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We investigate a simple adaptive approach to optimizing seat protection levels in airline
revenue management systems. The approach uses only historical observations of the

relative frequencies of certain seat-filling events to guide direct adjustments of the seat
protection levels in accordance with the optimality conditions of Brumelle and McGill (1993).
Stochastic approximation theory is used to prove the convergence of this adaptive algorithm
to the optimal protection levels. In a simulation study, we compare the revenue performance
of this adaptive approach to a more traditional method that combines a censored forecasting
method with a common seat allocation heuristic (EMSR-b).
(Yield Management; Revenue Management; Airlines; Forecasting; Optimization; Fare Class Alloca-
tion; Distribution Free; Adaptive Algorithms; Stochastic Approximation)

Introduction
Modern airlines must decide thousands of times per
day whether or not to accept discount seat booking
requests or refuse them in the hope of later, higher-
fare bookings. Their objective is to manage the open-
ing and closing of discount fare classes in such a way
that overall expected revenues are maximized. This
revenue management (also yield management) problem is
greatly complicated by such factors as volatile, sto-
chastic demand for air travel, fluctuations in fare
prices, multiple-leg passenger itineraries, and diver-
sion of passengers to other fare classes or flights.
While no operations research model has succeeded in
dealing with all of these complexities, simplified mod-
els and heuristics have been applied with remarkable
success at many airlines. (See, for example, Smith et al.
1992). See Etschmaier and Rothstein (1974), Belobaba

(1987b), Weatherford and Bodily (1992), and McGill
and van Ryzin (1999) for overviews and surveys.

One fundamental yield management model consid-
ers a single flight leg with booking requests arriving in
order of booking class. This single-leg model can be
analyzed to determine the structure of optimal book-
ing policies and the optimal policy parameters. Be-
lobaba (1987a, b, 1989), Brumelle and McGill (1993),
Curry (1989), and Wollmer (1992) provide analyses of
the single-leg model in which the booking fares in-
crease monotonically from low to high as the time of
flight departure approaches, and Robinson (1991) gen-
eralizes Brumelle and McGill’s optimality conditions
to the case that fares are nonmonotonic. Many yield
management systems (called leg-based) use solutions
from this elementary model to guide heuristic solu-
tions for more realistic situations.
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To illustrate, consider the simplest version of the
single-leg model in which there are only two fare
classes, demand in the discount fare class arrives
before high-fare demand, and the high-fare demand is
statistically independent of the discount demand. It is
known that an optimal nonanticipating policy has the
following structure: Set a fixed protection level � for the
high-fare seats. Seats can then be sold to the discount
class as long as there are more than � seats remaining.
If high-fare demand, X, is modeled as a continuous
random variable, the optimal protection level �* can
be determined from the “newsvendor” type optimal-
ity condition first proposed (in discrete form) in Little-
wood (1972):

P�X � �*� � r, (1)

where r is the ratio of the discount to the high fare.
Condition (1) stipulates that if the discount fare is,

for example, 60% of the full fare, then the optimal
protection level will be such that full-fare demand
exceeds its protection level on 60% of all flights over
the long run. Note that the frequency of such fill events
does not correspond to the rate of lost full-fare book-
ings since some overflow demand can be accommo-
dated when discount seats remain unbooked. The
conditions for more than two fare classes are more
complex than this but are conceptually similar.

Typically, application of conditions like (1) requires
three steps. First, historical demand data are studied
to determine suitable models for the demand distri-
butions. Second, forecasting techniques are applied to
estimate the parameters of these distributions. Be-
cause the booking limits themselves—or aircraft ca-
pacity constraints—cause censoring of the demand
data, special techniques must be employed to “uncen-
sor” the demand data. Third, the demand statistics
from the forecast are passed to an optimization rou-
tine that solves for protection levels like �*. The
resulting protection levels are then used to make
individual accept-deny decisions as reservations come
in. In practice, bookings from similar flights are fed
back into the forecasting system, and the process is
repeated cyclically over time.

Note that in each of these cycles, bookings data from
the current departure are being converted—via the

forecasting and optimization procedures—into up-
dated policy parameters for the next departure. This
raises an interesting question: Is it possible to directly
update booking policy parameters for the next depar-
ture based on simple observation of the performance
of the parameters in previous departures, without
recourse to the complex cycles of forecasting and
optimization? Such ad hoc adjustment of protection
levels was commonly used in the early days of yield
management (and still is today in some airlines).
However, most human analysts find it difficult to
guess at revenue-maximizing protection levels.

In this paper, we show how to construct a simple
and effective adjustment scheme by using properties
of the optimal policy. Moreover, we show that under
stationary demand conditions, the repeated applica-
tion of our updating scheme eventually produces
optimal booking policy parameters.

In §1 we propose a simple adaptive updating
scheme that relies on observations of certain fill events,
which correspond to subsets of fare classes reaching
their respective protection levels. These fill events are
easily determined from booking records data. Protec-
tion levels are updated based on a multivariate ver-
sion of the stochastic approximation method of Rob-
bins and Monro (1951), applied to the single-leg
optimality conditions of Brumelle and McGill (1993).
We prove in §3 that our proposed algorithm con-
verges (almost surely) to an optimal set of protection
levels, and we obtain bounds on the rate of conver-
gence. Some modifications of the algorithm to handle
practical issues like nonstationarity, integrality, and
booking lead times are discussed in §4. In §5, we
report results of a numerical comparison of our adap-
tive algorithm against a traditional procedure that
combines censored forecasting and expected marginal
seat revenue (EMSR) protection levels. (See Belobaba
(1989)). Conclusions are provided in §6.

1. Notation, Model Assumptions,
and Optimality Conditions

We let 1(E) denote the indicator function of the event
E; that is, 1(E) � 1 if event E occurs and 1(E) � 0
otherwise. The expression ¥ n�1

� x n is abbreviated as
¥ n x n, and (a.s.) is short for almost surely. Superscripts
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on vectors or on elements of vectors index the mem-
bers of a sequence of vectors; for example, {X 1,
X 2, . . .} is a sequence of demand vectors; while X i

n is
the demand for fare class i in the n-th demand vector.
Subscripts will index sequences of scalar quantities;
for example, {�1, �2, . . .} is a sequence of scalar step
sizes. Superscripts on such scalar quantities will have
the usual interpretation as exponentiation.

