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We investigate a simple adaptive approach to optimizing seat protection levels in airline
revenue management systems. The approach uses only historical observations of the
relative frequencies of certain seat-filling events to guide direct adjustments of the seat
protection levels in accordance with the optimality conditions of Brumelle and McGill (1993).
Stochastic approximation theory is used to prove the convergence of this adaptive algorithm
to the optimal protection levels. In a simulation study, we compare the revenue performance
of this adaptive approach to a more traditional method that combines a censored forecasting
method with a common seat allocation heuristic (EMSR-b).

(Yield Management; Revenue Management; Airlines; Forecasting; Optimization; Fare Class Alloca-
tion; Distribution Free; Adaptive Algorithms; Stochastic Approximation)

Introduction

Modern airlines must decide thousands of times per
day whether or not to accept discount seat booking
requests or refuse them in the hope of later, higher-
fare bookings. Their objective is to manage the open-
ing and closing of discount fare classes in such a way
that overall expected revenues are maximized. This
revenue management (also yield management) problem is
greatly complicated by such factors as volatile, sto-
chastic demand for air travel, fluctuations in fare
prices, multiple-leg passenger itineraries, and diver-
sion of passengers to other fare classes or flights.
While no operations research model has succeeded in
dealing with all of these complexities, simplified mod-
els and heuristics have been applied with remarkable
success at many airlines. (See, for example, Smith et al.
1992). See Etschmaier and Rothstein (1974), Belobaba
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(1987b), Weatherford and Bodily (1992), and McGill
and van Ryzin (1999) for overviews and surveys.

One fundamental yield management model consid-
ers a single flight leg with booking requests arriving in
order of booking class. This single-leg model can be
analyzed to determine the structure of optimal book-
ing policies and the optimal policy parameters. Be-
lobaba (1987a, b, 1989), Brumelle and McGill (1993),
Curry (1989), and Wollmer (1992) provide analyses of
the single-leg model in which the booking fares in-
crease monotonically from low to high as the time of
flight departure approaches, and Robinson (1991) gen-
eralizes Brumelle and McGill’s optimality conditions
to the case that fares are nonmonotonic. Many yield
management systems (called leg-based) use solutions
from this elementary model to guide heuristic solu-
tions for more realistic situations.
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To illustrate, consider the simplest version of the
single-leg model in which there are only two fare
classes, demand in the discount fare class arrives
before high-fare demand, and the high-fare demand is
statistically independent of the discount demand. It is
known that an optimal nonanticipating policy has the
following structure: Set a fixed protection level 0 for the
high-fare seats. Seats can then be sold to the discount
class as long as there are more than 6 seats remaining.
If high-fare demand, X, is modeled as a continuous
random variable, the optimal protection level 6* can
be determined from the “newsvendor” type optimal-
ity condition first proposed (in discrete form) in Little-
wood (1972):

P(X> 6% =7, 1)

where 7 is the ratio of the discount to the high fare.

Condition (1) stipulates that if the discount fare is,
for example, 60% of the full fare, then the optimal
protection level will be such that full-fare demand
exceeds its protection level on 60% of all flights over
the long run. Note that the frequency of such fill events
does not correspond to the rate of lost full-fare book-
ings since some overflow demand can be accommo-
dated when discount seats remain unbooked. The
conditions for more than two fare classes are more
complex than this but are conceptually similar.

Typically, application of conditions like (1) requires
three steps. First, historical demand data are studied
to determine suitable models for the demand distri-
butions. Second, forecasting techniques are applied to
estimate the parameters of these distributions. Be-
cause the booking limits themselves—or aircraft ca-
pacity constraints—cause censoring of the demand
data, special techniques must be employed to “uncen-
sor” the demand data. Third, the demand statistics
from the forecast are passed to an optimization rou-
tine that solves for protection levels like 6*. The
resulting protection levels are then used to make
individual accept-deny decisions as reservations come
in. In practice, bookings from similar flights are fed
back into the forecasting system, and the process is
repeated cyclically over time.

Note that in each of these cycles, bookings data from
the current departure are being converted—via the
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forecasting and optimization procedures—into up-
dated policy parameters for the next departure. This
raises an interesting question: Is it possible to directly
update booking policy parameters for the next depar-
ture based on simple observation of the performance
of the parameters in previous departures, without
recourse to the complex cycles of forecasting and
optimization? Such ad hoc adjustment of protection
levels was commonly used in the early days of yield
management (and still is today in some airlines).
However, most human analysts find it difficult to
guess at revenue-maximizing protection levels.

