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We analyze a general model of dynamic vehicle dispatching systems in which congestion is the primary measure of performance. In
the model, a finite collection of tours are dynamically dispatched to deliver loads that arrive randomly over time. A load waits in
queue until it is assigned to a tour. This representation, which is analogous to classical set-covering models, can be used to study a
variety of dynamic routing and load consolidation problems. We characterize the optimal work in the system in heavy traffic using a
lower bound from our earlier work (Gans and van Ryzin 1997) and an upper bound which is based on a simple batching policy.
These results give considerable insight into how various parameters of the problem affect system congestion. In addition, our analysis
suggests a practical heuristic which, in simulation experiments, significantly outperforms more conventional dispatching policies. The
heuristic uses a few simple principles to control congestion, principles which can be easily incorporated within classical, static routing
algorithms.

INTRODUCTION

In vehicle routing, loads of goods must be transported
from a source location to a number of geographically dis-
persed destinations. Vehicles are assigned routes, and
loads are assigned to vehicles in an attempt to optimize
criteria that typically include measures of cost and of level
of service. Such problems are usually modeled as static
design problems. While there are many practical applica-
tions (such as school bus and garbage truck routing) that
are undeniably route design problems, many applications
involving routing and consolidation are, in reality, sequen-
tial dynamic decision problems. Loads arrive and vehicles
are dispatched continuously over time. Examples include
delivery of goods to retail stores, less-than-truckload
(LTL) shipping networks, and parcel post delivery/pick-up,
to name a few.

As Psaraftis (1988, 1995) notes, one important differ-
ence between dynamic and static routing environments is
the possibility of congestion. With limited transportation
capacity and variability in the mix and number of arriving
loads over time, as well as variability in the times required
to deliver loads, queueing delays are inevitable.

Such delays are more than a nuisance. For a carrier,
they introduce inventories of loads waiting for delivery and
directly drive the need for increased facility space. If deliv-
ery capacity is increased to eliminate congestion, the car-

rier risks severely underutilizing its transportation assets.
For the shipper, long (and variable) throughput times di-
rectly increase pipeline inventories and indirectly drive the
use of higher levels of safety stock. Indeed, based on a
review of a several transportation industry surveys, Ballou
(1985, p. 55) concludes that “ . . . from a practical point of
view, logistics customer service must focus on time-related
elements.”

With throughput time playing such an important role in
both logistics cost and customer service, it is important for
planners and managers to (1) understand what factors—
such as mix of load types, constraints, level of variability—
determine system congestion, (2) understand the precise
tradeoff between delivery capacity and congestion, and (3)
be able to design dispatching strategies that minimize con-
gestion for a given delivery capacity.

In this paper, we propose and analyze a model of dy-
namic routing and consolidation that allows us to address
these questions. In the model, a finite number of load
types arrive randomly over time to a distribution facility
and wait to be delivered. Deliveries from the distribution
facility are made by a single vehicle, though it is not hard
to extend the analysis to multiple vehicles. There is a finite
collection of routes that the vehicle can use to deliver the
loads. Each route is characterized by the number of each
type of load it delivers, as well as by the time required to
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complete the route. Whenever the vehicle becomes avail-
able, it can immediately be dispatched on another route or
it can idle. The problem is to find a policy for dynamically
selecting routes (dispatching routes) over time that mini-
mizes congestion in the system. The measure of congestion
we use, which we call work, is defined as the minimum
time needed to deliver all waiting loads.

Using a sample path lower bound on system work (see
Gans and van Ryzin 1997) and a novel analysis of an upper
bound based on a simple batching heuristic, we find stabil-
ity conditions and give a closed-form characterization of
the optimal work in heavy traffic. The expression for opti-
mal system work is a variant of the classical GI/GI/1 heavy
traffic limit (see for example Daley et al. 1992, Kleinrock
1976). It combines first and second moment information
on the arrival process with dual prices from an underlying
set covering linear program derived from the collection of
feasible routes. These dual prices have a natural interpre-
tation as the work content (i.e., delivery time burden) that
each load type imposes on the system. Together, the ar-
rival statistics, dual prices and GI/GI/1 formula reveal the
root sources of congestion and show directly how various
model parameters—mix of incoming loads, collection of
available routes, traffic intensity—affect optimal system
congestion.

