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We analyze a dynamic auction, in which a seller with C units to sell faces a sequence of
buyers separated into T time periods. Each group of buyers has independent, private

values for a single unit. Buyers compete directly against each other within a period, as in
a traditional auction, and indirectly with buyers in other periods through the opportunity
cost of capacity assessed by the seller. The number of buyers in each period, as well as the
individual buyers’ valuations, are random. The model is a variation of the traditional single-
leg, multiperiod revenue management problem, in which consumers act strategically and bid
for units of a fixed capacity over time.
For this setting, we prove that dynamic variants of the first-price and second-price auc-

tion mechanisms maximize the seller’s expected revenue. We also show explicitly how to
compute and implement these optimal auctions. The optimal auctions are then compared to
a traditional revenue management mechanism—in which list prices are used in each period
together with capacity controls—and to a simple auction heuristic that consists of allocat-
ing units to each period and running a sequence of standard, multiunit auctions with fixed
reserve prices in each period. The traditional revenue management mechanism is proven to
be optimal in the limiting cases when there is at most one buyer per period, when capacity is
not constraining, and asymptotically when the number of buyers and the capacity increases.
The optimal auction significantly outperforms both suboptimal mechanisms when there are
a moderate number of periods, capacity is constrained, and the total volume of sales is not
too large. The benefit also increases when variability in the dispersion in buyers’ valuations
or in the number of buyers per period increases.
(Optimal Auction; Strategic Behavior; Revenue Management; Dynamic Programming; Mechanism
Design)

1. Introduction
Revenue management traditionally involves setting
list prices and controlling a fixed capacity to max-
imize revenues. (See McGill and van Ryzin 1999
for a review.) Among the most well-studied prob-
lems this area is the single-leg revenue management
problem. (See, for example, Belobaba 1987, Brumelle
and McGill 1993, Curry 1990, Lee and Hersh 1993,
Robinson 1995, and Wollmer 1992.) In this problem,
a firm is assumed to sell a fixed capacity over T

time periods indexed by t. In each period t, there
is an exogenously specified list price pt and a ran-
dom demand for capacity (e.g., airline seats, hotel
rooms) at this price. The firm cannot vary its prices,
but it can control the number of units it sells in
each period—i.e., it can ration its capacity. Its objec-
tive is maximizing total expected revenues.1 An

1 The reason for maximizing revenues is that in industries where
revenue management is typically practiced, the capacity cost is
sunk and the variable cost is negligible.
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important result for this problem is the optimality of
critical threshold policies in which the firm sets lim-
its on the number of units it is willing to sell in each
period (called booking limits) (Brumelle and McGill
1993, Curry 1990, Robinson 1995, Wollmer 1992). Such
list-price, capacity-controlled (LPCC) mechanisms are
widely used in the airline, hotel, and car rental indus-
try (see Belobaba 1987, Geraghty and Johnson 1996,
and Kimes 1989)—and the single-leg problem for
finding optimal capacity controls is central to both the
theory and practice of revenue management in these
industries.
However, with the rise of Internet commerce,

many firms have begun experimenting with alter-
native pricing mechanisms such as auctions, guar-
anteed purchase contracts (Priceline.com’s patented
selling mechanism), group purchasing, etc. (See van
Ryzin 2000.) Deregulation is also driving changes
in pricing. For example, recently U.S. regulators
have strongly encouraged the natural gas trans-
mission industry—another user of revenue manage-
ment techniques—to implement capacity auctions for
allocating pipeline capacity. (See Valkov and Seco-
mandi 2000.)
These trends raise some important theoretical and

practical questions. In particular, exactly which mech-
anisms maximize revenues in any given context? How
can such optimal selling mechanisms be designed and
implemented? And how much benefit (if any) can be
obtained from a different selling mechanism?
We make some initial progress in addressing

these questions. Specifically, we consider a vari-
ant of the single-leg revenue management prob-
lem in which buyers are separated into T periods
and in each period they bid for a limited capac-
ity. Buyers bid only in their given periods. Our
model follows the assumptions of the classical inde-
pendent, private-value auction model. (See Vick-
rey 1961, Milgrom and Weber 1982, the recent survey
by Klemperer 1999, and earlier surveys by McAfee
and McMillan 1987, Milgrom 1989, Rothkopf and
Harstad 1994, Matthews 1995, and Wolfstetter 1996.)
Specifically, we assume that each buyer i has a private
valuation vi for a single unit of capacity. These values
are independent and identically distributed according
to a continuous distribution that is common knowl-
edge. (This distribution may vary from one period

to the next.) Buyers in each period act strategically
to maximize their utility (i.e., their value minus the
price they pay). As a result, a buyer’s bidding behav-
ior depends on both the pricing and allocation mech-
anism selected by the seller and on other buyers’
bidding strategies, and game theory is required to
determine the equilibrium behavior of buyers.
In contrast to the traditional auction problem, in

our model the seller receives bids from T groups of
buyers who are separated over time. In particular, in
each period t we assume that a new set of buyers
arrives and bids for the remaining capacity. The seller
must determine winners in period t before observ-
ing the bids (or even the number of buyers) in future
periods. This dynamic feature parallels the traditional
revenue management model, in which the seller must
determine the capacity to sell in a given period before
observing demand in future periods.
Such separation of buyers over time is typical in

many industries that practice revenue management.
A canonical example is the airline industry. Airlines
have two major customer segments, leisure travel-
ers and business travelers. Leisure travelers typically
make travel plans months in advance of departure,
because they frequently must coordinate their vaca-
tion travel with other arrangements, like reserving
resort accommodations, taking time off work, finding
child care, etc. (i.e., they face “contingent decisions”).
In contrast, business travelers—a salesperson follow-
ing a hot lead or a lawyer meeting a client for an
emergency consultation—may not even know of their
need to travel until a few days in advance of depar-
ture. As a result, if an airline were to conduct a single
auction months in advance of departure, they would
likely lose many business travelers; and if they con-
ducted a single auction a week before departure, they
would likely lose many leisure travelers. This creates
an incentive for them to conduct auctions at multi-
ple points in time. Moreover, most leisure travelers
(because of their contingent decisions) would not find
the later auction attractive, and most business travel-
ers (because they do not know of their need to travel
early on), would not find the early auction attractive.
These buyers are effectively separated in time.
Indeed, Dana (1998) shows that such differences

in timing over the need to secure travel (and also
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differences in the valuation of customers for travel
given their need to do so) help explain why advance
reservations exist in the airline industry. Moreover,
he shows that advance reservations can achieve more
socially efficient outcomes than conducting a single
auction. The multiple-auction solution achieves a sim-
ilar advance-reservation benefit.
This airline example corresponds closely to the

model we analyze. Moreover, other industries face
similar situations, in which buyers’ needs are realized
at different points of time (e.g., the need to buy a
gift for a birthday)—or are based on other contingent
events (e.g., a new order to a manufacturer trigger-
ing a need for new supplies)—that effectively separate
buyers in time. In such situations, a seller attempt-
ing to use a single auction at a single point in time
would find herself eliminating many potential buyers.
By conducting multiple auctions over time, the seller
can reach a larger pool of buyers.
While the sequential decision-making feature of our

model matches the traditional revenue management
model, the assumption that buyers act strategically
appears to be in sharp contrast. However, it is not
hard to see that if the firm offers a fixed list price in
each period, it is a dominant strategy for buyers in
period t to attempt to buy if the price pt is less than
their valuation vi—regardless of the capacity controls
imposed by the seller. The number of such buyers
is random, being determined by the total number of
buyers in the period and their random valuations.
Thus, our model is consistent with the assumptions of
the traditional single-leg model when a LPCC mech-
anism is used.

1.1. Overview of the Main Results
The main focus of this paper is in embedding classi-
cal results from auction theory that describe the bid-
der and seller behavior in each period into a dynamic
framework that is typical of the revenue manage-
ment problem. Specifically, for our dynamic auction
model we use classical optimal auction design results
(Myerson 1981, Maskin and Riley 2000) to show that
appropriate dynamic versions of the first-price and
second-price auction mechanisms are optimal for the
seller. We also provide an efficient method to compute
the optimal auction parameters.

