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We analyze a single-period, stochastic inventory model (newsboy-like model) in which a sequence of heterogeneous customers dynamically
substitute among product variants within a retail assortment when inventory is depleted. The customer choice decisions are based on a
natural and classical utility maximization criterion. Faced with such substitution behavior, the retailer must choose initial inventory levels
for the assortment to maximize expected profits.

Using a sample path analysis, we analyze structural properties of the expected profit function. We show that, under very general assump-
tions on the demand process, total sales of each product are concave in their own inventory levels and possess the so-called decreasing
differences property, meaning that the marginal value of an additional unit of the given product is decreasing in the inventory levels of
all other products. For a continuous relaxation of the problem, we then show, via counterexamples, that the expected profit function is
in general not even quasiconcave. Thus, global optimization may be difficult. However, we propose and analyze a stochastic gradient
algorithm for the problem, and prove that it converges to a stationary point of the expected profit function under mild conditions. Finally,
we apply the algorithm to a set of numerical examples and compare the resulting inventory decisions to those of some simpler, naive
heuristics. The examples show that substitution effects can have a significant impact on an assortment’s gross profits. The examples also
illustrate some systematic distortions in inventory decisions if substitution effects are ignored. In particular, under substitution one should
stock relatively more of popular variants and relatively less of unpopular variants than a traditional newsboy analysis indicates.

1. INTRODUCTION

It is common knowledge that retail consumers are often
willing to make substitutions if their initial choice of prod-
uct is out of stock. That is, they may prefer to buy a
different size, color or brand within a product category
rather than go home empty handed. When such behavior
is prevalent in a product category, it makes intuitive sense
that a retailer’s inventory decisions ought to account for
the resulting substitution effects. Yet, most inventory mod-
els assume that demand processes for different variants are
independent.

Past literature has considered manufacturer-controlled
substitution, in which a supplier firm may choose to fill
demand for one product with inventory of another product
to avoid stocking out. For example a “fast” computer chip is
used to satisfy the demand for products requiring a “slow”
chip and so on. Single period, multiproduct versions of this
problem have been studied quite extensively by Veinott,
(1965), Pasternack and Drezner (1991), Bitran and Dasu
(1992) and Bassok et al. (1997). But substitution in retail
settings is fundamentally different. Substitution decisions
are not directed by the retailer; rather, they are made by a
large number of independently-minded (and self-interested)
consumers. A retailer can only indirectly affect customer’s
decisions through his/her inventory policy.

Two recent papers, Smith and Agrawal (2000) and van
Ryzin and Mahajan (1999), address the issue of consumer
substitution using what we shall term a static model of sub-
stitution. While there are differences in the modeling and
analysis in these papers, both assume a customer’s choice
is affected by the set of variants offered in the assortment,
but not by the current inventory levels. In particular, it is
assumed that:

1. the initial choice decision is independent of the cur-
rent inventory levels of the variants, and

2. if a customer selects a variant that is out of stock, the
customer does not undertake a second choice, and the
sale is lost.

As a result, demand is independent of inventory levels,
though it does depend on the initial choice of variants
offered in the assortment. This static substitution model
simplifies the resulting inventory and variety analysis, but it
is a somewhat unsatisfying assumption, especially for cate-
gories such as cigarettes, soft drinks, grocery items, etc., in
which consumers substitute readily when products are out
of stock.

If one considers the effect of dynamic substitution on
assortment planning, several interesting questions come
to mind: Does the profit function possess any intuitively
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appealing and/or simplifying structural properties? How can
a retailer efficiently optimize profits in an assortment that
exhibits significant substitutability? If assortments can be
optimized efficiently, how much difference does it make in
gross profits? What distortions are introduced in a retailer’s
inventory decisions by ignoring substitution effects? And
what insights can such analysis provide about the relative
costs and benefits of assortment variety within a category?

These are some of the questions we address. We consider
a single-period inventory model of a merchandise category
made up of multiple product variants, where each variant
has a different unit selling price and unit procurement
cost. A retailer chooses initial inventory levels for each
variant before demand is realized. During the sales period,
a sequence of heterogeneous consumers then chooses from
among the in-stock variants (or they choose not to pur-
chase), based on a utility maximization criterion. We use
a sample path analysis, so minimal distributional assump-
tions are made on the number of customers and the utilities
they assign to variants. In the first part of the paper, sam-
ple path properties of the profit function are studied and
counterexamples to some hypothesized properties are pre-
sented. In the second part of the paper, a sample path gra-
dient algorithm is developed and analyzed. Solutions from
this optimization algorithm are then compared to several
naive heuristics to investigate how assortment profits and
inventory decisions are affected by dynamic substitution.

To our knowledge, Anupindi et al. (1997) and Noonan
(1995) are the only other works to date that model the
dynamic effect of stock-outs on consumer substitution
behavior. In Anupindi et al. (1997), the authors propose
estimates of demand for a category of two substitutable
items in the presence of stock-outs, assuming that customer
arrivals are described by a Poisson process, and that inven-
tory is replenished at regular intervals. However, this work
is concerned solely with estimation problems and does not
consider the effect of dynamic substitution on assortment
planning and inventory levels.

Noonan (1995) considers a problem very similar to ours,
but the model and analysis are quite different. He assumes
customers have a first choice and a second choice and
that demand is generated in two stages. In the first stage,
primary (first choice) demand is realized and satisfied as
much as possible with available inventory. Then, in the
second stage, unfilled primary demand is converted to sec-
ondary (second choice) demand for products based on
deterministic proportions. The resulting total demand for
each product is then analyzed in terms of multidimensional
integrals over the space of initial demand realizations.
Two computational approaches are proposed, although both
appear to be limited to problems with small numbers of
variants.

While the spirit of this work is quite similar to ours, our
model has some distinct advantages. First, Noonan’s (1995)
choice model is somewhat stylized: it does not allow for
more than one substitution attempt; the substitution demand
is a deterministic fraction of the excess demand; and it

does not model sales as a sequence of customer choices.
Our utility maximization model avoids these approxima-
tions; the choice is made from all available variants, so
there is no notion of a limit on the number of substitution
attempts; substitution, like primary demand, is random; and
the inventory and customer choice is modeled as a sequen-
tial process, so effects due to the arrival order of customers
are accurately captured. Moreover, utility maximization is
a theoretically satisfying model of choice that allows one
to easily investigate consumer welfare and price effects.
Finally, our model and analysis leads to a general and effi-
cient algorithmic approach to the problem.

The remainder of the paper is organized as follows: In
§2, we describe the model and the sample path view of the
system. In §3, we prove our main structural result and dis-
cuss some counterexamples. In §4, we develop a relaxation
of the problem to do computational work and outline a
sample path gradient-based algorithm for computing inven-
tory levels. In §5, we present other heuristic policies and
compare the performance of the algorithm to these policies.
In §6, we use the sample path gradient algorithm as a tool
to study several assortment issues. Finally, conclusions are
presented in §7.

2. MODEL FORMULATION

2.1. Notation

We begin with some notational conventions. The set of nat-
ural numbers (nonnegative integers) is denoted by Z and
N denotes the set �1� � � � � n�. All vectors are in �n unless
otherwise specified. The notation yT stands for the trans-
pose of a vector y. Where possible, components of vec-
tors are denoted by superscripts while subscripts denote
elements of a sequence. For example, xj

t denotes the jth
component of a vector xt in a sequence �xt  t � 1�. For a
real vector y, y�j� denotes the jth largest component of y,
that is y�1� � y�2� � · · · � y�n�. The notation �A�, denotes
the cardinality of set A. I denotes the identity matrix, and
ei ∈Zn� 1� i� n denotes the ith unit vector; that is, a col-
umn vector with a 1 in the ith position and a 0 elsewhere;
we also extend this definition and let e0 denote a column of
all zeros. We use 1 to denote the column vector with a 1 as
every element; a.s. means almost surely and c.d.f. is short
for cumulative distribution function. and w.p.1 is short for
with probability 1.

2.2. Assumptions and Model Specification

The merchandise category consists of n substitutable vari-
ants, with selling prices pj and a procurement cost of
cj , j = 1� � � � � n. We consider a one-period (newsboy-like)
inventory model in which the retailer’s only decision is the
vector of initial inventory levels x = �x1� � � � � xn) for each
of the variants. Without loss of generality, there is no sal-
vage value for any of the variants.

We take a sample path view of the inventory and sales
process. Let T denote the number of customers on a sam-
ple path. Each customer t = 1� � � � � T chooses from the
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variants that are in-stock when he/she arrives. Let xt =
�x1

t � � � � � x
n
t � denote the vector of inventory levels observed

by customer t, and note that x1 = x, where x is the initial
inventory decision mentioned above.

For any real vector y, let S�y� = �j
⋃
�0�  yj > 0�

denote the set of variants with positive inventory (the set
of in-stock variants) together with the no-purchase option,
denoted by the element 0. Customer t can only make a
choice j ∈ S�xt�. Because inventory levels are nonincreas-
ing over time, we have that S�xt+1�⊆ S�xt�.

2.2.1. Choice Process. A customer’s choice is based on
a simple utility maximization mechanism as follows: each
customer t assigns a utility U

j
t to purchasing variant j ∈ N

and to not purchasing, U 0
t . Let Ut = �U 0

t �U
1
t � � � � �U

n
t �,

denote the vector of utilities assigned by customer t.
These utilities should be interpreted as a measure of the
net benefit to the consumer from purchasing each variant
(or not purchasing). In particular, Uj

t is the utility net of the
price paid for variant j and any other acquisition costs. As
a canonical example, one can assume the no-purchase util-
ity is zero and that consumers purchase only if the net util-
ity of some variant is positive. In this case, U t

j represents
the consumer surplus. (See §5 for a specific example.)