Much of our analysis establishes upper bounds
involving “sufficiently large” arbitrary constants on
the right-hand sides of inequalities. To avoid a prolif-
eration of such constants, we let C denote a generic,
sufficiently large constant. The value of C changes
throughout the paper depending on context. For ex-
ample, a statement of the form D � CE � C 2F can be
replaced with D � C(E � F), where C 4 max{C, C 2}.

We consider a model in which k � 1 fare classes
book on a single-leg, fare-class allocation is nested
(described below), low-fare classes book strictly before
higher fare classes, fare-class demands are mutually
independent, and there are no cancellations or no-
shows. Let f i denote the fare (or expected contribution)
from fare class i, where we assume f 1 � f 2 � . . . �

f k�1. The demand for fare class i is denoted X i. We
assume {X 1, . . . , X k�1} are mutually independent, the
probability distributions of demand are continuous,
and that seat capacity is a continuous quantity. (See
§4.2 for a discussion of integral demand and capacity.)

The stochastic process {X 1, X 2, . . .} of demand
vectors from successive flights is assumed to be sta-
tionary in the sense that the joint probability distribu-
tions of demand remain constant over time. This
implies that the same protection levels are optimal for
all flights in the sequence and that successive flights
are comparable; for example, midweek morning com-
muter flights between two specific centers in “high
season.” Extensions to nonstationary demand pro-
cesses are discussed in §4.3.

A fixed protection level policy for fare classes 1
through k is defined by a static set of protection levels
given by the vector � � (� 1, . . . , � k), where � 1 � � 2

� . . .� k. (There is no protection level for the lowest
fare class, k � 1.) Protection levels are nested in the
sense that � i represents the number of seats to reserve
(protect) for all of fare classes 1, 2, . . . , i. Reservations

for fare class i � 1 are accepted if and only if the
number of seats remaining is strictly greater than the
protection limit � i. For the single-leg problem under
the assumptions stated above, it is shown in Brumelle
and McGill (1993) that such fixed protection level
policies are optimal among all nonanticipating poli-
cies.

Define the nested sequence of fill events:

A 1��,X� � �X 1 � � 1�;

A2��, X� � �X1 � �1, X1 � X2 � �2�; · · ·

Ai��, X� � �X1 � �1, X1 � X2

� �2, . . . , X1 � · · · � Xi � � i}. (2)

We refer to these events as fill events because, when
the current inventory of unbooked seats is � i, all
remaining seats are sold if and only if the event
A i(�, X) occurs.

Let the vector �* � (�*1, �*2, . . . , �*k) denote an
optimal set of protection levels. Brumelle and McGill
(1993) show that, when all passenger demand distri-
butions are continuous, an optimal �* satisfies

ri�1 � P�Ai��*, X��, for i � 1, . . . , k, (3)

where r i�1 � f i�1/f 1 is the discount ratio of fare i � 1
relative to the full fare. The parallel with Littlewood’s
Rule (1) is clear: For example, if discount fare i is 60%
of the full fare, optimal protection levels will be such
that event A i(�, X) occurs on 60% of future flights in
the long run.

The conditions in (3) are independent of aircraft
capacity and assume continuity of demand. In prac-
tice, protection levels that exceed aircraft capacity can
be simply truncated to the capacity without loss of
optimality. This will be discussed further below. Also,
the continuous protection levels obtained by (3) are
generally good approximations for the true optimal
protection levels for integer-valued demand. Indeed,
Brumelle and McGill (1993) show that there will be at
least one set of fixed, integer-valued, optimal protec-
tion levels when demand is integer-valued. Moreover,
the revenue management problem is known to be
robust to small departures from the optimal protection
levels. (See Brumelle and McGill (1993) and Robinson
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(1991).) Wollmer (1992) analyzes integer-optimal pro-
tection levels when demand forecasts are available as
discrete probability distributions. (See §4.2 for further
discussion of integrality.)

In principle, it is easy to determine the frequency of
the events A i(�, X) from a record of past flights. No
uncensoring of the demand is required—it is only
necessary to observe if demand reached the protection
levels, not the degree to which it exceeded them. There
are two important exceptions to this. First, if � i hap-
pens to exceed the maximum number of seats avail-
able for sale (usually the physical capacity plus an
overbooking “pad”), then the event X 1 � . . . � X i

� � i is not observable.1 Second, if protection levels are
revised during the lead time prior to flight departure
it can easily happen that a new protection level
exceeds the remaining capacity on the aircraft (a prob-
lem similar to the first one), or that earlier, high
protection levels constrained demand during part of
the booking period in one or more discount fare
classes. In this case, total demand is not observed
relative to � i (a variant of censorship of the demand
data).

Initially, we will make the simplifying assumption
that A i(�, X) is always observable. We show in §4 how
the algorithm and results can be modified to allow for
the physical capacity constraint and booking lead
times in practical implementations.

The conditions in (3) are appealing on practical
grounds because one can check the optimality of
protection levels in a series of departed flights retroac-
tively by simply comparing the fraction of flights on
which A i(�, X) occurred to the discount ratio r i�1. This
approach has the distinct advantage that it requires no
assumptions on the specific nature of the probability
distributions of the demands. Observing fill event
frequencies therefore provides a distribution-free test
of the optimality of protection levels.

However, what happens if the observed frequencies
do not equal the discount ratio? Next, we show that
these same fill event conditions can be used to adap-

tively adjust protection levels using an extension of
the classical stochastic approximation algorithm of
Robbins and Monro (1951).

2. An Adaptive Algorithm
For i � 1, . . . , k define H i(�, X) � r i�1 	 1( A i(�, X)).
The quantity H i(�, X) will be negative if the event A i

occurs, and positive otherwise. If protection levels are
being adjusted, occurrence of the event A i (all of
classes 1 through i reached their protection levels)
suggests that the protection level � i should be adjusted
upwards. Thus 	H i(�, X) can be viewed as an adjust-
ment direction for protection level � i. The correspond-
ing adjustment vector is H(�, X) � (H 1(�, X), . . . ,
H k(�, X)).

Now define h i(� ) � r i�1 	 P( A i(�, X)), i � 1, . . . ,
k; and let h(� ) � (h 1(� ), . . . , h k(� )). Note that h(� )
� EH(�, X). Thus, 	h(� ) can be properly viewed as
the expected adjustment vector for protection levels
given current levels �. The optimality Condition (3)
stipulates that we should seek a �* such that the
expected adjustment for all protection levels is zero;
or, h(�*) � 0.

