.

Step 3. Set k:=k+ 1 and GOTO Step 1.

In Step 2 of the algorithm, one can even define a very
large (redundant) upper bound vector U < oo such that TI(-)
is the projection onto {u: U > u > x}. The upper bound
can be chosen such that the optimal overbooking level is
not excluded from the constraint set and the upper bound
is greater than any reasonable upper bound on the demand.
Further discussion on this topic is provided in §5. In the
next two sections, we show how to compute gradient esti-
mates D*. We then provide convergence guarantees on the
algorithm.

4.3. Gradient Estimates

To compute D¥, we need to estimate the following partial
derivatives:

L Evzw)]

1

= lim 2 [E[Vo(ZCut e )]~ EVGZ@)]. ©)

We use the notation e; for the ith unit vector in R". Let
Y;(h) denote a Poisson random variable with mean p;/ that
is independent of Z(u). Then, it is straightforward to show
that

E[Vo(Z(u+ e;h))] = E[Vo(Z(u) + ;Y (h))]
= E[Vo(Z(w)) | Y;(h) =0]P(Y;(h) =0)
+ E[Vo(Z(u) +¢) | Y;(h) =1]
-P(Y;(h)=1)+o(h).

Because P(Y;(h) = 1) = p;h + o(h) and P(Y;(h) =0) =
1 — p;h + o(h), we obtain

V2 w)]

= lim + [P HEIVA(Z(0) + )] ~ EVo(Z ()] + 0(h)]
= PELVo(Z(w) + ) = Vi(Z@)].
Therefore, an unbiased estimate of the partial derivative is
H(Z() = p (Vo(Z(w) + ) = Vi(Z())).

Letting H(Z(u)) = (H,(Z(w)), ..., H,(Z(u))), we have
the following unbiased estimator of the gradient of
E[Vo(Z(w))]:

VLE[Vo(Z(u)] = E[H(Z(u))].

The estimator H(Z(u)) can be computed by simulat-
ing Z(u) and solving a network linear program to obtain
Vo(Z(u)). Then, each estimate Vy(Z(u)+e¢;), i=1,...,n,
can be computed by increasing Z,(«) by one and resolving
the network problem. Let z* be the realization of the vector
Z(u*) at the kth iteration of the algorithm. Therefore, the
components of the gradient estimate at iteration k are

Df‘( =r,—q(l—p,) +Pi(V0(Zf'( +e;)— VO(Z;())’
i=1,....,n. (10)

We call the estimate (10) the “Difference Gradient” (DG).

Notice that by taking expectations on the right-hand side
of (2) and using E[Z;(u;)] = p;u;, we can write the objec-
tive function in open form as

n

G(u)= Z’"f(”i —x;) — Z%(l —p)u;+ Z Z Vo(2)

P(Zi(u) =21) - P(Z,(u,) =2,). (11)

DG can then be obtained algebraically from (11), as well
(see the appendix for a small example).

Another estimate of the derivative (9) can be obtained
by the score function (or likelihood ratio) method (see
Rubinstein and Shapiro 1993). Note that

%P(Z[(ui) =7z)= (i— —p,-)P(Zi(ui) —2z).

1
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By differentiating the last term in (11) and substituting in
the above expression, we obtain

J Z(u;)
Ao = £| (22 - p Yz |
u; u;

Therefore, an unbiased estimate of the derivative is
Z(u;)
a2 = (28 - vz
Therefore, the gradient at the kth iteration is

z*

Df=r,-—q,-(1—p,->+<u—;—pl-)vo<zk>, i=1,.n (12)

We call the estimate (12) the “Score Function Gradient”

(SFG).
Note that SFG requires solving the transportation prob-
lem only once to get D; for i =1,...,n, whereas DG

requires solving it (n+ 1) times. Therefore, computing one
gradient estimate based on SFG is faster than computing
one based on DG. However, because the variances of these
estimators may differ, it is not clear if SFG results in a
faster overall algorithm. Unfortunately, we have no theory
to guide us here. However, in §5 we present some com-
putational tests that compare the performance of SFG and
DG. Our tests and experience indicate that the algorithm
based on DG is in fact much faster, despite the fact that DG
is more costly to compute at each iteration. (The reason
appears to be that SFG has a much higher variance.)

We will also need the following continuity result regard-
ing the objective function G(u) (see the appendix for the
proof).

LEMMA 3. If for each i = 1,...,n, Z,(u;) is a Poisson-
distributed random variable with mean p;u;,, then the objec-
tive function, G(u), is twice continuously differentiable.

The next lemma establishes that both the DG and SFG
estimates have finite variances (see appendix for the proof).

LEMMA 4. Given u* at each iteration of the algorithm,
there exists a finite constant C such that Var(D¥) < C < oo
fori=1,2,...,n for both DG and SFG.

4.4. Convergence with DG Estimator

We next show that the algorithm of §4.2 with the DG gra-
dient estimator has fairly robust local convergence prop-
erties. (We have not been able to verify whether Condi-
tion A3 below holds for the SFG estimator, so we cannot
give convergence guarantees for this version of the algo-
rithm.) Kushner and Clark (1978) provide a proof of con-
vergence in probability for stochastic gradient projection
algorithms. We show that our problem and algorithm with
the DG estimator satisfy the properties described by Kush-
ner and Clark.

The gradient D* in our algorithm is a random vector
and is in fact a “noisy” representation of the gradient of

the function G(-). Let the noise (error) in the gradient
at iteration k be the vector &. We have ¢f = Df —
(3/0u;)G(u*) fori=1,...,n. Then, E[&" |u',...,uf] =0
with probability one.

Let the cumulative step sizes be defined as 7, = Y/~ b,
and define a function m(¢) such that m(t) = max{k: ¢, <t}
for # >0, and m(t) =0 otherwise. Suppose the following
assumptions hold:

Al. {b.} is a sequence of positive real numbers such that
b, >0, by — 0, and y_ b, = co.