In this paper, we show how to construct a simple
and effective adjustment scheme by using properties
of the optimal policy. Moreover, we show that under
stationary demand conditions, the repeated applica-
tion of our updating scheme eventually produces
optimal booking policy parameters.

In §1 we propose a simple adaptive updating
scheme that relies on observations of certain fill events,
which correspond to subsets of fare classes reaching
their respective protection levels. These fill events are
easily determined from booking records data. Protec-
tion levels are updated based on a multivariate ver-
sion of the stochastic approximation method of Rob-
bins and Monro (1951), applied to the single-leg
optimality conditions of Brumelle and McGill (1993).
We prove in §3 that our proposed algorithm con-
verges (almost surely) to an optimal set of protection
levels, and we obtain bounds on the rate of conver-
gence. Some modifications of the algorithm to handle
practical issues like nonstationarity, integrality, and
booking lead times are discussed in §4. In §5, we
report results of a numerical comparison of our adap-
tive algorithm against a traditional procedure that
combines censored forecasting and expected marginal
seat revenue (EMSR) protection levels. (See Belobaba
(1989)). Conclusions are provided in §6.

1. Notation, Model Assumptions,
and Optimality Conditions

We let 1(E) denote the indicator function of the event
E; that is, 1(E) = 1 if event E occurs and 1(E) = 0
otherwise. The expression X,_, x, is abbreviated as
2, x,, and (a.s.) is short for almost surely. Superscripts
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on vectors or on elements of vectors index the mem-
bers of a sequence of vectors; for example, {X',
X?, -+ +} is a sequence of demand vectors; while X! is
the demand for fare class i in the n-th demand vector.
Subscripts will index sequences of scalar quantities;
for example, {y,, v, - -} is a sequence of scalar step
sizes. Superscripts on such scalar quantities will have
the usual interpretation as exponentiation.

Much of our analysis establishes upper bounds
involving “sufficiently large” arbitrary constants on
the right-hand sides of inequalities. To avoid a prolif-
eration of such constants, we let C denote a generic,
sufficiently large constant. The value of C changes
throughout the paper depending on context. For ex-
ample, a statement of the form D = CE + C’F can be
replaced with D = C(E + F), where C <— max{C, C?}.

We consider a model in which k + 1 fare classes
book on a single-leg, fare-class allocation is nested
(described below), low-fare classes book strictly before
higher fare classes, fare-class demands are mutually
independent, and there are no cancellations or no-
shows. Let f, denote the fare (or expected contribution)
from fare class i, where we assume f; > f, > -+ >
fis1- The demand for fare class i is denoted X;. We
assume {X, ..., X,,,} are mutually independent, the
probability distributions of demand are continuous,
and that seat capacity is a continuous quantity. (See
§4.2 for a discussion of integral demand and capacity.)

The stochastic process {X', X?, --:} of demand
vectors from successive flights is assumed to be sta-
tionary in the sense that the joint probability distribu-
tions of demand remain constant over time. This
implies that the same protection levels are optimal for
all flights in the sequence and that successive flights
are comparable; for example, midweek morning com-
muter flights between two specific centers in “high
season.” Extensions to nonstationary demand pro-
cesses are discussed in §4.3.

A fixed protection level policy for fare classes 1
through k is defined by a static set of protection levels
given by the vector 6 = (6, ..., 0,), where 6, = 0,
= --+0,. (There is no protection level for the lowest
fare class, k + 1.) Protection levels are nested in the
sense that 6, represents the number of seats to reserve
(protect) for all of fare classes 1, 2, . . ., i. Reservations
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for fare class i + 1 are accepted if and only if the
number of seats remaining is strictly greater than the
protection limit 6,. For the single-leg problem under
the assumptions stated above, it is shown in Brumelle
and McGill (1993) that such fixed protection level
policies are optimal among all nonanticipating poli-
cies.
Define the nested sequence of fill events:

Al(O/X) = {Xl > 61};
Ay0, X) ={X;> 0y, X1+ X;> 0,}; - - -
Ai(e/ X) = {Xl >0, X3+ X,

>0, ..., X+ -+ X; >0} (2

We refer to these events as fill events because, when
the current inventory of unbooked seats is 6, all
remaining seats are sold if and only if the event
A.(0, X) occurs.