We also obtain several important insights on near-
optimal dispatching policies. In particular, because the up-
per bound is constructive, our analysis provides an
asymptotically optimal class of batching heuristics. While
these heuristics do not appear to be practical in moderate
traffic, they suggest some simple design principles for con-
structing more practical heuristics. Indeed, a prototypical
heuristic incorporating these design principles, which we
call CENTER, consistently outperforms other naive heu-
ristics in a series of simulation tests. The rules used by the
heuristic are simple and can be easily incorporated within
classical, static routing algorithms.

Overview of Paper

The remainder of this paper is organized as follows. We
begin in §1 with a literature review. Then §2 defines the
model, and §3 presents two example problems that are
used in the paper’s numerical studies. In §4 we present our
main analytical findings, and in §5 we offer the central
argument for these results, providing technical proofs of
intermediate results in an appendix. Readers who wish to
concentrate on application, rather than proof, may pro-
ceed directly from §4 to §6, which presents the CENTER
policy, as well as three competing heuristics. In §7 we
provide results of numerical studies. Our conclusions are
given in §8.

1. LITERATURE REVIEW

Psaraftis (1988, 1995) provides a comprehensive discussion
of dynamic vehicle routing and defines a network version
of the problem. We refer the reader to this work for an

overview of dynamic routing applications, a good critical
comparison of the differences between static and dynamic
routing problems, and a comprehensive survey of the rele-
vant literature.

Powell (1995) provides a comprehensive overview of sto-
chastic programming approaches to a class of dynamic as-
signment problems which includes the management of
truck-load-trucking fleets. These models match trucks with
requests for (whole) trucks over a finite horizon, and the
focus of the work is on computationally tractable, numeri-
cal methods. In contrast, we look at dispatching problems
in which the capacity of one truck may be split to fill
multiple requests. We also analyze a stationary problem
over an infinite horizon.

Minkoff (1993) uses a Markov decision process (MDP)
model to analyze a dynamic dispatching problem and pro-
poses a decomposition heuristic. For a shipment consolida-
tion problem, Higginson and Bookbinder (1994a) also
propose a MDP model and algorithm. Though MDP mod-
els nicely capture the sequential decision making process
inherent in dynamic vehicle routing, the approach is lim-
ited to very small scale problems and does not provide a
great deal of structural insight.

Heuristic methods for shipment consolidation have also
been investigated. Higginson and Bookbinder (1994b) per-
form a simulation study of time and quantity policies. Pow-
ell and Humblet (1986) analyze a bulk service queueing
model of consolidation and provide a numerical method
for finding the Laplace transform of the queue length dis-
tribution under several simple control strategies. Both
these works, however, consider only a scalar (weight/size)
constraint. Our model and analysis, in contrast, allow for
general packing constraints.

Bertsimas and van Ryzin (1991, 1993a, 1993b) analyze a
Euclidean version of a dynamic vehicle routing problem,
called the dynamic traveling repairman problem (DTRP).
In the DTRP, customer requests arrive according to a re-
newal process and their locations are randomly distributed
in a Euclidean service region according to a given proba-
bility density function. A vehicle traveling at constant ve-
locity serves the customers. Bertsimas and van Ryzin
obtain bounds on the waiting time under an optimal policy
and propose several heuristics whose performance lies
within a constant factor of optimality in heavy traffic.

In this Euclidean model, congestion is driven primarily
by the geometry of the problem. Because customers take
on a continuum of locations according to a probability
density function, the set of locations becomes more
“dense” as the backlog grows, and this density allows for
more efficient travel. In our problem, however, there are a
fixed number of delivery locations, so as congestion in-
creases it is the number of loads destined for each fixed
location that grows. As a result there are no “economies of
density” in heavy traffic. The appropriateness of each
model depends on the application, with the Euclidean
model best suited to applications with very high levels of
variety in delivery locations (e.g. delivering appliances to
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homes) and the discrete model best suited to applications
involving a moderate number of fixed locations (e.g.,
wholesale distribution).