A2. Let the constraint set for the problem be defined by
0={u: Hj(u) <0 j=1,...,s}. The set O is closed and
bounded. The Hj(-), j=1,...,s, are continuously differen-
tiable. At each u that is on the boundary of ©, the gradients
of the active constraints are linearly independent.

A3. limy_,  P[SUp,,;, 4>k | Sl biEl| > €] =0 for each
€>0andt>0.

A4. G(-) is a continuously differentiable real-valued func-
tion on N".

A5. b.E|E> — 0 as k — oo.

Let KT be the set of Kuhn-Tucker points of the problem
in (1). (Note that the Kuhn-Tucker conditions are necessary
for our problem (1) because the constraint qualifications
always hold: The gradient of the left-hand side of the con-
straints, u > x, always has rank n.) Then, Theorem 6.3.1
of Kushner and Clark (1978) shows that if KT is a con-
nected set and Assumptions A1-A5 hold, {#*} — KT in
probability as k — oo.

A weaker (and somewhat more technical to state) con-
vergence result holds when KT is not connected. In order
to do that, we first define an interpolation for the sequence
{u*}. We define the continuous function u(t) by

uk, t=t,

u(t) =

ty—t r—1
k+1 uk 4+ Lpes

, e, .
i, b (1o ti11)

(Note that u(r) is just a linear interpolation of the val-
ues u* as a function of the cumulative step sizes t,.) Let
N.(KT) denote the epsilon neighborhood of the set KT
and let /(x, S) be the indicator of x € S (i.e., I(x,S) =1
if xe S, and I(x,S) =0 otherwise). Kushner and Clark
(1978), Theorem 6.3.1 shows that under A1-AS, if KT is
not connected, then for each 6 > 0 and € > 0 there exists a
ty < oo such that ¢ > ¢, implies

t
gﬂp(% /rl(u(tk +5), 0" — N.(KT)) ds > 5) <.
If KT is bounded, the last 6 on the right-hand side above
can be replaced by zero. Roughly, this result says that the
“average amount of time” the iterates u, lie more than e
away from a point in KT (averaging over a sufficiently
large but finite interval) becomes arbitrarily small as k
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increases. It is, in essence, a convergence in probability of
a “moving average” of u*’s rather than a convergence of u*
itself. (Indeed, we use such a moving average of iterates in
our implementation of the algorithm in §5.)

Next, we discuss that Assumptions A1-AS5 hold for our
algorithm with the DG estimator. Al is satisfied by our
choice of the step sizes b, in §4.2. A2 is satisfied because
the constraint set in our problem is modified to take the
form {u: U > u > x}. A3 holds for the DG estimator by
choice of b,; boundedness of D*, &, E[D*], V,G(-); and
by Lemma 4. A4 holds by Lemma 3. A5 holds by choice
of b, and boundedness of Var(D¥) for the DG estimator
and can be shown similar to the proof of Lemma 4. For
SFG, A3 may not hold because, D* is not bounded.

As a summary, the algorithm we proposed with the DG
estimator satisfies the requirements for the convergence to
a KT point. When KT is connected, we have convergence
in probability. Even if KT is not connected, we still have
a guarantee of convergence of the average of iterates to a
point arbitrarily close to K7T. Again, however, we emphasize
that they are local convergence guarantees only.

4.5. Heuristic Extensions of the Algorithm

In this section, we present variations of the stochastic
gradient algorithm that apply to (i) binomial distributed
cancellations and (ii) adjustments of booking levels by
simultaneously looking at random demand.

4.5.1. A Heuristic Gradient Algorithm for the Bino-
mial Model. As discussed above, assuming survivals are
Poisson distributed has some disadvantages. In particu-
lar, the number of survivors can be more than the num-
ber of reservations. This can lead to undesirable results,
such as obtaining overbooking levels that are strictly less
than capacity to “hedge” against the possibility of survivals
exceeding capacity.

If we use the binomial model, so that Z;(x;) is binomial
distributed with parameters p; and u;, then the objective
function can be written in the open form as follows:

uy Uy

G = Y = x) = Y a1 = p)+ 3 -+ 3 Vo)

71=0  z,=0
'P(Zl(ul):Zl)“'P(Zn(Mn):Zn)’ (13)
where
u;! (—2,)
P(Z(u)=2z;)= ﬁp?(l —p)tiE
zil(u; — z;)!
fori=1, ..., n. In this case, the overbooking levels should

be treated as discrete variables, which of course introduces
other complications into the optimization.

However, consider the difference function for the func-
tion G(u) under the binomial model. We next show:

LEMMA 5. If Z;(u;) is binomial distributed with parameters
p; and u; fori=1,...,n, then

AiGbin(M) — Gbin(u + ei) _ Gbin(u)
=r—q(1—p))
+ P E[(Vo(Z(w) + &) — Vo(Z(u)))]-

ProoF. The first two terms are immediate from (13). Let
Y, be a Bernoulli-distributed random variable with para-
meter p;. Then, Z(u + ¢;) has the same probability distri-
bution as Z(u) + e;Y;, given the semigroup property. Then,
similar to the Poisson case in §4.3, the difference func-
tion with respect to u; can be determined for the expected

service period revenue as

AE[Vo(Z(u)] = E[Vo(Z(u+ €))] = E[Vy(Z(w))]
= E[Vo(Z(u) + ¢,Y;) = Vo(Z(u))]
= PiE[Vo(Z(u) + ¢;) = Vo(Z(u))].