Let the vector 6* = (05, 05, ..., 6}) denote an
optimal set of protection levels. Brumelle and McGill
(1993) show that, when all passenger demand distri-
butions are continuous, an optimal 6* satisfies

Tit1 = P(A,'(O*, X))/ for i= 1/ LRI k/ (3)

where 7., = f.,,/f, is the discount ratio of fare i + 1
relative to the full fare. The parallel with Littlewood’s
Rule (1) is clear: For example, if discount fare i is 60%
of the full fare, optimal protection levels will be such
that event A,(6, X) occurs on 60% of future flights in
the long run.

The conditions in (3) are independent of aircraft
capacity and assume continuity of demand. In prac-
tice, protection levels that exceed aircraft capacity can
be simply truncated to the capacity without loss of
optimality. This will be discussed further below. Also,
the continuous protection levels obtained by (3) are
generally good approximations for the true optimal
protection levels for integer-valued demand. Indeed,
Brumelle and McGill (1993) show that there will be at
least one set of fixed, integer-valued, optimal protec-
tion levels when demand is integer-valued. Moreover,
the revenue management problem is known to be
robust to small departures from the optimal protection
levels. (See Brumelle and McGill (1993) and Robinson
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(1991).) Wollmer (1992) analyzes integer-optimal pro-
tection levels when demand forecasts are available as
discrete probability distributions. (See §4.2 for further
discussion of integrality.)

In principle, it is easy to determine the frequency of
the events A,(6, X) from a record of past flights. No
uncensoring of the demand is required—it is only
necessary to observe if demand reached the protection
levels, not the degree to which it exceeded them. There
are two important exceptions to this. First, if 6, hap-
pens to exceed the maximum number of seats avail-
able for sale (usually the physical capacity plus an
overbooking “pad”), then the event X, + --- + X,
> 0, is not observable.' Second, if protection levels are
revised during the lead time prior to flight departure
it can easily happen that a new protection level
exceeds the remaining capacity on the aircraft (a prob-
lem similar to the first one), or that earlier, high
protection levels constrained demand during part of
the booking period in one or more discount fare
classes. In this case, total demand is not observed
relative to 6, (a variant of censorship of the demand
data).

Initially, we will make the simplifying assumption
that A;(0, X) is always observable. We show in §4 how
the algorithm and results can be modified to allow for
the physical capacity constraint and booking lead
times in practical implementations.

The conditions in (3) are appealing on practical
grounds because one can check the optimality of
protection levels in a series of departed flights retroac-
tively by simply comparing the fraction of flights on
which A,(6, X) occurred to the discount ratio r,.,. This
approach has the distinct advantage that it requires no
assumptions on the specific nature of the probability
distributions of the demands. Observing fill event
frequencies therefore provides a distribution-free test
of the optimality of protection levels.

However, what happens if the observed frequencies
do not equal the discount ratio? Next, we show that
these same fill event conditions can be used to adap-

! One could still observe this event if rejected sales were recorded,
but this information is not available to most airlines. Rejections
occur at the point of sale (e.g., the travel agent) and are not recorded
in the reservation system.
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tively adjust protection levels using an extension of
the classical stochastic approximation algorithm of
Robbins and Monro (1951).

2. An Adaptive Algorithm
Fori=1,...,kdefine H(0, X) = r,., — 1(A,(0, X)).
The quantity H,(6, X) will be negative if the event A,
occurs, and positive otherwise. If protection levels are
being adjusted, occurrence of the event A; (all of
classes 1 through i reached their protection levels)
suggests that the protection level 0, should be adjusted
upwards. Thus —H (6, X) can be viewed as an adjust-
ment direction for protection level 0,. The correspond-
ing adjustment vector is H(0, X) = (H,(0, X), ...,
H,(8, X)).

Now define h,(0) = r,.,, — P(A,(0, X)), i=1,...,
k; and let h(6) = (h,(0), ..., h(0)). Note that h(0)
= EH(6, X). Thus, —h(0) can be properly viewed as
the expected adjustment vector for protection levels
given current levels 6. The optimality Condition (3)
stipulates that we should seek a 6* such that the
expected adjustment for all protection levels is zero;
or, h(6*) = 0.

