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We analyze a model of inventory competition among n firms that provide competing, substitutable goods. Each firm chooses initial inventory
levels for their good in a single period (newsboy-like) inventory model. Customers choose dynamically based on current availability, so
the inventory levels at one firm affect the demand of all competing firms. This creates a strategic interaction among the firms’ inventory
decisions.

Our work extends earlier work on variations of this problem by Karjalainen (1992), Lippman and McCardle (1997) and Parlar (1988).
Specifically, we model demand in a more realistic way as a stochastic sequence of heterogeneous consumers who choose dynamically
from among the available goods (or choose not to purchase) based on a utility maximization criterion. We also use a sample path analysis,
so minimal assumptions are imposed on this demand process. We characterize the Nash equilibrium of the resulting stocking game and
prove it is unique in the symmetric case. We show there is a bias toward overstocking caused by competition; specifically, reducing the
quantity stocked at any equilibrium of the game increases total system profits, and at any joint-optimal set of stocking levels, each firm
has an individual incentive to increase its own stock. For the symmetric case, we show that as the number of competing firms increases,
the overstocking becomes so severe that total system (and individual firm) profits approach zero. Finally, we propose a stochastic gradient
algorithm for computing equilibria and provide several numerical examples.

1. INTRODUCTION

Consumers typically choose among competing goods based
on criteria such as quality and price. However, the local
availability of products or services is also an important fac-
tor in many consumer choice decisions. Rather than search-
ing other locations or delaying their purchase, consumers
may opt to substitute a competing good if their preferred
good is unavailable. For example, Anupindi et al. (1998)
report significant levels of substitution in an empirical test
of vending machine products, and they cite a Food Mar-
keting Institute (1993) finding that 82%–88% of grocery
customers would substitute if their favorite brand-size was
not available. Consumer substitution based on availability
of either goods or capacity also occurs in consumer durable
markets, in service markets, and in industrial raw materials
markets. (See Dion et al. 1989, Jeuland 1979, and Mason
and Wilkinson 1977.)
Dynamic consumer choice behavior creates strategic

interactions among the stocking (or capacity) decisions
of competing firms. This occurs because the inventory
stocked (or capacity provided) by one firm affects the real-
ized demand of its competitors. Examples of this sort of
availability competition include retailers in close proxim-
ity who sell the same branded merchandise (e.g., consumer
electronics and apparel); vendor-managed inventory (VMI),
where competing manufacturers in a merchandise category

independently manage the wholesale or retail stock of their
own products (e.g., grocery items); competing airlines that
fly the same route, where the availability of discount seats
on one carrier affects the demand for discount seats on its
competitors’ flights.
Traditionally, inventory theory has not considered the

effects of either consumer choice behavior or the result-
ing strategic effect on inventory decisions. (See Graves
et al. 1993.) Recently, however, both phenomena have been
addressed in the research literature. Work by Mahajan and
van Ryzin (1998), Noonan (1995), Smith and Agrawal
(2000), and van Ryzin and Mahajan (1999) has looked
at profit maximizing decisions for a monopolist stocking
a category of substitutable products. (See Mahajan and
van Ryzin 1999 for a survey.) These works, however, do
not examine the strategic effects resulting from consumer
choice behavior. Availability as a strategic variable has been
considered in the marketing literature by Balachander and
Farquhar (1994), but this work does not consider inventory
decisions directly.
Strategic stocking decisions have been considered in

only a limited number of works, first by Parlar (1988)
and then later by Karjalainen (1992) and Lippman and
McCardle (1997). Our work builds on and extends this
line of research. In this literature, as in our work, prices
are assumed exogenous, and therefore price competition is
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ignored. Primarily, this is done to simplify the problem and
to focus on the effects of inventory competition. However,
there are certainly cases (e.g., vending machines, airline
tickets) in which inventory levels are a firm’s primary deci-
sion at a disaggregate level (e.g., individual machine stock
levels, capacity allocations for a specific flight departure)
and prices are determined at a more aggregate level. (See
Balachander and Farquhar 1994 for an analysis of avail-
ability and price competition in a simpler setting.)
Parlar (1988) considers a two-firm inventory game in

which each firm manages the inventory of its good and
the goods are substitutable. The goods receive random
demand. A deterministic fraction of excess demand for
each good substitutes to the alternative, if the alternative
good has excess stock. A single-period inventory model
is considered. The existence and uniqueness of a Nash
equilibrium is shown. Also, it is shown that cooperation
between firms improves the joint profit over that achieved
under competition. Karjalainen (1992) considers a model
similar to Parlar’s for the n-firm case.
Lippman and McCardle (1997) analyze both a duopoly

and a n-firm (oligopoly) model of inventory competition.
They model aggregate demand for all firms in the market
as a random variable that does not change with the number
of firms. Each firm chooses the level of inventory to stock.
Demand for each firm results from an initial allocation and
a reallocation. These rules for splitting demand are known
to all the firms. Rules for initial allocation are primarily of
two kinds, deterministic and random. In the deterministic
rule, a specified fraction of total demand is allocated to
each firm. In the random allocation rule, how demand is to
be split is determined based on the outcome of a random
variable. Any excess demand at one firm is then reallocated
among the other firms. As an example of a reallocation rule,
the authors consider “herd behavior.” One particular firm
is chosen at random, and all excess demand is allocated to
that firm. If excess demand is met, the process stops. If not,
then another firm is chosen at random and the remaining
excess is allocated. It is through these reallocation rules
that the inventory decision of one firm affects the profits of
the other firms.
The authors show existence of equilibrium under the

assumption that the effective demand for each firm (i.e.,
demand after reallocation has occurred) is stochastically
decreasing in the inventory levels of the other firms. They
show uniqueness of the equilibrium in the symmetric case
under continuity and monotonicity assumptions on the
effective demand for each firm. For the two-firm case, if
all excess demand is reallocated they show that competi-
tion leads to higher total inventory in the system. Finally,
they show that profits tend to zero as the number of firms
increases under herd behavior reallocation.
Our results closely parallel Lippman and McCardle’s