Reiman et al. (1996) address a dynamic distribution sys-
tem operating in a make-to-stock mode. A single product
is stocked at m retailers, each of which has random de-
mand. A vehicle replenishes the retailer inventories using
either direct shipments (fixed DS), a tour of all m retailers
(fixed TSP) or possibly a combination of both (dynamic
routing). The objective is to minimize long-run average
holding, backorder and transportation costs. The authors
provide a heavy traffic analysis of the fixed TSP policy,
adapting recent heavy traffic results of Coffman et al.
(1995a, 1995b) for polling systems.

Reiman et al.’s work provides modeling detail and in-
sights that are complementary to ours. Our model allows
for a variety of load types (e.g., different product types or
shipment sizes) and an essentially unlimited number of
feasible routes, each of which can reflect complex bin-
packing or other combinatorial constraints. Reiman et al.,
in contrast, consider only simple direct-ship and/or TSP
routes delivering a single product, with no constraints on
the quantity delivered to each location. Our model there-
fore better captures the complexities in load types and
routing options found in many bulk-cargo shipping appli-
cations (e.g., delivering automobiles from assembly plants
to dealer lots). However, to address this added routing
complexity rigorously, we must settle for a courser mea-
sure of system performance (system work) relative to that
of Reiman et al.’s more detailed modeling of holding,
backorder, and transportation costs.

Finally, Bertsimas and Simchi-Levi (1996) provide a re-
cent survey of the DTRP and a priori (2-stage) stochastic
routing problems. Similarly, Powell et al. (1995) offer a
recent survey of the dynamic assignment problem, the
DTRP and a priori stochastic routing problems.

2. PROBLEM DEFINITION AND NOTATION

In this section, we formally define our notation and model.

2.1. Notation

When describing vectors, we use the following conven-
tions. Rm is m-dimensional Euclidean space, and R�

m is its
nonnegative orthant. Similarly, Zm is the m-dimensional
lattice of integers and Z�

m the nonnegative portion of the
set. Boldface 0 � Rm represents a vector of zeroes, and
boldface 1 � Rm a vector of ones. The vector ej � Z�

m has
a one in the jth element and zeroes elsewhere. For x �
Rm and real � � 0, �(x, �) def

� { y � Rm�yi � (xi � �, xi �
�); i � 1, . . . , m} is the L� �-neighborhood of x.

We use three different symbols to represent weak and
strict forms of vector inequalities. For a � Rm and b �
Rm, we write “a � b” whenever ai � bi for all m elements,
i. When ai � bi for all m elements and there exists at least
one element, k, for which ak � bk we write “a � b,” and
when ai � bi for all i, we write “a �� b.”

Functions of vectors are performed on a component-
wise basis. For example, for a � Rm and b � Rm, “min{a,
b}” yields a vector whose ith component equals min{ai,
bi}. Similarly, “mod{a, b}” produces a vector whose ith
component equals ai mod bi.

We follow these conventions when describing probabilis-
tic events: { � } represents an event and { �� } its comple-
ment; 1{ � } denotes the indicator function of an event; and
P{ � } designates the probability of an event. The abbrevi-
ations i.i.d. and a.s., respectively, stand for “independent
and identically distributed” and “almost surely.”