The Robbins-Monro procedure (generalized here for
vector quantities) constructs a sequence of parameter
estimates, {0', 0°,..., 0", --+}, from a sequence of
independent trials, {X', X?, ..., X", - -}, using

6" = 6" — ’YnH(Gnr Xn)/ (4)

where vy, is a sequence of nonnegative step sizes
satisfying

E Y, = +% and 2 2 < oo, (5)

n n

(The simplest example of a suitable step-size sequence
is defined by vy, = 1/n, however, this simple averag-
ing sequence takes small steps early in the procedure,
which can delay convergence. In the development to
follow, we use a sequence of the form A/(n + B),
where A and B are constants chosen to effect larger
early steps.)

The directions H(0", X") can be determined after
the departure of each flight. If the fill event A, occurs,
H! = r,,; — 1 < 0 and the protection level 6} is
increased by v,(1 — r,,,); if not, then H = r,,; > 0,

763



VAN RYZIN AND MCGILL
An Adaptive Algorithm for Determining Airline Seat Protection Levels

and 0/ is reduced by v,r,,;. Thus protection levels are
stepped up when high demand is observed and
stepped down when low demand is observed, with
the step size becoming smaller as the algorithm
progresses.

A key theoretical and practical problem is determin-
ing conditions under which such an adaptive algo-
rithm will converge to optimal protection levels. It is
known that almost sure convergence to a point 6*
satisfying h(6*) = 0 is guaranteed if h(6) is the
gradient of a concave function with a unique maxi-
mum at ¢* or, more generally, if

inf  {(6—60%)Th(0)} >0 foralle>0. (6)
e<[6—0%<(1/¢€)
(See Benveniste et al. (1990) and Blum (1954). Loosely
speaking, this condition stipulates that the expected
adjustment vector —h(6) always points into the half-
space containing 6*.)

However, with a nested allocation policy, the ex-
pected revenue is not jointly concave in the protection
levels. More to the point, the function /() is not even
the gradient of the expected revenue function; rather,
it is a collection of gradients from a sequence of scalar
subproblems, one for each stage in the booking pro-
cess during which reservations for a particular fare
class arrive. (See Brumelle and McGill (1993).) There-
fore, we cannot assume that the iterates satisfy a joint
stability condition like (6).

A second difficulty is that the Algorithm (4) can
produce vectors 6 that violate the monotonicity con-
dition 6, = 0,, ..., = 0, required for the events A, to
be appropriately nested. To address this problem, we
define interim protection levels p;, where

pi6) = max{6,: 1= =il, @)

and let p(0) = (p.(0), ..., p,(0)). (Note that if 0,
=0, ..., = 0, then p(6) = 6.) The algorithm uses
the protection levels p,(6) to control the availability of
seats, but monitors the events A,;(6, X) to update the
parameters 6. Because 6, = p,(0), this modification
preserves our ability to observe the event A,(6, X)
when the components of 6 are not monotonically
increasing, and allows us to treat 6 as unconstrained.

We will show in the next section that, in spite of
these difficulties, reasonable regularity conditions en-
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sure that the Procedure (4) does converge (a.s.) to a
value 6 satisfying h(6*) = 0, and that p(6*) = 0*
(a.s.).

3. Convergence Proof

To prove the convergence of the Iteration (4) we need
several preliminary lemmas. The first provides a suf-
ficient condition for the almost sure convergence of a
series of random variables:

LemMa 1. (Lukacs (1975), Theorem 4.2.1) Let {Y,} be
a sequence of random variables with EY, < + for all n
and 2, E|Y,| < 4. Then 2, |Y,| < + (a.s.).

The following supermartingale lemma is essential to
many convergence proofs in stochastic approxima-
tion. It is due originally to Robbins and Siegmund
(1971) (see also Benveniste et al. (1990), p. 344):

LEmMA 2. Let {Q, F, F,, P} be a probability space with
an increasing family of o-fields F,. Suppose Z,, B,, C,,
and D, are finite, nonnegative random variables, adapted to
the o-field F,, which satisfy E(Z,,,|F,) = (1 + B,)Z,
+ C, — D,. Then on the set {Z, B, < ©, 2, C, < =},
2, D, <w(as),and Z, > Z < » (as.).

We shall require that 6 remain bounded (a.s.). The
following lemma follows easily from (4) and the fact
that the step sizes vy, are nonnegative and decreasing:

LemMA 3. If demand X" has bounded support for n
=1,2,---(ie,X'=C(as)fori=1,2,---), then |0"|
is bounded (a.s.).