(1997), but we extend them in several important ways.
First, our demand model is arguably more realistic and gen-
eral than the somewhat stylized allocation and reallocation
rules used by Lippman and McCardle. (An exception is

the basic existence of a Nash equilibrium, which Lippman
and McCardle show holds when each firm’s demand is
stochastically decreasing in the inventory levels of compet-
ing firms. Our demand model satisfies this condition. Other
results in Lippman and McCardle require more restricted
assumptions.) Such rules, while capturing certain substitu-
tion phenomena, are not the most natural and satisfying
model of consumer choice behavior. In addition, Lippman
and McCardle’s results often depend on which particular
allocation rules are used (e.g., herd behavior is required for
the zero-profit result).
In contrast, demand for goods in our model is the result

of the individual choice behavior of a sequence of hetero-
geneous consumers. These individual choices, which are
made dynamically based on the on-hand stock the cus-
tomer sees, determine the evolution of inventory levels over
time and, consequently, the profits earned by each firm.
Individual consumer choice itself is based on random util-
ity maximization, which is a well-established model in the
economics literature for how rational consumers choose
from a discrete set of alternatives (Anderson et al. 1992).
Moreover, because our analysis is based on sample path
properties of the profit functions, the results apply to any
such demand process that satisfies only some mild regu-
larity conditions. For example, we show the uniqueness of
the equilibrium in the symmetric case under a very general
notion of symmetry. Thus, in a very general and realistic
framework, we model both the dynamic choice behavior of
consumers and its effect on inventory and firm profits.
Second, we obtain some new structural insights. We pro-

vide comparative statics for the general, n-firm asymmetric
case that show: (1) at any equilibrium set of stocking levels,
total system profits can be improved if all firm reduce their
inventory; and (2) at any joint optimum, each firm as an
incentive to increase its own stocking levels. In particular,
these results show that the tendency toward “competitive
overstocking” shown by Lippman and McCardle (1997) for
the duopoly case extends to our general oligopoly case. We
also provide conditions under which industry profits tend
to zero as the number of competing firms tends to infinity.
Again, this extends the important result that the industry
approaches the competitive (zero-profit) limit as the num-
ber of firms increases.
Lastly, our model and analysis approach leads to a

computationally efficient (albeit not provably convergent)
method to find equilibrium inventory levels based on modi-
fications of the stochastic gradient algorithms developed in
Mahajan and van Ryzin (1998). We illustrate the method
with some numerical examples.
This paper is organized as follows. In §2 we describe the

inventory game, the essential components of which are the
customer choice process, a continuous model of inventory,
and our sample path expressions for the profit functions of
each firm. Preliminary results are contained in §3. In §4, we
present our main results, which include demonstrating the
existence of an equilibrium and proving its uniqueness for
the case of symmetric goods. We also make comparisons
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between the Nash equilibria and a joint optimum inventory
level vector, which is the inventory level decision assum-
ing all goods are managed by a central decision maker. In
§5, we analyze the symmetric case as the number of firms
increases and prove that system profits converge to zero.
Finally, in §6, we describe a numerical algorithm and illus-
trate its performance on several examples. Our conclusions
are presented in §7.

2. A MODEL OF INVENTORY COMPETITION

2.1. Notation

We begin by introducing some notation. The set of natural
numbers (nonnegative integers) is denoted by Z and the set
N denotes �1� � � � � n�. The notation �A� denotes the cardi-
nality of a finite set A. All vectors are in �n unless oth-
erwise specified. The notation yT stands for the transpose
of a vector y. Where possible, components of vectors are
denoted by superscripts while subscripts denote elements of
a sequence. The set For example, xjt denotes the jth com-
ponent of a vector xt in a sequence �xt � t � 1�. I denotes
the identity matrix and ei ∈ Zn�1 � i � n denotes the ith
unit vector; that is, a column vector with a 1 in the ith
position and a 0 elsewhere; we also extend this definition
and let e0 denote a column of all zeros. We use 1 to denote
the column vector with a 1 as every element; a.s. means
almost surely, and c.d.f. is short for cumulative distribution
function.

2.2. Description of the Game

We consider a competitive version of a single-period (news-
boy like) inventory model. There are n firms, and each firm
stocks inventory of a single good. As described below, con-
sumers choose among the n goods, so the inventory lev-
els of one firm affect the profit earned by its competitors.
Firm j has a selling price of pj and a procurement cost of
cj , which are assumed exogenous.
Firm j’s strategy is to decide the initial inventory level

of good j, denoted xj . We let x = �xj � j ∈ N� and x−j =
�x1� � � � � xj−1� xj+1� � � � � xn� denote the decision of all firms
other than j, so that x = �xj� x−j�. Each firm has perfect
information about the decisions of the other firms. Without
loss of generality, there is no salvage value for any of the
goods.
As in Mahajan and van Ryzin (1998), we use a sample

path description of the inventory and sales process. Let T
denote the number of customers on a sample path. Each
customer t = 1� � � � � T chooses from the goods that are in
stock when he/she arrives. We note that customers do not
choose the time at which they arrive in our model; they
simply arrive exogenously and then choose which product
to buy, or they choose not to buy at all. One could imagine
models in which a customer’s timing is also part of his/her
decision, but to keep the model tractable we ignore this
possibility.
Let xt = �x1t � � � � � x

n
t � denote the vector of inventory

levels observed by customer t and note that x1 = x,

where x is the initial stocking decision mentioned above.
For any real inventory vector y, let S�y�= �j∪�0�� yj > 0�
denote the set of goods with positive inventory (the set
of in-stock goods) together with the no-purchase option,
denoted by the element 0. Customer t can only make a
choice j ∈ S�xt�. Because inventory levels are nonincreas-
ing over time, we have that S�xt+1�⊆ S�xt�.
A customer’s choice is based on utility maximization:

Each customer t assigns a utility Uj
t to the goods j ∈N and

to the no-purchase option, U 0
t . Let Ut = �U 0

t �U
1
t � � � � �U

n
t �

denote the vector of utilities assigned by customer t. Based
on the inventory level xt and utility vector Ut , customer t
makes the choice that maximizes his/her utility. Each cus-
tomer t requires a certain quantity of good, Qt , which could
vary from customer to customer and could be nonintegral.
The customer purchases from the inventory of the most
preferred good first. If this good runs out, the customer
purchases the remainder from the inventory of the second
most preferred good until it runs out, and so on. This pro-
cess continues until either the customer’s requirement, Qt ,
is met or the inventory of all goods valued higher than
the no-purchase utility is exhausted. Note that if customers
all demand unit quantities (Qt = 1) and firms stock inte-
gral quantities of each good, then each customer either
purchases one unit of some good or does not purchase,
depending on the on-hand stock. The model above simply
extends this natural integral case to allow for continuous
inventory and demand.
While we do not directly model a customer’s search cost

in this framework, certain types of search costs can be cap-
tured through an appropriate choice of utilities. For exam-
ple, suppose a customer has a preferred firm and is willing
to search one additional firm only if the preferred firm has
no inventory. Then one could construct a utility model in
which Ut has only two positive elements, one with the util-
ity of the primary firm and one with the utility (net of
search cost) for the secondary firm. However, allowing a
truly dynamic search process, in which customers sequen-
tially select firms, inspect them for inventory (perhaps at
a cost), and then decide to search more or stop, is beyond
the scope of our choice model.
Let � = ��U1�Q1�� �U2�Q2�� � � � � �UT �QT ��, denote a

sample path from some probability space ���� �P�. The
only assumptions made on this space are that the sequence
is bounded w.p.1, i.e., P�T � C� = 1 for some finite C,
and that each customer t makes a unique choice w.p.1.;
that is

P�U i
t �= Uk

t �= 1 for all i �= k� i� k ∈ N ∪ �0��
This latter assumption is satisfied, for example, if the utili-
ties have continuous distributions. Each firm does not know
the particular realization � but does know the probability
measure P. So we think of P as the common knowledge
each firm has of future demand.
Because consumer choice decisions depend on which

goods are in stock, the profits of each firm depend in
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a nontrivial way on the stock levels of other firms. To
express the profit of each firm concisely, let �j�x���
denote the number of sales of good j made on the sam-
ple path � given initial inventory levels x. Let ��x��� =
��1�x���� � � � ��n�x����. Then the sample path profit of
firm j, denoted �j�x���, is given by

�j�x���= pj�j�x���− cjxj� (1)

We denote the expected profit of firm j by �j�x� =
E�j�x���. Therefore, the objective of each firm j ∈ N is
to solve

max
xj�0

�j�xj� x−j�� (2)

where recall x = �xj� x−j�.
The solution concept we use is the Nash equilibrium

(1951). Specifically, a vector of inventories, x̄, is called a
Nash equilibrium in pure strategies (or simply Nash equi-
librium) if it satisfies

�j�x̄j� x̄−j�=max
xj�0

�j�xj� x̄−j� ∀ j ∈ N� (3)

In words, at a Nash equilibrium, no firm as an incentive to
unilaterally change its stock level, provided all competing
firms retain their current stock levels.
Finally, let

��x�=
n∑
j=1

�j�x�

denote the combined profit of all firms in the game. Let
x∗ denote a global maximum of the combined profit func-
tion, viz

��x∗�=max
x�0

��x��

This monopoly version of the problem is analyzed in
Mahajan and van Ryzin (1998). We will compare equilib-
rium and joint optimal inventory levels below.
Because the only complicated quantities in Equation (1)

are the functions �j�x���, we focus on understanding their
properties. To do so, it is convenient to consider a recursive
formulation of the problem.

2.3. A Recursive Formulation of
Profit Functions

We first define a system function, f �·�, which describes
how the inventory evolves over time. Let the components of
the vector Ut , be ordered so that U "1#

t > U
"2#
t > · · ·>U"n+1#

t .
Let m denote the number of goods with utilities higher than
the no purchase option. That is,

U
"1#
t > · · ·> U

"m#
t > U 0

t = U
"m+1#
t > · · ·> U

"n+1#
t �

Let b�j� denote the rank assigned to good j by customer t,
with 1 being the highest rank. That is,

b�j�= k� if Uj
t = U

"k#
t �

As before, let xt ∈�n denote the inventory vector and let

x
"k#
t = xjt � if Uj

t = U
"k#
t �

Finally, let f j�·� denote the jth component of the system
function f �·�. Then
f j�xt�Ut�Qt�

=




�x
"1#
t −Qt�

+ b�j�=1�1�m

�x
"b�j�#
t +···+x"1#t −Qt�

+

−�x"b�j�−1#
t +···+x"1#t −Qt�

+ 1<b�j��m

x
j
t b�j�>m.

(4)

That is, if b�j� > m, then it implies that the no purchase
option is preferred to good j, i.e. Uj

t < U
0
t , so no inventory

of good j is consumed. If b�j��m, then the inventory of
good j that is consumed is given by the first two expres-
sions in Equation (4).
Next, define a sequence of sales-to-go functions,

�
j
t �xt��� for t = 1� � � � � T via the recursion

�jt �xt���= xjt −f j�xt�Ut�Qt�+�jt+1�xt+1���� (5)

xt+1 = f �xt�Ut�Qt�� (6)

with initial conditions

�
j
T+1�xT+1���= 0� j ∈ N�

x1 = x�

Note �jt �xt��� gives the sales of good j on the sam-
ple path � from customer t onward (the sales-to-go), and
decomposes this total sales-to-go as the sum of sales of
good j resulting from customer t and the sales-to-go of
good j for the remaining customers t+1� t+2� � � � � T . The
total sales of good j are simply the total sales-to-go for cus-
tomers 1� � � � � T � so �j�x��� = �

j
1�x1���. One can there-

fore use this recursion to investigate properties of the sales
functions �j�x���.
With the inventory game and profit functions defined, we

can begin to analyze the resulting equilibrium. We begin
with some preliminary definitions and lemmas.

3. PRELIMINARY DEFINITIONS AND LEMMAS

Recall a function h� S→�m�S ∈�n is said to be Lipschitz
with modulus Kh if �h�y2�−h�y1�� � Kh�y2 − y1� for all
y1� y2 ∈ S. Let Ft�·� denote the marginal distribution of
Qt� t = 1� � � � � T , and let B be defined such that Ft�B�= 1.
Lemma 1 is proved in Mahajan and van Ryzin (1998).