Based on the inventory level xt and utility vector Ut , cus-
tomer t makes the choice, d�xt�Ut�, that maximizes his/her
utility:

d�xt�Ut�= arg max
j∈S�xt�

{
Uj

t

}
� (1)

The resulting decision could be either to buy a variant or
to not purchase at all, depending on whether d�xt�Ut�= j
for some j ∈ S�xt�� j > 0 or whether d�xt�Ut� = 0,
respectively.

Let � = �Ut  t = 1� � � � � T � denote the the sample path.
We assume � is a sample from some probability space
���� �P�. The only assumptions we make on this space are
that the sequence is finite w.p.1, i.e., P�T < +�� = 1 and
that each customer t makes a unique choice w.p.1; that is

P�U i
t �= Uk

t �= 1 for all i �= k� i� k ∈ N
⋃
�0��

This latter assumption is satisfied, for example, if the util-
ities have continuous distributions.

The retailer does not know the particular realization �
but does know the probability measure P, so we think of P
as characterizing the retailer’s knowledge of future demand.
The retailer’s objective is to choose initial inventory levels
x that maximize total expected profit.

2.2.2. Some Special Cases. We next show how several
common demand processes studied in the literature can be
modeled as special cases of the above choice process:

Multinomial logit (MNL). The MNL model is the
most common random utility model and is used widely
in the economics and marketing literature. In the MNL,
U 0

t �U
1
t � � � � �U

n
t are mutually independent random variables

of the form

Uj
t = uj +"j

t � j = 0�1� � � � � n� (2)

where uj is a constant called the nominal (or expected) util-
ity and "

j
t � j = 0�1� � � � � n are mutually independent noise

terms that account for unobservable heterogeneity in taste.
The noise components, "j

t , are modeled as Gumbel (dou-
ble exponential) random variables with distribution P�"

j
t �

z� = exp�−e−�z/%+&�� with mean zero and variance %2'/6
(& is Euler’s constant, & ≈ 0�5772�) The Gumbel distri-
bution is used primarily because it is closed under maxi-
mization (Gumbel [1958]). The nominal utility, in turn, can
be further broken down as uj = aj −pj� j = 1� � � � � n and
u0 = a0, where aj is a quality index and pj is the price for
variant j.

Markovian Second Choice. This is the model used
by Smith and Agrawal (1996). Let the utilities be ordered
so that U �1�

t > · · ·>U
�n+1�
t (i.e., U �j�

t is the jth largest com-
ponent of Ut). Let qj = P�U

�1�
t = U

j
t � denote the probabil-

ity that a customer’s first choice is j. The second choice
depends of the first choice, namely

P�U
�2�
t = Uk

t �U �1�
t = Uj

t �= pk
j � (3)

for all t, where
∑n

k=0� k �=j p
k
j = 1 and j �= 0. There is no

third choice under this model, so U 0
t > U

�3�
t > · · · > U

�n�
t .

A distribution of Ut satisfying these conditions corresponds
to the Markovian model of Smith and Agrawal (1996).

Universal Backup. In this example, which is a special
case studied by Smith and Agrawal (1996), every consumer
has an identical second choice if their first choice is not
available. For example, every consumer may be willing to
settle for vanilla ice cream if their favorite flavor is out of
stock.

Consider a category of n variants, and let Variant 1 be
the universal backup or common second choice. This case
is modeled by constructing a distribution where, w.p.1,
either U 0

t > U
�1�
t (the customer prefers not to purchase),

or U
�1�
t � U 1

t � U
�2�
t and U 0

t > U
�3�
t > · · · > U

�n�
t , for all t.

Then arriving customers may have different first choices;
Variant 1 is the common second choice of everyone; and
not purchasing is the common third choice.

Lancaster demand. This choice model is typical of
the attribute space models used in the product variety work
of Lancaster (1990). There are n products located along the
interval �0�1� (the “attribute space”). Let the location of
product j be denoted lj . Consumer t has an “ideal point”
Lt (a random variable) in the same attribute space �0�1�.
The utility of product j for customer t is then given by

Uj
t = a−b�Lt − lj�� (4)

where a represents the utility of a product that exactly
matches the customer’s ideal point and b specifies how fast
the utility declines with deviations from the ideal point.
One then makes a distributional assumption on the cus-
tomer ideal points Lt (e.g., uniformly distributed on �0�1�)
to complete the specification of the model. Note that unlike
in the MNL model, utilities in this model may be highly
correlated.
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Independent demand. Independent demand for vari-
ants can be modeled by constructing a distribution of Ut

such that for all t, U �1�
t > U 0

t > U
�2�
t > U

�3�
t > · · ·> U

�n+1�
t .

In this case, for each arriving customer only one variant
is preferred to not purchasing. Since no substitution takes
place under these conditions, the demand for each variant
is independent of the inventory levels of other variants.

2.2.3. Profit Function. To express the total profit con-
cisely, let -j�x��� denote the number of sales of variant j
made on the sample path � given initial inventory levels x.
Let -�x��� = �-1�x���� � � � �-n�x����. Then the sample
path profit, denoted '�x��� is given by

'�x���= pT-�x���− cTx� (5)

where p and c are the vectors of prices and costs, respec-
tively. We will also examine the individual profit functions
for each variant,

'j�x���= pj-j�x���− cjxj� (6)

Note that '�x���=∑n
j=1 '

j�x���.
The retailer’s objective is to solve

max
x�0

E�'�x����� (7)

Since the only complicated quantities in (5) are the func-
tions -j�x���, we focus on understanding their properties.
To do so, we introduce a recursive formulation of the prob-
lem which is also used later in §4 to construct a computa-
tional algorithm.

2.3. Recursive Formulation

We first define the system function,

f �xt�Ut�= xt − ed�xt �Ut�� (8)

where d�xt�Ut� is, as defined in §2.2, the decision made
by customer t and ej� j = 1� � � � � n are the n unit vectors
and e0 denotes the zero vector. Then xt+1 = f �xt�Ut�, so
that f �·� describes how the inventory evolves over time.

Next, define a sequence of sales-to-go functions,-j
t �xt���

for t = 1� � � � � T , via the recursion,

-j
t �xt���= xj

t −f j�xt�Ut�+-
j
t+1�xt+1���� (9)

xt+1 = f �xt�Ut��

with initial conditions

-
j
T+1�xT+1���= 0� j ∈ N�

x1 = x�

Note -
j
t �xt��� gives the number of sales of variant j on

sample path � from time t onward (the “sales-to-go”),
and (9) decomposes this total sales-to-go as the sum of
the sales of variant j resulting from customer t and the
total sales-to-go of variant j for the remaining customers
t+1� t+2� � � � T . Of course, the total sales of variant j
are simply the total sales-to-go for customers 1� � � � � T , so
-j�x��� = -

j
1�x1���. We can therefore use this recursion

to investigate properties of the sales functions -j�x���.

3. STRUCTURAL PROPERTIES

We next analyze several structural properties of the profit
function (5). In particular, we show that the individual profit
functions for each variant are concave in their own inven-
tory and that the marginal value of a unit of inventory of
any variant is decreasing in the level of inventory stocked
of other variants. These facts imply that the optimal stock
level for a given variant is decreasing in the stock levels of
the other variants, which is intuitive since variants are sub-
stitutes. We then show via counterexamples, that the total
profit function is not even component-wise concave in gen-
eral; for a continuous version of the model, it is not quasi-
concave. These facts suggest that global optimization may
be difficult in general.

First, we require a preliminary result. One would expect
that monotonicity of the inventory levels is preserved by the
recursion (9). This is indeed true as shown in the following
lemma.

Lemma 1. Let x and y be two starting inventory level vec-
tors, such that x� y, and let xt and yt denote, respectively,
the inventory at time t as determined by the recursion (9)
given starting inventory levels x and y. Then for all sample
paths �,

xt � yt� t = 1� � � � � T �

Proof. The proof is by induction. Fix a sample path �.
We are given that x1 � y1, so assume that xt � yt . We then
need to show that xt+1 � yt+1. There are two cases:
Case 1. d�xt�Ut�= j and d�yt�Ut�= 0. Then yt+1 = yt .

If j = 0, then xt+1 = xt as well. Else, xl
t+1 = xl

t for all
l ∈ N� l �= j, so xl

t+1 � ylt+1 for all l ∈ N� l �= j. Also,
y
j
t = 0 = y

j
t+1 and x

j
t > 0, so x

j
t+1 = x

j
t −1 � 0.

Case 2. d�xt�Ut� = j and d�yt�Ut� = k. If j = k, the
result is trivial; if j �= k, then it follows that yjt = 0 and that
x
j
t+1 � y

j
t+1, so xt+1 � yt+1. �

3.1. Parametric Monotonicity of
the Sales Functions

We next turn to our main result, Theorem 1. Before doing
so, we present some background material on parametric
monotonicity. The following definitions and results can be
found in Sundaram (1996) (see also Topkis 1978):

Let S and 0 be subsets of �n and �l respectively.

Definition 1. A function h  S×0→� satisfies decreas-
ing differences in �z� 2�, if for all z′ � z and 2′ � 2�h�z′2�−
h�z� 2�� h�z′� 2′�−h�z� 2′�.