2.2. Arrival Process

Consider a stream of loads that arrive to a distribution
facility and wait to be delivered. A load type denotes a
particular set of attributes such as location, size, weight,
etc. that uniquely define a load’s delivery requirements.
We assume there are m load types. At arrival epochs,
{tk�k � 1, 2, . . . }, quantities of the m load types arrive
into the system according to a renewal process. We set
t0 � 0 and let Tk

def
� tk � tk�1 denote the interarrival time

between arrivals k � 1 and k; {Tk � R��k � 1, 2, . . . } is
a sequence of i.i.d. positive random variables. Let E[T] �
1/� � 0 and variance �T

2 � � (�T
2 � � implies that E[T],

too, is finite).
For each load type, i, and every arrival epoch k, we

define Vk
i � Z� to be the total number of type-i loads

entering the system. We assume that the random vectors,
{Vk � Z�

m�k � 1, 2, . . . } are i.i.d. and that each Vk satis-
fies 0 � Vk �� 1C1 a.s. for some fixed C1 � �. Let � �
E[Vk] and 	 � var(Vk), the variance-covariance matrix of
Vk. Without loss of generality, we assume � �� 0 as well.

Note that the arrival process is quite general. At any
arrival epoch more than one load and/or more than one
type of load may arrive into the system. That is, while the
sequence of vectors, {Vk}, is i.i.d., we place no indepen-
dence restrictions among the elements of each Vk. Indeed,
	 may represent a broad range of variance-covariance re-
lationships among the arriving quantities.

2.3. The Distribution Facility

The distribution facility has a single vehicle that can use
any one of n possible routes to deliver loads. Each route, j,
requires �j units of time to execute and can simultaneously
deliver up to aij type-i loads. The matrix A � Z�

m
n defines
the delivery capacities of all n possible routes.

We assume that A has rank m, which implies that for
each type of load i there exists at least one route j, for
which aij � 0. Thus, a simple upper bound on the time
required to deliver one unit of an arbitrary type of load is
1��. Together with the upper bound of C1 on each ele-
ment of Vk, this implies that an arbitrary arrival can a.s. be
processed in mC11�� units of time.

The facility can be idle or using exactly one of its n
routes. Accordingly, we define the n-vector Ut, where Ut �
0 if the facility is idle at time t, and Ut � ej if it is currently
executing route j at time t. Once a route j is dispatched, it
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may not be changed for �j units of time. We define Ot �
R� to be the residual time remaining for the route in use
at time t. Each time deliveries commence under route j, Ot

is set equal to �j, and as the deliveries proceed under j, Ot

decreases at rate one until it equals zero and the route has
completed execution. The state of the vehicle is therefore
defined by the pair of values (Ut, Ot).

2.4. Dispatching Policies and System Performance

The set of arrivals up to time t, {(tk, Vk): tk � t}, along
with the sample path of routes and times used up to t,
{(Ur, Or): r � t}, is called the history of the process up to t,
�t. We define a dispatching policy � to be a rule that, given
�t, allows the distribution facility to determine which
route to use at t. This mapping must be nonanticipating
with respect to {�t: t � 0}.

The history of the process up to time t also determines
the system backlog at t. Let Qt � Z�

m represent the quan-
tities of loads in the system that have not entered into
delivery by time t. Note that at arrival epochs tk, there is a
discontinuity in Qtk

because of the arrival of a vector of
loads Vk. Similarly, at epochs at which a delivery com-
mences, there is a discontinuity, as integral numbers of
loads leave the pool of loads waiting to be delivered. Let
{tk�: k� � 1, 2, . . . } be the combined sequence of arrival
and delivery commencement epochs. Then {Qt: � Z�

m: t �
0} obeys the following recursion:

Q 0 � 0,

Q t � �
Q tk�

, t k� � t � t k��1 ,
Q tk�

	 V k , t � t k��1 and V k

arrives at t k��1 ,
Q tk�


 min
Q tk�
, a j � , t � t k��1 and a j

commences at t k��1 .

Our basic measure of performance is the total work in the
system, denoted Wt, where

W t � O t 	 min� �
j�1

n

� j x j �Ax � Q t , x � Z�
n � . (1)

Wt is the minimum time required by the distribution facil-
ity to feasibly clear the system starting at time t, assuming
that no additional loads arrive after t. In the optimal solu-
tion, xj is the number of type- j routes used to clear the
backlog, and we require xj to be integral.