Lemma 1. For each firm j, the function �j�x��� is
Lipschitz with modulus K�j = C1 + 1, where C1 = 2C�n+1�

and C is such that P�T < C�= 1.
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Lemma 2 justifies the interchange of the expectation and
differentiation operations on a sample path � (see Mahajan
and van Ryzin (1998) for proof) based on results in Glasser-
man 1994:

Lemma 2. If the marginal c.d.f.s of the purchase quantities
Qt , P�Qt � q�, are continuous and P�T �C�= 1 for some
finite C, then for all x: (i) the gradient ,��x��� exists
(w.p.1), (ii) the gradient ,E"��x���# exists, and (iii)

,E"��x���#= E",��x���#�

Next, we characterize the derivative of the sample path
sales functions for each firm with respect to their own
inventory level and the inventory levels of the other firms
(see Mahajan and van Ryzin (1998) for proof):

Lemma 3. The partial derivatives for the sample path sales
functions for each firm j satisfy

-

-x
j
t

�jt �xt��� ∈ �0�1��

and

-

-xit
�jt �xt��� ∈ �−1�0�� i �= j

for all t = 1� � � � � T .

The second relation above implies that the sample path
sales of good j satisfies the decreasing difference prop-
erty because the cross partial derivative is nonpositive. (See
Sunduram 1996.) This means the marginal value of inven-
tory for firm j is decreasing in the inventory of any other
firm i �= j. (See Mahajan and van Ryzin 1998 for further
analysis and discussion of this property.)
Our analysis also requires the following sample path ran-

dom variable:

Mj�x−j ���= sup
{
�j�xj� x−j ��� � xj � 0

}
�

In words, Mj�x−j ��� represents the largest quantity that
firm j can sell on the sample path, �, given that the inven-
tory levels of the other goods is fixed at x−j . Incrementing
the inventory of good j beyond Mj�x−j ��� will only result
in unsold inventory of j on the sample path �.
Finally, we use the idea of exchangeable random vari-

ables to make precise the notion of symmetric goods. Let
k1� � � � � kn denote a permutation of the indices 1� � � � � n.
The random variables X1� � � � �Xn are called exchange-
able if each permutation, �Xk1

� � � � �Xkn
�, has the same

n-dimensional probability distribution. We then have the
following definition of symmetric goods.

Definition 1. Goods 1 � j � n, are called symmetric if
the n random T -vectors �U j

t � t = 1� � � � � T � are exchange-
able.

If the random utility vectors are exchangeable, in a prob-
abilistic sense it does not matter which good is associated
with which utility value, and thus goods are symmetric.
Utilities that are independent and identically distributed are
exchangeable, though the above definition is more general.

4. EQUILIBRIUM ANALYSIS

With this background in place, we can establish our main
results.

4.1. Existence of Equilibrium

We start by analyzing the existence of an equilibrium.
Lippman and McCardle (1997) prove existence under the
assumption that the demand for the good offered by any
firm is stochastically decreasing in the inventory levels
of the goods offered by the other firms. Our customer
choice process results in the demand for each good being
decreasing in the inventory levels of the other goods on a
sample path basis. Therefore, it satisfies the stochastically
decreasing property of Lippman and McCardle. In view
of this fact, Theorem 1 is a special case of Lippman and
McCardle’s result. However, for convenience we include a
self-contained proof for our case.

Theorem 1. There exists a pure strategy Nash equilibrium
to the n firm inventory game.

Proof. Because at most C customers can arrive on the
sample path w.p.1 and each customer demands at most B
units of each good, the strategy space for the inventory
level of firm j is given by "0�BC#. So the strategy space is
a compact, convex subset of �.
We first show that �j�xj� x−j� is continuous in �xj� x−j�.

From Equation (1), we need only to show that E"�j�xj ,
x−j ���# is continuous in �xj� x−j�. We have

�E[�j�xj� x−j ���−�j�yj� y−j ���]�
� E

[��j�xj� x−j ���−�j�yj� y−j ����]
� �C1+1��x−y�� (7)

where the last inequality follows from Lemma 1. From
Equation (7), we see that �j�xj� x−j� is continuous
in �xj� x−j�.
We next show that �j�xj� x−j� is concave in xj . This

follows because �j�xj� x−j ���=min�xj�Mj�x−j ���� and
the minimum on the right is concave in xj for fixed x−j

and �. Therefore, E"�j�xj� x−j ���# is concave in xj as
well. So �j�xj� x−j� is concave in xj . The theorem then fol-
lows from Fudenberg and Tirole (1991, Theorem 1.2). �

4.2. A Comparison of Equilibrium and
Joint Optimal Stocking Levels

The next result provides comparitive statics on both the
equilibrium and joint optimal stocking levels. First, let

Aijx =
{
��

-�j�x���

-xi
=−1

}
�

The theorem requires the condition P�Aijx � > 0 to assert
strict inequality in the results. The condition is quite
general. Essentially, it states that for every inventory level
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vector x, there should be a set of sample paths with pos-
itive measure on which adding a unit of good i, decre-
ments the sales of good j. This happens on sample paths if
good i runs out of stock and there are customers arriving
later who prefer good i to good j. Without this condition,
Theorem 2 remains true with weak inequalities replacing
the strict inequalities.