These optimal dynamic auctions are somewhat
more complex than in the traditional, single-period
setting. In particular, in the first-price auction, the
seller solicits bids, sorts them, infers the bidders’ val-
uations v from the bids (which we show can indeed
be done), and then computes what Myerson (1981)
calls the bidder’s “virtual value”, defined by J �v	 =
v−1/��v	, where v is the bidder’s valuation and ��v	
is the hazard rate of the distribution of buyers’ valua-
tions. The seller then accepts a bid if its virtual value
exceeds the expected marginal cost of capacity that
depends on the number of units the seller chooses
to award and the number of remaining periods (see
§3 for a precise definition of this mechanism). In the
second-price auction, if the seller chooses to award k
units, the winners pay the maximum of the �k+ 1	th
highest bid and a threshold price that also depends
on k and the number of remaining periods. Under
this mechanism, we show it is a dominant strategy for
buyers to bid their values v—again, bids are accepted
if their virtual value exceeds the expected marginal
cost of capacity.
What is unusual from a revenue management

perspective about these optimal auctions—but quite
natural to auction theorists—is that, in the first-price
auction, the seller may reject a bid even though its
revenue strictly exceeds the expected marginal cost of
capacity. That is, an optimal first-price auction mech-
anism in some cases will refuse bids that would be
strictly profitable if accepted. The reason is that, just
as in setting a reserve price in a classical auction,
rejecting profitable bids ex post is sometimes neces-
sary to induce buyers to submit higher equilibrium
bids ex ante.
We then compare these optimal mechanisms to two

suboptimal mechanisms. The first is a variation of a
traditional revenue management LPCC mechanism,
in which the seller optimally sets a fixed, take-it-or-
leave-it price in each period together with a limit
on the number of units of capacity that can be sold
at the list price. This dynamic list price, capacity con-
trol (denoted DLPCC) mechanism is equivalent to
the traditional single-leg revenue management model,
but with prices as well as capacity controls opti-
mized in each period. We show theoretically that this
DLPCC mechanism is optimal when there is at most
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one buyer in each period, when capacity is not con-
strained, and asymptotically as the number of buy-
ers and capacity increases. The second suboptimal
mechanism is a simple auction heuristic in which the
seller splits the capacity across the T periods. She then
runs a multiunit standard auction with a fixed reserve
price in each period. Units not sold in one period are
carried over to the next period.
Our numerical experiments show that the DLPCC

revenues decrease relative to the optimal auction
revenues when the buyers are concentrated into
fewer periods. In contrast, the precommitting auction
heuristic exploits the increasing bidding competition
caused by aggregating buyers and performs relatively
better under the same conditions; however, because
it does not account for the opportunity cost of capac-
ity, it performs poorly when buyers are disaggregated
into a large number of periods. Scenarios that seem
to hurt both suboptimal mechanisms are when buy-
ers are concentrated into a moderate number of peri-
ods, the product is scarce, and the total capacity is
moderate. The optimal auction also generates rela-
tively larger benefits than either suboptimal mecha-
nism when variability increases—either the variability
in buyers’ valuations or the variability in the num-
ber of buyers per period. Overall, our results point to
relatively specific conditions under which an auction
significantly outperforms the DLPCC mechanism.

1.2. Literature Review
Several papers have addressed the link between
revenue management and auctions. Cooper and
Menich (1998) proposed a Vickrey-Clarke-Groves
(Vickrey 1961, Clarke 1971, Groves 1973) mecha-
nism to auction airline tickets on a network of
flights. However, this work does not capture the
dynamic decision-making feature of our problem.
Eso (2001) analyzes an iterative sealed-bid auction
for excess seat capacity for an airline, where buyers
get instant feedback, including minimum bid sugges-
tions for declined bids. She models every iteration as
a multiunit combinatorial auction (see de Vries and
Vohra 2001 for a survey on this topic).
Motivated by Internet auctions, Segev et al. (2001)

deal with a problem quite similar to ours in which

an auctioneer tries to sell multiple units of a prod-
uct using a multiperiod auction. However, the key
difference is that customer bids in their model are
exogenous, based on a Markov chain model of buyer
behavior. Thus, their analysis does not endogenize the
strategic behavior of buyers and they do not employ
game theory to analyze equilibrium bidding strate-
gies, as we do in our work. Another difference is
that Segev et al. (2001) assume the seller precommits
to the number of units to award in each period. We
do not impose this restriction, and indeed show that
precommitting is suboptimal; the seller is better off
observing the bids first and then deciding how many
units to award based on the realized bid values she
receives. Indeed, the optimality of not precommitting
the number of units to award is observed in other
auction contexts. For example, Lengwiler (1999) stud-
ies a variable-supply auction motivated by the prob-
lem of a firm that issues new securities to finance its
operations. In this setting, the firm has an incentive
to adjust the total number of securities issued based
on both the volume and value of the bids it receives.
Pinker et al. (2001) also analyze a similar problem.

They study how to run a sequence of second-price
auctions, determining the lot size and duration of
each auction, and the number of auctions to run. In
their model, however, the seller again precommits to
the number of units to award and also does not use
reserve prices. Again, we show that it is not optimal
to precommit to the number of units to sell, and more-
over the seller must use dynamic reserve prices that
depend on the remaining capacity and time to achieve
the optimal revenue.
A related problem is the one analyzed by Lavi and

Nisan (2000). They study an online auction for a fixed
inventory when the seller does not know the distribu-
tion of buyer valuations. In their model, each buyer
arrives separately and bids for units. When receiving
a bid, the auctioneer must decide how many units
to allocate to the arriving bidder and at what price.
The lack of any distributional assumption, the game-
theoretic approach, and the competitive-ratio analy-
sis with respect to an offline Vickrey auction are the
most remarkable features of this paper. Other papers
that also treat the problem of auction design under no
distributional assumption are Segal (2002), Baliga and
Vohra (2001), and Fiat et al. (2002).
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1.3. Organization of this Paper
The remainder of this paper is organized as follows:
In §2 we introduce notation and describe our model.
We also review key results from the theory of opti-
mal auctions. In §3, we formulate and analyze a
dynamic program for the seller’s decision problem
and derive optimal first-price and second-price auc-
tion mechanisms. Some extensions of the basic model
are discussed in §4. In §5, we describe the DLPCC
mechanism and the precommitting auction heuris-
tic, and present some theoretical and numerical com-
parisons of these mechanisms to the optimal auction
mechanism. Finally, our conclusions are given in §6.

2. Model Formulation
2.1. Notation
All vectors are assumed to be in Rn

+. vj denotes the
jth component of vector v, and v−j ≡ �v1� � � � � vj−1�
vj+1� � � � � vn	 is the vector of components other than j.
Subscripts between parentheses stand for reverse-
order statistics; that is, for any vector v, v�1	 ≥ v�2	 ≥
· · · ≥ v�n	.
I�·� denotes the indicator function, and �\� the set

difference between � and �. LHS and RHS are short-
hand for left-hand side and right-hand side, respectively.
A function is said to be increasing (decreasing) when it
is nondecreasing (nonincreasing).

2.2. Description of the Model
A seller has an initial capacity of C units of a good
that she wants to sell over a finite time horizon T .
She does this by conducting a sequence of auctions,
indexed by t = T�T − 1� � � � �1. The time index is
assumed to run backwards, and smaller values of t
represent later points in time.
Buyers are separated in time. In period t, Nt risk-

neutral potential buyers arrive. Nt is a nonnegative,
discrete-valued random variable, distributed accord-
ing to a known probability mass function g�·	 with
support �0� � � � �M� for some M > 0, and strictly pos-
itive first moment. We assume buyers do not select
their time of arrival, and they participate in only one
auction period. That is, we do not model the fact that
buyers may adjust their time of arrival in response to

the seller’s behavior or that they may choose to par-
ticipate in multiple auction periods (e.g., rebid in later
periods if they are unsuccessful). As discussed above,
this assumption is reasonable in situations where buy-
ers find it inconvenient (or impossible) to participate
in auctions at different points in time. This issue is
discussed further in §4.3.
Each buyer wishes to purchase at most one unit

and has a reservation value vti , 1 ≤ i ≤ Nt , which rep-
resents the maximum amount buyer i is willing to
pay for a unit. When the context is clear, we will drop
the time index and write vi. Reservation values are
private information, independent and identically dis-
tributed samples from a distribution F �·	, which is
strictly increasing with a continuous density function
f �·	 on the support �v� v̄�, with F �v	= 0 and F �v̄	= 1.
Without loss of generality, assume v = 0 throughout.
We will use v both for the random vector of valua-
tions (from the seller’s perspective), and for its real-
ization, where the meaning should be clear from the
context. To simplify notation and subsequent analy-
sis, we restrict attention to distribution functions g
and F that do not depend on the time t. However, the
extension to time-dependent distributions is straight-
forward as long as the realizations of �Nt�v

t	 remain
independent over time.2

The distributions F and g are assumed to be com-
mon knowledge to the seller and all potential buy-
ers (although this assumption can be relaxed for the
second-price mechanism as discussed in §3.3.1). In
addition, each buyer i knows his own (private) valua-
tion vi. Without loss of generality, we assume that the
unit salvage value for the seller at time t = 0 is v0 = 0.
The seller’s problem is to design an auction mech-

anism that maximizes her expected revenue. The auc-
tioneer will specify a set of rules (the mechanism)

2 Note this independence over time would not be valid if the firm
could “learn” about the valuations of customers from one period to
the next by observing their bidding behavior. However, if buyers in
different periods represent different segments (e.g., the leisure and
business travelers of our canonical airline example), then it is not
likely that bids received in one period provide much information
about the valuations of customers in subsequent periods. However,
one can well imagine cases where buyers’ values in different peri-
ods may be highly correlated, so the seller could learn over time
and adjust her strategy accordingly. This would be an worthwhile
extension to consider.
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according to which the auction will be conducted.
These rules may depend on the time t and the remain-
ing capacity at the beginning of each period, denoted
by x. Each buyer, based on his private valuation, his
knowledge of the distribution functions F�g, and the
set of rules established by the auctioneer, chooses
his bid (or strategy) to maximize his expected util-
ity. Then, the auctioneer observes the set of submitted
bids and applies the rules specified earlier to decide
the number of units to award in period t and the pay-
ments to be made by the various bidders.