This definition of work is the same as that of completion
time in Bambos and Walrand (1993) and is a generaliza-
tion of the definition of work in system for simple, single
server queues in Wolff (1989). While somewhat course and
aggregate, this definition of work is a quite natural mea-
sure of congestion. For example, it differentiates a low
backlog—one that can be delivered in a few hours—from
a high backlog—one that may take several weeks to com-
pletely clear. Furthermore, in most cases, high levels of
work go hand-in-hand with high numbers of loads in
queue, long throughput times, and other deleterious ef-
fects of congestion, and the minimization of work tends

also to mitigate these negative effects of congestion. One
may therefore view work as measuring undesirable system
behavior rather than as a detailed service cost, similar in
spirit to the squared error function of classical linear-
quadratic control. As discussed in Gans and van Ryzin
(1997), work also appears to be fundamental in determin-
ing other measures of system performance, playing a role
analogous to that of the workload process in classical heavy
traffic analysis.

Observe that the sample paths of {Qt � Z�
m�t � 0},

{Ot � R��t � 0} and {Wt � R��t � 0} depend on the
dispatching policy �, as well as on the sample sequences of
interarrival times {Tk} and arrival quantities {Vk}. When
we wish to emphasize the dependence on �, we will write
Qt

�, Ot
�, and Wt

�.
We say that a policy � is stable if

E � �W� def
� lim

t3�

1
t �

0

t

W s
� ds

exists a.s. and is finite. All bounds and policies we analyze
are in fact asymptotically stationary, so that limt3� E[Wt

�]
� limt3� 1/t �0

t Ws
� ds, as our notation suggests. Let �

denote the class of all policies that are nonanticipating,
stable and asymptotically stationary. We shall henceforth
treat E�[W] as an expectation and restrict our attention
only to policies � � �.

We call a policy, �* � �, optimal if

E �* �W� � inf
���

E � �W�.

Let � be a measure of system utilization, which we define
below (see Equation (6)). Then we call policy �� asymptot-
ically optimal in heavy traffic if

lim
�31

E �� �W�

E �* �W�
� 1.

We address the definition of stability, the asymptotic
characterization of optimal work and dispatching policies
in Section 4; however, to be concrete, we next give two
brief examples of “prototypical” transportation problems
that can be modeled using the set-covering formulation: a
load consolidation problem, and a one-warehouse,
multiple-retailer problem. In Section 7 we use instances of
these example problems as the basis for simulation exper-
iments.

3. TWO EXAMPLE PROBLEMS

3.1. A Load Consolidation Problem

In the load consolidation problem, one truck ships m types
loads from a source to a destination location. The m types
of loads arrive at the source location at random time inter-
vals and wait in queue to be delivered to the destination.

The truck can transport many loads in one delivery, and
for any single delivery there are n ways in which the vehi-
cle may be packed. Each packing must satisfy feasibility
constraints: Typical restrictions are physical, based on the
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volume and weight capacities of the vehicle. Each feasible
packing constitutes a different route j, and aij is the num-
ber of type-i loads that are delivered by the truck under
route j. For the load consolidation problem, the truck
always moves between the same source and destination
pair on each route. Therefore, all delivery times �j are
equal, and without loss of generality we may set them to
one. Our objective is to dynamically dispatch routes (i.e.,
packing configurations) over time so as to minimize the
long-run expected backlog of loads waiting to be shipped
to the destination.

3.2. A One-Warehouse, Multiple-Retailer Problem

In the one-warehouse, multiple-retailer example, a distri-
bution facility replenishes a number of geographically dis-
persed retail outlets, each of which experiences random
demands for several types of products. The warehouse has
a single truck of limited capacity (maximum weight) that
replenishes products to each of a number of retailers. In
this case, each of the m load types designates a particular
product destined for a particular retail location (i.e., a
product-location pair).