The same relation can be shown algebraically using the
open form of the function G®"(-) (see the appendix for a
small example). O

Note that this expression for the difference function is
identical to the DG gradient (10). Essentially, only the
probability measure has changed. If we heuristically allow
overbooking levels u to be continuous and treat the differ-
ence function as the “gradient” of G®", then the gradient
estimate

Df =1, — q;(1 = p;) + p;(Vo(Z(u) + e;) — Vo(Z(w))

can be used in the algorithm of §4.2 with binomial sim-
ulations (or mixtures of binomials for a good rounding
procedure) replacing Poisson simulations as an optimiza-
tion heuristic. This approach combines the advantages
of continuous, gradient-based optimization while avoiding
some of the bad behavior of the Poisson model. Section 5
provides some numerical examples illustrating the perfor-
mance of this heuristic.

4.5.2. Booking Limits and Random Demand to
Come. Because the stochastic gradient algorithm is sim-
ulation based, it is easily adaptable. We only mention one
basic variation here, which seems most important, but it
should suggest others.

As mentioned above, the model and algorithm as stated
do not account for limited demand to come. That is, it
computes the overbooking level u, assuming that we will
indeed be able to achieve u reservations on hand by the
end of the reservation period. In reality, this may not be
possible because of limited reservation demand.

One way to deal with this in the algorithm is to simul-
taneously simulate both the number of reservation requests
and the number of cancellations. The modification proceeds



92

Karaesmen and van Ryzin: Overbooking with Substitutable Inventory Classes

Operations Research 52(1), pp. 83-104, © 2004 INFORMS

as follows: First, redefine u; to be an overbooking limit—
rather than overbooking level. That is, u; limits the number
of requests for reservation class i that we are willing to
hold to u; if demand exceeds u;. Let Y, a random variable,
represent the demand to come for reservations in class i,
and recall x; is the number of reservations on hand at the
start of the reservation period. Then, the number of reser-
vations on hand at the end of the reservation period will
be min{u;, Y; + x;}—that is, the minimum of the overbook-
ing limit u; and the number of reservations we have on
hand plus the number of new reservations we receive. If
Y, 4+ x; > u;, then a small increase in u; will result in more
reservations on hand—and potentially more surviving cus-
tomers. However, if Y; + x; < &;, an increase in u; will not
result in any more reservations on hand—and no increase
in the number of surviving customers. Let D¥ be any of the
gradient estimates mentioned above. Then, one can modify
DF to account for random demand to come by simulating
a value Y; and using the modified estimator

k
Df, Y, >u,—x,
0, Y, <u; —x;.

That is, the gradient estimate is simply set to zero in cases
where the simulated value Y; < u; — x;, which reflects the
fact that an increase in the overbooking limit for such real-
izations does not result in any change in net revenues.

5. Numerical Examples

In this section, we report on some numerical tests of the
stochastic gradient algorithm. We first solve a series of
examples in which we test the speed of the algorithm using
both the DG and SFG gradient estimates. Our tests show
that DG is considerably more efficient.

Because the DG proved to be much more efficient,
we used only DG in our remaining tests. These tests
involve solving several “dynamic” examples, in which
overbooking levels are computed periodically throughout
a simulated booking process. This type of test mimics
how static overbooking models are used in practice. We
test several variations of the algorithm against simpler
heuristics. The examples serve several purposes. First,
they illustrate the potential performance improvement from
using a substitution-based method rather than more naive
heuristics. Second, they provide some guidance about the
possible implementation choices in our algorithm. Finally,
they show the effect of substitutability on net revenues,
overbooking levels, and service measures.

5.1. Step-Size Rule

In implementing the stochastic gradient algorithm of §4,
we used an online step-size rule suggested by Ruszczynski
and Syski (1986). The step sizes are computed recursively
by

by >0, k=1,2,...,

—ay—0by_
bkzbk—le Yk k=1

where
¥ = (DT Auk + A(AuF)T (AW"),

for Auf = ¥ — u*!" and @ > 0, A > 0 fixed. We used
parameter values of @ =1, § =2, and A = 1. This rule
is motivated by using the information gathered during the
course of the algorithm to update the step sizes and to
enhance the speed of convergence far from the solution. It
is proven that the step sizes, b,, determined by this online
rule behave asymptotically as the deterministic step-size
rule 1/6(k+ 1) when the objective function is twice con-
tinuously differentiable. In Lemma 3, we proved that the
function G is continuously differentiable. We stopped the
algorithm when we reached a prespecified number of iter-
ations or a prespecified minimum step size. Our stochastic
gradient algorithm and a primal-dual based solution proce-
dure to solve the transportation problem are both coded in
C and run on a Pentium-III machine under the WindowsNT
operating system.

5.2. The Computational Speed of DG and SFG

To test the relative speed of the algorithm under the two
gradient estimates, we used a series of examples based
on overbooking back-to-back flights. This problem arises
when there are multiple departures on the same route.
Customers on oversold flights can then be put on later-
departing flights. This is only a one-way substitution,
because one flight is a substitute for another only if its
departure time is later. Such substitutions usually require
compensation for the passenger and some loss of goodwill.

Our experiment involves n = 2,4, 10,20 flights, which
allows us to test the performance of DG and SFG on prob-
lems of varying size. The parameters are the same for
each of the flights, except for the substitution costs. The
unit revenue is $500, the unit overbooking cost is $1,000,
and the survival probability for the reservations is 0.9. We
assume it is possible to substitute only one, two, or three
flights ahead (i.e., a passenger for a flight can be delayed
and served only by the next three flights on the airline’s
schedule). The substitution costs are $600 to the next flight,
$700 to the second flight, and $800 to the third flight.