2.3. Results from the Theory of Optimal Auctions
Our analysis relies on some basic results on optimal
auctions due to Myerson (1981), Riley and Samuel-
son (1981), and Maskin and Riley (2000). We briefly
review these results here.
Consider an auction in which we are selling one

or more homogeneous objects to n buyers. As above,
each buyer i wants at most one of the objects, which
he values at vi; the values vi are private infor-
mation, but it is common knowledge that vis are
i.i.d. with distribution F . Define the allocation to
buyer i, denoted qi�vi� v−i	, to be 1 if buyer i is
awarded a unit, and 0 otherwise. We let q�v	 =
�q1�v1�v−1	� � � � � qn�vn�v−n		.3 We restrict attention to
only symmetric equilibria, in which all buyers adopt
the same bidding strategy; this is reasonable since
buyers are “similar” through their common valuation
distribution F .
Maskin and Riley (2000), extending Myerson’s

(1981) results, show the rather remarkable fact that
the seller’s expected revenue can be expressed only
in terms of the allocations qi�vi� v−i	—independent of
the buyers’ payments. Specifically, the expected rev-
enue for the seller is given by

Evi�v−i

[
n∑
i=1
J �vi	qi�vi� v−i	

]
� (1)

3 The fact that the allocation can be expressed as a function of v
follows from the Revelation Principle of Myerson (1981); namely,
that for every bidding mechanism which induces a symmetric equi-
librium, there exists a corresponding direct revelation mechanism, in
which a buyer’s optimal strategy is to bid their value. Thus, the
allocation variables can be associated with the corresponding direct
revelation mechanism.

where J �v	= v−1/��v	, and ��v	= f �v	/�1−F �v	� is
the hazard rate function associated with the distribu-
tion F . The requirements for this result are rather gen-
eral: It holds provided: (i) F is continuous and strictly
increasing, (ii) the allocations qi�·�v−i	 are increas-
ing in vi, and (iii) buyers with value vi = 0 have
zero expected surplus in equilibrium (see Maskin and
Riley 2000, Proposition 2). From this fact, it follows
that all mechanisms that result in the same allocations
q�v	 for each realization of v yield the same expected
revenue. This is the so-called Revenue Equivalence
Theorem.
More importantly, expression (1) can be used to

design an optimal mechanism by simply choosing
the allocation rule q∗�v	 that maximizes

∑n
i=1 J �vi	

qi�vi� v−i	 subject to any constraints one might have
on the allocation (e.g., we have k units to sell so we
may require that the allocation q satisfies

∑
i qi ≤ k).

In such cases, it is convenient to make the following
regularity assumption on the distribution function F ,
which we will assume holds in our case as well:

Assumption 1. J �v	 is strictly increasing in v.

Assumption 1 is not overly restrictive, and is sati-
fied by many standard distributions.4

If we define

v∗ =max�v� J �v	= 0� (2)

(and by convention, v∗ =� if J �v	 < 0� ∀v), then from
(1) it follows that it is never optimal to allocate a unit
to a buyer with valuation vi < v∗. Indeed, this simple
observation is the basis for using (2) as an optimal
reserve price in a standard, k-unit auction.

3. Optimal Dynamic Allocations
and Mechanisms

The trick in applying the above approach to auction
design is to find an implementable mechanism that
produces the optimal allocation q∗�v	. This requires a

4 In particular, the assumption holds when the hazard rate is
increasing—or, more generally, satisfies �′�v	 > −��v	2, for all v ∈
�0� v̄�. Distributions that have increasing hazard rate include the
uniform, normal, logistic, exponential, and extreme value (double
exponential) distributions, etc. (See Bagnoli and Bergstrom 1989.)
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separate analysis. Thus, the design process proceeds
in two steps: (1) Find an optimal allocation q∗�v	; then,
(2) find an implementable mechanism that produces
q∗�v	 for each realization v. We apply this approach
to our dynamic auction problem next.

3.1. Optimal Allocations
Our first objective is finding an optimal allocation q�v	
in each period. Define the value function Vt�x	 as the
maximum expected revenue obtainable from periods
t� t− 1� � � � �1 given that there are x units remaining
at time t. Using (1) for the expected revenue in each
period, the Bellman equation for Vt�x	 in terms of the
allocation variables q�v	 can be written as

Vt�x	 = ENt�v

[
max
q

{
Nt∑
i=1
J �vi	 qi+Vt−1�x−k	�

qi ∈ �0�1�� k =
Nt∑
i=1
qi� k ≤ x

}]
� (3)

where k is the total number of units awarded in
period t. The boundary conditions are

V0�x	= 0� x = 1� � � � �C� (4)

and recall that C denotes the initial capacity. An allo-
cation q�·	 that achieves the maximum above given
x� t, and v will be an optimal dynamic allocation pol-
icy. (See Bertsekas 1995.)
The solution of the dynamic program (3)–(4) is

greatly simplified by the fact that the marginal value
of capacity, defined by !Vt�x	 ≡ Vt�x	−Vt�x− 1	, is
decreasing in x. Indeed, we have (the proof can
be found in an online appendix that accompanies
this paper at �mansci.pubs.informs.org/ecompanion.
html�):
Lemma 1. !Vt�x	 is decreasing in x for any fixed t,

and is increasing in t for any fixed x.

These are quite natural economic properties. At any
point in time, the marginal benefit of each additional
unit declines because the future number of buyers is
limited; therefore, the chance of selling the marginal
unit—and/or the expected revenue if we sell it—
decreases. Similarly, for any given remaining quantity
x, the marginal benefit of an additional unit increases

with t, because the more time remaining, the greater
the number of future buyers; therefore, the chance of
selling the marginal unit—and/or the expected rev-
enue if we sell it—goes up.
Lemma 1 can be used to characterize the optimal

allocation policy in each period. First, note that from
(3) and the monotonicity of J �·	, it is clear that if the
seller allocates k total units, these units should be
awarded to those buyers with the k highest values vi.
Therefore, define

R�k	=



0 if k = 0�
min�k�Nt�∑

i=1
J �v�i		 if k > 0�

(5)

and note that

R�k	 = max
q

{
Nt∑
i=1
J �vi	qi� qi ∈ �0�1��

∑
i

qi =min�k�Nt�

}
� (6)

(In fact, the integrality constraints above can be
relaxed to 0≤ qi ≤ 1.)
Formulation (3) can therefore be rewritten in terms

of R�k	 as follows:

Vt�x	= ENt�v

[
max
0≤k≤x

�R�k	+Vt−1�x−k	�
]
� (7)

subject to (4). Let k∗t �x	 denote the optimal solution
above; this is the optimal number of bids to accept at
time t given remaining capacity x. Clearly, k∗t �x	≤Nt .
Letting !R�i	≡R�i	−R�i−1	, we can rewrite Vt�x	 as

Vt�x	 = ENt�v

[
max
0≤k≤x

{
k∑
i=1
�!R�i	−!Vt−1�x− i+1	�

}]

+Vt−1�x	� (8)

where the sum is defined to be 0 if k = 0.
Let nt denote any realization of the random variable

Nt , and v be a realization of buyers’ types. The fol-
lowing theorem characterizes the optimal allocation:

Theorem 1. For any realization �nt� v	, the optimal
number of units to allocate in state �x� t	 is given by

k∗t �x	=



max�1≤ k ≤min�x�nt��
!R�k	 > !Vt−1�x−k+1	�

if R�1	 > !Vt−1�x	�
0 otherwise�
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Moreover, it is optimal to award these k∗t �x	 units to those
buyers with the k∗t �x	 highest values vi.

Proof. Given that k units are awarded, that the
units go to the buyers with the k highest values
vi is clear from (6). To find k∗t �x	, from Assump-
tion 1 it follows that !R�k	 is decreasing in k and
by Lemma 1, !Vt−1�x	 is decreasing in x. Therefore,
!R�k	−!Vt−1�x−k+1	 in (8) is also decreasing in k;
hence, k∗t �x	 is the largest k for which this difference
is positive. �

Theorem 1 shows how the seller should allocate
units—provided she can infer the values vi of the
buyers. In particular, note that !R�i	 = J �v�i		 for
i = 1� � � � �min�x�Nt�, so the optimal number of bids
to accept is simply based on sorting the values vi
and progressively awarding units to the highest-
value buyers until the value J �v�i		 drops below the
marginal opportunity cost !Vt−1�x− i+1	. (Note that
this means a buyer’s allocation is increasing in his val-
uation, as required by the Revenue Equivalence Theo-
rem.) Thus, given the buyer’s values vi and the value
function Vt−1�x	, the optimal allocation rule is quite
simple.
Indeed, the seller’s problem in each period is equiv-

alent to that of a monopolist who seeks to price dis-
criminate amongst Nt privately informed buyers and
has a variable supply governed by a convex cost
function. In our case, however, the cost function is
endogenously determined by the opportunity cost of
capacity. For example, Segal (2002) shows the same
optimality of comparing virtual values with marginal
costs in his variable-supply auction problem. Leng-
wiler (1999) studies a subgame perfect equilibria of a
variation of this problem.5

Finally, note that Vt�x	 is increasing in x (this can be
shown easily) and !Vt−1�x	≥ 0. Thus, if k∗t �x	≥ 1, then
!R�k∗t �x		= J �v�k∗t �x			 > 0, and so v�k∗t �x		 > v

∗, where v∗

5 In Lengwiler’s model, the seller produces quantities of the com-
modity at a unit cost #, which is private information, but is drawn
from a common knowledge distribution. The proposed multiunit
auction is a two-stage game, with buyers submitting their bids in
the first stage of the game, and the seller picking a price from
a grid—or even canceling the auction—in the second stage. He
proves the existence of a subgame perfect equilibrium for both first-
and second-price auctions in this setting.

is the optimal reserve price in a single-period auction
defined by (2). Therefore, the seller never awards a
unit in any period to buyers with values below v∗.