Theorem 2. If P�Aijx � > 0�∀ i� j� x ∈ �0�BC�n then at any
Nash equilibrium point x̄,

-��x̄�

-xj
< 0 ∀ j ∈ N� (8)

while at any joint optimum point x∗,

-�j�x∗�
-xj

> 0 ∀ j ∈ N� (9)

Proof. Because

�j�x�= pjE"�j�x���#− cjxj�
using Lemma 2, which justifies the interchange of the
derivative and the expectation operations, Lemma 3 and the
condition P�Aijx � > 0, we see that

-�j�x�

-xi
= pjE

[
-�j�x���

-xi

]
< 0 ∀ i �= j� (10)

Any Nash equilibrium, x̄, must satisfy the first-order
conditions,

-�j�x̄�

-xj
= 0� ∀ j ∈ N� (11)

Using the fact that

-��x̄�

-xi
=

n∑
j=1

-�j�x̄�

-xi
(12)

and Equations (10) and (11), we see that Equation (8)
holds. Finally to show Equation (9), note that because any
joint optimum point, x∗, satisfies the first-order condition

-��x∗�
-xj

= 0� ∀ j� (13)

This implies by Equation (10) that

-�j�x∗�
-xj

=−
n∑

i=1� i �=j

-�i�x∗�
-xj

> 0� �

To understand Theorem 2 intuitively, consider the sym-
metric case where all firms have the same selling prices,
procurement costs and likelihood of being chosen by each
customer. In this case, the combined system profit is split
equally among the firms. (See §4.3 below.) In this case, at
a Nash equilibrium point, x̄, Equation (8) shows that each
firm could improve its profit if all firms agreed to reduce
their inventory levels. However, no firm has an incentive
to do so unilaterally, because at the Nash equilibrium point

every firm is making the best response to the other firm’s
inventory decisions. At a joint optimum point, x∗, each
firm is making the highest profit because the combined
profit is being maximized and then split equally. But from
Equation (9), we see that each firm has an individual incen-
tive to increase their inventory level at any such x∗. Thus,
while x∗ provides each firm with the highest profit, the less
profitable Nash equilibrium x̄ is the one that is actually
achieved.
Finally, we note that Theorem 2 shows that competition

leads to overstocking more generally, in the sense that for
any equilibrium x̄ there exists a vector y < x̄ with higher
total profits. This follows from Equation (8) because joint
profits can be improved locally at any equilibrium point
by slightly reducing any (or all) of the firms’ stock lev-
els (i.e., the vector �−1� � � � �−1� is an ascent direction).
This is, of necessity, a local characterization, because in
general there may be multiple equilibria and multiple joint
optima. (For example, we cannot claim that any equilibrium
is, component-wise, no smaller than every joint optimum.)
Nevertheless, it provides broad theoretical support for the
intuitive notion that a “competitive overstocking” effect is
produced by inventory competition.

4.3. Uniqueness of Equilibrium

While Theorem 1 guarantees existence of an equilibrium
for the inventory game, uniqueness is not guaranteed in
general. We next show that when the goods are symmet-
ric as in Definition ?? and all goods have identical sell-
ing prices and procurement costs (henceforth called the
symmetric game), the equilibrium is indeed unique.
Recall that Mj�x−j ��� = sup��j�xj� x−j ��� � xj � 0�

denotes the largest quantity that firm j can sell on the sam-
ple path, �, given x−j . Note that in terms of Mj�x−j ���,
the first-order conditions for firm j are

P
(
Mj�x−j ��� > xj

)= c

p
�

We shall make use of this fact shortly.
We next define two conditions that are required for the

uniqueness result. These conditions specify how changing
the inventory levels of goods affects the maximum sales of
other goods. In particular, decreasing the inventory level of
any one good potentially diverts demand to other goods or
to the no-purchase option. We would like this diversion to
occur in reasonable ways.

Incomplete Demand Diversion. For all i �= j and for all
0< 0< xi

P�Mj�x−j−0ei��� <Mj�x−j ���+0� > 0�

where ei denotes the ith unit vector.

This condition is understood as follows. For any sample
path we have that,

Mj�x−j− ei0����Mj�x−j ���+0�
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A decrease of good i by 0 units increases the maximum
sales of good j, Mj�·���, because customers who would
previously have bought good i may now switch to good j.
The increase in Mj�·���, is by at most 0 units, but may be
less if some customers choose the no-purchase option (or
goods other than j) rather than good j. Incomplete demand
diversion simply says that there is a positive probability
that there is not a one-for-one exchange of sales between
the two goods; that is, there is a positive probability that
the increase in Mj�·��� is less than 0 units.

Nontrivial Demand Diversion. If x� y ∈�n� y < x, then

P�Mj�y−j ��� >Mj�x−j ���� > 0�

In contrast to incomplete demand diversion, this condi-
tion requires that some diversion of demand takes place
when inventory is reduced. That is, let x� y be inventory
level vectors with y < x. If we compare the maximum
sales on a sample path of good j, under these two start-
ing inventory vectors x and y, one would expect that the
maximum sales of good j would be higher for the lower
inventory level vector y, because fewer competing goods
are available. The nontrivial demand diversion condition
simply says that there should be some probability of a strict
increase in maximum sales if the inventory of competing
goods is reduced.
Finally, we will need Mj�x−j ��� to be absolutely

continuous. Recall, a random variable X is absolutely
continuous iff there is a nonnegative function f = fX
defined on � such that

FX�x�=
∫ x

−�
fX�t�dt�

where fX is the usual density function of X. Absolute con-
tinuity rules out the existence of atoms in the cumula-
tive distribution function, i.e., points where the distribution
function makes a discontinuous upward jump.
Lemma 4 shows that under these two conditions, if firm i

reduces its inventory by 0, then firm j requires an increase
in its inventory of strictly less than 0 to restore its inventory
to the critical fractile (e.g., restore it to optimality).

Lemma 4. Suppose the incomplete demand diversion con-
dition is satisfied, the distribution function of the ran-
dom variable Mj�·��� is absolutely continuous and
x ∈ �0�BC�n satisfies
P�Mj�x−j ��� > xj�= r�

Then for any i �= j and any scalar 0, 0< xi−0 < BC,

P�Mj�x−j−0ei��� > xj+0� < r�

Proof. Recall that for all sample pathsMj�x−j−0ei����
Mj�x−j ���+0. Thus,
Mj�x−j−0ei��� > xj+0

implies the event

Mj�x−j ��� > xj�

Incomplete demand diversion says that, with positive prob-
ability, the converse is not true. That is, Mj�x−j ��� > xj

does not (w.p.1) imply Mj�x−j −0ei��� > xj +0. There-
fore,

P�Mj�x−j−0ei��� > xj+0� < P�Mj�x−j ��� > xj�

= r� �

Lemma 5 shows a monotonicity relationship between
inventory levels and the probabilities of events described in
Lemma 4.