The Robbins-Monro procedure (generalized here for
vector quantities) constructs a sequence of parameter
estimates, {� 1, � 2, . . . , � n, . . .}, from a sequence of
independent trials, {X 1, X 2, . . . , X n, . . .}, using

� n�1 � � n � �nH�� n, X n�, (4)

where � n is a sequence of nonnegative step sizes
satisfying

�
n

�n � �� and �
n

� n
2 � ��. (5)

(The simplest example of a suitable step-size sequence
is defined by � n � 1/n, however, this simple averag-
ing sequence takes small steps early in the procedure,
which can delay convergence. In the development to
follow, we use a sequence of the form A/(n � B),
where A and B are constants chosen to effect larger
early steps.)

The directions H(� n, X n) can be determined after
the departure of each flight. If the fill event A i occurs,
H i

n � r i�1 	 1 
 0 and the protection level � i
n is

increased by � n(1 	 r i�1); if not, then H i
n � r i�1 � 0,

1 One could still observe this event if rejected sales were recorded,
but this information is not available to most airlines. Rejections
occur at the point of sale (e.g., the travel agent) and are not recorded
in the reservation system.
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and � i
n is reduced by � nr i�1. Thus protection levels are

stepped up when high demand is observed and
stepped down when low demand is observed, with
the step size becoming smaller as the algorithm
progresses.

A key theoretical and practical problem is determin-
ing conditions under which such an adaptive algo-
rithm will converge to optimal protection levels. It is
known that almost sure convergence to a point �*
satisfying h(�*) � 0 is guaranteed if h(� ) is the
gradient of a concave function with a unique maxi-
mum at �* or, more generally, if

inf
	
��	�*�
�1/	�

��� � �*� Th���� � 0 for all 	 � 0. (6)

(See Benveniste et al. (1990) and Blum (1954). Loosely
speaking, this condition stipulates that the expected
adjustment vector 	h(� ) always points into the half-
space containing �*.)

However, with a nested allocation policy, the ex-
pected revenue is not jointly concave in the protection
levels. More to the point, the function h(� ) is not even
the gradient of the expected revenue function; rather,
it is a collection of gradients from a sequence of scalar
subproblems, one for each stage in the booking pro-
cess during which reservations for a particular fare
class arrive. (See Brumelle and McGill (1993).) There-
fore, we cannot assume that the iterates satisfy a joint
stability condition like (6).

A second difficulty is that the Algorithm (4) can
produce vectors � that violate the monotonicity con-
dition � 1 � � 2, . . . , � � k required for the events A i to
be appropriately nested. To address this problem, we
define interim protection levels p i, where

pi��� � max�� j : 1 � j � i�, (7)

and let p(� ) � ( p 1(� ), . . . , p k(� )). (Note that if � 1

� � 2, . . . , � � k, then p(� ) � �.) The algorithm uses
the protection levels p i(� ) to control the availability of
seats, but monitors the events A i(�, X) to update the
parameters �. Because � i � p i(� ), this modification
preserves our ability to observe the event A i(�, X)
when the components of � are not monotonically
increasing, and allows us to treat � as unconstrained.

We will show in the next section that, in spite of
these difficulties, reasonable regularity conditions en-

sure that the Procedure (4) does converge (a.s.) to a
value �* satisfying h(�*) � 0, and that p(�*) � �*
(a.s.).

3. Convergence Proof
To prove the convergence of the Iteration (4) we need
several preliminary lemmas. The first provides a suf-
ficient condition for the almost sure convergence of a
series of random variables:

Lemma 1. (Lukacs (1975), Theorem 4.2.1) Let {Y n} be
a sequence of random variables with EY n 
 �� for all n
and ¥ n E�Y n� 
 ��. Then ¥ n �Y n� 
 �� (a.s.).

The following supermartingale lemma is essential to
many convergence proofs in stochastic approxima-
tion. It is due originally to Robbins and Siegmund
(1971) (see also Benveniste et al. (1990), p. 344):

Lemma 2. Let {�, F, F n, P} be a probability space with
an increasing family of 
-fields F n. Suppose Z n, B n, C n,
and D n are finite, nonnegative random variables, adapted to
the 
-field F n, which satisfy E(Z n�1�F n) � (1 � B n) Z n

� C n 	 D n. Then on the set {¥ n B n 
 �, ¥ n C n 
 �},
¥ n D n 
 � (a.s.), and Z n 3 Z 
 � (a.s.).

We shall require that � remain bounded (a.s.). The
following lemma follows easily from (4) and the fact
that the step sizes � n are nonnegative and decreasing:

Lemma 3. If demand X n has bounded support for n
� 1, 2, . . . (i.e., X i

n � C (a.s.) for i � 1, 2, . . .), then �� n�
is bounded (a.s.).

Finally, we will need the following lemma, which is
adapted from Benveniste et al. (1990 Lemma 23, p.
245):

Lemma 4. Let � n � A/(n � B), where A and B are
constants such that A � 0 and B � 0, and let u n � �� n

,
where � and  are nonnegative. Let � � 0 and C � 0 be
arbitrary constants. Then there exists a  � 0, � 
 ��,
and a n 0 such that the inequality

un�1 � �1 � 2��n�un � C� n
�1

is satisfied for all n � n 0.

Proof. By substituting u n � �� n
 in the above

inequality and rearranging, we obtain
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��� n�1
 � � n

� � �C � 2���� n
�1.

Now, if � n � A/(n � B), then by taking a Taylor
series expansion, we find that

� n�1
 � � n

 � A �n � B� 	��1� � O�n 	��2��.

Substituting this expression into the first term on the
left-hand side above and simplifying we obtain

 � O�n 	2� � A�2� �
C
�� .

Because � � 0, we can choose � sufficiently large
and  � 0 sufficiently small so that  
 A(2�

	 (C/�). The existence of a n 0 satisfying the con-
ditions of the lemma then follows. �

We are now ready to prove our main convergence
result:

Theorem 1. Let � n be defined as in (4), and let � n be
defined as in Lemma 4. Suppose the following assumptions
hold:

A1) Each X i has bounded support (i.e., P(X i 
 C) � 1
for some constant C).

A2) There exists a � � 0 such that, for all � i, (� i

	 �*i)h i(� i, �*i	1, . . . , �*1) � ��� i 	 �*i�
2.