Suppose that S denotes a space of feasible actions and 0
denotes a parameter space. Consider the following opti-
mization problem, for fixed 2 ∈0,

max�h�z� 2�  z ∈ S��

and define the optimal action correspondence (point-to-set
mapping)

D∗�2�= �z∗  h�z∗� 2�� h�z� 2� ∀z ∈ S��
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We want to determine when the optimal action correspon-
dence D∗�·� is monotone in 2. Let

z∗�2�= max�z  z ∈D∗�2��� (10)

The following lemma (see Sundaram 1996 and Topkis 1978
for proofs) shows that the property of decreasing differ-
ences can be used to establish parametric monotonicity.

Lemma 2. Suppose that the optimization problem

max�h�z� 2�  z ∈ S�

has at least one solution for each 2 ∈0, and that h satisfies
decreasing differences in 2. Then z∗�2� is nonincreasing in
the parameter 2.

To connect these parametric monotonicity results to our
problem, let z be a scalar, 2 ∈ �n and define

hj�z� 2�= -j�zej +2����

Thus, z changes the inventory level of variant j while 2
changes the inventory levels of any variant. Our main result
is:

Theorem 1. a. The function hj�z� 2� is component-wise
concave in z for all �.
b. The function hj�z� 2� satisfies the property of decreas-

ing differences in �z� 2� for all sample paths �.

Proof. The properties are quite related and follow from
a few elementary observations. We first show component-
wise concavity.

Component-wise concavity is equivalent to showing that
the first differences,

4�k� 2�= -j�kej +2���−-j��k−1�ej +2����

are monotonically nonincreasing in k = 1�2� � � � . From the
system equation (9), it is clear that 4�k� 2� is either zero or
one. That is, on the sample path � we either sell the kth
additional unit or we do not sell it. We next show that once
4�k∗� 2�= 0 for some k∗, then 4�k� 2�= 0 for all k� k∗ on
the sample path �. Since 4�k� 2� is either 0 or 1, this in turn
implies that 4�k� 2� is monotonically nonincreasing in k.
To prove this property, note from (9) that -j�k∗ej+2���=
-j��k∗−1�ej+2���. That is, if x1 = k∗ej+2 then x

j
T+1 > 0

(there is leftover stock of variant j). Hence x
j
t > 0 for all

t = 1�2� � � � � T (by Lemma 1). Therefore, each customer t
always has variant j available, i.e., j ∈ S�xt� ∀t. By Lemma
1, increasing k beyond k∗ cannot decrease x

j
t , and therefore

such increases have no affect on the choice set S�xt� at any
time t, whence it follows that the choices of each customer
t are unchanged, and therefore 4�k� 2�= 0 for all k � k∗.

Also note that because there exists a k∗ such that
4�k� 2� = 1 for k < k∗ and 4�k� 2� = 0 for all k � k∗, a
simple induction argument implies

-j�kej +2���=
{
2j +k k < k∗�
2j +k∗ −1 k � k∗�

(11)

Note, 2j+k∗−1 is the maximum number of sales of variant
j given 2i� i �= j and �. Moreover, it is not hard to show,
using Lemma 1, that

-j�kej +2��� is nonincreasing in 2i� i �= j� (12)

To show the decreasing differences property of Theorem
1, it suffices to show that the point k∗ at which 4�k� 2�
first becomes zero does not increase when 2 increases. In
light of part 1, this is equivalent to showing that for each
k, 4�k� 2� does not increase in 2. But this follows from
Lemma 1 and (11) by a contradiction argument.

Indeed, suppose for some 2̂ � 2 there exists a k̂ � k∗

such that 4�k̂� 2̂� > 4�k∗� 2�. Then by (11), we have

-j�k̂ej +2�= 2j +k∗ −1�

-j�k̂ej + 2̂�= 2̂j + k̂�

Without loss of generality, we can assume 2̂j = 2j ;
else, redefine 2̂ = 2̂− �2̂j − 2j�ej and k̂ = k̂+ �2̂j − 2j�.
But k̂ � k∗ implies -j�k̂ej + 2̂��� > -j�k̂ej +2���, where
2̂j = 2j and 2̂i � 2i� i �= j, which contradicts (12). �

These two properties lead immediately to the following
corollary.

Corollary 1. a. A critical stocking level (base-stock
level) is optimal for maximizing the component-wise prof-
its (6). b. The component-wise optimal inventory level for
j is nonincreasing in xi� i �= j.

Component-wise concavity of hj�x��� implies that
adding more stock of any particular variant produces
decreasing marginal benefits. Therefore, if one is optimiz-
ing the profits of variant j only, a critical stocking level
(base-stock level) is optimal. This result is merely a reflec-
tion of the fact that, given the inventories other than j are
fixed, the profits earned by j as a function of xj are simply
the usual newsboy profits.

Part b of this corollary, which follows directly from
Theorem 1 and Lemma 2, is more interesting. It says the
optimal newsboy quantity for variant j decreases (or at least
does not increase) if the inventory levels of other variants
rise. This result is a quite natural property for the individual
profit functions to possess and reflects the fact that variants
are indeed substitutes. Unfortunately, as we show next, the
total profit function does not satisfy these same properties.

3.2. Counterexamples of Properties of
the Total Profit Function

The total profit function, (5), is less well behaved than the
individual profit functions, (6), a fact we illustrate through
several counterexamples. For these examples, it is sufficient
to analyze the total sales function, defined by

T�x���= ∑
j∈N

-j�x���

Additionally, let

Hj�z� 2�= T�zej +2����
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(This function plays a role analogous to h�·� in the previ-
ous section.) Note that if variants have identical prices and
costs, then the total profit function is '�x���= pT�x���−
c
∑n

j=1 x
j . Thus, if T�x��� is not component-wise concave

or does not satisfy decreasing differences, then the profit
function does not satisfy these properties in general. This
is the content of the next theorem.

Theorem 2. There exist starting inventory level vectors x
and sample paths � for which 1. T�x��� is not component-
wise concave in x, and 2. Hj�z� 2� does not satisfy the
property of decreasing differences in �z� 2� for some j ∈N .

Proof. 1. We consider a sample path with 5 customers
and 2 variants, i.e., T = 5, and n = 2. The utility vectors,
Ut� t = 1� � � � �5 assigned by each customer on the sample
path to each variant and to the no-purchase option are:

U1 U2 U3 U4 U5

Variant 1 3 1 1 1 1
Variant 2 4 3 3 3 3
No-purchase 2 2 2 2 2

The total sales on the sample path for four different start-
ing inventory level vectors x are:

x (1,0) (1,1) (1,2) (1,3)

T�x��� 1 1 2 3

We see that the first increment of Variant 2 on the sample
path does not increase total sales. This is because the first
increment of Variant 2 switches customer 1 from Variant 1
to Variant 2, thus missing the only opportunity to sell
Variant 1 on the sample path. However the second and suc-
cessive increments of Variant 2, increase total sales by 1.
This violates component-wise concavity of the total sales
sample path function.

2. We consider a sample path with 4 customers and 3
variants, i.e., T = 4 and n= 3. The utility vectors, Ut� t =
1� � � � �4 assigned by each customer on the sample path to
each variant and to the no-purchase option are:

U1 U2 U3 U4

Variant 1 5 3 3 3
Variant 2 3 1 1 1
Variant 3 4 5 5 5
No-purchase 2 2 2 2

The total sales on the sample path for four different start-
ing inventory level vectors x are:

x (0,1,0) (0,1,1) (1,1,0) (1,1,1)

T�x��� 1 1 1 2

We see that when Variant 1 is at an inventory level of
0, an increment of Variant 3 does not result in an increase
in total sales on the sample path. However when Variant 1

is at an inventory level of 1, an increment of Variant 3
increases total sales by 1 on the sample path. This violates
the decreasing differences property of H 3�·�. �

The fact that the total profit function is not even
component-wise concave is rather startling and attests to
the complexity of the profit function. Similarly, it is sur-
prising that decreasing differences do not hold either. Of
course, these are only sample path counterexamples. It is
entirely possible that under more restricted distributional
assumptions, one or both of these properties may hold for
the expected profit function. However, such an analysis
would most likely require different techniques.

3.3. Continuous Model and
Quasiconcavity Counterexamples

So far the structural results we have shown have been
derived assuming the inventory levels are integral. How-
ever, a continuous version of the problem is useful to
address theoretical questions of quasiconcavity and to
develop computational approaches using gradient-based
algorithms. To this end, we develop a natural continuous
relax-ation of the problem which has the integer problem
as a special case. The fluid model may also be of indepen-
dent interest in applications where demand and inventory
are truly continuous (e.g., petrochemicals).

To define the continuous problem, inventory is viewed as
a fluid and each customer t requires a continuous quantity
of fluid, Qt . As before, the choices are ordered based on the
customer’s utility vector Ut . The customer drains the inven-
tory of the most preferred fluid first. If this fluid runs out,
the customer drains the inventory of the second most pre-
ferred fluid and so on. This process continues until either
the customer’s entire requirement Qt is met or the inven-
tory of all fluids valued higher than the no purchase utility
is exhausted. Note that if each customer requires exactly
one unit of fluid and if the initial fluid levels are integral,
then this model is equivalent to the discrete one considered
above.