Lemma 5. Let x� y ∈ �n with y < x. If nontrivial demand
diversion is satisfied, then

P�Mj�y−j ��� > yj� > P�Mj�x−j ��� > xj��

Proof. From the definition of nontrivial demand diver-
sion and the condition yj < xj , the event Mj�x−j ��� >
xj implies the event Mj�y−j ��� > yj . The lemma then
follows. �

We use these two lemmas to establish the uniqueness
result.

Theorem 3. Under the assumptions of Lemma 4 and
Lemma 5, there exists a unique equilibrium to the symmet-
ric n-firm inventory game and the equilibrium is symmetric.

Proof. Suppose x̄ is a symmetric equilibrium point with
x̄j = x�∀ j = 1� � � � � n. Then x̄ satisfies the first-order
conditions

P�Mj�x̄−j ��� > x�= c

p
∀ j ∈ N� (14)

Uniqueness is established by showing that there are no
symmetric equilibria other than x̄ and that there are no
asymmetric equilibria.
Suppose there was a symmetric equilibria x′ other than x̄

such that x′ < x̄ or x′ > x̄. From Lemma 5, we see that x′

would not satisfy the equilibrium condition (14). So any
symmetric equilibria x′ < x̄ or x′ > x̄ are ruled out.

We next rule out asymmetric equilibria by contradiction.
Suppose x is an asymmetric equilibrium. Because x is
asymmetric, there must exist i and j such that xi > xj .
Let 0 = xi− xj > 0. Because goods are symmetric, using
Definition ?? it follows that any permutation of x must
also be an asymmetric equilibrium. In particular, the vec-
tor �x1� � � � � xi −0� � � � � xj +0� � � � � xn� must be an equi-
librium. But by Lemma 4,

P�Mj�x1� � � � � xi−0� � � � � xj−1� xj+1� � � � � xn���

> xj+0� <
c

p
�

which violates the first-order condition for good j and con-
tradicts the fact that �x1� � � � � xi−0� � � � � xj+0� � � � � xn� is
an equilibrium. �
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5. INVENTORY COMPETITION WITH
A LARGE NUMBER OF FIRMS

When the number of firms in the system becomes large,
one would intuitively expect the increased competition
to lead to lower profits. Lippman and McCardle (1997)
showed this zero-profit result in the case of their “herd
behavior” allocation rule. In this section, we prove the
same result holds for our model under some additional
restrictions. More precisely, we show that in the symmet-
ric case when the number of firms gets arbitrarily large,
competitive overstocking becomes so severe that the equi-
librium inventory rises to the point where no firm earns
a profit. To establish this result, we must make the some-
what restrictive assumption that for all customers purchas-
ing any good is always preferred to the no-purchase option.
As a result, the system loses a sale only if all firms are
out of stock. This assumption is made primarily for ana-
lytical tractability. However, when the number of goods is
large this assumption is perhaps a reasonable approxima-
tion (though a proof allowing for the general no-purchase
option would be desirable).
Let x denote the total inventory in the system in equilib-

rium, which is equally distributed among all n firms in the
symmetric case. Let

3= x

n

be the equilibrium inventory held by each firm. Let
Q =∑T

t=1Qt be the aggregate quantity demanded on the
sample path �. Because by assumption the no-purchase
option is excluded (each consumer prefers purchasing any-
thing to not purchasing), the total sales of goods on the
sample path equals min�Q�x�. The total expected profit in
the system is then given by

pE"min�Q�x�#− cx�
Let x0 be the inventory level which results in zero profits,
so that

pE
[
min�Q�x0�

]= cx0�

We will show Theorem 4.

Theorem 4. Consider the symmetric game in which the
no-purchase option has the lowest utility for all customers
(w.p.1). Let x be the equilibrium total system inventory.
Then as the number of firms becomes large, x→ x0. That
is, the total inventory converges to the level that achieves
zero system (and individual firm) profits.

Proof. To prove the result, we condition on the value of T
and the quantities �Qt� t= 1� � � � � T �, leaving the utility val-
ues �Ut� t= 1� � � � � T � uncertain. Effectively, each customer
randomly permutes the indices of the firms and consumes
product by proceeding down the permuted list until his/her
quantity Qt is satisfied or no product is left in the system.
Let A denote the set of firms that sell all their stock.

Because customers prefer purchasing something to not pur-
chasing, if Q� x all firms will sell out and A=N . If Q<x,

Figure 1. The sets A, B and C.

the situation is as depicted in Figure 1. Some firm’s inven-
tory is completely sold out (those in set A), others’ are par-
tially sold (denoted set B), and the remaining firms have
no sales at all (denoted set C). A total quantity Q is sold
by firms, either completely or partially. A key observation
from Figure 1 is that there are at most T firms in the set B.
This follows because each arriving customer t creates at
most one new firm with some partially unsold inventory.
Thus,

P�i ∈ B�� �T/n�� (15)

Moreover, because there are at most min�Q/3�n� firms in
the set A

P�i ∈ A�� min�Q/3�n�

n
= min�Q�x�

x
� (16)

Similarly, because there are at most max��x−Q�/3�0�
firms in the set C and at most T firms in the set B,

P�i ∈ A�� n−max��x−Q�/3�0�−T
n

= min�Q�x�
x

− T

n
� (17)

Next, consider perturbing the inventory level of some
firm i by a fraction 0�−1<0< 1, from 3 to 3�1+0�. Let
�i�0�Q�T� denote the profit to firm i under this perturba-
tion given Q and T . If 3 is the equilibrium inventory (and
hence x is the system equilibrium inventory), then any such
perturbation should not increase firm i’s profits. If firm i

is in the set C, then firm i sells nothing and incurs a cost
of c3�1+0�. If firm i is in set A, it earns revenues of
p3�1+0� and incurs cost of c3�1+0�. If it is in set B,
the sales are indeterminate but are of order 3 and again the
firm incurs cost of c3�1+0�. Thus, using Equations (15),
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(16), and (17) we have

�i�0�Q�T�
= p3�1+0�P�i ∈ A�− c3�1+0�+O�3�P�i ∈ B�
= p3�1+0�min�Q�x�

x
− c3�1+0�+O

(
3T

n

)

= p�1+0�min�Q�x�
n

− c x
n
�1+0�+O

(
xT

n2

)
�

Taking expectations with respect to Q and T yields

�i�0�= p�1+0�Emin�Q�x�
n

− c x
n
�1+0�+O

(
xE"T #

n2

)
�

As n→ �, the first two terms dominate. Because these
terms are linear in 0, the coefficient of 0 must approach
zero, or else firm i would prefer the perturbation 0. That
is, we must have

pEmin�Q�x�→ cx�

as n→�, which implies that x→ x0. �

Theorem 4 shows that the overstocking tendency, as
described by Theorem 2, becomes quite extreme as the
level of competition rises, causing firms to overstock to
the point where they eliminate all their profits. Alterna-
tively, the industry approaches the competitive extreme
(zero profit) as n increases.