The truck may deliver to more than one retail location
on each route, and each product type may have a different
weight. Based on the total weight constraints, we can enu-
merate each feasible delivery route j. Here, aij is the num-
ber of type i loads delivered under route j, and �j is the
time required to complete route j (e.g., the shortest TSP
tour of the sites the route visits). Other restrictions may be
placed on the definition of a feasible route, including limits
on distances traveled, numbers of sites visited, etc. Again,
the objective is to dynamically dispatch routes over time so
as to minimizes the long-run expected backlog of loads
waiting to be delivered from the warehouse to a retailer.

4. MAIN RESULTS

Building on our earlier work in Gans and van Ryzin
(1997), we develop a class of dispatching policies, {�qN

},
that we demonstrate is asymptotically optimal in heavy
traffic. The analysis in Gans and van Ryzin (1997) consid-
ers a relaxation of the distribution problem in which frac-
tional routes may be used and fractional loads may be
delivered. (This model has applications in analyzing flexi-
ble production and service systems.) Below, we extend
these results to the distribution systems described in Sec-
tion 3, for which the vehicle can only dispatch complete
(nonfractional) routes.

4.1. The Relaxed System

Suppose the dispatching restrictions described in Section
2.3 are relaxed so that the distribution facility can use
fractional quantities of the n routes. Furthermore, suppose
the facility can use routes to process fractional numbers of
loads.

For a given backlog Qt, the time required to clear such a
relaxed system will provide a lower bound on the time

required to clear the system defined in Section 2. In par-
ticular, by removing the integrality restriction from (1) we
create a linear program (LP) lower bound on system work
at time t:

W t � O t 	 min� �
j�1

n

� j x j �Ax � Q t , x � 0� . (2)

REMARK. In Gans and van Ryzin (1997) each column of
the matrix A is normalized by dividing by �j and represents
rates of delivery for the m classes of loads, rather than
quantities delivered. Similarly, because the facility pro-
cesses arbitrarily small fractional units of backlog quanti-
ties, in Gans and van Ryzin (1997) Qt is continuously
reduced as the facility delivers the backlog, and Ot � 0 for
all t � 0. We also note that what (2) defines to be W t was
labeled Wt in Gans and van Ryzin. In turn, Gans and van
Ryzin defined W t to be a further lower bound on (2).

4.2. A Lower Bound on System Work

Recall that � � E[Vk], and let y* � Rm be the optimal
solution to the LP

max
� �y�y �A 
 � , y � 0�. (3)

In Gans and van Ryzin (1997) it was shown that the lower
bound

y* �Q t 
 W t (4)

holds for any backlog, Qt. Observe that (3) is the dual of

min� �
j�1

n

� j x j �Ax � � , x � 0� . (5)

For this relaxed system, we can interpret y* as an alloca-
tion of work content, or processing time, to the different
classes of loads. Similarly, the optimal solution to (5) iden-
tifies a basis, B � Z�

m
m, of efficient routes. That is, for any
point Qt in the cone of B, B�1Qt is a feasible solution to
(2). Furthermore, from (4) we see that the associated pro-
cessing time, 1�B�1Qt � y*�Qt, equals the optimal solu-
tion to (2).

In Gans and van Ryzin (1997) we show that the system
work process in the GI/GI/1 queue with interarrival times
{Tk�k � 1, 2, . . . } and service times { y*�Vk�k � 1,
2, . . . } provides a sample-path lower bound for work in
the relaxed system under any policy. Then defining

� def
� �y* �� , (6)

as we would for system utilization in the GI/GI/1 queue,
we use this lower-bound process to derive stability results
and a heavy-traffic lower bound for expected work in the
relaxed system.

THEOREM 1 (Gans and van Ryzin 1997). (i) If � � 1 then
E�[W] � � for any policy � � � and the system is unsta-
ble; (ii) if we scale T so that � 3 1 from below as � 3
1/y*��, then
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lim
�31

�1 
 �� E � �W� �
��� T

2 	 y* �	y*�
2 .