For the continuous problem, the sample path is � =
��U1�Q1�� �U2�Q2�� � � � � �UT �QT ��, and we modify the
system function, f �·�, as follows: Let the components of
the vector Ut , be ordered as before so that U

�1�
t > U

�2�
t

> · · · > U
�n+1�
t . Let m denote the number of variants with

utilities higher than the no purchase option. That is,

U
�1�
t > · · ·> U

�m�
t > U 0

t = U
�m+1�
t > · · ·> U

�n+1�
t �

Let b�j� denote the rank assigned to variant j by customer
t with 1 being the highest rank. That is,

b�j�= k� if Uj
t = U

�k�
t �

As before, let xt ∈ �n denote the inventory vector and let

x
�k�
t = xj

t � if Uj
t = U

�k�
t �
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Finally, let f j�·� denote the jth component of the system
function f �·�. Then

f j�x�Ut�Qt�=




�x
�1�
t −Qt�

+ b�j�= 1�

x
�b�j��
t +· · ·+x

�1�
t −Qt�

+

−�x
�b�j�−1�
t +· · ·+x

�1�
t −Qt�

+ 1 < b�j��m�

x
j
t b�j� > m�

(13)

That is, if b�j� > m, then it implies that the no purchase
option is preferred to variant j; i.e., Uj

t < U 0
t , so the fluid

volume of variant j is not drained. If b�j� � m, then the
fluid volume of variant j that is drained is given by the first
expression in equation (13).

Define -
j
t �xt��� analogously to be the total sales-to-go

of fluid j from customers t� t + 1� � � � � T . Then, similar
to equation (9), the evolution of the sample path can be
described using the following recursive equation,

-j
t �xt���= xj

t −f j�xt�Ut�Qt�+-
j
t+1�xt+1���� (14)

xt+1 = f �xt�Ut�Qt�� (15)

with initial conditions,

-
j
T+1�xT+1���= 0� j ∈ N�

x1 = x�

The sample path profit function '�x��� is defined by (5)
as before, with the vector -�x��� corresponding to the
sample path sales for the continuous model,

'�x���= pT-�x���− cTx�

With the continuous model so defined, we can investigate
quasiconcavity properties of the profit function. Our main
result here is a negative one. Namely, we demonstrate that,
in general, the sample path profit function is not quasicon-
cave in the starting inventory level vector. The significance
of this result is that without quasiconcavity, we cannot pre-
clude the possibility that there may be local optima in the
expected profit of the continuous problem (7).

Theorem 3. There exist sample paths � on which the sam-
ple path profit function for the continuous problem, '�x���
is not quasi-concave.

Proof. We exhibit a sample path, shown in Table 1, on
which the profit function is not quasiconcave. Three vari-
ants are stocked. Let pj = 2� j = 1�2�3, and cj = 1� j =
1�2�3. There are T = 15 customers who arrive on the sam-
ple path and each customer requires one unit of fluid, so
Qt = 1� t= 1� � � � �15. There are two initial inventory levels
given by y = �10�0�5�, i.e., the retailer stocks 10 units of
the first variant, no units of the second, and 5 units of the
third variant, and z= �0�5�10�. Their convex combination
given by 8y+ �1−8�z at 8 = 0�8 is the inventory level
(8,1,6). Table 1 shows that the sample path sales function is
not quasiconcave; that is, this sample path has strictly fewer
sales using a convex combination of two inventory levels,
in this case (8,1,6), than with either of the two inventory
levels, (10,0,5) and (0,5,10). �

Table 1. Sample path for quasiconcavity counter-
example.

Customer Sequence of events Inventory vector

t y z 0�8y+0�2z

0 (10,0,5) (0,5,10) (8,1,6)

1-3 First 3 arrivals (10,0,2) (0,5,7) (8,1,3)
choose Variant 3

4-5 Next 2 prefer (8,0,2) (0,3,7) (7,0,3)
Variants 2,1 in
that order

6-10 Next 5 prefer (3,0,2) (0,3,2) (2,0,3)
Variants 1,3 in
that order

11-12 Next 2 choose only (3,0,2) (0,1,2) (2,0,3)
Variant 2

13-15 Next 3 prefer (0,0,2) (0,0,2) (0,0,3)
Variants 1,2 in
that order

Total profit 11 11 9

4. OPTIMIZING ASSORTMENT INVENTORIES

A sample path gradient method is essentially like a steepest
ascent method with a stochastic (noisy) gradient replacing
a deterministic one. We describe the idea in more detail
shortly. In developing the algorithm, we work with the con-
tinuous problem.

We first need a lemma to justify the interchange of the
expectation and differentiation operations on a sample path
�. The required technical condition is that the purchase
quantities, Qt , be bounded, continuous random variables.

Lemma 3. If the marginal c.d.f.s of the purchase quantities
Qt , P�Qt � q�, are continuous and P�T �C�= 1 for some
finite C, then the gradient :E�-�x����, exists for all x and

:E�-�x����= E�:-�x�����

Proof. See the Appendix. �

Requiring continuously distributed purchase quantities is
somewhat restrictive. However, we require this assumption
only to prove convergence of the resulting algorithm. If this
condition is violated, the algorithm gives stochastic subgra-
dients instead, which can certainly be used effectively in
practice, as shown in §5.

Note that in view of Theorem 3, it is difficult to find
globally convergent algorithms for the continuous problem.
We therefore restrict our attention to finding algorithms that
converge to stationary points of the expected profit function
(locally convergent algorithms). In particular, let the set D
be defined as

D = �x ∈ �n  :E�'�x����= 0��

Our aim to find an inventory vector x such that x ∈ D.
(We assume here that all stationary points are interior to
the constraint set �x  x � 0�. One can easily modify the
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procedure to maintain nonnegativity by projecting onto this
set at each iteration.)

Using Lemma 3, we see that finding x ∈D, is equivalent
to finding the roots of the equation,

E�pT:-�x���− c�= 0� (16)

Before proceeding with the algorithm, we discuss how the
sample path gradient :-�x��� is calculated.

4.1. Calculating ���x���

Using the knowledge of the choice decision made by each
customer, we calculate the inventory level vector observed
by the subsequent customer on the sample path. This is
done in a forward pass. After computing the inventory level
vectors, �xt  t = 1� � � � � T �, we compute the sample path
gradient :-�x��� in a backward pass on the sample path.
Specifically, the steps are:

Forward Pass

x1 = x

xt+1 = f �xt�Ut�Qt� ∀t = 1� � � � � T �

Backward Pass

:-T �xT ���= I−:f�xT �UT �QT �� (17)

:-t�xt���= I−:f�xt�Ut�Qt�+:f�xt�Ut�Qt�

× �:-t+1�f �xt�Ut�Qt������ (18)

for t = 1� � � � � T − 1, where the gradient :f�xt�Ut�Qt� is
defined in the Appendix. Then :-�x���= :-1�x1���.

4.2. The Sample Path Gradient Algorithm

With the sample path gradient, :-�x��� in hand, we can
now describe the Sample Path Gradient algorithm which
is used to compute inventory levels. We require an initial
starting inventory level y and a sequence of step sizes, �ak�,
with the following properties.

�∑
k=0

ak =� and
�∑
k=0

a2
k <��

(For example, ak = 1/k.)
The algorithm proceeds as follows:
1. Initialize: k = 0 and y0 = y.
2. At iteration k,

a. Generate a new sample path �k.
b. Calculate sample path gradient :-�yk��k� and

step size ak.
c. Update the starting inventory level for the next

iteration, using the equation

yk+1 = yk+ak:'�yk��k��

3. k = k+1 and GOTO Step 2.

Let Ft�·� denote the marginal distribution of Qt , t =
1� � � � � T and let �yk� denote, as above, the sequence
of iterates generated by the Sample Path Gradient algo-
rithm. Under relatively mild assumptions the Sample Path
Gradient algorithm converges in the limit to an inven-
tory level vector in the set D of stationary points of the
expected profit function. This result is formalized in the
next theorem.

Theorem 4. Suppose Ft�·� is Lipschitz for all t = 1� � � � �
T . That is,

�Ft�x�−Ft�y��� K�x−y��

for all x� y ∈ �. Then
a.

lim
k→�

:E�'�yk��k��= 0�

b. Every limit point of the sequence yk is a stationary
point of E�'�y����.

Proof. See the Appendix. �

4.3. Some Comments on Global Optimization

The above algorithm is only guaranteed to find stationary
points and may not find a global optimum. One potential
approach to extending the algorithm to find a global opti-
mum is to imbed it in a so-called path following approach,
as is done in Hanson and Martin (1996) for optimizing
profit functions when the demand system is given by the
Multinomial Logit random utility model to be discussed in
the next section. (See Garcia and Zangwill (1981) for a
general treatment of path following methods.) In utilizing
this approach, we first perturb the problem with a param-
eter 2 to make it concave. For example, if we add a suffi-
ciently large 2 to each utility U

j
t � j �= 0 so that Uj

t +2 >U 0
t

with probability one, then it is easy to show that the result-
ing profit function (5) is concave in x. The idea is then to
decrease 2 to zero, optimizing x at each point, to construct
a “path” of inventory levels x∗�2� from the global optimum
of the perturbed but concave profit function to the global
optimum of the original profit function.

However, there are potential pitfalls with this approach:
A valid path may not exist; there could be a fork or bifur-
cation in the path and it is not clear, a priori, which “fork
in the road” the algorithm will follow; the path may have
discontinuous jumps, and so on. (See Hanson and Martin
(1996) for a discussion of these potential problems.) Also,
from a practical standpoint, path following approaches tend
to be computationally intensive. Moreover, as shown below,
in our numerical testing it appears that a straight-forward
implementation of the Sample Path Gradient algorithm is
quite robust in finding global optima.
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5. NUMERICAL EXPERIMENTS AND
COMPARISONS WITH HEURISTIC POLICIES

There are several reasons to engage in numerical analysis.
The first, clearly, is to understand the performance of the
proposed optimization algorithm. However, the sample path
gradient algorithm described above is perhaps best viewed
as a tool to help asses the impact of substitution behav-
ior on both inventory decisions and profits. In this spirit,
we compare the Sample Path Gradient algorithm to several
other heuristic policies.