3.2. Computing the Optimal Solution
We next briefly consider the computation of the opti-
mal auction solution. To compute the function Vt�x	,
one can use simulation. The following lemma is use-
ful in this regard (it is also useful theoretically; see the
proof of Lemma 1 in the online appendix):

Lemma 2. k∗t �x	≤ k∗t �x+1	≤ k∗t �x	+1, for all x ≥ 0.

That is, if we have one more unit available to sell,
we will allocate at most one more unit to the buyers
(see the online appendix for the proof).
The simulation method proceeds as follows: For

each period t, generate m samples of the number of
buyers and their valuations, where m is a parameter
of the simulation. For each instance and for each pair
of values �x� t	, calculate k∗t �x	, the optimal number
of units to allocate using Theorem 1. Taking advan-
tage of Lemma 2, we know that k∗t �x	 = k∗t �x− 1	 or
k∗t �x	= k∗t �x−1	+1. So, we need O�mC	 operations to
compute all values Vt�x	 of x for a single t and, there-
fore, O�mC T	 operations for the whole algorithm. For
example, a problem with C = 100, T = 10� and m= 100
samples per cell requires order 105 operations to com-
pute the entire value function. Our experience is that
this simulation method is both fast and accurate.

3.3. Mechanism Design
The next step in our analysis is to find auction mech-
anisms that achieve the optimal allocation policy
derived above. The main result of this section is to
demonstrate that appropriately modified versions of
two standard procedures—the first- and the second-
price auctions—achieve this objective.

3.3.1. Second-Price Auction. It is well known that
in a traditional k-unit second-price auction, where all
k winners pay the �k+ 1	th highest bid (i.e., the first
losing bid), it is a dominant strategy for the buyers to
bid their own values (Vickrey 1961). However, if one
uses a straightforward application of the second-price
mechanism in our setting, it is no longer optimal for
buyers to bid their valuation.
The following informal reasoning shows why.

Suppose it is optimal to bid truthfully under the
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second-price mechanism and let

v̂i ≡ J−1�!Vt−1�x− i+1		� i ≥ 1� (9)

The thresholds v̂i are directly computable from the
solution of (3) described in the previous section,
which uses common-knowledge information, and are
in principle known to all buyers and the seller. Fol-
lowing Theorem 1, the seller will accept bid v�i	 as
long as v�i	 > v̂i. Now suppose the seller decides to
award k units: That means vi > v̂i� i = 1� � � � � k; and
v�j	 ≤ v̂j� j = k+ 1� � � � �nt . However, if the first loser,
v�k+1	, had bid v̂k+1+& instead (which in fact verifies
v�k+1	 < v̂k+1+&), the seller would include him among
the winners, award k+1 units, and the buyer would
only pay v�k+2	 and make a positive profit. Hence,
buyers have some incentive to bid above their own
values (i.e., a pure second-price mechanism fails to
elicit truthful bids).
However, the following modification to the second-

price mechanism avoids this pitfall: In each period t,
the seller first computes the thresholds v̂i using the
current capacity x. Given the vector of submitted bids,
b, the seller will award k units, where

k =max�i ≥ 1� b�i	 > v̂i�� (10)

and k = 0 if b�1	 ≤ v̂1; and all winners will pay

b�2nd	�k+1	 =max
{
b�k+1	� v̂k

}
� (11)

where b�k+1	 is the �k+ 1	th highest bid and v̂k is the
threshold to award the kth unit. Ties between bids are
broken by randomization. For simplicity we will refer
to (10)–(11) as the modified second-price mechanism.
We then have the following result (the proof is in

the appendix):

Theorem 2. For the modified second-price auction with
allocation and payments given by (10)–(11), a buyer’s
dominant strategy is to bid their own values. Moreover,
under this dominant strategy equilibrium, the mechanism
is optimal.

This same result was again shown by Segal (2002)
for his variable-supply auction problem. Indeed,
the above modified second-price mechanism can be
viewed as a type of Vickrey-Clarke-Groves (Vickrey
1961, Clarke 1971, Groves 1973) mechanism, in which

the price paid by a winning bidder equals the mini-
mum bid that guarantees him a unit. In our case, this
minimum bid is given by (11), because to be one of
the k winners, a buyer’s bid must exceed both the
�k+1	th highest bid and the seller’s threshold, v̂k, for
awarding the kth unit.
Note that because bidding one’s own value is

a dominant strategy for buyers, then under this
modified second-price mechanism we can relax the
assumption that the capacity C and the distributions
F and g are known to the buyers. This leads to a
more realistic assumption about what information the
buyers have and the their level of sophistication in
bidding.
Also, observe that when T = 1 our problem reduces

to a single-period, multiunit auction, which was
reviewed in §2.3. Because the salvage value of unsold
units at t = 0 is zero, the thresholds v̂i are all equal
to v∗ defined in (2) in this case, and the mechanism
indeed reduces to the standard second-price auction
with optimal reserve price v∗.

3.3.2. First-Price Auction. In a first-price auction,
units are awarded to the buyers with the highest bids
and winners pay their bids. This type of mechanism
may be more natural in certain applications.
To establish that the first-price auction achieves the

optimal expected revenue, one needs to show that
units are again awarded according to the optimal allo-
cation rule of Theorem 1. To do this, it suffices to
show that there exists a symmetric equilibrium bid-
ding strategy B�·	 that is strictly increasing in the
buyer’s value. In this case, the seller can use this bid
function to invert a bid and infer the bidder’s value,
which she can then use to correctly compute the num-
ber of units to award.
The setup of the first-price auction is the following.

The buyers are informed of the time t, the remain-
ing capacity x, and the following allocation rule used
by the seller: Given a vector of bids b, the seller will
award k units, where k=max�i≥ 1: B−1�b�i		 > v̂i�, and
k= 0 if B−1�b�1		≤ v̂1. Here, B�·	 is the equilibrium bid
function, which we show below can be computed by
the seller. The units are awarded to the highest bid-
ders, and winners pay their bids.
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Our main result is the following (the proof is in the
Appendix):

Theorem 3. Under the first-price auction, there exists a
symmetric, equilibrium, strictly increasing, bidding strat-
egy B�vi	. The strategy B depends on the current values of
t and x as given by

B̂�vi	= vi−
∫ vi
v̂1
P�v	dv

P�vi	
and B�vi	≡ lim

&→0+
B̂�vi−&	�

(12)

where P�v	 is the probability that a bidder with value v is
among the winners,

P�v	=




0 if k∗�v	= 0�
M∑
n=1

{
k∗�v	−1∑
k=0

(
n−1
k

)
�1−F �v	�k

×�F �v	�n−1−k
}
g�n	 if k∗�v	≥ 1�

(13)

and k∗�v	=max�0≤ i≤min�x�Nt�: v > v̂i�, and by con-
vention, v̂0 < 0. Moreover, under this symmetric equilib-
rium, the first-price auction is optimal.

Since (12) shows that B�v	 < v, under the first-price
mechanism buyers shade their values to make a posi-
tive surplus. This is, of course, expected because win-
ners are required to pay what they bid. The fact that
B�·	 is strictly increasing means the mechanism is
implementable, because once the seller observes bids
b1� � � � � bnt , she can calculate the values v1� � � � � vnt
through the well-defined inverse bidding function,
vi = B−1�bi	.6

Note that this first-price mechanism is not greedy,
in the sense that it does not maximize the sum of
the current bid revenues plus the expected revenue-
to-go. This is true because the seller compares the vir-
tual values J �vi	s to the marginal value !Vt�·	 rather
than comparing the bids themselves. As a result, the
seller may (a) accept bids below the marginal value
when J �v�k		 > !Vt−1�x−k+1	≥ B�v�k		, and (b) reject
bids that are above the marginal value when B�v�k		 >

6 Keeping the assumption of symmetric equilibria, alternatively the
seller could announce that she will use the allocation rule described
in (10) and that winners will pay B�bi	, where the bis are the bids. In
this case, buyers will truthfully reveal their values. See the online
appendix for a proof.

!Vt−1�x− k+ 1	 ≥ J �v�k		. Our numerical experiments
show that both cases may occur.
This feature of the optimal policy, admittedly, raises

some concerns from a practical point of view. Indeed,
it might be hard to explain to managers exactly why
profitable options ought to be turned down—even
though the logic for doing so is quite familiar to auc-
tion theorists.
On a theoretical level, it shows that—just as with

the use of reserve prices in a standard auction—our
optimal auction mechanism is not subgame perfect.7

Equivalently, we assume the seller can credibly com-
mit to the rules she uses in each period.
This assumption, however, is no more restrictive

than a traditional auction, and in a certain sense is
necessary to analyze any auction mechanism. Indeed,
as McAfee and McMillan (1987) point out, in most
auctions the seller, upon observing the bids, can infer
the buyers’ values. Having done so, she then has
an incentive to renege on her previously announced
rules and simply offer the high-value buyers a price
marginally less than their value. At that point, it is
in the buyers’ interests to accept her offers. However,
knowing the seller would behave in this way, the buy-
ers would not bid as hypothesized, which invalidates
the equilibrium analysis.
Moreover, in our problem the usual repeated-

interaction arguments in support of the commitment
assumption are quite plausible. (See McAfee and
McMillan (1987).) In particular, if our seller is con-
ducting her dynamic auctions repeatedly over time,
then if she reneges on her commitment in one auction,
she will be unable to maintain credibility in future
auctions. The resulting lost future stream of revenues
creates an incentive for her to hold to her commit-
ments. For example, in the airline case, an airline
using auctions as a pricing mechanism would need
to conduct dynamic auctions for a large number of
departures extending far into the foreseeable future.
Given the potential threat to their future revenues, it
would be foolhardy for them to myopically renege on
the auction rules in a particular period.