A3) The distributions of the partial sums, X 1

� . . . � X i are Lipschitz continuous. That is, for all i
� 1, . . . , k�P(X 1 � . . . � X i 
 x) 	 P(X 1 � . . . � X i


 y)� � C�x 	 y�.
Then, for i � 1, . . . , k,

� i
n 3 �*i �a.s.� (8)

and pi��*� � �*i. (9)

Furthermore, there exists a  � 0 such that for i � 1,
2, . . . , k,

E�� i
n � �*i � 2 � C� n

/ 2 i	1. (10)

Proof. The proof is by induction on the fare
classes.

First, consider Fare Class 1 and note that the event
A 1(�, X) is not a function of � i, i � 1. It is easy to see
that the sequence {� 1

n} is a classical (scalar) Robbins–
Monro process and hence converges (a.s.). Indeed,
from A2 we have that for all 	 � 0,

inf
	
��1	�*1 �
�1/	�

���1 � �*1�h1��1�� � 0,

and H� is uniformly bounded, so E�H 1(�, X)� 2 � C
for all �. These conditions together with the fact that
the gain sequence {� n} satisfies (5) guarantee that � 1

n

3 �*1 (a.s.). (See Benveniste et al. 1990 and Robbins
and Segmund (1971) for proofs.) The fact that p 1(�*)
� �*1 follows trivially from (7). Finally, from Ben-
veniste et al. (Theorem 22, p. 244) we have that with
A2 and the gain sequence {� n} there exists a constant
� such that for all 0 
  
 1, we have E�� 1

n 	 �*1�
2

� C�� n
. Thus for i � 1, (8)–(10) are all satisfied.

Now, suppose (8)–(10) hold for fare class i and
consider fare class i � 1. Define T n � � i�1

n 	 �*i�1 and
Z n � �T n� 2. Then by (4)

Zn�1 � Zn � 2�nTnHi�1�� n, X i�1
n , X i

n, . . . , X 1
n�

� � n
2�Hi�1�� n, X i�1

n , X i
n, . . . , X 1

n�� 2.

Taking expectations conditioned on F n yields

E�Zn�1�Fn� � Zn � 2�nTnhi�1�� i�1
n , � i

n, . . . , � 1
n�

� � n
2E��Hi�1�� n, X i�1

n , X i
n, . . . , X 1

n�� 2.

Since H� is uniformly bounded, we have that
E[�H i�1(�, X i�1

n , X i
n, . . . , X 1

n)� 2] � C for all �, hence

E�Zn�1�Fn� � Zn � 2�nTnhi�1�� i�1
n , � i

n, . . . , � 1
n�

� C� n
2 � Zn � 2�nTnhi�1�� i�1

n , �*i, . . . , �*1� � C� n
2

� 2�nTn�hi�1�� i�1
n , �*i, . . . , �*1�

� hi�1�� i�1
n , � i

n, . . . , � 1
n�. (11)

We next bound the last term in (11). From the
definition of h i�, we have

�hi�1�� i�1
n , �*i, . . . , �*1� � hi�1�� i�1

n , � i
n, . . . , � 1

n��

� E�Hi�1�� i�1
n , � i

n, . . . , � 1
n�

� Hi�1�� i�1
n , �*i, . . . , �*1��

� E��1�X 1
n � · · · � X i�1

n � � i�1
n ��

� �1� Ai�� n�� � 1� Ai��*���

� E�1� Ai�� n�� � 1� Ai��*���

� P�1� Ai�� n�� � 1� Ai��*���.

Now define the events

Ej � �min��*j, � j
n� � X1 � · · · � Xj � max��*j, � j

n��,
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and observe that if 1( A i(� n)) � 1( A i(�*)), then at
least one of the events E j, j � 1, . . . , i must occur.
Combining this observation with A3, we obtain

P�1� Ai�� n�� � 1� Ai��*��� � �
j�1

i

P�Ej�

� C �
j�1

i

�� j
n � �*j �.

Therefore, we have

�hi�1�� i�1
n , �*i, . . . , �*1� � hi�1�� i�1

n , � i
n, . . . , � 1

n��

� C�
j�1

i

�� j
n � �*j �.

Substituting this bound in (11) and using the fact that
by A1 and Lemma 3, �T n� � C (a.s.) we obtain

E�Zn�1�Fn� � Zn � 2�nTnhi�1�� i�1
n , �*i, . . . , �*1�

� C� n
2 � C �

j�1

i

�n�� j
n � �*j �. (12)

We next show that the last term above is finite (a.s.).
Indeed, we have by A1 and Lemma 3 that E(� n�� i

n 	
�*i�) is bounded. Also, by the induction hypothesis, (10)
holds for i, and therefore

�
n

E��n�� i
n � �*i �� � �

n

�n�E��� i
n � �*i � 2�

� C �
n

� n
1�/ 2 i

� ��,

where the last inequality follows from the definition
of {� n} and the fact that ¥ n 1/n p converges for all p
� 1. Applying Lemma 1, we conclude that ¥ n � n�� i

n

	 �*i� 
 �� (a.s.). Since ¥ n � n
2 is bounded, we can

apply A2 and Lemma 2 to (12) and conclude that
Z n 3 Z 
 �� (a.s.) and ¥ n � nT nh i�1(� i�1

n , �*i, . . . ,
�*1) 
 �� (a.s.).

We next show that Z � 0. Indeed, if Z � 0 then
Assumption A2 ensures that there exists an N such
that T nh i�1(� i�1

n , �*i, . . . , �*1) � 0 for all n � N. But this
in turn would imply ¥ n � nT nh i�1(� i�1

n , �*i, . . . , �*1) is
unbounded, which is a contradiction. Therefore, Z
� 0 and (8) is proven for i � 1.

We next show (9) by contradiction. Indeed, if (9) is
not true, then since p i(�*)��*i by the induction hy-
pothesis, we must have �*i�1 
 �*i. This in turn implies
A i�1(�*, X) � A i(�*, X), which violates (3) if f i�2


 f i�1. Thus, we must have p i�1(�*) � �*i�1.
Finally, to show (10) holds for i � 1 we apply A2 to

(12), which yields
E�Zn�1�Fn� � �1 � 2�n�� Zn � C� n

2

� C �
j�1

i

�n�� j
n � �*j �.