6. A COMPUTATIONAL ALGORITHM AND
NUMERICAL RESULTS

To calculate inventory levels for the inventory game, we
propose using a variation of the sample path gradient
method developed in our earlier work (Mahajan and van
Ryzin 1998) for the monopoly (joint optimal) case. We
show therein that the joint optimal problem is not neces-
sarily quasiconcave in general, so finding globally optimal
points may be difficult. However, under the assumption that
the quantities demanded, Qt , have continuous distributions,
interchanging expectation and differentiation on a sample
path � is justified, so sample path gradients can be used
to find stationary points of the expected profit function. In
the appendix, we describe in detail how the sample path
gradient is calculated. Under relatively mild assumptions,
a steepest decent algorithm using the sample path gradient
converges to a stationary point of the expected profit func-
tion (see Mahajan and van Ryzin 1998).

6.1. Sample Path Gradient Algorithm for
the Inventory Game

For finding equilibria, we combine this stochastic gradient
algorithm with the idea of “simulated play.” Specifically,
each firm optimizes over its own inventory level using the
sample path gradient algorithm described above, with the
inventory levels of the other firms fixed. This is repeated
in succession for all firms, and we cycle through the firms

until the inventory level vectors converge to within a speci-
fied tolerance. In this way the sample path gradient method
is used to generate a sequence of best responses until equi-
librium is reached. In general, global convergence of this
sort of “simulated play” approach is guaranteed only in spe-
cial cases, for example when the best response function is
a contraction mapping (see Bertsekas and Tsitsiklis 1996).
In our problem, we have not been able to establish such
conditions. Therefore we cannot guarantee convergence.
Nevertheless, our experience with the method is that it is
quite robust in finding equilbria.
In what follows, �ak� is a sequence that satis-

fies
∑�

k=1 ak = � and
∑�

k=1 a
2
k < � (e.g. the sequence

ak = 1/k). Again, the exact sample path gradient formulae
are given in the appendix. The algorithm is:

Step 1. Initialize outer loop: y1 = y� j = 1
Step 2. Initialize inner loop: k = 1.
Step 3. For Firm j at iteration k

(i) Generate a new sample path �k

(ii) Calculate sample path gradient for Firm j:
-��y

j
k� y

−j ��k�

-yj
and step size ak

(iii) Update the starting inventory level for the next
iteration, using the equation

y
j
k+1 = y

j
k+ak

-��y
j
k� y

−j ��k�

-yj
�

Step 4. Check convergence of yj . If not within toler-
ance, then k �= k+1 and GOTO Step 3.

Step 5. Check convergence of y. If not within tolerance,
then j �= j+1 (modulo) n and GOTO Step 2.

The outer loop above repeatedly cycles through the n
firms. The inner loop solves for the best response of firm j
given the current values y−j of the other firms. The proce-
dure terminates when the best response of each firm results
in essentially no change in their decision.

6.2. Numerical Experiments

To illustrate the numerical algorithms and confirm the the-
oretical properties of the game, we applied the above algo-
rithm to some numerical examples.
In the examples, we used the standard multinomial logit

model (MNL), which is the most common random util-
ity model in the economics and marketing literature (See
Anderson et al. 1992). In the MNL, the utility takes the
form

Uj
t = uj+8jt (18)

for j ∈ S�xt�, where uj is called the nominal (or expected)
utility and 8

j
t is an noise term that allows for unobserv-

able heterogeneity in taste. The noise component, 8jt , is
modeled as a Gumbel (1958) (double exponential) ran-
dom variable with distribution P�8jt � z�= exp�−e−� z:+;��
with mean zero and variance :2�2

6 . (; is Euler’s constant,
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; ≈ 0�5772.) The nominal utility can be further broken
down as uj = y+aj −pj and u0 = y+a0, where y stands
for consumer income, aj is a quality index and pj is
the price for good j. We analyzed three symmetric cases,
with n= 2�10�20 firms and aj = 7�06� j = 1� � � � �10� and
a0 = 4�0.
We also analyzed an asymmetric case with n = 2 firms

to see what effect the degree of asymmetry has on equi-
librium stocking levels. These quality indices are shown in
Table 1 with a0 = 4�0 as before. These values resulted in the
same probability of no-purchase in each case but in varying
probabilities of purchase between the two firms (higher aj
corresponding to higher purchase probability).
In all cases, the error terms 8jt are i.i.d., Gumbel dis-

tributed with parameter : = 1�5, so the variance of 8jt
is 1.18. The procurement cost for a unit is set at cj = 1
for all j, and we assume uniform prices as well, with
pj = p = 2� for all firms j. Finally, the number of cus-
tomers in the sequence, T , was a Poisson random variable
with mean 30. Each customer on the sample path desires a
quantity of goods, Qt , which was exponentially distributed
with a mean of 1.
We calculated inventory levels using both the equilib-

rium and joint-optimal sample path gradient algorithms. We
then simulated the performance of these inventory levels, to
determine the profit resulting from each solution. The num-
ber of sample paths simulated was determined as discussed
in Banks et al. (1996) so that a 95% confidence interval
was within ±1% of the simulated profit.

6.3. Numerical Results

For the symmetric case, we see from Table 2 that as the
number of firms increases from 2 to 20, the equilibrium
profits in the inventory game relative to the joint opti-
mal profits drops from 99.07% to 73.14%. This is a sig-
nificant change in performance and confirms the result in
Theorem 4 that intensifying competition makes all firms
worse off.