We ran the two versions of the algorithm for 100,000
iterations, recording the average overbooking levels and
total computation time every 2,000 iterations to track their
progress. While one can use several criteria for evaluat-
ing convergence to an optimal set of booking levels u*, we
chose the distance metric

n
lu = = |3 ;= u)>.
i=1

In computing this metric, we rounded the iterates at each
stage (e.g., after every 2,000 iterations) and used the opti-
mal integer booking levels u*. We did this because the algo-
rithm ultimately is used for finding integer booking levels,
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Table 1. Average booking levels and computation time (sec.) for SFG and DG.
Booking Levels Time (sec)
Number of
Iterations SFG DG SFG DG
2,000 (571, 683, 502, 499) (121, 119, 118, 115) 4 5
4,000 (247, 726, 379, 289) (120, 118, 117, 115) 8 9
6,000 (136, 6438, 212, 200) (120, 117, 117, 115) 12 13
8,000 (168, 472, 149, 131) (120, 118, 117, 115) 16 18
10,000 (122, 432, 94, 94) (120, 118, 117, 115) 19 22
20,000 (119, 281, 108, 106) (120, 118, 117, 115) 39 44
30,000 (121, 198, 83, 106) (120, 118, 117, 115) 59 65
40,000 (118, 150, 95, 116) (120, 118, 117, 115) 79 86
50,000 (119, 124, 113, 114) (120, 118, 117, 115) 99 108
60,000 (120, 118, 114, 114) (120, 118, 117, 115) 119 130
70,000 (119, 118, 116, 114) (120, 118, 117, 115) 139 151
80,000 (120, 116, 116, 115) (120, 118, 117, 115) 159 173
90,000 (120, 118, 117, 115) (120, 118, 117, 115) 179 194
100,000 (119, 119, 117, 115) (120, 118, 117, 115) 198 216

so the integer solutions produced are what matter most.
The optimal integer solution u* was identified by simulat-
ing several integer solutions near the convergent point and
picking the one with the highest net revenues. In general,
several neighboring booking levels often gave very similar
revenues, so it is possible that a deviation from u* does
not produce a significant loss in net revenue. Moreover, it
is possible that our procedure misses the optimal integer
booking levels, because we did not exhaustively test all
possible integer values.

One can improve the convergence of the algorithms by
adding upper bounds (denoted U,) on the overbooking lev-
els at each iteration. This guarantees the overbooking levels
generated by the stochastic gradient algorithm are between
x; and U, at each iteration. If the dummy bound U, is
chosen to be small (but still large enough not to exclude

the optimal overbooking level), the algorithms will tend to
exhibit less variability and reach the optimal values faster.
Our experiments showed that SFG has higher variance and
its rate of convergence is more sensitive to choice of U,.
After some initial experiments, we used 171 = 1,000 for
all i, unless noted otherwise.

To illustrate our findings, the results for the problem with
four flights are summarized in Table 1. The SFG estima-
tor required 50,000 iterations and 99 seconds of CPU time
to find acceptable booking levels. In contrast, the DG esti-
mator required only 2,000—4,000 iterations and less than 9
seconds to find acceptable booking levels.

The CPU time as a function of the number of iterations
of the stochastic gradient algorithm is graphed in Figure 1
for all cases tested. As discussed earlier, DG solves n + 1
network problems to compute a gradient estimate at each

Figure 1. CPU time as a function of the number of iterations.
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iteration of the algorithm, whereas SFG solves only one.
This is reflected in the overall computation time, DG being
slower, and the difference in computation times between
two methods increasing as n increases.

The distance of the obtained overbooking levels to opti-
mal integer solution are plotted in Figure 2 and Figure 3 for
SFG and DG, respectively. As a result of our experiment
in Example 1, DG seems to give more robust and reli-
able results, faster, than SFG. This is no surprise, because
we have not been able to show that SFG indeed satis-
fies the theoretical requirements for the convergence of the

Figure 3.
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stochastic gradient algorithm. In particular, SFG performs
poorly as the number of inventory classes increases in our
example. For these reasons, we abandoned the SFG esti-
mator and used only the DG estimator in the remainder of
our experiments.

5.3. Implementation Variations of the Stochastic
Gradient Method

We tested several implementations of the stochastic gra-
dient method. All variations used the DG estimator. The
variations are:

Distance to optimum u* as a function of the number of iterations: DG.
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SOPT—This version uses the Poisson model of cancel-
lations with continuous booking levels as described in §4.2.

BIN—This policy is the same as SOPT except that it
uses binomial-distributed survivals, rather than Poisson. It
uses the DG gradient estimate (see the discussion in §4.5.1)
and the same step-size rule to update the booking level
at each iteration. The overbooking levels are rounded to
nearest integer values at each iteration.

SOPTUB—Due to the submodularity of the expected net
revenue function, if bookings (demand) are (is) expected
to be low in one class, then it makes sense to accept more
reservations in the remaining classes. As described, SOPT
does not allow for this sort of behavior. The policy SOP-
TUB attempts to capture this effect by adding roughcut
upper bounds on the overbooking level in each class based
on the expected demand to come. Specifically, we define
an upper bound N, for class i and change the constraints to
x; <u; <N, i=1,...,n After some experimentation, we
set N; = x; +u; +2.50;, where u,; and o; are the mean and
standard deviation of expected demand to come for class
i. Thus, the likelihood that the number of arriving reser-
vations for class i will exceed N, is small. (Hence, class i
bookings are effectively not constrained by this bound.)
However, if the mean number of reservations for class i
is small, then u; will be limited and (by submodularity)
the algorithm will tend to increase the booking levels of
the classes j # i. These upper bounds serve to restrain
the algorithm from “overallocating” capacity to a class for
which we do not expect many reservations.

BINUB—Same as SOPTUB but uses the binomial dis-
tribution for the survivals.

5.4. Other Heuristic Policies

To test the absolute performance of these policies, we also
simulated some simpler, naive heuristics. They are:

ADHOC—This policy computes independent overbook-
ing for each class in the reservation period, but makes
use of ad hoc upgrades at the time of service. That
is, overbooking levels are set without accounting for the
possibility of substitution, but when the service period
arrives, substitution is indeed used to minimize the denied
service and substitution costs. This roughly corresponds to
the way substitution is managed in many real applications.
Specifically, the ADHOC overbooking level for class i is
chosen to maximize

G?(”i) =ru; — q;(1 = p)y,

Fay 3 (i OPEZu) =), (14)

zi=c;+1

where recall r, is the unit revenue, g; is the cancellation fee,
p; is the probability of survival, a;, is the unit overbooking
penalty, ¢; is the capacity, and the random variable Z;(u;)
is the number of surviving reservations.