REMARK. Theorem 1 uses the limit “� 3 1.” Technically,
however, this limit is shorthand for a description of a se-
quence of stable systems, (indexed by n) for which Vn and
Tn both converge in distribution and �n 3 1 from below
(for example see Wolff 1989, p. 518). To simplify the expo-
sition, we will henceforth consider the distribution of the
arrival sequence {Vk; k � 1} to be fixed, and interpret �3
1 to mean an increase in the rate at which these job quan-
tities arrive.

Recall that W t is a lower bound for Wt. Therefore, the
bounds provided by Theorem 1 may be used to define
instability and a heavy-traffic lower bound on expected sys-
tem work in the restricted system as well.

4.3. Upper Bounds for the Relaxed System Based
on Batching Policies

We demonstrate in Gans and van Ryzin (1997) that a class
of policies, {�BN

�N � 1, 2, . . . }, is asymptotically optimal
as �3 1. In the policies {�BN

}, the distribution facility acts
as a bulk-service queue in which the individual arrival vec-
tors {Vk} are served in batches of N. While somewhat
clumsy from a practical standpoint, these batching policies
have the advantage of being analytically tractable, provid-
ing constructive, closed-form upper bounds on the optimal
work.

We may think of bulk service as operating in two stages.
In the first stage, an accumulator collects batches of N
arrivals. In the second, a batch server processes these
batches of N. For the policy �BN

in particular, a batch is
formed every Nth arrival, where N depends on �. We call
every Nth arrival epoch a batching epoch, because these
are times at which the accumulator passes batches to the
batch server.

In the policies {�BN
}, the batch server processes incom-

ing batches on a first-come, first-served basis. For each
batch, l, it substitutes the quantities associated with the lth
batch (¥k�1

N VN(l�1)�k) for Qt in the right-hand side of (2)
and uses the LP’s optimal solution to determine the times
for which the various routes will run. Thus, the batch
server behaves as a GI/GI/1 queue with interarrival times
that are the sums of N system interarrival times Tk and
service times that are determined by solving the LP (2) for
each successive batch.

The intuition behind using the class {�BN
} is to pick a

large N so that quantities to be processed in each batch
are likely to fall in the cone of B. Then the processing
time of each batch l is likely to achieve the lower bound,
y*� ¥k�1

N VN(l�1)�k. If the solution to (5) is not degener-
ate, then � lies in the interior of the cone of B, so as N
grows large, the probability that ¥k�1

N VN(l�1)�k falls out-
side of the cone decreases rapidly.

4.4. Modified Policies to Serve Restricted Systems

Our goal is to apply this batching heuristic to the dynamic
dispatching problem. However, the integrality restrictions
imposed in (1) introduce a potentially significant source of
idleness that does not exist in the relaxed version of the
system, and it is not clear a priori that Theorem 1 provides
a tight lower bound on expected system work in heavy
traffic. For example, one can show that rounding the LP
relaxation in the batch policy will not produce an asymp-
totically optimal policy.

Nevertheless, we are able to modify the batching poli-
cies so that they satisfy the integrality restrictions of (1)
and converge to the lower bound of Theorem 1 (ii). The
modification uses results on totally dual integral (TDI)
systems of linear inequalities. More specifically, we con-
struct batches so that the backlogs of all m types of loads
in each batch are multiples of some large integer, q. This,
in turn, ensures that for every batch, the solution to the LP
relaxation of (1) is TDI and produces an optimal feasible
solution for the original integer program. The new class of
policies is called {�qN

�N � 1, 2, . . . }. Again, we point out
that this class of policies is clearly not practical. However,
the policies have the correct asymptotic behavior and
therefore allow us to precisely characterize optimal work
in heavy traffic.

THEOREM 2. (i) If � � 1 and y* is the unique solution to
(3), then there exist a C2 � 0, a � � 0 and an integer, N*,
such that all members of the class {�qN

�N � 1, 2, . . . } �
� for which N � N* are stable and satisfy

E �q N

�W� 

�� y* �	y* 	 � T

2�

2�1 
 � 
 �O�e ��N��

	
C 2

N�1 
 � 
 �O�e ��N��
	 O�N�.