Finally, we will need the following lemma, which is

adapted from Benveniste et al. (1990 Lemma 23, p.
245):

LEmMA 4. Let y, = A/(n + B), where A and B are
constants such that A > 0 and B = 0, and let u, = \vy?”,
where X and B are nonnegative. Let 8 > 0 and C > 0 be
arbitrary constants. Then there exists a B > 0, A < +,
and a n, such that the inequality

Uy = (1 - 287;1)”71 + C'YE+1
is satisfied for all n > n,.

PrOOF. By substituting u, = Ay! in the above
inequality and rearranging, we obtain
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Myl —yH) = (C—280)yE .

Now, if y, = A/(n + B), then by taking a Taylor
series expansion, we find that

vE. =P — BAP(n + B) BV 4+ O(n F*?),

Substituting this expression into the first term on the
left-hand side above and simplifying we obtain

C
B—0n>? = A(ZS - X)‘
Because 6 > 0, we can choose A sufficiently large
and B > 0 sufficiently small so that B < A(28
— (C/X). The existence of a n, satisfying the con-
ditions of the lemma then follows. O
We are now ready to prove our main convergence
result:

THEOREM 1. Let 0" be defined as in (4), and let vy, be
defined as in Lemma 4. Suppose the following assumptions
hold:

Al) Each X, has bounded support (i.e., P(X; < C) =1
for some constant C).

A2) There exists a 8 > 0 such that, for all 0, (6
— 0Hh (6, 67, ..., 00 = 38lo, — 6%

A3) The distributions of the partial sums, X,
+ .-+ + X, are Lipschitz continuous. That is, for all i
=1,...,klP(X,+ - -+ X,<x) - P(X, + -+ X,
<yl =clk -yl

Then, fori =1, ..., k,

0! — 67 (a.s.) (8)

i

and p,(6*) = 0}, )

Furthermore, there exists a 3 > 0 such that for i = 1,
2,...,k,

Elo7 — 67> = Cyl/? (10)

Proor. The proof is by induction on the fare
classes.

First, consider Fare Class 1 and note that the event
A,(6, X) is not a function of 6,, i > 1. It is easy to see
that the sequence {67} is a classical (scalar) Robbins—
Monro process and hence converges (a.s.). Indeed,
from A2 we have that for all e > 0,

inf {(6; — 61)h(6,)} >0,

e<[|o1—a*[<(1/e)
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and H() is uniformly bounded, so E|H,(0, X)|* = C
for all 6. These conditions together with the fact that
the gain sequence {v,} satisfies (5) guarantee that 6
— 07 (a.s.). (See Benveniste et al. 1990 and Robbins
and Segmund (1971) for proofs.) The fact that p,(6%)
= 07 follows trivially from (7). Finally, from Ben-
veniste et al. (Theorem 22, p. 244) we have that with
A2 and the gain sequence {v,} there exists a constant
X such that for all 0 < B < 1, we have E|0] — 6%]*
= CAvy”. Thus for i = 1, (8)—(10) are all satisfied.
Now, suppose (8)-(10) hold for fare class i and
consider fare class i + 1. Define T, = 6},, — 67, and
Z, = |T,|*. Then by (4)
Zn+1 = Zn - zynTnHi+1(0nl X?+1/ X:l/ s ey Xill
+ 7%|Hi+1(0nl X;’+1! X?r R X¥)|2
Taking expectations conditioned on F, yields
E(Zn+1|Fn) = Zn - Z‘YnTnhiJrl(e?Jrl/ Ozn/ sy 6;11
+ VI H (0%, Xl X2, o, XD,

Since H(:) is uniformly bounded, we have that
E[|H,. (6, X!, X!, ..., X!)|*] = C for all 6, hence

E(ZylF)) = Z, — 29, Tohin (074, 07, ..., 07
+ Cyh=2Z, = 2v,Tuhia (6], 65 . ..
+ 2, Tlhi1 (0711, 605, ..., 67)

— hia(0%, 07, ..., D). (11)

We next bound the last term in (11). From the
definition of h,(-), we have

|h,-+1(0?+1, 0F ..., 070 — h, (07,07, ...
< E|H, (0., 07, ..., 0%
— Hia(0%, 65 ..., 67
= E[J1(X] + -+ X} > 00|
[1(A(67) — 1(A(6%))]]
= E[1(A(6") — 1(A,(6%))]
= P(1(AL(6")) # 1(A,(6%))).