OBCOST—This policy is similar to ADHOC, but
instead of using a,, as the overbooking penalty, it uses an

estimate of the “effective” cost of overbooking. Specifi-
cally, given u, and ad hoc use of upgrades, not every inci-
dence of overselling results in denied boardings. It may
result in substitution at a lower cost. Therefore, solving (14)
to determine class i overbooking levels is too conservative
when a,, is used as the class i overbooking penalty. To cor-
rect for this, we use a cost a(u), the effective overbooking
cost being a function of the overbooking levels for all the
classes. We compute this value by simulation; i.e., once we
set u, we simulate the number of show-ups, solve for the
service allocation problem, and compute the effective over-
booking cost. Then, we use a search procedure to find the
u that maximizes G*.

POOLED—This policy combines the capacity from
all classes and computes a single, aggregate overbook-
ing level that is applied to the aggregate reservation level.
This aggregate overbooking level is obtained by solving
a problem identical to (14). The cancellation probabilities
and cost parameters are chosen somewhat heuristically, as
described in the examples below.

5.5. Performance in Some Simulated Applications

ExaMpLE 1. In this example, we look at an overbooking
problem for a single flight with two reservation classes (first
and coach) and two physical inventory classes (first-class
cabin and coach cabin). There are 20 seats for first class and
100 for the coach. A first-class ticket is sold for $1,000, and
there is no cancellation fee (i.e., refund on cancellation is
$1,000). Unit revenue for a coach-class reservation is $200
and the cancellation fee is $50 (i.e., refund is $150). The
unit overbooking cost for coach class is $400. We assume
there is no bonus for upgrading coach-class customers to
first class. As in common airline practice, we do not allow
for overbooking of first class (hence, no downgrading). This
results in setting ] = 20 initially. So, the problem reduces
to finding the overbooking level for coach class only.

We assume the planning horizon consists of 10 periods,
the last one being the service period. We assume the num-
ber of arriving reservations in each period is Poisson dis-
tributed and is homogeneous over the 10 periods. In each
period, we compute the overbooking levels and observe the
reservation requests that arrive in that period. We decide to
accept or reject these requests based on the period’s over-
booking level. Requests are rejected if the total on-hand
reservations plus the new requests are more than the over-
booking level. Next, we observe the cancellations (reserva-
tions accepted in this period, and the ones remaining from
the previous periods may be cancelled), and move on to
the next period. In the last period (the service period), the
surviving reservations are assigned to the inventory.

The cost and revenue parameters do not change over
time, but the survival probabilities are increasing in the
number of periods remaining. A first-class reservation made
in any of the periods 1,2,...,10 survives to the service
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Figure 4. Average surviving coach-class reservation levels for policies: Example 1.
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period with a probability of 0.71,0.72,...,0.80, respec-
tively. The corresponding survival probabilities for a coach-
class reservation are 0.81,0.82,...,0.90 at the end of the
periods 1,2,...,10, respectively. These values are cho-
sen to be close to the ones cited in Smith et al. (1992).
As mentioned earlier, we do not distinguish between can-
cellations and no-shows in our model. These probabilities
are “survival-until-service” probabilities. (However, in this
multiperiod simulation, it is easy to redefine the survival
probabilities such that they represent the survivals from one
period to the next. In that case, the cancellations between
reservation periods are cancellations, whereas the cancella-
tions at the end of the last reservation period are no-shows.)
The “load factor” (the ratio of total expected demand net
of cancellations to capacity) is chosen to be 1.10 for both
classes. This corresponds to an average arrival rate of 30
requests for first class and 130 requests for coach over the
entire planning horizon.

The policies ADHOC, POOLED, OBCOST, SOPT, and
BIN were all evaluated using simulation. SOPTUB and
BINUB were not used in this example. However, these poli-
cies are tested in the next example where demand for the
first-class cabin is smaller. For the policy POOLED, the
pooled class has the same parameters as the coach class,
except that its survival probability is an average of first-
and coach-class survival probabilities weighted by the first-
class and coach cabin capacities. Given that the survival
probabilities are lower than the ones used in ADHOC, the
coach-class overbooking levels in each period are higher
for POOLED, and this may lead to more upgrades and bet-
ter use of the limited number of seats in the plane, though
it might also lead to more denied boardings and increased
cost.

We used common random numbers for the simulation
of all policies and looked at their relative performance at
the end of 500 independent trials. The average number of
surviving reservations at the end of each reservation period
are shown in Figure 4 (the number for the last period
stands for the number of show-ups). The average overbook-
ing levels per period are shown in Figure 5. The revenue
and service performance of the policies are summarized in
Table 2. We report the average revenues as well as 90%
confidence intervals for the average revenue. We also pro-
vide the increase in revenues as a percentage of the aver-
age revenues of ADHOC policy. All the policies result in
increase in average revenues, despite worse service perfor-
mance compared to ADHOC. The service levels in Table 2
are computed only for the coach class; i.e., the %upgrade
refers to the percentage of coach-class show-ups that were
upgraded to first class, and the %denied is the percentage
of coach-class customers that were denied service.

Note from Figure 5 that the overbooking levels are non-
increasing over time for each of the policies. This follows
because the cancellation probabilities decrease over time,
so we are willing to hold a higher number of reserva-
tions early on in the booking process. In the last period,
SOPT has the highest overbooking levels, followed by
OBCOST and BIN, all with more than 115 reservations. As
a result, these policies have higher revenues than ADHOC
and POOLED, despite the fact that %denied is higher
for OBCOST, SOPT, and BIN. All the policies make use
of upgrades for coach-class passengers, which vary from
1.15% in ADHOC to 2.41% in SOPT.