Unconditioning and using the induction hypothesis
that (10) holds for i we obtain,

E�Zn�1� � �1 � 2�n�� E�Zn� � C� n
2

� C �
j�1

i

�nE��� j
n � �*j ��

� �1 � 2�n�� E�Zn� � C� n
2

� C �
j�1

i

�n�E��� j
n � �*j � 2�

� �1 � 2�n�� E�Zn� � C� n
1�/ 2 i.

Applying Lemma 4 to the above inequality, we
conclude that there exist constants � 
 ��,  � 0,
and n 0 
 �� such that the sequence u n � �� n

/ 2 i

satisfies

un�1 � �1 � 2�n��un � C� n
1�/ 2 i,

for all n � n 0. Taking � sufficiently large so that
EZ n 0

� �� n 0

/ 2 i and applying induction on n we have
EZ n � �� n

/ 2 i . Therefore (10) also holds for i � 1,
and the induction is complete. �

Some comments on Assumptions A2 and A3 are in
order. A2 requires that the distribution of demand not
be “too flat” in the neighborhood of �*. For example,
one can show that A2 is satisfied if the distributions
have a density that is bounded below by a strictly
positive constant in the neighborhood of �*. Intu-
itively, A2 is needed because if the distribution is too
flat near �*, the algorithm could “stall” before reaching
�*. The Lipschitz condition A3 is satisfied if the in-
dividual demand distributions are Lipschitz smooth. For
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example, A3 holds if the demand distributions have
uniformly bounded densities. Both A2 and A3 are not
overly restrictive.

Finally, note that (10) suggests that the convergence
rate decreases with i, the index of the fare class. That
is, lower fare classes have slower convergence than
higher fare classes. Our numerical results in §5 illus-
trate this behavior.

4. Practical Modifications to the
Basic Algorithm

In this section, we discuss four modifications to the
basic algorithm (4) that address problems mentioned
earlier.

4.1. Capacity Constraint
Let c be the leg capacity or maximum number of
bookings allowed. The recursion (4) can then be mod-
ified to

� i
n�1 � min�c, �� i

n � �nHi�� n, X n���,

i � 1, . . . , k, (13)

which corresponds to projecting � n�1 onto the con-
straint set [0, c] n. With this modification, it is not
difficult to show that the algorithm converges to a
point �̂, where �̂ i � min{�*i, c}, i � 1, . . . , n.

4.2. Integrality
In practice, passenger demand and seat allocations are
integral so adjustments of less than one seat are not
feasible. However, without fractional adjustments the
algorithm could become “stuck” at a nonoptimal
point. One solution to this dilemma is to randomize
the choice of protection levels.

For illustration, we only consider the case k � 1
(two fare classes). Let � be a continuous parameter and
let p be the actual protection level used. Let U be a
uniform [0, 1] random variable. Then at iteration n, we
use protection level p n where

pn � � � U � � � �
� U � � � � . (14)

This corresponds to randomizing the selection of �
and � based on the value of �. We then redefine the
event A1 at iteration n to be A1(�, X) � {X 1 � p n}.

Under this scheme, h 1(� ) is continuous and, provided
mild conditions on the discrete demand distribution
are met,2 it satisfies the conditions of Theorem 1.

Note in this case that � n converges to a �* satisfying
P{X 1 � �* � 1{U � �* 	 �*}} � r 2, for some integer
�*, where �* satisfies P{X 1 � �*} � r 2 and P{X 1 � �*
� 1} � r 2. Therefore, �* is the optimal integer
protection level. The policy, however, randomizes
between a protection level �* and �* � 1, which results
in some deviation from optimality. Nevertheless, the
simplicity of this randomization scheme is attractive.

4.3. Booking Lead Times
Many airlines open bookings for flights 10 months or
more prior to flight departure. However, most book-
ing activity occurs over a shorter time span, typically
30 to 60 days before departure. It is this shorter,
effective booking lead time that is relevant to setting
seat protection levels. Standard airline practice is to fix
one set of protection levels at the beginning of the full
booking period and then delay further adjustments
until effective booking begins. Thereafter, reading of
booking levels and (possible) adjustment of protection
levels occurs with increasing frequency as departure
time approaches. A total of 15 readings and adjust-
ments across the full booking period is common in
practice. These multiple adjustments are designed to
accommodate the nonstationarity of demand and to
incorporate recent demand data into current booking
levels.

In this subsection we discuss modifications to the
basic adaptive scheme necessary to accommodate the
effective booking period. For purposes of this discus-
sion, consider a flight that departs every week and
that receives most bookings in the 10 weeks prior to
each departure.

A direct, but unsatisfactory, implementation of al-
gorithm (4) would involve dividing the flight se-
quence into 10 interleaved, independent sequences,
each of which is updated once every 10 weeks. In the
first of these sequences, fill events from the flight that
departs in Week 0 would be used to set protection
levels for the flight that will be departing in Week 10,

2 Namely, that the probability mass function is bounded away from
zero in the neighborhood of the stationary point.
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and that departure will be used to set levels for the
Week 20 departure, and so on. The second through
tenth sequences develop in a similar way from the
Week 1 through 9 departures. This implementation is
unsatisfactory for at least two reasons: First, data (on
demand, which is assumed stationary) are not shared
across the separate flight sequences, and second, the
protection levels within each sequence are adjusted
very slowly over time (once every 10 weeks).

Fortunately, a simple modification of the adaptive
algorithm can be used to produce a single sequence of
protection levels that use information from all flights
and have the same convergence properties as those
determined by the original algorithm. To see this, let k
denote the number of time units (e.g., weeks) in the
effective booking lead time, and assume a new flight
departs every unit of time, where time units are
indexed by n as before. In this case, bookings for the
first flight begin (effectively) at n � 1, the first flight
departs at n � k, and the first complete observations
of fill events are not available until time k � 1. Flights
1, 2, . . . , k must use protection levels based on initial
guesses or information external to the algorithm. We
assume that the initial k protection levels are identical,
viz

� 1 � � 2 � · · · � � k. (15)

Let X n be the demand for the flight, labelled n, that
begins booking at time n, and departs at time n � k.
Flight n uses protection levels � n given by (15) for n
� k, and for n � k it uses

� n�1 � � n � �n	kH�X n	k, � n	k�. (16)

This adjustment may seem strange—an adjustment
direction away from an old protection vector � n	k is
being applied to the current vector � n—but, it turns
out that this is simply a delayed version of the original
recursion (4). Indeed, summing the original recursion
(4) we obtain

� n�1 � � 1 � �
i�1

n

� iH�X i, � i�.