5.1. Heuristic Policies

We next propose two policies that are meant to mimic the
types of heuristic decision rules used in practice. Our goals
in examining these policies are: 1. to understand qualita-
tively any distortions that might be introduced in inven-
tory decisions if one ignores (or approximates) substitution
effects, and 2. to gauge the impact of substitution effects
on profits and other performance measures.

In defining these policies, we assume we are given an
estimate of the probability of choosing Variant j from a
set S, which we denote qj�S�. This probability depends on
the choice model and is computed explicitly in the exam-
ples below. Further, in all our simulation testing we used
the continuous model of §3.3 where the total number of
customers, T , was Poisson, and the quantity demanded by
each customer, Qt , was exponentially distributed with mean
one. The heuristics below are defined with these facts in
mind, but can be easily generalized to other cases.

5.1.1. Independent Newsboy. The Independent Newsboy
policy makes the simplifying assumption that demand for
each variant is independent of the current on-hand inven-
tory levels. It thus ignores dynamic substitution effects
entirely. However, we allow demand to depend on the set S
of variants that are stocked through its affect on the prob-
abilities qj�S�. Specifically, if the number of customers T
is Poisson with mean =, the number of customers who
rank Variant j first is assumed to be a thinned Poisson
process with mean =qj�S� (which would be exact if there
were no stockouts). Each customer demands an exponen-
tially distributed quantity Qt with mean one. Therefore,
the total demand for Variant j under this assumption has
mean =qj�S� and variance 2=qj�S�. The exact distribution
is somewhat complex, but to simplify the heuristic we use a
normal approximation. Indeed, in applying inventory mod-
els in practice it is quite common to use simple distribu-
tional assumptions of this sort.

Given S, the inventory decision for each variant is then
treated as an independent newsboy problem. Using a nor-
mal approximation to the distribution of total demand, the
optimal Independent Newsboy stock level, denoted x

j
I , is

then

x
j
I = =qj�S�+ zj

√
2=qj�S�� j ∈ S� (19)

where = is the mean number of arriving customers,

zj =?−1

(
1− cj

pj

)
(20)

and ?�z� denotes the c.d.f. of a standard normal random
variable.

The next step in implementing the Independent Newsboy
heuristic is to determine the best subset S of variants to
stock. In the general case this may require evaluating 2n

subsets (e.g., by simulation), which is impractical. How-
ever, for the MNL model a simplification based on our pre-
vious work in van Ryzin and Mahajan (1996) reduces the
search to n sets, as described below.

5.1.2. Pooled Newsboy. In constrast to the Indepen-
dent Newsboy—which assumes there is no dynamic
substitution—this policy effectively assumes “complete
substitution” among the products in the set S. That is,
demand is pooled and an aggregate quantity is determined
to maximize the resulting profits assuming that customers
will freely substitute among all the variants in S. It also
mimics a top-down approach in which a buyer orders an
aggregate quantity for a category based on total demand
and approximate gross margins and then allocates this total
quantity in a rough-cut fashion to individual variants.

Specifically, let

q�S�=∑
j∈S

qj�S��

denote the probability that a customer chooses at least one
of the products in S. The total number of customers choos-
ing the category S is then Poisson with mean =q�S�. Each
customer demands an exponentially distributed quantity Qt

with mean one as before. The total demand for the cate-
gory S under this approximation therefore has mean =q�S�
and variance 2=q�S�. Under a normal approximation to this
total demand distribution, the optimal aggregate inventory
level for the category, denoted x�S�, is computed using

x�S�= =q�S�+ z
√

2=q�S��

where z is the newsboy fractile. This fractile is determined
using a weighted average price and cost as follows:

z=?−1

(
1− c̄

p̄

)
� (21)

where

p̄ =
∑

j∈S qj�S�pj

q�S�
� c̄ =

∑
j∈S qj�S�cj

q�S�
�

and ?�z� denotes the c.d.f. of a standard normal ran-
dom variable. The Pooled Newsboy inventory for variant j,
denoted x

j
P , is then determined by allocating the aggregate

inventory proportional to qj�S� as follows:

x
j
P = x�S�

qj�S�

q�S�
� j ∈ S�

Again, one can then attempt to optimize over the subset S.
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5.2. Example 1

In these first two examples, we used the multinomial logit
model (MNL) with utilities given by (2). A standard result
of the MNL is that the choice probabilities are given by

qj�S�= P�U j
t = max�U i

t  i ∈ S��= vj∑
i∈S vi+v0

� (22)

where

vj =
{
euj/% j ∈ S�

eu0/% j = 0�
(23)

As mentioned, for the MNL model we optimized over
the set S using a result from our previous work on static
substitution in van Ryzin and Mahajan (1996). Assume
variants are indexed so that v1 � v2 � · · ·� v1 and let Ak =
�1�2� � � � � k� denote the set consisting of the k best vari-
ants. A structural result derived (van Ryzin and Mahajan
1996) shows that in the case where all variants have iden-
tical costs and prices, the optimal assortment in the static
substitution case will always belong to one of the sets Ak,
k ∈ �1� � � � � n�. Motivated by this result, for the Indepen-
dent Newsboy and Pooled Newsboy heuristic we simply
tried out each one of these n sets in turn using simulation,
and chose the one that yields the highest profit.

In our first example, we consider n = 10 possible vari-
ants. The nominal utilities are of the form

uj = aj −pj� j = 1� � � � � n�

u0 = a0 and the quality indices, aj , are linearly decreasing:

aj = 12�25−0�5�j−1� ∀j = 1� � � � �10� (24)

and a0 = 4�0. The error terms "
j
t are i.i.d., Gumbel dis-

tributed with parameter % = 1�5, so the variance of "
j
t is

1.18.
The procurement cost and price are the same for all

variants in Example 1, with cj = 3 and pj = p for all j
where p takes values in the range 3 to 9. This simplifi-
cation facilitates comparison with other heuristic policies
and also makes it easier to investigate how different perfor-
mance measures vary with price. The number of customers
in the sequence, T , is a Poisson random variable with mean
30 and the quantity Qt demanded by each customer t is an
exponential random variable with mean one.

We computed the inventory levels using the Sample
Path Gradient algorithm and each of the heuristic policies
above. We then simulated the performance of these result-
ing inventory levels. The number of sample paths simulated
was determined as discussed in Banks et al (1996), so that
total profits were within ±1% with 95% confidence. The
number of sample paths ranged from 30,000 for p = 3 to
about 200,000 for p = 8.

Because the Sample Path Gradient algorithm is not glob-
ally convergent, we tested its performance on a few exam-
ples for large numbers of starting points to gauge its

performance. All converged to the same point. In all our
testing, we have not yet found an example which exhibited
convergence to different points. Moreover, as shown below,
the Sample Path Gradient algorithm consistently outper-
forms all of the heuristic policies. For these reasons, we
believe it is quite robust in finding a global maximum; how-
ever, global convergence cannot be guaranteed.

5.3. Performance Comparison for Example 1

The profit comparison for the three methods is given in
Table 2. The results show that while the Sample Path Gra-
dient algorithm outperforms the heuristic policies, these
policies do quite well. The Pooled Newsboy heuristic in
particular does very well, achieving 99.6% and 99.4% of
the profits generated by the Sample Path Gradient algo-
rithm, respectively, at price levels 5 and 8. The Indepen-
dent Newsboy heuristic does not do as well, but the profits
are still 99.0% and 97.6% of the maximum, respectively, at
price levels 5 and 8.

We next qualitatively compare the inventory levels
obtained under each heuristic policy relative to those
obtained by the Sample Path Gradient algorithm.

Independent Newsboy. We first examine the case where
the assortment consists of all 10 variants, that is S = A10.
While this is not the best subset, it illustrates some interest-
ing properties of the Independent Newsboy policy. Results
at price p= 8�0 are shown in the Figure 1. The total inven-
tory under the Independent Newsboy policy is 20% higher
than the sample path gradient inventory (30.3 vs. 25.2).
The distribution of inventory is different as well. The Inde-
pendent Newsboy inventory levels are lower for the first
two variants and systematically higher for the last eight
variants. That is, inventory is more evenly spread across
variants. The Independent Newsboy profit is also lower at
83.8, a loss of 5.7% as compared to the Sample Path Gra-
dient algorithm. (Note this profit is lower that reported in
Table 2, because Table 2 if for the best subset, A5.)

The intuition for this behavior is the following: substitu-
tion has two effects on the standard newsboy logic. First,
because of substitution behavior, the demand for a given
variant will be higher than the Independent Newsboy pre-
dicts, because it receives some additional substitute demand
from other variants when they are out of stock. This effect
increases the level of demand, which provides an incentive
to increase inventory. On the other hand, the unit under-
age cost is lower than the independent newsboy predicts
because an underage in one variant does not always result

Table 2. Gross profit of policies for Example 1.

Price 5�0 8�0

Sample Path Gradient 43�5 88�9
Independent Newsboy 43�0 86�8
Pooled Newsboy 43�3 88�4
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Figure 1. Inventory of Independent Newsboy Policy for
Example 1 �p = 8�: All 10 Variants.