ExampLE 2. This example is the same as Example 1 above,
except that the demand for first class is lower. Specifically,
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the demand for coach class is the same as in Example 1,
but the expected demand for first class is only six booking
requests over the entire planning horizon. Because the over-
booking level of first class is fixed at the first cabin capacity
in Example 1 and none of the policies ADHOC, POOLED,
and OBCOST consider first and coach class jointly while
setting the coach-class overbooking level, their overbook-
ing levels are the same as in Example 1 and they accept
the same number of coach reservations. However, there is
a reduction in revenues due to lower first-class demand and
reduction in overbooking costs due to more upgrades.

We used the policies SOPTUB and BINUB for this
example. When demand for the first-class cabin is very
low, SOPTUB and BINUB will allow more aggressive
overbooking of coach reservations. As shown below, this is
indeed the case.

The average overbooking levels per period and average
number of reservations in the system at the end of each
period are given in Figures 6 and 7. The average revenues
and service levels are given in Table 3. As expected, the
highest revenues are observed for policies SOPTUB and
BINUB. More than 8% of the coach-class passengers are
upgraded in both of these policies, resulting in an increase

OPOOLED
OOB-COST
NSOPT
OBIN

in revenues. These are significant increases, with BINUB
in particular achieving a net revenue about 6.8% higher
than ADHOC. From Figures 6 and 7, note that BINUB and
SOPTUB have the highest overbooking levels for coach
class, allowing for more upgrades, which increase the aver-
age revenues significantly. The average number of survivors
for first class is around 5.5 for all the policies. For coach
class, the average number of survivors ranges from 100 for
ADHOC; 102 for POOLED; 103 for OBCOST, SOPT, and
BIN; to 109 for BINUB and SOPTUB. As a result, there
are, on the average, 14 empty seats in the plane in ADHOC
and only 6 empty seats in BINUB and SOPTUB.

ExaMpLE 3. This example is a variant of the one used to
test SFG and DG. An airline has four consecutive depar-
tures on the same route. Overbooking leads to substitution
only forward in time; i.e., customers of an oversold flight
can take later flights with some loss of goodwill. We
assume that denying service completely to a customer
results in a higher cost than the cost of goodwill due to
delays. For simplicity, we also assume that all four flights
serve one booking class each, and each flight has the same
capacity. Similarly, we denote the flights by 1, 2, 3, and 4,

Table 2. Average revenues and service levels for policies: Example 1.
Revenue Service Levels

Policy Avg. 90% Conf. Int. %0Over ADHOC %Upgrade %Denied
ADHOC 36,651 (36,515; 36,787) 0.0 1.15 0.22
POOLED 36,811 (36,681; 36,940) 0.44 1.59 0.59
OBCOST 36,868 (36,744; 36,992) 0.59 2.34 1.27
SOPT 36,868 (36,746; 36,990) 0.59 2.41 1.40
BIN 36,879 (36,756; 37,001) 0.62 2.20 1.14
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The only naive heuristic we tried in this example was
ADHOC. OBCOST was deemed too computationally diffi-

ordered in time (i.e., the earliest flight is Flight 1). There
are 100 seats available on each flight. Delaying service to
customers by one flight has a cost of $300; delaying by two

flights is $400; delaying by three flights is $500 (i.e., if a

cult to implement. In Example 2, we were able to compute

the effective overbooking cost for coach class at every iter-

ation and period. Because the overbooking level for first

customer of Flight 1 is flown on Flight 4, the cost is $500,
and if the customer of Flight 2 is flown on Flight 3, the

class was fixed, we were doing a simple search on coach-
class overbooking levels. However, in this example we have

cost is $300). The cost of denying service to a customer

four different booking classes, and their overbooking levels

on any flight is $1,000. The unit revenue for reservations is

are neither fixed nor known prior to simulation. This makes

$500, which is fully refundable upon cancellation. Similar

it difficult to compute an accurate effective overbooking
cost. As for POOLED, because the problem parameters are

to Examples 2 and 3, there are 10 reservation periods in

the planning horizon.

Average coach-class overbooking levels for policies: Example 2.
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Table 3. Average revenues and service levels for Example 2.

Revenue Service Levels
Policy Avg. 90% Conf. Int. %0Over ADHOC %Upgrade %Denied
ADHOC 25,452 (25,113; 25,790) 0.0 1.28 0.0
POOLED 25,816 (25,469; 26,163) 1.43 2.34 0.0
OBCOST 26,140 (25,791, 26,489) 2.70 3.78 0.0
SOPT 26,202 (25,855; 26,548) 2.95 4.06 0.0
BIN 26,115 (25,852; 26,378) 2.60 3.66 0.0
SOPTUB 27,124 (26,766; 27,481) 6.57 8.50 0.32
BINUB 27,189 (26,839; 27,538) 6.82 8.52 0.31

symmetric across the flights, this is no different than an
independent overbooking policy similar to ADHOC. We
did try all variations of the stochastic gradient algorithm,
however—SOPT, BIN, SOPTUB, and BINUB.

We tried three scenarios. In Scenario 1, the survival prob-
abilities are 0.81,0.82,...,0.90 from the first period to
the last. The demand is assumed to be Poisson distributed
in each period, and the load factor is 1.1. Each flight has
the same demand distribution and demand is homogeneous
over time. We used common random numbers for simu-
lating the policies and report the results of 500 indepen-
dent trials. The results for Scenario 1 are given in Table 4.
For this example, only BIN provides revenues higher than
ADHOC. The service levels reported for this example are
the percentage delayed (substituted by later flights) and the
percentage of denied service on all the flights. The average
overbooking levels in the last period and average number
of surviving customers (show-ups) are shown in Figure 8.