Similarly, by summing the modified recursion (16)
and using the fact that � 1 � � k from the initial
condition (15) we obtain

� n�1 � � 1 � �
i�1

n	k

� iH�X i, � i�.

Thus � n in the modified recursion (16) is equal to � n	k

in the original recursion (4). It therefore follows that
Theorem 1 holds for the modified sequence (16).

What about updating protection levels during the
booking process itself? (e.g., a flight that starts book-
ing in Week 1 for departure in Week 11 could possibly
use different booking levels in each week prior to
departure). This creates difficulty because fill events
A i(�, X) no longer have the same interpretation. In
particular, in this case the fact that the bookings on hand
for a fare class at the time of departure are less than
the booking limit does not mean that total demand was
less than the booking limit. Such behavior could easily
cause the iteration (4) to fail, but this question de-
serves further investigation.3

4.4. Nonstationary Demand
The stochastic approximation scheme follows a se-
quence of steps of decreasing size to converge to an
optimal set of protection levels. Strictly speaking, this
restricts the approach to series of flights for which the
protection levels are not believed to vary. In reality,
however, optimal protection levels drift over time as
demand and pricing factors vary. Variations on sto-
chastic approximation have been developed to deal
with such nonstationary systems. In general, they
track a moving set of optimal parameters with steps
that do not tend to zero in size. See Benveniste et al.
(1990).

We have conducted simulations with nonstationary
demand using a variant of stochastic approximation
that gives more weight to recent fill event frequencies
in a manner similar to exponential smoothing. Not
surprisingly, the method correctly tracks the optimal
protection levels, but with a lag typical of (simple)
exponential smoothing. We conjecture that this type of
tracking system will perform reasonably well, but
again this topic deserves further investigation.

3 It is important to recognize that this type of dynamic censorship is
also a problem in conventional forecasting/optimization systems. A
dissertation by Lee (1990) addresses this problem.
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5. Numerical Examples
In this section we present numerical examples of the
performance of our adaptive algorithm in the station-
ary demand case. For comparison, we solve the same
examples with a representative procedure that com-
bines censored forecasting with EMSR protection lev-
els. We compare the convergence of the protection
levels produced by the two methods and their revenue
performance under various starting conditions, load
factors, and demand distributions.

These comparisons are based on simulated data in
an idealized stationary setting. While the examples are
useful for illustrating some of the operating character-
istics of the methods, they cannot lead to final conclu-
sions about relative merits. Such conclusions can only
come from trials in practice.

5.1. A Combined Forecasting-EMSR Scheme
The combined forecasting-EMSR scheme constructs a
demand forecast based on a correction to the censored
observations of demand in each fare class. For our
tests, we corrected for censorship with an estimate of
the survivor function S( x) � P(X � x) based on life
tables. Details can be found in Lawless (1982, §2.2).

The life table estimator works as follows: Let n
denote the total number of observations (censored and
uncensored). Let t 1 
 t 2 
 . . . , t m be m distinct
intervals. (We call [t j, t j�1) interval j.) Let n j be the
number of observations with values t j or more (the
number of “at risk” observations at the start of interval
j); let d j be the number of uncensored observations
that fall in interval j (the number of “deaths” in the
interval j); and let w j be the number of censored
observations that fall in interval j (the number of
“withdrawals” because of censoring in interval j).
Define n 0 � n and note that n j � n j	1 	 d j 	 w j, j
� 1, . . . , m.

Then the standard life table estimate is given by

Ŝ� tj � tj�1

2 � � �
i�1

j �1 �
di

ni � wi/2� ,

j � 1, . . . , m.

(Note the approximation of S(t) is taken at the mid-
point of interval j.) The idea here is that each term 1

	 (d i/n i 	 w i/ 2) is an estimate of the conditional
probability that demand exceeds t i�1 given that it
exceeded t i. The denominator, n i 	 w i/ 2, is an
estimate of the number of samples at risk during
period i, where w i/ 2 is a correction term for the
number of censored observations in period i (e.g., a
censored observation during period i is assumed to be
at risk for half the period on average).

In our implementation, we maintained 20 intervals
(m � 21 for each fare class, with 0 � t 1 
 t 2

. . . 
 t m


 t m�1 � ��, chosen so that P (X � [t j, t j�1)) � 0.05
for all j � 1, . . . , m. While more intervals clearly
result in a more accurate estimate of the survivor
function, 20 provided adequate accuracy in our case,
especially as the values t 1, . . . , t m were chosen to
match each distribution.4

We then used the life table estimator to estimate the
mean and standard deviation of the distribution by
linear regression. Specifically, let �( x) be the standard
normal distribution and let �	1( x) denote its inverse.
Define s j � �	1(1 	 Ŝ((t j � t j�1)/ 2)). If demand is
normally distributed, the points (s j, t j) j � 1, . . . , n
should lie approximately on a straight line, namely s j

� at j � b. Using linear regression, we estimated the
slope, â, and the intercept, b̂, and then constructed
estimates of the mean, �̂ � 1/â, and standard devia-
tion, 
̂ � 	b̂/â. This procedure results in potentially
biased estimates (See Lawless 1982, §2.5.), but it is
simple to implement and seemed to perform well in
our tests. We updated the life table and linear regres-
sion estimates of the mean and standard deviation
after each simulated flight departure.

This procedure many not always produce an un-
bounded estimate of the mean and standard devia-
tion. In particular, if all n samples are censored, then
the life table estimate is 1 for all values of j and the
linear regression produces an estimate of â � 0, which
results in an unbounded estimate of the mean and
standard deviation. This is quite normal behavior for
censored demand estimators. Indeed, if all observa-
tions are censored, then any reasonable estimator (e.g.,

4 Of course, in practice one would not be able to fine-tune the
intervals of time t 1, . . . , t m so precisely, since the demand distribu-
tion is unknown. Thus, a wider range—with more intervals—would
be required to ensure that the data were adequately covered.
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maximum likelihood) either will be uncomputable or
produce an unbounded mean and/or standard devi-
ation. In such cases, we ignored the forecast and
simply maintained the current protection levels until
the forecast produced bounded estimates.