Figure 2. Inventory of Independent Newsboy policy for
Example 1 using A5�p = 8�.

in a lost sale; customers may substitute rather than not pur-
chase. This reduces the effective underage cost, which cre-
ates an incentive to decrease inventory. Which of these two
opposing effects dominates depends on the item, with pop-
ular items having lots of additional substitution demand
and fewer chances for “back-up” alternatives, while less
popular items receive little substitution demand and have
many attractive back-up alternatives if they are out of stock.
The net result is that the independent newsboy is biased; it
stocks too little of the popular items and too much of the
less popular items.

If we next maximize over the sets A1� � � � �A10 in turn, A5

is the best set at price 8.0. Results are shown in Figure 2.
Also the profit performance improves quite significantly
over the A10 case, rising to 86.8 from 83.8. Choosing A5

over A10 has two effects on the Independent Newsboy pol-
icy: 1. the total inventory is reduced from 30.3 to 27.9,
which brings it closer to the total Sample Path inventory of

Figure 3. Inventory of Pooled Newsboy policy for
Example 1.

25.2; and 2. choosing A5 forces the heuristic to carry more
inventory of the popular variants and less (or none) of the
unpopular variants as the Sample Path Gradient algorithm
does. The combination seems to significantly improve the
Independent Newsboy’s performance.

Pooled Newsboy. Figure 3 shows the allocation under the
Pooled Newsboy policy at p = 8. The total inventory is
25.7, which is remarkably close to the total inventory of
25.2 for the Sample Path Gradient. The optimal set of vari-
ants is A6. However, inventory is more evenly spread across
variants than is optimal. As seen in Table 2, the alloca-
tion scheme of the Pooled Newsboy achieves profit levels
which are only slightly worse than the Sample Path Gra-
dient algorithm. Indeed it is surprising that a simple allo-
cation rule of this nature does so well. However, the way
inventory is allocated does seem to matter. For example, we
tested what happens when the same 25.7 units of inventory
are allocated evenly across all variants, which is clearly not
optimal; the profits decline by almost 12% in this case.

5.4. Example 2

We next consider a numerical example with two variants
where we allow for different profit margins. In contrast to
the equal-margin case of Example 1, the performance of
the Sample Path Gradient algorithm is considerably better
than both heuristics in this case and the performance of the
pooled newsboy is the worst. Also, the stocking decisions
of the various policies exhibit greater variability.

In this example, Variant 1 is less popular on average but
has a high margin; Variant 2 is more popular on average
but has a low margin. The actual numerical values are as
follows: For Variant 1,

a1 = 10� p1 = 10� c1 = 1� (25)
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Table 3. Profits of policies for
Example 2.

Policy Profit

Sample Path Gradient 79�5
Independent Newsboy 65�6
Pooled Newsboy 57�4

Figure 4. Inventory levels for Example 2.

so the mean utility is u1 = a1−p1 = 0 and the margin is 9.
For Variant 2,

a2 = 4� p2 = 2� c2 = 1� (26)

so the mean utility is u2 = a2 − p2 = 2 and the margin
is 1. As a result, while people will tend to prefer Variant 2
because it has a higher mean utility (net of price), Variant 1
is much more profitable.

Comparisons of the Sample Path Gradient method with
the Independent and Pooled Newsboy model are shown in
the Table 3. The Sample Path Gradient algorithm results in
a 12% increase in profits over the Independent Newsboy
heuristic and a 19% increase over the Pooled Newsboy
heuristic.

The inventory levels for Example 2 are shown in
Figure 4. Note that the Sample Path Gradient stocks more
of the less-popular, high-margin variant (Variant 1) than the
heuristic policies, while the heuristic policies both stock
more of the popular, low-margin variant (Variant 2). What
appears to be happening is that by stocking less of the low-
margin variant, the Sample Path Gradient policy induces
customers to “upgrade” to the high-margin variant even
though it may not initially be their first choice (i.e., a sort
of “bait-and-switch” effect).

5.5. Example 3

This example shows the performance of the three poli-
cies under a different choice model. In this example, we
use a Lancaster-type (Lancaster 1990) demand model with
attribute space [0 1]. There are four products with locations
l1 = 0�8, l2 = 0�2, l3 = 0�3 and l4 = 0�4. Thus, Variants 2, 3

Figure 5. Attribute space and associated data for
Example 3.

and 4 are closely clusted in attribute space, while Variant 1
is more distinct. For example, if the variants were shirts,
Variants 2, 3 and 4 might be three shades of blue while
Variant 1 is white. Customer t has an ideal point, Lt , that
is uniformly distributed on �0�1�. The utility of Variant j
for customer t is then given by (4) where we used a= 0�2
and b = 1. We further assumed the no-purchase utility was
identically zero for all customers.

The situation is depicted in Figure 5, where the four
product locations are represented in the attribute space
�0�1�. The “coverage” intervals, which are of length 0.4,
indicate the portions of attribute space where each variant
has a nonzero utility. Customers with ideal point covered
by an interval are willing to purchase the respective variant.
Note that demand for Variant 1 is independent because
its coverage interval does not overlap any other variant.
Demand for Variants 2, 3 and 4, on the other hand, is
dependent because the coverage intervals for these variants
overlap.

Assuming all four variants are stocked �S = �1�2�3�4��,
this model gives choice probabilities of q1 = 0�4� q2 =
0�25� q3 = 0�1 and q4 = 0�25. This is shown in Figure 5,
where the shaded bars at the bottom represent the regions
where each of the variants is the closest and thus would be
the first choice of customers lying in the intervals.

The heuristics and Sample Path Gradient were run with
the above choice probabilities and Poisson arrivals with a
mean of 30 and Qt exponential with mean one as before.
The price was p = 100 and the cost was c = 1 for all four
variants. This extreme ratio of price to cost more clearly
illustrates the inventory pooling effects and is not unrea-
sonable for certain lost-sales inventory settings (e.g., c is
the cost of holding a unit on the shelf for one day).

The inventory levels produced by each policy are shown
in Figure 6; the average profits are shown in Table 4. Note
that the Pooled Newsboy tends to understock all variants,
because it assumes customers will freely substitute among
all four variants. However, customers who prefer Variant 1
are not willing to substitute at all. As a result, Variant 1
is effectively independent, and thus both the Independent
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Figure 6. Inventory levels for Example 3.

Table 4. Profits for policies for
Example 3.

Policy Profit

Sample Path Gradient 2944
Independent Newsboy 2940
Pooled Newsboy 2918

Newsboy and Sample Path Gradient policies give the same
inventory level for Variant 1. On the other hand, there is
significant substition among Variants 2, 3 and 4. The result
is that the Pooled Newsboy overestimates the amount of
pooling benefit due to substitution and performs relatively
worse, with profits about 1% lower than the Sample Path
Gradient.

Conversely, the Independent Newsboy stocks more of
Variants 2, 3 and 4 than the Sample Path Gradient, because
it does not account for the pooling among these variants.
In particular, it is interesting to observe that the Sample
Path Gradient concentrates its inventory on Variants 2 and
4, which together span the interval [0, 0.6] of the attribute
space (see Figure 5)—the complement of the space spanned
by Variant 1. However, because of the relatively low cost
of inventory relative to lost sales (a ration of p/c = 100)
the Independent Newsboy profits suffer a negligible loss
for this overstocking.

6. PRICE AND SCALE EFFECTS

Under a static substitution model, we showed in van Ryzin
and Mahajan (1999), that variety increases if the selling
price of the items in a category rises. Similarly as the vol-
ume of customers increases, more variety is offered. We
also showed that a particular definition of “fashion” based
on the theory of majorization was a determinant of assort-
ment profitability. The goal of the present analysis is to
determine if these insights hold under a dynamic substitu-
tion model.

As in Example 1, we assume the price of all variants
in the category is the same. Using the specific form of
the utility function discussed earlier for Example 1, we see
that the quality indices �aj  j ∈ N� and the price p com-
pletely characterize the vector v = �v0� v1 � � � � vn�, where
vj is defined by (23).

To make comparisons across merchandise categories we
need to understand which characteristics of the merchan-
dise category affect the assortment decision. In van Ryzin
and Mahajan (1999), it was shown that the “evenness” of
the preference vector v played an important part. The the-
ory of majorization was used to characterize this even-
ness or fragmentation of the preference vector. For a vec-
tor y ∈ �n, let �i� denote a permutation of the indices
�1�2� � � � � n� satisfying y�1� � y�2� � · · · � y�n�. We then
have the following definition of the partial order based on
majorization:

Definition 2. For y� z ∈< �n, y is said to be majorized
by z, y ≺ z (z majorizes y), if

∑n
i=1 y

�i� = ∑n
i=1 z

�i� and∑k
i=1 y

�i� �
∑k

i=1 z
�i�, k = 1� � � � � n−1.

Intuitively, a nonnegative vector z that majorizes y tends
to have more of its “mass” concentrated in a few compo-
nents. In van Ryzin and Mahajan (1999), majorization was
shown to provide the right measure for the degree of frag-
mentation in consumer preference, and the following defi-
nition was proposed:

Definition 3. A merchandise category v is said to be
more fashionable than w if v ≺ w. If v ≺ w, we refer to w
as the basic category and v as the fashion category.

This definition says that for fashion categories, the vector
of preferences v is more evenly spread across the variants.
In our numerical test, we used the MNL model. The basic
category w is given by (24) and the fashion category v is
chosen so that v ≺ w. Specifically,

aj = 10�86 ∀j = 1� � � � �10�

Results from our numerical work can be summarized as
follows:

Observation 1. (i). If v ≺ w, and all other parameters
are equal, then the basic category w is more profitable
under optimal stocking decision.

(ii). Higher variety is offered when either price p or
customer volume = is increased.