The overbooking levels for ADHOC for all the flights
is around 110, and on average less than 100 passengers
show up for the flights, with the %delayed and %denied
boarding each being less than 0.75%. For stochastic gradi-
ent policies, the overbooking levels are decreasing over the
flights, which is expected because of one-way substitution
and submodularity. SOPT and SOPTUB suffer from high
overbooking levels and higher number of show-ups; their
service levels are worse and the net revenues are in fact
somewhat less than the other policies. BIN and BINUB
provide a slight advantage over ADHOC; they have higher
overbooking levels compared to ADHOC, therefore slightly
higher percentage substituted (delayed). But the differences
are not large among any of the policies in this example.

In Scenario 2, we use a different demand pattern. We
assume the first and the last flights are more popular than
the second and third flights. The total expected demand
for the system—net of cancellations—is the same as in
Scenario 1, but the first and the last flights get 30% of
the demand each, and the second and third flights get 20%
each. The results are given in Table 5. As expected, SOP-
TUB and BINUB have the highest average revenues, as
they use the asymmetric demand information. They have
more than 1% increase in revenues compared to ADHOC,
with more than 4% of passengers who show up being
served by later flights. The average overbooking levels in
the last period and average number of surviving customers
(show-ups) are shown in Figure 9 for all the policies.

Scenario 3 is a quite extreme example of asymmetric
demand. This time, the average number of requests per
period is 30, 3, 3, and 3 for Flights, 1, 2, 3, and 4, respec-
tively. This extreme asymmetry highlights the effect of sub-
stitution and the use of upper bounds in determining the
overbooking levels. The results are given in Table 6, and
the average overbooking levels in the last period and aver-
age number of surviving customers (show-ups) are shown
in Figure 10.

Note from Table 6 that the number of denied boardings
is negligible for all policies, but the %delayed reaches 46%
for SOPTUB and BINUB. These policies take very large
numbers of reservations on the first flight and then end
up serving a large fraction of them on later flights (a sort
of “bait-and-switch” policy). As a result, the net revenue
of SOPTUB and BINUB is much higher than ADHOC—
approximately 24% higher. Again, such extreme behavior
is not realistic and in practice one would clearly limit it by

Table 4. Average revenues and service levels for different policies in Example 3,
Scenario 1.
Revenue Service Levels
Policy Avg. 90% Conf. Int. %0Over ADHOC %Delayed %Denied
ADHOC 195,129 (194,944; 195,313) 0.0 0.41 0.74
SOPT 194,744 (194,445; 195,043) —0.20 1.15 0.30
BIN 195,342 (195,075; 195,609) 0.11 0.60 0.57
SOPTUB 194,372 (193,859; 194,884) —0.39 1.2 0.58
BINUB 195,162 (194,665; 195,658) 0.00 0.76 0.75
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Figure 8. Average overbooking levels in the last period and number of show-ups: Example 3, Scenario 1.
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Table 5. Average revenues and service levels for different policies in Example 3,
Scenario 2.
Revenue Service Levels

Policy Avg. 90% Conf. Int. %Over ADHOC %Delayed %Denied
ADHOC 185,639 (185,202; 186,077) 0.0 0.47 0.42
SOPT 186,000 (185,306; 186,694) 0.19 1.33 0.03
BIN 186,389 (185,719; 187,059) 0.40 0.67 0.2
SOPTUB 188,176 (187,467; 188,884) 1.37 4.09 0.14
BINUB 188,328 (187,494; 189,161) 1.45 4.49 0.66

Figure 9. Average overbooking levels in the last period and number of show-ups: Example 3, Scenario 2.
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Figure 10.
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imposing an exogeneous upper bound on the overbooking
level of Flight 1. Still, it does illustrate the type of behavior
that can occur when substitution options are incorporated
into the reservation acceptance decision.

6. Conclusions

We have presented a two-period optimization model
to determine joint overbooking levels for multiple-class
revenue management settings where substitution among
classes is allowed as a recourse option. We analyzed the
structural properties of the problem and proposed a solution
procedure that can be used within a dynamic decision-
making process. The properties and the solution proce-
dure are valid for general substitution rules (involving
upgrades, downgrades, or both). Numerical results from
several examples show that in some cases accounting for
substitution when setting overbooking levels can signifi-
cantly increase revenues net of penalties, even when com-
pared to the ad hoc use of substitution. This suggests there
is potential to improve overbooking practices for adja-
cent flights, multicabin flights, car rental fleets, multiroom

ADHOC | SOPT BIN

SOPTUB| BINUB
SHOW-UPS

hotels, and other revenue management applications where
substitution options are prevalent and widely used in an
ad hoc fashion.

At the same time, our approach only represents a first
attempt at addressing these issues. Our model is an approx-
imation of the true dynamic problem. Explicitly accounting
for the dynamic of arrivals and cancellations would be
desirable. In addition, assignments of customers to inven-
tory classes may need to be performed prior to observing
the realization of all cancellations, unlike the perfect-
information assignment in our model. Some reasonable
approach to this sequential assignment problem is another
worthwhile topic for future research.