Table 1. Quality indices for the
asymmetric example.

a1 a2

2.00 8.07
4.00 8.00
6.51 7.46
7.06 7.06

Table 2. Effect of number of firms, n, on profit and inventory.

Profit Inventory

n Joint Optimal Competitive % Opt. Joint Optimal Competitive % Opt.

2 18�4 18�3 99�1 23�7 25�7 108�5
10 22�1 18�5 83�9 27�9 37�3 133�4
20 22�7 16�6 73�1 28�5 41�2 144�6

Theorem 2 and the discussion in §4.2 suggest that the
system under competition stocks more inventory relative
to the joint optimum. This behavior is confirmed by the
numerical results in Table 2. Note that the competitive
inventory relative to the joint optimal solution increases
from 108�5% with 2 firms to 144�6% with 20 firms.
We next consider the n = 2, asymmetric game. Recall,

the level of asymmetry is determined by the attribute
indices aj , where a1 = a2 is the case of symmetric goods
and a1 � a2 is a case of highly asymmetric goods.
From Table 3, we see that as the goods become more asym-
metric, the competitive profits are somewhat closer to the
joint optimal profits, though the gap is relatively small in
all cases. The degree of competitive overstocking declines
as the problem becomes more asymmetric, falling from
108�5% to 99�4%. This is to be expected because in the
limiting case where one good has a attribute index aj that is
arbitrarily higher than the other firm, the problem reduces
to a single-firm (monopoly) problem.
In summary, these examples confirm the basic theoretical

behavior of the game and illustrate that equilibria can be
computed using relatively simple modifications of previous
algorithms.

7. CONCLUSIONS

Strategic inventory behavior, in which firms stock goods to
take advantage of a competitor’s stock-outs or to prevent
diversion of demand to competitors, provides an alternative
approach for explaining the inventory and capacity deci-
sions observed in a variety of industries. Our work extends
this idea, first introduced by Parlar (1988) and later ana-
lyzed by Karjalainen (1992) and Lippman and McCardle
(1997) to the general, dynamic consumer choice model
introduced in our earlier analysis of monopoly assortment
decisions Mahajan and van Ryzin (1998).
Our main findings are the following. Equilibrium inven-

tory levels exist under mild regularity conditions, and they
are unique in the case of n symmetric firms. Qualitatively,
equilibrium inventory levels are in general higher than joint
optimal levels, in the sense that the system profit is locally
decreasing in the inventory level of each firm at any equi-
librium. On the other hand, at any joint optimal solution,
each firm has an individual incentive to increase its inven-
tory. This establishes, in a quite general setting, the intuitive
result that competition leads to excess stocking. Moreover,
in the symmetric case where all customers prefer purchas-
ing something to not purchasing, we found that as the num-
ber of firms, n, increases, the excess stocking reaches the
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Table 3. Effect of degree of asymmetry on profit and inventory.

Profit Inventory

a1� a2 Joint Optimal Competitive % Opt. Joint Optimal Competitive % Opt.

2.00, 8.07 18�8 18�9 100�3∗ 23�9 23�8 99�4∗∗
4.00, 8.00 18�6 18�5 99�3 23�9 24�6 103�1
6.51, 7.46 18�5 18�2 98�5 23�7 25�7 108�1
7.06, 7.06 18�4 18�3 99�0 23�7 25�7 108�5

∗ 100.3% due to simulation error
∗∗ 99.4% due to tolerance error in stochastic gradient algorithm

point where no firm earns a profit; that is, the industry
becomes competitive as n→�.
Some open questions and extensions warrant further

investigation. On a technical side, it would be nice to
see if the zero-profit limit is achieved for the case where
a no-purchase option is included. We suspect that the
result still holds, but the proof seems more complex. It
would be interesting to endogenize price and consider com-
bined price and inventory competition. Another avenue to
investigate would be cooperative game theory approaches,
which could yield potentially different and interesting
insights. Finally, we have applied our inventory competi-
tion model to a n-manufacturer, 1-retailer problem to study
vendor managed inventory (VMI) and other coordination
mechanisms in a supply chain with competition among
manufacturers (Mahajan and van Ryzin 1999).

APPENDIX: SAMPLE PATH
GRADIENT CALCULATION

Consider the system function defined by Equation (4),
where recall b�j� denotes the rank assigned to good j by
customer t. Note that ,f�xt�Ut�Qt� is an n× n matrix
given as

,f�xt�Ut�Qt�

=[
,f 1�xt�Ut�Qt��,f

2�xt�Ut�Qt����� �,f
n�xt�Ut�Qt�

]
�

where

,f j�xt�Ut�Qt�=




-

-x1t
f j�xt�Ut�Qt�

���
-

-xnt
f j�xt�Ut�Qt�



� (A1)

and if b�j��m, then

-

-xlt
f j�xt�Ut�Qt�

=




1
�x
"b�j�−1#
t +···+x"1#t <Qt�×1

�x
"b�j�#
t +···+x"1#t >Qt�

if b�j� > b�l�

1
�x
"b�j�#
t +···+x"1#t >Qt�

if b�j�= b�l�

0 if b�j� < b�l��

(A2)

while if b�j� > m, then

,f j�xt�Ut�Qt�= ej�

Next, using the system function we calculate the inven-
tory level vector observed by each customer on the sample
path in a forward pass simulation of the choice process.
After computing these inventory level vectors, �xt � t =
1� � � � � T �, we compute the sample path gradient ,��x���
in a backward pass on this sample path. Specifically, the
steps are as follows.

Forward Pass

x1 = x

xt+1 = f �xt�Ut�Qt� ∀ t = 1� � � � � T �

Backward Pass

,�T �xT ���= I−,f�xT �UT �QT � (A3)

,�t�xt���= I−,f�xt�Ut�Qt�+,f�xt�Ut�Qt�

× [
,�t+1�f �xt�Ut�Qt����

]
� (A4)

for t = 1� � � � � T − 1, where the gradient ,f�xt�Ut�Qt� is
defined above. Then ,��x���= ,�1�x1���− c.
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