For setting seat protection levels, we used a varia-
tion of the expected marginal seat revenue (EMSR)
heuristic (Belobaba 1989), called EMSR-b. This is the
most common seat protection heuristic used in prac-
tice. EMSR-b works as follows: Given estimates of the
means, �̂ i, and standard deviations, 
̂ i, for each fare
class i, the EMSR-b heuristic sets protection level � i so
that f i�1 � f� iP(X� i � � i), where X� i is a normal random
variable with mean ¥ j�1

i �̂ j and variance ¥ j�1
i 
̂ j

2, and
f� i is a weighted average revenue, given by

f�i �

�
j�1

i f j�̂ j

�
j�1

i
�̂ j

.

The idea behind this approximation is to reduce the
complexity of the fully nested problem by aggregating
fare classes 1, 2, . . . , i into a single-fare class. Then,
one treats the problem as a simple, 2-fare-class prob-
lem.

Again, we emphasize that this overall forecasting-
EMSR scheme is not constructed to be the most
sophisticated one possible. Rather, it is intended be
representative of a basic yield management system.
Both methods could no doubt be refined further.
However, such refinements often involve idiosyn-
cratic and/or ad hoc modifications that only serve to
make performance comparisons more complex, con-
troversial, and ultimately less insightful. Our inten-
tion, therefore, is to perform a transparent test of one
simple approach (the adaptive algorithm) against an-
other simple approach (basic censored forecasting and
EMSR-b).

5.2. Test Problem Scenarios
Our test problem is a modification of Wollmer’s (1992)
5-fare-class example, in which we aggregated his
Classes 3 and 4 to reduce the problem to 4 classes.
(Classes 3 and 4 in Wollmer had very similar fares of
$534 and $520, respectively.) With 4-fare-classes, there
are n � 3 protection levels to determine.

The data along with optimal and EMSR-b protection
levels are shown in Table 1. The protection level
�*-Normal is the optimal level when demand is nor-
mally distributed, while �*-Log N is the optimal
protection level when demand is log-normally distrib-
uted.

To test the convergence of the adaptive algorithm
and the forecasting-optimization scheme, we pur-
posely started with protection levels that were far
from optimal, corresponding to high and low starting
values (see Table 2). These somewhat extreme values
were chosen to test the convergence properties of each
algorithm. In practice, one may have some prior
knowledge about demand that can be used to set
better initial protection levels. At the same time, using
extreme starting values provides a good robustness
test. High starting values produce less initial censor-
ing in the higher fare classes, so one has better
observations of the actual demand distributions. How-
ever, revenues may be low due to high levels of
rejected demand. Low starting values produce severe
initial censoring, which may adversely affect forecast
accuracy. In terms of revenue, low starting values are
generally better if demand is low, but may produce
poor revenue performance when demand is high
because insufficient capacity is reserved for higher
fare classes. Observing how the algorithms react to
these various factors provides useful insights.

We also used two demand scenarios. The high

Table 1 Fares, Demand Statistics, and Protection Levels for
Numerical Examples

Class Fare Mean Std. Dev. �-EMSR �*-Normal �*-Log N

1 $1,050 17.3 5.8 16.7 16.7 15.9
2 $567 45.1 15.0 51.5 44.6 45.7
3 $527 73.6 17.4 131.4 134.0 130.0
4 $350 19.8 6.6 n.a. n.a. n.a.

Table 2 Starting Values of Protection Levels for Numerical Examples

�1 �2 �3

Low 0 15 65
High 35 110 210
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demand scenario has a starting inventory of 124 seats,
corresponding to a 125% demand factor (ratio of
expected total demand to capacity) and approximately
a 95% load factor (ratio of average number of seats
sold to capacity) under optimal protection levels. The
low demand scenario starts with 164 seats, resulting in
a demand factor of 95% and a load factor of approxi-
mately 90% under optimal protection levels. (Both
scenarios are set with somewhat higher demand fac-
tors than normally encountered in practice to high-
light the revenue impacts of the different methods.)
For each scenario, we ran the two methods in parallel
on a same sample path of 100 random departures. For
the stochastic approximation procedure, we used the
gain sequence � n � 200/(10 � n), which appeared to
provide good performance on a range of examples.

On the same sample path, we also ran the optimal
policy; that is, a policy that applies the fixed protection
level �* on each realization. This provided a bench-
mark for revenue performance. For simplicity, we also
assumed observed demand was censored by the pro-
tection levels but not the capacity constraint.

5.3. Numerical Results
The first set of simulations used normally generated
demand with parameters given in Table 1. Thus, the
actual demand distribution is consistent with the
assumptions made in the forecasting and optimization
procedures. Each method was tested against the same
sample path (i.e., the simulations are coupled). We
performed 64 simulations of each 100-flight sample
path for each case and tracked the protection levels
and revenue performance over time.

Figure 1 shows three graphs of the data for the first
case of low demand and low starting values. To
generate these graphs, we sampled revenue and pro-
tection level data at every tenth iteration during the
progression of the algorithms (e.g., at values n � 10,
n � 20, . . .). This sampling was performed for each of
the 64 sample paths, and summary statistics were then
computed to illustrate the typical evolution of reve-
nues and protection levels over time.

The top graph of Figure 1 shows the average cumu-
lative revenue as a percentage of the optimal revenue
for the two methods as a function of the number of
iterations (flights). The error bars show the 95% con-

fidence intervals about these averages. The middle
graph shows the average protection levels over time
for the stochastic approximation (SA) procedure. The
horizontal dotted lines are the optimal protection
levels. The lowest line corresponds to �*1, the middle
line to �*2, and the top line to �*3. The solid lines are the
corresponding average protection levels produced by
the stochastic approximation (SA) method. The error
bars on the solid lines give the 25th percentile and 75th
percentile values for each protection level at each
iteration, which provides some sense of the variability
in protection levels across sample paths. The bottom
graph shows the identical plot of protection levels for
the F/EMSR method.

Figure 1 Low Demand, Low Start, Normal Distribution
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Note from Figure 1 that, in this first case, both
procedures have nearly identical (and very close to
optimal) cumulative revenue performance, although
SA is slightly better early on.5 Note that the F/EMSR
procedure quickly reaches stable protection levels;
however, the second and third protection levels devi-
ate from the optimal ones. This is consistent with the
known nonoptimality of EMSR levels beyond the first
level (see Table 1). The SA procedure takes longer to
converge. In particular, the third protection level (the
top line in the graph) is the slowest to converge. This
behavior is consistent with the bounds on convergence
rate developed in Theorem 1. Also, when the protec-
tion levels converge, there is minimal deviation from
optimality, which is consistent with the theoretical
results as well.