Part i of Observation 1, is consistent with our earlier
results in van Ryzin and Mahajan (1999), using a static
substitution model. Namely, fashion categories have higher
overage and underage costs due to highly fragmented pur-
chase choices which reduce their profitability. Figure 7
shows how the expected profit varies with price for the
fashion and basic categories. We find that profit for the
basic category is higher at all price levels.

Part ii implies that high selling prices create an incen-
tive to stock higher levels of variety. As margins increase,
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Figure 7. Profit as a function of price.

Table 5. Number of variants stocked vs. volume.

Mean # arrivals # Variants stocked Depth

10 3 0�899
30 5 0�933

100 9 0�829
1000 10 0�808

a wide variety is offered to minimize the likelihood of cus-
tomers not purchasing. It also states that there are scale
economies to offering variety. Results are shown in Table 5,
where we include, as a measure of depth, the total number
of units stocked per unit of mean demand.

Thus, as the volume of business increases, more variants
are stocked. This is because, as the store traffic grows the
relative costs of inventory overage and underage decrease,
and more variety can be profitably offered. Again, these
results are consis-tent with those obtained in van Ryzin and
Mahajan (1999) for the static substitution model. We find
that the depth of the assortment remains almost constant,
showing only a slight decrease as the breadth is increased.

7. CONCLUSION

We have proposed a model to understand inventory deci-
sions in retail assortments when consumers choose dynam-
ically based on the on-hand stock. We believe the model
is appealing for several reasons. First, consumer choice is
based on maximization of stochastic (heterogeneous) util-
ities, which is a widely accepted mechanism in 44 eco-
nomics for how rational consumers select from a mutually
exclusive set of alternatives. Second, the stochastic pro-
cesses assumed are essentially completely general. Finally,
the model also leads to an efficient computational approach
using sample path gradients.

Though we have performed only limited testing of
heuristics, our results provide some interesting findings and
suggest avenues for future research. The results showed that
under substitution, one should stock relatively more of pop-
ular variants and relatively less of unpopular variants than

a traditional newsboy analysis indicates. Intuitively, this is
due to excess substitution demand combined with a reduced
underage cost from having substitute variants as backups.
This raises an interesting question of how to approximate
these effects heuristically. At the same time, the simple
Pooled Newsboy heuristic performs remarkably well in the
equal-margin case of Example 1. Perhaps treating an entire
category as if it were a single variant and then performing
a simple allocation of the aggregate inventory is a reason-
able way to manage such assortments in practice. On the
other hand, Example 2 showed that this simple heuristic
can produce bad decisions if margins are unbalanced. Also,
the numerical results derived using the sample path gradi-
ent algorithm support the theoretical insights from the static
substitution model in van Ryzin and Mahajan (1999).

The ability to incorporate price and choice effects in
such a general framework suggests several other extensions.
For example, one can easily study jointly setting price and
assortment decisions to maximize profits as is suggested by
Figure 7. A further extension is to use our model to study
competitive effects in which each variant is managed by a
separate firm seeking to maximize its own profits. This is
the subject of a forthcoming paper Mahajan and van Ryzin
(1999).

APPENDIX

We first prove two lemmas which are used subsequently.

Lemma 4. Let x and y be two starting inventory level vec-
tors. Let C be such that P�T � C�= 1. Then we have that

�xt −yt�� C1�x−y��
for all t = 1� � � � � T + 1 for the continuous model, where
C1 = 2C�n+1�.

Proof. We first show that

�x2 −y2�� 2n+1�x1 −y1�k� (27)

Here x = x1 and y = y1. Since the square root is a subad-
ditive function, we have that

�x2 −y2��
n∑

i=1

�xi
2 −yi2�� (28)

We start by showing equation (27) for the case m= n+1,
i.e., the first customer values the no-purchase option the
least.

Let j be such that b�j� = 1. We use equation (13), to
write that

�xj
2 −y

j
2�� ��x�1�

1 −Q1�
+− �y

�1�
1 −Q1�

+� (29)

� ��x�1�
1 −y

�1�
1 ��� (30)

where we have used that for any two vectors z�w ∈�,

�z+−w+�� �z−w�� (31)
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We use induction to show that if b�j�= k, then

�xj
2 −y

j
2�� �2k−1��x1 −y1�� (32)

From equation (29), the result holds for k = 1. We assume
that the result holds for r = 1� � � � � k− 1. We show that it
holds for r = k. We use equations (13) and (31). We have
that

�xj
2 −y

j
2� = ���x�k�

1 +· · ·+x
�1�
1 −Q1�

+

−�x
�k−1�
1 +· · ·+x

�1�
1 −Q1�

+�

− ��y
�k�
1 +· · ·+y

�1�
1 −Q1�

+

− �y
�k−1�
1 +· · ·+y

�1�
1 −Q1�

+��
� ��x�k�

1 +· · ·+x
�1�
1 −Q1�

+

− �y
�k�
1 +· · ·+y

�1�
1 −Q1�

+�
+���x�k−1�

1 +· · ·+x
�1�
1 −Q1�

+

− �y
�k−1�
1 +· · ·+y

�1�
1 −Q1�

+��
� �x�k�

1 −y
�k�
1 �+2�2k−1 −1��x1 −y1�

� �2k−1��x1 −y1��
where the last inequality follows by the induction hypoth-
esis and equation (31). Using equations (28) and (32), we
have that

�x2 −y2�� �2n+1 −n−2��x1 −y1�� 2n+1�x1 −y1��
If m<n+1, then for all �j  b�j��m�, equation (32) holds
as before. For �j  b�j� > m�, we have that

�xj
2 −y

j
2� = �xj

1 −y
j
1�� �x1 −y1�� (33)

In particular equation (32) is satisfied. So equation (27)
holds.

Using equation (27), we have that

�x3 −y3�� 2n+1�x2 −y2�� 22�n+1��x1 −y1��
Therefore,

�xt −yt�� 2C�n+1��x1 −y1��
for all t = 1� � � � � T +1. �

Lemma 5. If h1 and h2 are Lipschitz with modulus Kh1 and
Kh2 and a and b are scalars, then ah1 + bh2 is Lipschitz
with modulus aKh1 +bKh2.

Proof. We use Lipschitz condition and the triangle
inequality. �

Proof of Lemma 3. We use the following terminology
from Glasserman (1994). Let � denote the set of all map-
pings from �×�n to �n. For Y ∈�, Y �x� is its value at
x and the argument � is omitted. Let

�= �Y ∈�  Y is differentiable at x a.s. ∀x ∈�n��

and Lip1 be defined as the set

Lip1 = �Y ∈�  Y is a.s. Lipschitz, E�KY � <���

Then the following result is as stated in Glasserman (1994).
If Y ∈ Lip1 ⋂�, and each Y �x� is integrable then the

derivatives �:E�Y �x��� x ∈�n� exist and

E�:Y �x��= :E�Y �x��

for all x ∈�n.
We have that P�-�x����BC�= 1 where B was defined

to be such that Ft�B� = 1 for all t and P�T � C� = 1.
Therefore -�x��� is integrable for all x. Also, since Qt

has a continuous distribution, we have from equation (13)
that f j�xt�Ut�Qt� is a.s. differentiable for each j ∈ N and
each t = 1� � � � � T . So from equation (14) we have that
-
j
t �xt�Ut�Qt� is a.s. differentiable for each j ∈ N and each

t = 1� � � � � T . To use the result, we need to show that
-�x��� is Lipschitz almost everywhere on �′, i.e., there
exists K- such that,

�-�x���−-�y����� K-�x−y��
By definition, -�x���= x−xT+1, so

�-�x���−-�y���� = ��x−y�− �xT+1 −yT+1��
� �x−y�+�xT+1 −yT+1�
� �C1 +1��x−y�� �

Definition of :f . To derive :f�xt�Ut�Qt�, we use
equation (13). We see that :f�xt�Ut�Qt� is an n×n matrix
given as

:f�xt�Ut�Qt�= �:f 1�xt�Ut�Qt��:f
2�xt�Ut�Qt�� � � � �

:f n�xt�Ut�Qt���

where

:f j�xt�Ut�Qt�=



E

Exlt
f j�xt�Ut�Qt�

���
E

Exnt
f j�xt�Ut�Qt�


 � (34)

and if b�j��m, then

E

Exl
t

f j�xt�Ut�Qt�=




1
�x

�b�j�−1�
t +···+x

�1�
t <Qt�

if b�j�>b�l��

×1
�x

�b�j��
t +···+x

�1�
t >Qt�

1
�x

�b�j��
t +···+x

�1�
t >Qt�

if b�j�=b�l��

0 if b�j�<b�l��

(35)

while if b�j� > m, then

:f j�xt�Ut�Qt�= ej�

We next prove a lemma, which shows that the derivative
of the sample path sales function for the continuous prob-
lem can only take one of three values 0�1 or −1.
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Lemma 6. The partial derivatives for the sample path sales
functions for the continuous problem satisfy

E

Ex
j
t

-j
t �xt��� ∈ �0�1��

and

E

Exi
t

-j
t �xt��� ∈ �−1�0�� i �= j�

for all t = 1� � � � � T .