Appendix
A.1. Finding the Difference Function or the
Gradient of the Service Period Function

Here is an example with binomial distribution to show the
difference function for an expected value. For simplicity,
we use n = 1. Let u be a nonnegative integer and Z(u) ~

Table 6. Average revenues and service levels for the policies in Example 3, Scenario 3.
Revenue Service Levels
Policy Avg. 90% Conf. Int. %0Over ADHOC %Delayed %Denied
ADHOC 88,234 (87,9005 88,567) 0.0 1.22 0.0
SOPT 89,381 (89,3125 90,350) 1.30 3.2 0.0
BIN 89,192 (88,668; 89,715) 0.40 1.08 0.0
SOPTUB 109,820 (109,256; 110,383) 24.46 46 0.0
BINUB 110,148 (109,557; 110,738) 24.84 46 0.0
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binomial(p, u). Then, we know

P(Z(u+1)=0)— P(Z(u) =0) = —pP(Z(u) =0), (15)
P(Z(u+1)=u+1) = pP(Z(u) = u), (16)

and for k=1, ..., u,

P(Z(u+1) = k) — P(Z(u) = k)
= p[P(Z(u) =k — 1) — P(Z () = k)] (17)

Suppose we are interested in the first-order difference
function of E[V(Z(u))]. Then,

AE[V(Z())]
=E[V(Z(u+1))] - E[V(Z(u))]
S VP 1)=2)
=0

SYVEPEW =2)
z=0
— VOIP(Z(t 1) =0~ PZ(w) =0)]

+ Z V(I[P(Z(u41) =k) — P(Z(u) = k)]

k=1

+V(u+DHP(Z(u+1)=u+1)

=—pV(0)P(Z(u) =0) + XuipV(k)

k=1

[P(Z(u) =k —1) = P(Z(u) = k)]
+pV(u+1)P(Z(u) = u). (18)

Rearranging the terms in (18) using Equations (15), (16),
and (17), we get
AE[V(Z(u)] =3 plV(k+1) = V(K)]P(Z(u) = k).

k=0

If we have Z(u) ~ Poisson(pu), u a nonnegative real
number, then we have a similar result. The Poisson proba-
bilities satisfy the following:

%P(Z(u)=0)=—pP(Z(u)=O)’ (19)

a%P(Z(M) =k)=plP(Z(u) =k —=1) = P(Z(u) = k)]

fork>1. (20)

Suppose there exists an integrable (with respect to
Lebesgue measure) function 4(z) such that

V(z)%P(Z(u) =2)| < h(2).

Then, the gradient of E[V(Z(u))] becomes

BV W)

_ % i V() P(Z(u) =2)

=Y V(@) 4 P2 =2)
~ PV O)P(Z() =0)

LY V@PPZw=2— 1) - PZw=2)]. 1)

z=1
Rearranging the terms in (21) using Equations (19) and
(20), we get

=)

%E[V(u)] =2 rlV+ 1) = V(@IP(Z(u) =2).
z=0

A.2. Proof of Lemma 3

From our analysis of the DG estimate, the partial deriva-
tives of G(u) can be expressed as

26w =r,— g1~ p)

du;

+ PiEIVO(Z(u) + &) — Vo(Z(u))].
By the submodularity of V,, we have Vj(z+¢;) — V,(z) <
Vi (e;) — V,(0), which is finite as the allocation penalties

in the service period (coefficients a;;) are finite. Hence,
(0/du;)G(u) is finite. Recall

d
a_G(“) =r,—q(1-p;)
u.

1

+ i T i pilVo(z+e) —Vo(2)]

;=0 2,=0
P(Z(uy) =2)) - P(Z,(u,) =2,).
The decision variables, u;, appear only in the last term with
o, (PiU;)%
Z,‘!
Thus, the last term in the above expression is continu-
ous with respect to u. Therefore, G(u) is continuously
differentiable.
For the second derivatives, we have

a
G (u)
du;du,

P(Z(u)=z)=e

= %[E —q.(1 = p) + pE[Vo(Z(u) + ¢,) — Vo (Z(u))]]

J

= i B2 + )] = pis - EIV(Z(0)]
uj uj

= Pip_/E[Vo(Z(“) +e + ej) —Vo(Z(u) + ;)]
—piP;EVo(Z(u) + €;) — Vo(Z(w))].

By the same argument as above, the function G is twice
continuously differentiable.
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A.3. Proof of Lemma 4

We consider Var(D¥) at each iteration k of the algorithm,
when u* is given. Using (10), we have

Var(D¥) = Var(H,(Z(u")))
= p;Var(Vy(Z(u*) + ¢;) — Vo(Z(u")))
S E[(Vo(Z () + €)) — Vo(Z(u)))?]

<Y (Ve te) — Vo)’
7;=0 z,=0

P(Z,(u) =2,) - P(Z,(u,) = 2,)
< (Vo (0+e;) = V,(0))?

oo =)

> 2 PZy(u) =2,) - P(Z, (1) =2,)

21

2

— 2 _

=Vy(e,) = ( max a,-j> < C <oo.
Jj=0,1,....m

The above result follows from submodularity of V; i.e.,
Vo(z+¢;) — Vo(z) < Vy(0+¢;) — V,(0) for all z > 0.

Now to show the same result for SFG, using (12),
we have

Var(D}) = Var(H,(Z(u")))
= Var((Zi(”?)/"‘f ) VO(Z(“k)))
SENZ(u})/uf — p)*Vo(Z(uh))’]
=Y (i — PP Va(e)
2;=0 2,=0

To prove that the last expression is finite, we look at the
properties of V,, and the moments of Poisson-distributed
random variables. We know —a*(z, +---+z,) < V(z) <
Vi < oo, where a* > 0 is the highest overbooking cost
(a* < 00), and V; is the highest revenue we can get from
service allocation. Because the cost/revenue parameters and
the capacities are finite, and the service allocation problem
is always feasible, there exists a V; < oo. Because Z;(u;)
has finite first and second moments, we have the following:

Z T Z (Zi/”éC - Pi)z(Vo*)z
z;=0 z,=0

P(Z, () =2,) - P(Z,(1,) =z,) < 0. (23)

Similarly, we have

S e Y il — p @) @+ 2

u=0  z,=0
P(Z,(u) =2,) - P(Z,(u,) = 2,) < 00 (24)
The above expression holds because Z;(u;) fori=1,...,n

have finite kth moments for k = 1,...,4 (this is true for

k > 4, but we only need k =4 at most). Therefore, we
can find a finite constant C that bounds the variance of
the estimate. (For example, C can be the maximum of the
expressions in (23) or (24) that is greater than (22).)
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