7 Note, however, that since we formulate the problem as a dynamic
program, the seller’s decision in period t still reflects the fact that
she will behave optimally given their remaining capacity in the
next period.
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Finally, note that the implementation of the allo-
cation rule for the first-price auction is much more
complex than in the second-price auction, because the
seller must compute the equilibrium bidding strategy
and invert it. Moreover, the bidding problem faced by
buyers is considerably more complex as well, because
they have to solve the same equilibrium as well as
the seller’s dynamic program. As a result, it is ques-
tionable whether the parties would really behave as
predicted under this mechanism. However, the gen-
eral characteristics of the mechanism—that bidders
will shade their values and that the seller should not
necessarily accept all bids that exceed the marginal
cost of capacity to induce buyers to bid higher in
equilibrium—are likely to be more robust.

4. Some Extensions
We next briefly discuss some extensions to our basic
model.

4.1. Varying the Number of Periods
How do the seller’s revenues vary with respect to the
number of periods? Suppose we fix the total number
of buyers across all periods. Intuitively, the more the
seller aggregates the buyers, the higher her revenues,
because with more buyers per period the seller is able
to make allocation decisions with better information
about the actual values vi of each buyer. For example,
in the limiting case where all buyers are concentrated
in just one period (i.e., a standard multiunit auction),
the seller can allocate based on perfect information
about all values vi. Dividing the buyers across more
periods forces the seller to allocate without knowing
the future values vi, hence the need for the dynamic
program to assess the opportunity cost of capacity.
The next proposition formalizes the fact that the

seller is worse off having more periods provided
the total demand remains the same (see the online
appendix for a proof):

Proposition 1. Let N (a random variable) denote the
total number of buyers over time, and consider splitting
time into T and 2T periods, where T ≥ 1 so that N =∑T

t=1Nt =
∑2T

t=1Nt . This is done by arbitrarily allocating
buyers in period t of the original, T -period problem to peri-
ods 2t − 1 and 2t in the expanded, 2T -period problem.

Let VT �x	 and V 2T �x	 denote, respectively, the resulting
optimal expected revenues in each case. Then, VT �x	 ≥
V 2T �x	�∀x.
This proposition shows that the seller is better off

with fewer periods. All else being equal, therefore, the
seller would prefer only a single auction period.
Of course, this result is true only if no buyers “drop

out” when the number of periods is reduced. But as
we’ve argued above, a primary motivation for con-
ducting a sequence of auctions in the first place is
precisely to increase the number of buyers who can
participate. So assuming that the number of buyers
will remain fixed independent of the number of peri-
ods the seller uses is not realistic. In general, then,
the seller faces a trade-off between the convenience
of offering many auction opportunities over time—
leading to a potential increase in the number of buy-
ers who participate—and the inefficiency of having
to allocate units to buyers with increased uncertainty
about both the number and valuations of future buy-
ers. How this trade-off can be resolved optimally is
likely to be context specific, but in principle could be
evaluated using our model combined with a model of
how the population of buyers is affected by changes
in the number of auction periods.

4.2. Mixed LPCC and Auction Periods
Another extension is obtained by noting that one can
easily combine auction periods with periods in which
a traditional list-price, capacity-control mechanism is
used, in which prices are fixed ex ante and capacity
is optimally rationed. For example, one might use list
prices and capacity controls in the initial periods, but
run an optimal auction in the last period; or run an
optimal auction early on and then follow this by a
sequence of periods in which list price and capacity
controls are used. Or, these mechanisms could be used
in arbitrary, mixed order from one period to the next.
Such mixed use of both types of mechanisms is quite
common, for example, in airlines, where auctions are
typically used in supplementary “channels” (e.g., on-
line sales) along with traditional pricing mechanisms.
The fact that these mechanisms can be combined

follows simply by noting that the optimal allocations
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from Theorem 1 in period t (and hence the opti-
mal mechanism of Theorems 2 and 3) remain opti-
mal as long as the marginal value of capacity in the
next period, !Vt−1�x	 is decreasing in x. Moreover,
Lemma 1 shows that if !Vt−1�x	 is decreasing in x

and we run an optimal auction in period t, then
!Vt�x	, is decreasing in x as well. Similarly, the tra-
ditional single-leg model has this same property (see
Brumelle and McGill 1993, Robinson 1995, Wollmer
1992); critical-threshold capacity controls are optimal
in period t as long as the marginal value of capac-
ity is decreasing, and under optimal capacity con-
trols, the value function in period t has decreasing
marginal values !Vt�x	. As a result, one can easily
combine our results with the traditional single-leg
model results to analyze combinations of auction and
list-price, capacity-control mechanisms.

4.3. Buyers Who Strategize Over the Time of
Purchase

A key assumption of our model is that buyers are
constrained to participate in only one auction period.
If we assume that buyers can choose the period to bid
in, then their strategic behavior becomes more com-
plex. How does this affect the outcome?
At first glance, this strategic-timing problem

appears more difficult. However, it turns out that
if one assumes that buyers have complete flexibil-
ity over timing (i.e., are able to participate in all T
auctions) and their values vi are independent of the
period in which they buy (e.g., there is no discounting
of their utility), then one can show that the strategic-
timing problem is not much more complex than a
classical single-period auction.
To see this, let N denote the total number of buy-

ers (N =∑T
t=1Nt), and vi denote the value of buyer i,

i = 1� � � � �N , v = �v1� � � � � vN 	 with common distri-
bution F �·	. (Here, we do require the distribution of
values to be the same for all periods.) Let qi�vi� v−i	
denote the allocation to buyer i under some dynamic
auction scheme. Then by the Revenue Equivalence
Theorem, the seller’s revenue is

E

[
N∑
i=1
J �vi	qi�vi� v−i	

]
(14)

provided the usual assumptions are satisfied; namely,
that qi�vi� v−i	 is increasing in vi and buyers with
value zero have zero expected surplus. The allo-
cations must also satisfy the capacity constraint∑N

i=1 qi�vi� v−i	 ≤ C. Note that this claim holds for
our original dynamic auction problem as well. How-
ever, because in our case buyers are separated over
time, the seller cannot make her allocation decisions
qi�vi� v−i	 based on perfect knowledge of the vector of
values v for all N buyers. Rather, she needs to make
a sequence of allocation decisions under uncertainty
that maximize (14) given only probabilistic informa-
tion about future demand; this is precisely what the
dynamic program (3) accomplishes. Hence, her allo-
cations (in hindsight) do not necessarily maximize∑N

i=1 J �vi	qi�vi� v−i	 for each realization of v.
However, when buyers act strategically and choose

the time of purchase, the problem in a certain sense
becomes easier. This is because the seller can exploit
the buyers’ flexibility in timing to construct mech-
anisms that allow her to obtain perfect information
about v and therefore achieve the same optimal allo-
cation as when all the N buyers participate in a single-
period, optimal auction.
One such mechanism is simply to post an arbitrar-

ily high reserve price (e.g., a reserve price of v̄) in
all but the last period and then run a standard, opti-
mal C-unit auction with reserve price v∗ in the last
period. All buyers with values greater than v∗ will
then choose to bid in the last period, and thus this
mechanism trivially achieves the single-period, opti-
mal auction revenue.
Many other mechanisms achieve this same result.

Indeed, this strategic-timing problem is equivalent to
one analyzed by Bulow and Klemperer (1994). (See
also the related price-skimming problem of Bensanko
and Winston 1990.) Bulow and Klemperer define a
mechanism in which the seller uses dynamic list
prices, which are lowered and raised over time in
such a way that the C highest-value buyers (with
values in excess of v∗) are awarded units. Thus, by
revenue equivalence, (14) is maximized. Their argu-
ment is quite general and only requires that high-
value buyers have an incentive to “bid" first under the
seller’s mechanism. By bidding first, high-value buy-
ers are the first ones awarded units, which produces
the optimal allocation.
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For example, one can show that the same optimal
allocation is achieved if the seller runs a sequence
of second-price auctions with a sequence of reserve
prices that are higher than v∗ in all but the last period,
where the reserve price is exactly v∗. Under this mech-
anism, buyers have a higher probability of winning by
bidding early, because they can always bid again later
if unsuccessful. Since bidding only affects a buyer’s
probability of winning (and not his payment) in a
second-price auction, high-value buyers prefer strate-
gies that increase their probability of winning, and bid
early. Because they bid first, the highest-value buy-
ers are awarded units first, which again produces the
optimal allocation.