Figure 2 shows the results for the same low demand
factor, but with starting protection levels that are all
higher than the optimal levels (see Table 2). As in
Figure 1, the F/EMSR procedure converges more
quickly than the SA procedure. However, in this case
the faster convergence of the F/EMSR has a more
significant impact on the cumulative revenue perfor-
mance: F/EMSR generates about 2%–3% higher reve-
nue on average in the early iterations.

Note also that the absolute revenue performance of
both procedures is considerably worse in this case
compared with the previous case of low initial protec-
tion levels, especially in the early iterations. With low
demand, overprotecting seats is worse than underpro-
tecting them, and thus erring on the side of low initial
starting protection levels is preferred.

The results are quite different in the high-demand
factor case. Figure 3 shows the simulation results for
low starting protection values and high load factor.
Note as indicated by the error bars in the bottom
graphs that the F/EMSR procedure is very volatile
and somewhat slow to converge in the early iterations.
The revenue effect of this behavior is quite significant,
with F/EMSR generating cumulative revenues

roughly 8% lower than optimal and 2%–3% lower
than SA in the early iterations. However, the perfor-
mance and protection levels of F/EMSR improve after
about 30 iterations. In contrast, the SA procedure is
considerably more stable and it converges faster in the
early iterations, which accounts for its superior reve-
nue performance.

F/EMSR performs badly in this case because the
forecasting procedure suffers from the frequent cen-
soring caused by a combination of low protection
levels and high demand. As mentioned above, when
all observations are censored the forecasting proce-
dure produces unbounded estimates of the demand
means and standard deviations. The F/EMSR proce-

5 The fact that F/EMSR has lower cumulative revenues at n � 10
despite the fact that the protection levels look close to optimal is due
to the behavior of its protection levels in iterations 1 to 10, which are
not shown in Figure 1. In particular, F/EMSR requires several
iterations to produce a finite forecast.

Figure 2 Low Demand, High Start, Normal Distribution
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dure therefore operates with the initial low protection
levels for many iterations until a few uncensored
observations of demand are obtained and bounded
estimates can be computed.

This behavior suggests a potential application of the
SA procedure. Namely, SA may prove useful as a
means of automatically adjusting protection levels in
the early life of new flights when very little demand
information is available and forecasting is difficult due
to a high degree of censoring. In such cases, the SA
method not only provides a robust way to adjust
protection levels, but it also serves to speed up the
forecasting method itself by nudging protection levels

in the right direction, thereby reducing the amount of
censoring.

When the starting protection levels are high and the
demand factor is high, the situation is reversed;
F/EMSR performs better than SA as shown in Figure
4, though, compared with Figure 3, the absolute
performance of both methods is worse overall than the
previous case (i.e., overprotecting is worse than un-
derprotecting). In this case with high protection levels,
there is little censoring of the higher fare classes and
the forecasting procedure quickly produces good es-
timates of the means and standard deviations. Thus,
by Iteration 10 the F/EMSR is able to achieve near

Figure 4 High Demand, High Start, Normal Distribution

Figure 3 High Demand, Low Start, Normal Distribution
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optimal protection levels. The SA procedure, in con-
trast, suffers from slower relative convergence.

In summary, the SA procedure appears to have
some distinct advantages in cases where there is a
high degree of initial censoring. However, in cases
where censoring is less of a problem, the slower
convergence of the SA method is a weakness and
causes it to underperform F/EMSR. These findings are
certainly intuitive and give some sense of the relative
strengths and weaknesses of each approach.

We also tested these same four cases with random
demand drawn from a log-normal distribution with
the same mean and variance. Because the adaptive
algorithm requires no distributional assumption, our
hypothesis was that SA would perform relatively
better in this case. However, the actual simulation
results were nearly identical to those for the normal
demand case, with the exception that the F/EMSR
method had slightly greater deviations from the opti-
mal thresholds. The deviations, however, were not
large enough to significantly affect the overall revenue
performance. Of course, it is possible that a distribu-
tion that is more extreme than the log-normal (e.g., a
bimodal distribution) might introduce significant er-
rors in a forecasting and optimization procedure that
assumes normality.

6. Conclusions
Adaptive procedures for yield management are attrac-
tive because they are simple and robust; however, our
preliminary numerical studies indicate that the
method has mixed performance—underperforming
traditional forecasting and optimization methods
when demand is not highly censored but outperform-
ing traditional methods when demand is heavily
censored. This behavior suggests that, for airlines with
existing revenue management systems, adaptive algo-
rithms may be most useful not to replace, but to
augment, traditional forecasting and optimization ap-
proaches. Thus, for example, an adaptive approach
could automate short-run updating of protection lev-
els in cases where forecasts are highly unreliable or
dramatic changes in the market are taking place.
Adaptive methods may also be appropriate for small
or start-up airlines that lack the resources required to

develop and maintain a full revenue management
system.

The adaptive algorithm can also be used as a simple,
simulation-based method for computing optimal pro-
tection levels within the optimization stage of a tradi-
tional forecasting and optimization system. This ap-
proach is quite similar to Robinson’s (1991) Monte
Carlo method for determining optimal protection lev-
els, but offers the potential of greater data efficiency
(though most likely slower convergence).

While our paper shows how to construct an adap-
tive algorithm and provides theoretical guarantees on
long-run performance, more research is needed. For
example, we have not tested the performance of this
approach with large numbers of fare classes and have
not generalized the method for nonstationary demand
or protection levels that are modified during the
booking process. Moreover, it may be that the short-
run, transient performance of the method is more
relevant in practice than its convergence and long-run
performance.

Finally, we believe that our approach may prove
useful for studying the process of forecasting and
optimization over time. Indeed, one can view forecast-
ing and optimization as methods of generating “direc-
tions” and “step sizes” for updating protection levels.
Stochastic approximation theory may prove a useful
theoretical framework for studying the convergence
properties of a wide class of forecasting and optimi-
zation methods.6

6 Research supported in part by the Natural Sciences and Engineer-
ing Research Council of Canada NSERC OGP0138093.
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