, 09 + Cy;

, 00

Now define the events

E; = {min{6}, 0]} < X; + --- + X; = max{6}, 6]}},
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and observe that if 1(A,(0")) # 1(A.(6%)), then at
least one of the events E;, j = 1, ..., i must occur.
Combining this observation with A3, we obtain

P(1(A(0") # 1(A(6%)) = X, P(E))

j=1

=C X oy - 0.

j=1
Therefore, we have

|hi+1(0?+1r 6:(; ce ey 61&) - hi+1(6?+1/ 617‘1/ sy 0;')|

= CX |oy - 0.

j=1

Substituting this bound in (11) and using the fact that
by Al and Lemma 3, |T,| = C (a.s.) we obtain

E(Zn+1’Fn) = Zn - ZynT1'lhi+l(0?+1/ 0:(; ey GT)

+Cy2+C 2 ylor— 67l (12)

j=1

We next show that the last term above is finite (a.s.).
Indeed, we have by Al and Lemma 3 that E(y,|0] —
67) is bounded. Also, by the induction hypothesis, (10)
holds for i, and therefore

D E(ylor— o) = > v.JE(lo! — 6

=C Dy < 4o,

n

where the last inequality follows from the definition
of {,} and the fact that ¥, 1/n” converges for all p
> 1. Applying Lemma 1, we conclude that X, v, |6/
— 0% < 4= (a.s.). Since ¥, v’ is bounded, we can
apply A2 and Lemma 2 to (12) and conclude that
Z,—> 7 < +o (as.) and X, v, T, h, (0, 65, ...,
07) < += (a.s.).

We next show that Z = 0. Indeed, if Z > 0 then
Assumption A2 ensures that there exists an N such
that T h,.,(0],, 67, ..., 607) > 0 for all n > N. But this
in turn would imply 2, v,T,h,.,(0},,, 67, ..., 67) is
unbounded, which is a contradiction. Therefore, Z
= 0 and (8) is proven for i + 1.
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We next show (9) by contradiction. Indeed, if (9) is
not true, then since p,(6*)=07 by the induction hy-
pothesis, we must have 67,; < 67. This in turn implies
A,.(0%, X) = A,(6*, X), which violates (3) if f,,,
< fi;1- Thus, we must have p,,,(6*) = 67,,.

Finally, to show (10) holds for i + 1 we apply A2 to
(12), which yields

E(Zn+1|Pn) = (1 - 27718) Zn + C’Yﬁ

+C 2 vl 0] — 6.

j=1

Unconditioning and using the induction hypothesis
that (10) holds for i we obtain,
E(Z11+l) = (1 - 27118)E(Zn) + C’Y%

+C 2 v.E(10] = 67])

j=1

= (1 - 27118)E(Zn) + CVi

+C 2 v E(0] — 677

j=1
=(1-2v8)E(Z,) + Cy,"?.

Applying Lemma 4 to the above inequality, we
conclude that there exist constants A < +%, 8 > 0,
and n, < +% such that the sequence u, = Ay"*
satisfies

Uy = (1 - 2’)/”8)1/[,, + Cy};+ﬁ/2ir

for all n > n,. Taking A sufficiently large so that
EZ, = Ayf’* and applying induction on n we have
EZ, = Ay??*. Therefore (10) also holds for i + 1,
and the induction is complete. O

Some comments on Assumptions A2 and A3 are in
order. A2 requires that the distribution of demand not
be “too flat” in the neighborhood of ¢*. For example,
one can show that A2 is satisfied if the distributions
have a density that is bounded below by a strictly
positive constant in the neighborhood of 6*. Intu-
itively, A2 is needed because if the distribution is too
flat near 6%, the algorithm could “stall” before reaching
6*. The Lipschitz condition A3 is satisfied if the in-
dividual demand distributions are Lipschitz smooth. For
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example, A3 holds if the demand distributions have
uniformly bounded densities. Both A2 and A3 are not
overly restrictive.

Finally, note that (10) suggests that the convergence
rate decreases with i, the index of the fare class. That
is, lower fare classes have slower convergence than
higher fare classes. Our numerical results in §5 illus-
trate this behavior.

4. Practical Modifications to the
Basic Algorithm

In this section, we discuss four modifications to the
basic algorithm (4) that address problems mentioned
earlier.