5. Comparisons to Suboptimal
Pricing Mechanisms

We next compare the optimal dynamic auction to
two suboptimal mechanisms. The comparisons pro-
vide insights into the benefit provided by an optimal
auction.
The first suboptimal mechanism we consider is the

traditional revenue management LPCC mechanism,
but with both prices and capacity controls set opti-
mally in each period. This is a refinement of the tradi-
tional single-leg model, in which prices are exogenous
and only capacity controls are optimized. We call this
the dynamic LPCC—or DLPCC—mechanism. Buyers
who are interested in acquiring one unit at that list
price submit “acceptances” (i.e., an offer to buy). If the
number of acceptances exceeds the capacity limit set
by the seller, the units are randomly rationed to the
buyers. As mentioned above, it is easy to see that a
dominant strategy for a buyer is to submit an “accep-
tance” if and only if their value vi exceeds the seller’s
list price.
The second suboptimal mechanism uses a simple

heuristic to design a sequence of auctions in each
period. Specifically, the seller first evenly allocates the
C units over the T periods (which is reasonable when
F and g are the same in each period). Then, she runs
a standard, multiunit auction in each period, with a
fixed reserve price v∗ given by (2). Units that are left
over in one period are carried on to the next period.

We first make some simple theoretical observations
about the optimality of the DLPCC mechanism. Then,
we describe some numerical experiments compar-
ing the two suboptimal mechanisms to the optimal
dynamic auction.

5.1. Theoretical Analysis of DLPCC
Let VDLPCC

t �x	 denote the seller’s expected revenue
starting with x units of capacity in period t under
DLPCC. Let s denote the reserve price set by the seller
in period t, and

Nt�s	≡
∣∣∣�vi� vi > s� ∀ 1≤ i ≤ Nt�

∣∣∣� ∀ 1≤ t ≤ T�

be the random variable representing the number of
buyers with valuations exceeding the reserve price s.
The seller solves the recursion,

VDLPCC
t �x	 = max

s ≥ 0
0≤ k ≤ x

ENt�v

[
s min�Nt�s	� k�

+VDLPCC
t−1 �x−min�Nt�s	� k�	

]
�

with boundary condition VDLPCC
0 �x	= 0 for all x.

In general, the DP associated with the DLPCC
mechanism is solved using simulation, although
in same cases (e.g., uniform valuations) it can be
solved exactly by using standard optimization tech-
niques. Our next proposition summarizes cases when
the DLPCC mechanism is optimal (see the online
appendix for proofs).

Proposition 2. The DLPCC mechanism maximizes
the seller’s expected revenue when either:
(a) Nt ≤ 1�∀1≤ t ≤ T ;
(b) C ≥∑

t Nt (with probability 1);
(c) Asymptotically as both the number of buyers and

the number of units to sell becomes large (Nt�C ↑ � and
Nt/C → ,t w.p.1, where ,t are deterministic limits).

Part (a) shows that having isolated buyers submit
offers to buy has no inherent advantage over dynamic
list pricing.8 One needs to aggregate multiple buy-
ers in each period to generate a strict benefit from

8 The one-bidder-per-period problem is equivalent to dynamic pric-
ing problems of the type analyzed by das Varma and Vettas
(2001), Gallego and van Ryzin (1994), Kincaid and Darling (1963),
Stadje (1990), and Zhao and Zheng (2000).
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an optimal dynamic auction. In particular, this result
suggests that individualized bidding schemes, like the
one used by Priceline.com,9 have no inherent advan-
tage over dynamic list pricing.
Part (b) states that an optimal mechanism has

no advantage over list pricing if capacity is always
unconstrained. Thus, some scarcity of the product or
service is necessary to realize a gain over list pricing.
Finally, part (c) shows that DLPCC is asymptoti-

cally optimal as both the number of buyers and num-
ber of units sold increase in the same proportion. That
is, when the overall volume of sales becomes large
(holding the ratio fixed), list pricing is near optimal.10

This suggests in particular that sellers of high-volume,
mass-market products are not likely to gain much
benefit from the use of a dynamic auction mechanism.
To see why (c) holds intuitively, consider a k-unit,

single-period, second-price auction. Roughly speak-
ing, as the number of buyers N increases, the bid
realization becomes an accurate and dense sample of
the value distribution F . As a result, the order statis-
tics, which determine the winning buyers and price
they pay, will correspond closely to fractiles of this
distribution. By the law of large numbers, the seller’s
revenue therefore approaches a deterministic function
of C/N and of the minimum reserve price v∗.11 In the
dynamic setting, this gives rise to a limiting determin-
istic control problem, in which the auctioneer chooses
the allocation of units per auction period to optimize
overall revenue. This resulting limiting optimal solu-
tion is a DLPCC rule.
Finally, we note that (b) and (c) above hold even for

a LPCC mechanism, in which the seller precommits
to the prices used in each period. This is because the
optimal unconstrained prices in (b) and the asymptot-
ically optimal prices in (c) are deterministic and not

9 In Priceline.com’s system, a buyer submits an isolated bid for a
product (most popularly, airline tickets) and is notified of accep-
tance or rejection in 10 to 15 minutes. Priceline.com therefore does
not have enough time to aggregate bids, and so each one is evalu-
ated in isolation.
10 A result related to a combination of Proposition 2, parts (a)
and (c), is the adaptive monopoly pricing procedure under no
distributional assumption for valuations studied by Baliga and
Vohra (2001).
11 A similar asymptotic analysis is provided in Segal (2002, §3.2).

state dependent. Therefore, the seller can precommit
to an optimal sequence of prices.

5.2. Numerical Comparisons
We next consider several numerical examples com-
paring the optimal auction to the two suboptimal
heuristics. In every experiment, the optimal mecha-
nism and the heuristics were computed and then sim-
ulated over 20 runs to estimate the mean revenue
produced by each method.12 Buyers’ valuations were
assumed to be uniformly distributed. This assump-
tion simplified the numerical analysis and did not
appear to affect the nature of the results.13 In the first
two subsections the valuation distribution was uni-
form U�0�1	.

5.2.1. The Effect of the Concentration of Buyers.
In the first experiment, we studied how the revenue
changes as we varied the concentration of buyers by
clustering the same number of buyers into varying
numbers of periods. Specifically, we assume the seller
has C = 16 units, and the total number of buyers
in all periods is constant at 64. Buyers are evenly
distributed across the periods. We then varied the
number of periods from 1 to 64, producing different
numbers of buyers per period. Thus, the examples
run from 64 buyers in one period (high concentration
of buyers) to one buyer in each of 64 consecutive peri-
ods (low concentration of buyers).
The results are summarized in Table 1.14

A few observations are apparent from Table 1. The
first is that the optimal auction revenue increases as
the concentration of buyers increases. This is consis-

12 The optimal mechanism and heuristics were computed using the
simulation method outlined in §3.2, using 1,000 samples in �Nt�v	

space in each period to estimate the value function. To generate the
descending uniform order statistics, we used the method described
in Tadikamalla and Balakrishnan (1998).
13 We tested the methods using other distributions, such as the trun-
cated normal and exponential distributions, and there was no sig-
nificant difference in the qualitative results.
14 The experiments for the precommitting auction heuristic are
reported only up to the case of 1 unit per period, i.e., T = 16,
because after this point the number of periods exceeds the number
of units.
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Table 1 Revenue for Different Concentration of Buyers

Optimal auction rev. DLPCC rev. Precommitting auction rev.
Buyers Number

per period of periods Mean 95% CI Mean Gap Mean 95% CI Gap

1 64 11.410 (11.390, 11.430) 11.412 0.16% — — —
2 32 11.434 (11.420, 11.448) 11.401 0.41% — — —
4 16 11.480 (11.466, 11.495) 11.382 0.98% 10.162 (10.146, 10.177) 11.49%
8 8 11.534 (11.511, 11.556) 11.348 1.79% 10.822 (10.803, 10.841) 6.17%

16 4 11.621 (11.602, 11.639) 11.292 2.99% 11.311 (11.296, 11.327) 2.66%
32 2 11.722 (11.704, 11.740) 11.201 4.59% 11.639 (11.624, 11.654) 0.71%
64 1 11.796 (11.780, 11.812) 11.060 6.36% 11.796 (11.780, 11.812) 0.00%

tent with Proposition 1; the seller is better off having
the same number of buyers in a smaller number of
periods. The gap between the two extreme cases is
3.27%, which by revenue management standards is a
significant difference.
Second, observe that as buyers are concentrated

into a smaller number of periods, the DLPCC rev-
enues decrease. This is true because the multiperiod
DLPCC revenue cannot be worse than the single-
period DLPCC revenue, because posting the same
fixed price in each period is always a feasible policy
in the multiperiod case. However, with multiple peri-
ods the seller can exploit the realized demand infor-
mation to dynamically adjust her prices based on the
remaining time and capacity, producing higher rev-
enues. The opposite pattern holds for the optimality
gap of the DLPCC policy; it increases as buyers are
concentrated into fewer periods.
This behavior is intuitive. Indeed, as shown theo-

retically in Proposition 2, part (a), the DLPCC mech-
anism is optimal when there is only one buyer per
period. But as more buyers are concentrated into
fewer periods, the DLPCC mechanism will “leave
money on the table” so to speak, because many of
the winners would have been willing to pay more
than the list price to get their units. Like all list-
price mechanisms, it fails to achieve the competition
benefits of an auction, and this disadvantage shows
up most acutely when the concentration of buyers is
high. Therefore, a lower concentration of buyers per
period benefits the DLPCC mechanism—both in abso-
lute terms and relative to the optimal auction.
In contrast, the precommitting auction heuristic

revenues increase as more buyers are concentrated
into fewer periods. This is because this heuristic—

like all auction mechanisms—exploits bidding com-
petition. However, it fails to take into account the
“option value” of reserving capacity for the future
(the opportunity cost of capacity). Rather, recall that
the auction heuristic uses only a simple, static reserve
price of v∗ in every period. As buyers are separated
into more periods, this opportunity cost disadvantage
dominates the bidding competition advantage, and
the auction heuristic suffers. Indeed, with only one
period, the opportunity cost doesn’t matter at all and
the auction heuristic is optimal. Thus, a high concen-
tration of bidders benefits the auction heuristic.
The optimal mechanism, of course, considers both

factors. It exploits the within-period bidding compe-
tition of an auction mechanism, but does so using a
set of reserve prices that are based on the opportunity
cost of capacity. As seen from Table 1, both factors
are necessary to achieve the optimal revenues in the
intermediate cases.