Proof. We start with :-
j
T �xT ���. Using equation (17), we

see that

:-
j
T �xT ���= ej −:f j�xT ��T ��

Using equations (34) and (35) we see that the result
holds for :-j

T �xT ���. We assume that the result holds for
k = t+ 1� � � � � T and show that it holds for k = t. Using
equation (18), we have that

:-j
t �xt���= ej −:f j�xt�Ut�Qt�

+:f�xt�Ut�Qt��:-
j
t+1�f �xt�Ut�Qt�����

= ej +:f�xt�Ut�Qt�

× �:-
j
t+1�f �xt�Ut�Qt����− ej�� (36)

Let �E/Exi�f j�xt�Ut�Qt� denote the ith partial derivative
of f j�·�. Then we show the following:

n∑
j=1

E

Exi
f j�xt�Ut�Qt�= 1� (37)

for all i= 1� � � � � n. We fix i. Let S = �r ∈N  b�i� < b�r��
m�. If b�i� > m, then

E

Exi
f j�xt�Ut�Qt�=

{
0 j �= i�

1 j = 1�

So equation (37) holds in this case. If b�i��m, then

n∑
j=1

E

Exi
f j�xt�Ut�Qt�

= ∑
r∈S

�1
�x

�b�r�−1�
t +···+x

�1�
t <Qt�

1
�x

�b�r��
t +···+x

�1�
t >Qt�

�

+1
�x

�b�i��
t +···+x

�1�
t >Qt�

�

which equals 1. So equation (37) holds.
Using the induction assumption on -

j
t+1�xt+1���

we note that the jth element of the column vector
:-

j
t+1�f �xt�Ut�Qt����− ej can only equal −1 or 0. Also

all remaining elements of the column vector other than the
jth element can equal either 0 or 1.

From the above observation, and equations (37) and (36)
we see that the result holds. �

Proof of Theorem 4. We use a convergence theorem
from Bertsekas and Tsitsiklis (1996), Chapter 4.

Theorem 5 (Bertsekas and Tsitsiklis 1996).
Consider the algorithm

yk+1 = yk+ak:'�yk��k��

where the step sizes ak are nonnegative and satisfy

�∑
k=0

ak =� and
�∑
k=0

a2
k <��

and :'�yk��k� is a random term. Let �k denote the his-
tory of the algorithm until iteration k. Then

�k = �y0� � � � � yk�:'�y0��0�� � � � � :'�yk��k��a0� � � � � ak��

Suppose there exists a function h  �n → � with the fol-
lowing properties:

a. h�x� > 0 for all x ∈�n.
b. The function h is continuously differentiable and there

exists some constant L such that

�:h�x�−:h�y��� L�x−y��
for all x� y ∈�n.

c. There exists a positive constant m such that

m�:h�yk��2
� �:h�yk��

TE�:'�yk��k��� k��

for all k = 0�1�2� � � � .
d. There exist positive constants K1 and K2 such that

E��:'�yk��k��2��k�� K1 +K2�:h�yk��2�

Then the following holds with probability 1,

i. The sequence h�yk� converges.
ii. limk→� :h�yk�= 0.
iii. Every limit point of yk is a stationary point of h.

By using h�x� = E�'�x����, we apply this theorem
result to prove Theorem 4. Condition a can be satisfied by
adding a sufficiently large constant to the profit function.

We next verify condition b From equation (16) and
Lemma 5 we see that it is sufficient to show that there
exists some constant L′ such that

�:-j�x���−:-j�y����� L′�x−y�� (38)

From Lemma 6, we have that

�:-j�x���−:-j�y����� 2
√
n

×P�:-j�x��� �= :-j�y����� (39)

Using equations (18) we have that

P�:-j�x��� �= :-j�y�����
T∑
t=1

�p�:f �xt�Ut�Qt�
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�= :f�yt�Ut�Qt��� (40)

and

P�:f�xt�Ut�Qt� �= :f�yt�Ut�Qt��

�

n∑
j=1

n∑
i=1

P

(
E

Exi
f j�xt�Ut�Qt� �=

E

Exi
f j�yt�Ut�Qt�

)
(41)

To illustrate the computation involved in the RHS of
equation (41), we take a particular case when the choice
made by customer t is such that b�j� < b�i�. Then from
equation (35), we have that

P

(
E

Exi
f j�xt�Ut�Qt� �=

E

Exi
f j�yt�Ut�Qt�

)

� P�x
�b�j�−1�
t +· · ·+x

�1�
t < Qt�

×P�y
�b�j�−1�
t +· · ·+y

�1�
t > Qt�

+P�x
�b�j��
t +· · ·+x

�1�
t > Qt�

×P�y
�b�j��
t +· · ·+y

�1�
t < Qt�� (42)

From Lemma 4, we have that

�xi
t −yit�� �xt −yt�� C1�x−y��

for all i = 1� � � � � n. Therefore,

∥∥∥∥
b�j�∑
i=1

�x
�i�
t −y

�i�
t �

∥∥∥∥�

b�j�∑
i=1

∥∥x�i�
t −y

�i�
t

∥∥� C1b�j��x−y�� (43)

Using equations (42) and (43), and the Lipschitz property
of the c.d.f. F�·� of Qt , we see that

P

(
E

Exi
f j�xt�Ut�Qt� �=

E

Exi
f j�yt�Ut�Qt�

)

� KC1�b�j�+b�j−1���x−y�� (44)

Carrying out a similar analysis for other components of the
:f�xt�Ut�Qt� matrix and using equations (40), (41) and
(44), we have that

P
(
:-j�x��� �= :-j�y���

)
� KC1

[
nC�2n2 +1�

3
+ �n−1�2 +n2

]
�x−y�� (45)

From equations (45) and (39) it follows that the constant
L′ in equation (38) is

L′ = 2
√
nKC1

[
nC�2n2 +1�

3
+ �n−1�2 +n2

]
�

We have now shown the Lipschitz property of the derivative
of h�x�= E�'�x����.

For the proof of part c, we note that

E
[
:'�yk��k���k

]= E
[
:'�yk��k�

]
� (46)

since the gradient of the sample path sales function for
an inventory level yk and sample path �k is not affected
by how the inventory level vector yk, is reached from the
inventory level y0.

Using Lemma 3 and fixing the value of m = 1, it fol-
lows that condition c is satisfied at equality for all k =
0�1�2� � � � .

To prove condition d, we use Lemma 6. We see that

�:'�yk��k�� = �pT:-T �yk��k�− c�

<

∥∥∥∥−
( n∑

i=1

pi

)
1− c

∥∥∥∥� (47)

for all k = 0�1�2� � � � . This is possible since the par-
tial derivative �E/Eyik�-

j�yk��k� cannot be lower than −1,
while the partial derivative �E/Eyik�-

j�yk��k� cannot be
lower than 0, but even that has been chosen to be −1. Then
with

K1 =
(∥∥∥−( n∑

i=1

pi

)
1− c

∥∥∥)2

(48)

and K2 arbitrarily small and positive, we see that condition
d holds. �

REFERENCES

Agrawal, N, S. A. Smith. 1996. Estimating negative binomial
demand for retail inventory management with unobservable
lost sales. Naval Res. Logist. 43 839–861.

Anderson, S. P., A. de Palma, J. F. Thisse. 1992. Discrete
Choice Theory of Product Differentiation. The MIT Press,
Cambridge, MA.

Anupindi, R., M. Dada, S. Gupta. 1997. A Dynamic model of
consumer demand with stock-out based substitution. Work-
ing Paper, Kellogg School of Management, Northwestern
University.

Banks, J., J. S. Carson, B. L. Nelson. 1996. Discrete Event System
Simulation, Prentice Hall, NJ.

Bassok, Y., R. Anupindi, R. Akella. 1997. Single period multi-
product inventory models with substitution. Oper. Res.
Forthcoming.

Bertsekas, D. P., J. N. Tsitsiklis. 1996. Neuro-Dynamic Program-
ming, Athena Scientific, Belmont, MA.

Bitran, G., S. Dasu. 1992. Ordering policies in an environment
of stochastic yields and substitutable demands. Oper. Res.
40(5), 177–185.

Garcia, C. B., W. I. Zangwill. 1981. Pathways to Solutions, Fixed
Points and Equilibria, Prentice-Hall, NJ.

Glasserman, P. 1994. Perturbation analysis of production net-
works. D. Yao, ed. Stochastic Modeling and Analysis of Man-
ufacturing Systems. Springer-Verlag, New York.

Gumbel, E. J. 1958. Statistics of Extremes. Columbia University
Press, New York.



Mahajan and van Ryzin / 351

Hanson, W., Kipp Martin. 1996. Optimizing multinomial logit
profit functions. Management Sci. 42 992–1003.

Lancaster, K. 1990. The economics of product variety: A survey.
Marketing Sci. 9 189–210.

Mahajan, S., G. J. van Ryzin. 1999. A multi-firm stocking
game under dynamic consumer substitution. Oper. Res.
Forthcoming.

Noonan, P. S. 1995. When consumers choose: A multi-product,
multi-location newsboy model with substitution. Working
Paper, Goizueta Business School Emory University, Atlanta,
Georgia.

Pasternack, B., Z. Drezner. 1991. Optimal inventory policies
for substitutible commodities with stochastic demand. Naval
Res. Logist. 38 221–240.

Smith, S. A., N. Agrawal. 2000. Management of multi-item retail
inventory systems with demand substitution. Oper. Res. 48
50–64.

Sundaram, R. K. 1996. A First Course in Optimization Theory.
Cambridge University Press, Cambridge.

Topkis, D. M. 1978. Minimizing a submodular function on a lat-
tice. Oper. Res. 26 305–321.

van Ryzin, G., S. Mahajan. 1999. On the relationship between
inventory costs and variety benefits in retail assortments.
Management Sci. 45 1496–1509.

Veinott Jr., A. 1965. Optimal policy for a multi-product, dynamic,
nonstationary inventory problem. Management Sci. 12(3)
206–222.