4.1. Capacity Constraint

Let ¢ be the leg capacity or maximum number of
bookings allowed. The recursion (4) can then be mod-
ified to

6?+1 = min{c, (an - ’YnHi(en/ Xn))}/
i=1,...,k (13)

which corresponds to projecting 6""' onto the con-
straint set [0, c]". With this modification, it is not
difficult to show that the algorithm converges to a
point 6, where §, = min{6%, c}, i =1,..., n.

4.2. Integrality

In practice, passenger demand and seat allocations are
integral so adjustments of less than one seat are not
feasible. However, without fractional adjustments the
algorithm could become “stuck” at a nonoptimal
point. One solution to this dilemma is to randomize
the choice of protection levels.

For illustration, we only consider the case k = 1
(two fare classes). Let 6 be a continuous parameter and
let p be the actual protection level used. Let U be a
uniform [0, 1] random variable. Then at iteration n, we
use protection level p, where

Lol u=6-LeJ
P":{ o] u=>6-Lel - (14)

This corresponds to randomizing the selection of | 6]
and [ 8] based on the value of 6. We then redefine the
event A, at iteration n to be A,(0, X) = {X, > p,|.
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Under this scheme, 1,(0) is continuous and, provided
mild conditions on the discrete demand distribution
are met,” it satisfies the conditions of Theorem 1.
Note in this case that 8" converges to a 6* satisfying
P{X, > «* + {U > 6* — k*}} = r,, for some integer
k*, where k* satisfies P{X, > «*} = r, and P{X, > k*
+ 1} > r,. Therefore, «* is the optimal integer
protection level. The policy, however, randomizes
between a protection level «* and k* + 1, which results
in some deviation from optimality. Nevertheless, the
simplicity of this randomization scheme is attractive.

4.3. Booking Lead Times

Many airlines open bookings for flights 10 months or
more prior to flight departure. However, most book-
ing activity occurs over a shorter time span, typically
30 to 60 days before departure. It is this shorter,
effective booking lead time that is relevant to setting
seat protection levels. Standard airline practice is to fix
one set of protection levels at the beginning of the full
booking period and then delay further adjustments
until effective booking begins. Thereafter, reading of
booking levels and (possible) adjustment of protection
levels occurs with increasing frequency as departure
time approaches. A total of 15 readings and adjust-
ments across the full booking period is common in
practice. These multiple adjustments are designed to
accommodate the nonstationarity of demand and to
incorporate recent demand data into current booking
levels.

In this subsection we discuss modifications to the
basic adaptive scheme necessary to accommodate the
effective booking period. For purposes of this discus-
sion, consider a flight that departs every week and
that receives most bookings in the 10 weeks prior to
each departure.

A direct, but unsatisfactory, implementation of al-
gorithm (4) would involve dividing the flight se-
quence into 10 interleaved, independent sequences,
each of which is updated once every 10 weeks. In the
first of these sequences, fill events from the flight that
departs in Week 0 would be used to set protection
levels for the flight that will be departing in Week 10,

* Namely, that the probability mass function is bounded away from
zero in the neighborhood of the stationary point.
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and that departure will be used to set levels for the
Week 20 departure, and so on. The second through
tenth sequences develop in a similar way from the
Week 1 through 9 departures. This implementation is
unsatisfactory for at least two reasons: First, data (on
demand, which is assumed stationary) are not shared
across the separate flight sequences, and second, the
protection levels within each sequence are adjusted
very slowly over time (once every 10 weeks).

Fortunately, a simple modification of the adaptive
algorithm can be used to produce a single sequence of
protection levels that use information from all flights
and have the same convergence properties as those
determined by the original algorithm. To see this, let k
denote the number of time units (e.g., weeks) in the
effective booking lead time, and assume a new flight
departs every unit of time, where time units are
indexed by n as before. In this case, bookings for the
first flight begin (effectively) at n = 1, the first flight
departs at n = k, and the first complete observations
of fill events are not available until time k + 1. Flights
1,2, ..., k must use protection levels based on initial
guesses or information external to the algorithm. We
assume that the initial k protection levels are identical,
viz

pl=92=... = 9k (15)

Let X" be the demand for the flight, labelled n, that
begins booking at time n, and departs at time n + k.
Flight n uses protection levels " given by (15) for n
= k, and for n > k it uses

0" = 0" — y, H(X"¥, 0" (16)

This adjustment may seem strange—an adjustment
direction away from an old protection vector 6" * is
being applied to the current vector 0"—but, it turns
out that this is simply a delayed version of the original
recursion (4). Indeed, summing the or