5.2.2. The Effect of Demand and Capacity Values.
The second experiment compares the suboptimality
of the heuristics under various levels of capacity and
demand. The number of periods was kept constant at
T = 5. The number of buyers per period was varied,
with Nt = 10, 30, 50, and 100; and for each of these
four values we considered three choices of capacity,
C = 0�1T Nt , C = 0�3T Nt , and C = 0�5T Nt . The opti-
mality gaps are shown in Tables 2 and 3. (For com-
pleteness, Table 6 in the Appendix gives the optimal
auction revenues for this example.)
Note that the optimality gaps for both suboptimal

mechanisms decrease from left to right in Tables 2
and 3 (which corresponds to increasing the capac-
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Table 2 Optimality Gaps for DLPCC

Nt C = 0�1 T Nt C = 0�3 T Nt C = 0�5 T Nt

10 2.37% 2.32% 0.58%
30 1.77% 1.77% 0.38%
50 1.43% 1.43% 0.21%

100 1.06% 1.13% 0.14%

ity/demand ratio), and from top to bottom (which
corresponds to increasing, proportionally, the num-
ber of buyers and capacity). In particular, the former
observation is consistent with Proposition 2, part (b)
for DLPCC. For the latter observation, going from
the top to the bottom in each column corresponds
to approaching the asymptotic regime of “large sales
volume,” which is again provably optimal in the lim-
iting case for DLPCC by Proposition 2, part (c). The
optimal DLPCC price approaches a fixed fractile of
the distribution F , which is roughly the price paid
under a standard second-price auction.
The precommitting heuristic follows the DLPCC

behavior pattern in these same limiting cases (see
Table 3). The intuition is similar in this case. First,
that the auction heuristic improves as we approach
the case where capacity is unconstrained (moving left
to right in Table 3) is because the marginal oppor-
tunity cost of each unit becomes negligible. Hence,
the optimal auction mechanism reduces to accepting
all bids above the fixed reserve price v∗ in (2) in
each period, which is precisely what the precommit-
ting auction heuristic does. In the large-sales-volume
regime (going top to bottom in Table 3), the distri-
bution of buyers’ values in each period is becoming
(relatively) more predictable; hence, the revenue in
each period approaches a deterministic function of

Table 4 Revenue vs. Variance in Buyers’ Distributions

Range of types Optimal auction rev. DLPCC rev. Precommitting auction rev.

Min Max Mean 95% CI Mean Gap Mean 95% CI Gap

9.5 10.5 102.656 (102.640, 102.671) 102.185 0.46% 102.289 (102.276, 102.301) 0.36%
9 11 105.312 (105.294, 105.330) 104.456 0.81% 104.565 (104.541, 104.589) 0.71%
8 12 110.593 (110.547, 110.639) 109.127 1.33% 109.112 (109.061, 109.163) 1.34%
6 14 121.181 (121.103, 121.260) 118.788 1.98% 118.171 (118.077, 118.266) 2.48%
4 16 131.771 (131.650, 131.892) 128.728 2.31% 127.233 (127.096, 127.370) 3.44%
2 18 142.449 (142.286, 142.613) 138.858 2.52% 136.489 (136.274, 136.703) 4.18%
0 20 153.128 (152.947, 153.309) 149.126 2.61% 145.954 (145.739, 146.169) 4.69%

Table 3 Optimality Gaps for Precommitting Auction Heuristic

Nt C = 0�1 T Nt C = 0�3 T Nt C = 0�5 T Nt

10 4.92% 3.99% 1.16%
30 1.81% 1.70% 0.34%
50 1.07% 0.96% 0.27%

100 0.55% 0.55% 0.14%

the number of units auctioned, so allocating a fixed
number of units to each period becomes close to
optimal.
In summary, both heuristics do well when capacity

is not constrained or when the overall volume of sales
is large. The optimal auction is most beneficial when
capacity is tightly constrained and the volume of sales
is moderate.

5.2.3. The Effect of Different Levels of Variabil-
ity in Buyers’ Valuations. Next, we looked at the
effect of different levels of variability in buyers’ val-
uations for units. Buyers’ valuations were assumed
to be uniformly distributed with a mean of 10. The
variance of the valuations was changed by adjusting
the range of the distribution (the “Min” and “Max”
values in Table 4). There are T = 5 periods, Nt = 10
buyers per period, and C = 10 units to sell. Results
are shown in Table 4.
The main observation is that the seller benefits from

increased variability in buyers’ valuations under all
three mechanisms, as one might expect because the
amount that high-value buyers are willing to pay
increases. The performance improvement can be dra-
matic (on the order of 50%).
Also, the optimality gap of both the DLPCC and

precommitting heuristic increases as the variance in
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Table 5 Revenue vs. Variance in Number of Buyers

Range of buyers Optimal auction rev. DLPCC rev. Precommitting auction rev.

Min Max Mean 95% CI Mean Gap Mean 95% CI Gap

50 50 9.514 (9.511, 9.516) 9.413 1.06% 9.412 (9.410, 9.415) 1.06%
40 60 9.509 (9.506, 9.512) 9.406 1.08% 9.406 (9.402, 9.409) 1.08%
30 70 9.500 (9.498, 9.503) 9.388 1.18% 9.376 (9.373, 9.380) 1.31%
20 80 9.483 (9.480, 9.485) 9.354 1.35% 9.321 (9.315, 9.327) 1.71%
10 90 9.447 (9.444, 9.450) 9.300 1.56% 9.198 (9.191, 9.206) 2.64%

buyers’ valuations increases as well. This suggests
that an optimal mechanism may be more benefi-
cial in cases where there is a lot of heterogeneity
in buyer valuations for a product. Furthermore, note
that DLPCC tends to outperform the precommitting
auction. This is consistent with the intuition above:
Higher volatility implies a higher option value for
capacity, which is captured by DLPCC but not by the
precommitting heuristic.

5.2.4. The Effect of Different Levels of Variabil-
ity in the Number of Buyers. Our last experiment
shows how the seller’s revenues are affected by the
level of variability in the number of buyers. There are
T = 5 periods and C = 10 units to sell. The valuation
distribution is uniform U�0�1	. The number of buyers
per period is uniformly distributed with a mean of
50. The variance of the distribution was then adjusted
by changing the range of this discrete uniform distri-
bution. Results are shown in Table 5.
The main observation here is that as the variance in

the number of buyers per period increases, the seller’s
revenues decrease under all three studied mecha-
nisms; however, this increased uncertainty seems to
favor the use of an optimal mechanism. The rela-
tive deviation from optimality of DLPCC is smaller
than the deviation of the precommitting heuristic as
the variability increases. This is again explained intu-
itively by the fact that the option value of capacity
becomes more significant as variability increases, and
the DLPCC accounts for the option value while the
precommitting heuristic does not.

6. Conclusions
The optimal dynamic auction provides an important
theoretical benchmark for evaluating traditional rev-

enue management mechanisms and simple auction-
ing heuristic schemes. Our results also provide some
important insights into how to conduct an optimal
dynamic auction; in particular, that (1) the number
of units to award in each period should be varied
depending on the quality of the bids received, (2) the
opportunity cost of capacity should form the basis for
evaluating how many units to award, and (3) that the
seller should not be greedy in the first-price auction
about accepting bids in each period, but rather should
refuse bids that may be profitable to increase the equi-
librium bids.
On a practical level, our optimal auction may

provide a feasible alternative to traditional pricing
mechanisms. It is reasonably simple, at least in the
second-price case, and optimal policies can be com-
puted relatively efficiently. However, we also showed
that in some important cases, DLPCC is optimal or
near optimal. These include the cases where either
at most one buyer bids at a time, capacity is uncon-
strained, or where the sales volumes are large. How-
ever, in some specialized cases, our numerical results
indicate that the optimal mechanism can indeed pro-
duce significant revenue improvements over both
DLPCC and the precommitting auction heuristic.
These include cases where: (1) the concentration of
buyers per period is moderate (not all buyers in one
period and not one buyer per period), (2) capacity
is tightly constrained, (3) the total volume of sales is
moderate, and (4) variability—either in buyers’ valu-
ations or in the number of buyers—is high.
As for additional work, we see several topics wor-

thy of further study. One is to extend our analysis
to the case where J �·	 is not necessarily monotone;
this was done in Myerson (1981) and Maskin and
Riley (2000) in a single-period setting, and it is likely
that similar techniques would work for our setting.
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Another extension is to apply the same sort of analy-
sis to a production-inventory setting where the seller
controls how many units he or she is willing to pro-
duce, stock for the next period, or whether to offer
through an auction in the current one. This is the topic
of a recent paper by van Ryzin and Vulcano (2002).
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Appendix
Proof of Theorem 2. When t = 1, !Vt−1�x − k + 1	 = 0 and

J−1�0	 = v∗. In other words, in the last period a standard second-
price auction takes place and therefore, bidding one’s own value is
a dominant strategy for buyers.

For t ≥ 2, the seller will observe the vector of bids and compute
the number of units to award through (10). Take a player i with
value vi . We will show that he has no incentive to bid b̃i �= vi. There
are two possible cases.

Case 1. Buyer i bids his value and is in the winning set. This
implies that vi >max

{
b�k+1	� v̂k

}
, and buyer i makes some positive

surplus. Bidding b̃i > vi , does not change this outcome: There are
still k bids above v̂k and fewer than k+ 1 bids greater than v̂k+1,
and buyer i is still in the winning set paying max

{
b�k+1	� v̂k

}
for

the same profit. If he bids b̃i < vi , three things can happen: (a)
b̃i > max

{
b�k+1	� v̂k

}
, he is still in the winning set, pays the same

amount, and makes the same profit; (b) b̃i <max
{
b�k+1	� v̂k

}
, he is

no longer in the winning set, makes zero surplus, and is worse off;
and (c) b̃i =max

{
b�k+1	� v̂k

}
, in which case either b̃i = v̂k, he is not a

winner any more, and is worse off; or b̃i = b�k	 > v̂k, a winner will
be selected at random between the two equal bids, and he is worse
off in expectation.

Case 2. Buyer i bids his value and is in the losing set. If he lowers
his bid b̃i < vi, nothing changes. If he increases his bid b̃i > vi, four
things can happen: (a) min�b�k	� b̃i� > v̂k+1, in which case there are
now k+ 1 winners that pay max�b�k+2	� v̂k+1�, and buyer i makes a
surplus of vi−max�b�k+2	� v̂k+1�≤ 0 (since i was in the losing set, and
thus vi ≤ v̂k+1); (b) b̃i > b�k	, there are k winners, buyer i displaces

the lowest winner, makes a payment larger than v̂k for a negative
surplus, and is worse off; (c) b̃i = b�k	, there are k winners, the last
winner will be selected at random between the equal bids, and if he
wins he makes a negative surplus and is worse off; and (d) b�k	 > b̃i
and nothing changes.

Therefore, independently of the bidding strategies of all other
players, buyer i has no incentive to change his bid from vi in both
Cases 1 and 2.

That the mechanism is optimal under this dominant strategy
equilibrium follows immediately from Theorem 1. �

Proof of Theorem 3. The proof assumes that the seller can cor-
rectly invert the bids into values to implement the optimal allo-
cation rule, and solve for the symmetric, equilibrium strategy B.
Redefine the function k∗�·	 from Theorem 1 in terms of a value v:

k∗�v	 = max�0≤ i ≤min�x�Nt�� v > v̂i��

and by convention, v̂0 < 0�

Let P�v	 be the probability that a buyer with valuation v is
among the winners. For k∗�v	≥ 1 and Nt = n,

P�v�Nt = n	 =
min�n�x�∑
k=1

Prob(v = v�k	 out of n buyers)

×I�J �v	 > !Vt−1�x−k+1	�

=
k∗�v	∑
k=1

Prob(v = v�k	 out of n buyers)

=
k∗�v	−1∑
k=0

Prob(v = v�k+1	 out of n buyers)

=
k∗�v	−1∑
k=0

(
n−1
k

)
�1−F �v	�k �F �v	�n−1−k� (A1)

Unconditioning on Nt gives (13).
Let v̂≡ v̂1 (i.e., v̂ is the threshold for the seller to accept the first

bid). It follows that P�v	 = 0, ∀ 0 ≤ v ≤ v̂. It is also easy to check
that P�v	 is strictly increasing in v�∀ v̂ ≤ v ≤ v̄. This is done by
rewriting (A1) as

P�v�Nt = n	=
min�n�x�∑
k=1

Prob(there are k winners�v) Prob(v ≥ v�k	)�

and noting that the first term is nondecreasing, and the second
is strictly increasing. The expectation over Nt preserves the mono-
tonicity property. Finally, P�·	 is not continuous in v. The prob-
ability of winning jumps up at points where the allocation rule
k∗�v	 increases by one more unit; this adds one more term in the
sum in (13). The set of discontinuity points is �t �x	 = �v� J �v	 =
!Vt−1�x−k+1	, 1≤ k≤ x�, which is finite and of Lebesgue measure
zero, and P�v	 is continuously differentiable almost everywhere
(a.e.), and left continuous at discontinuity points �t �x	.

The proof is completed using standard arguments from Maskin
and Riley (2000, Proposition 3), or Riley and Samuelson (1981,
Proposition 1). Assume that there exists a symmetric, equilibrium

Management Science/Vol. 48, No. 11, November 2002 1405



VULCANO, VAN RYZIN, AND MAGLARAS
Optimal Dynamic Auctions for Revenue Management

Table 6 Optimal Auction Revenues Used in §5.2.2

C = 0�1 T Nt C = 0�3 T Nt C = 0�5 T Nt

Nt Mean 95% CI Mean 95% CI Mean 95% CI

10 4.307 (4.301, 4.312) 10.066 (10.052, 10.080) 12.272 (12.241, 12.303)
30 13.301 (13.296, 13.305) 31.031 (31.003, 31.058) 37.281 (37.233, 37.330)
50 22.295 (22.285, 22.306) 52.003 (51.977, 52.029) 62.247 (62.178, 62.316)

100 44.795 (44.782, 44.809) 104.548 (104.501, 104.595) 124.748 (124.656, 124.841)

bidding strategy B̂�·	. Suppose buyer i bids bi = B̂�v	 for some v not
necessarily equal to vi . (Note that from the Revelation Principle of
Myerson (1981), it is sufficient to consider perturbing the value v
alone and not the bid itself.) His expected surplus is

.i�v�vi	= P�v	�vi− B̂�v	�� v > v̂� (A2)

Differentiating with respect to v, we get that

/.i

/v
�v�vi	= vi

dP�v	

dv
− d

dv
�P�v	B̂�v	�� ∀v ∈ �v̂� v̄�\�t �x	�

Assume that the equilibrium strategy B̂�vi	 satisfies the first-order
condition

/.i

/v
�vi� vi	= 0�

This simplifies the previous expression to the differential equation

d

dv
�P�v	 B̂�v	�= v

dP�v	

dv
� ∀v ∈ �v̂� v̄�\�t �x	0 B̂�v̂	= v̂� (A3)

The next step is to solve the differential equation for B̂. Integrating
between v̂ and vi , we obtain15

P�vi	B̂�vi	=
∫ vi

v̂
v
dP�v	

dv
� (A4)

Since dP�v	/dv > 0 ∀v ∈ �v̂� v̄	\�t �x	,

∫ vi

v̂
v
dP�v	

dv
<

∫ vi

v̂
vi
dP�v	

dv
= viP�vi	� vi > v̂�

which implies together with (A4) that B̂�vi	 < vi for all vi > v̂. Eval-
uating (A3) at v = vi, and using the fact that Prob�vi ∈�t �x		 = 0,
we get that

P�vi	
dB̂�vi	

dv
= dP�vi	

dv
�vi− B̂�vi	��

Since B̂�vi	 < vi , it follows that B̂�vi	 is strictly increasing. Finally,
integrating (A4) by parts and using the fact that P�v̂	 = 0� we
get (12).

15 Because P�·	 is monotonic, it is of bounded variation and hence
the Riemann-Stieltjes integral exists; see, for example, Apostol
(1974, Theorems 6.5 and 7.27).

To complete the definition of the bid function at points of dis-
continuity, we define B�vi	 as the left limit of B̂�vi	 according to (12).

The last step is to verify that B̂�·	 is indeed an equilibrium
strategy. This is done by checking the condition that .i�vi� vi	 >

.i�v�vi	� ∀v > v̂�v �= vi. We first consider points of continuity. Sub-
stituting (12) into (A2), this is equivalent to

∫ vi

v̂
P�z	dz > P�v	�vi−v	+

∫ v

v̂
P�z	dz�

If v > vi, this implies that

P�v	�vi−v	+
∫ v

vi

P�z	dz < 0�

which holds true because P�·	 is positive and strictly increasing.
The analogous condition is true if v < vi.

It remains to check the condition at points of discontinuity, vi ∈
�t �x	. Since P�·	 is left continuous and

b ≡ lim sup
&→0+

B�vi−&	 < b̄ ≡ lim inf
&→0+

B�vi+&	� (A5)

P�vi	�vi−B�vi		= P�vi	�vi− b	 > P�vi	�vi− b	� ∀b ∈ �b� b̄�. Note that
if B�vi	 < b or B�vi	 > b̄, then looking respectively at v = vi −& or
v= vi+&, for & > 0, B�v	 would not be an equilibrium strategy. �
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