(ii) If the conditions of Theorem 1 (ii) and Theorem 2
(i) hold, and we define N def

�  (1 � �)�b for an arbitrary,
fixed b � (0, 1), then

lim
�31

�1 
 �� E �q N

�W� 

��� T

2 	 y* �	y*�
2 ,

so that the policies in the class {�qN
} are asymptotically

optimal as � 3 1. Moreover, together with Theorem 1 (ii)
this implies

lim
�31

�1 
 �� E �* �W� �
��� T

2 	 y* �	y*�
2 .

Theorem 2 shows that as the traffic intensity grows, the
integrality restrictions of the distribution problem do not
fundamentally affect the optimal level of work relative to
the relaxed system. In turn, the dual prices to the LP
relaxation of (1), y* accurately describe the time required
to ship each of the m types of loads in heavy traffic.

In the following section we develop these results, and in
Section 6 we present an effective, practical heuristic that
uses insights from the analysis. The policy is dynamic,
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choosing a new route each time the previous one com-
pletes execution. In selecting the next route to be used, the
policy uses the dual prices, y*. Readers who wish to con-
centrate on the practical application of these results may
proceed directly to Section 6.

5. PROOF OF THE MAIN THEOREM

Our proposed policy creates batches every Nth arrival ep-
och as before. However, at batching epochs quantities of
the m types of loads in the accumulator are rounded down
to the greatest multiple of q to form a batch. Any leftover
loads after the rounding become part of the pool of loads
in the accumulator from which the following batch is
formed.

The presence of these leftover loads introduces depen-
dencies among the sequence of batched quantities. How-
ever, by viewing the sequence of quantities arriving at the
batch server as a discrete time Markov chain, we show that
the covariance between any pair of quantities vanishes ex-
ponentially quickly and that the expected work is bounded
above by the analogous GI/GI/1 upper bound plus a con-
stant.

5.1. Totally Dual Integral Polyhedra

The modified class of policies makes use of a well-known
result in polyhedral combinatorics concerning total dual
integrality. To motivate the new class of policies, we first
present this result.

A rational linear system of inequalities, { y�A � ��, y �
0}, is totally dual integral if, for any integer objective Q for
which max{ y�Q: y�A � ��, y � 0} has an optimal solu-
tion, the corresponding dual program min{��x: Ax � Q,
x � 0} has an integral optimal solution. Giles and Pulley-
blank (1979) proved the following concerning TDI polyhe-
dra.

THEOREM 3 (Giles and Pulleyblank 1979). For any rational
linear system of inequalities, { y�A � ��, y � 0}, there
exists a rational � � 0 such that { y�(�A) � (���), y � 0}
is TDI. When A is integral, ��1 is integer valued as well.

We can apply this result to our system to show there
exists a rational � � 0 such that the solution to min{¥j�1

n

��jxj: �Ax � Qt, x � 0} is integral for all integral Qt for
which there exist an optimum. Since we assume that A �
Z�

m
n is of full rank, there always exists a finite optimal
solution for any finite backlog vector, Qt � Z�

m. Further-
more, since A is integral, we can define q def

� ��1 and
rescale the linear program by q to show that min{¥j�1

n �jxj:
Ax � qQt, x � 0} has an integral optimal solution for all
integral Qt.

Therefore, if we can ensure that the backlogs of all m
types of goods are multiples of q units, then the solution to
the LP relaxation in (2) will produce an optimal feasible
solution for the original integer program in (1).

5.2. The Class of Modified Batching Policies

For the class {�qN
} the system acts as a bulk service queue.

At batching epochs, the accumulator forms a batch by
rounding down the backlogs of each of the m types to the
nearest multiple of q. It then sends the batch to the batch
server and retains the remaining loads. These remaining
loads become a part of the total backlog in the accumula-
tor at the next batching epoch.

To facilitate our analysis, we define three random se-
quences {T̂l � R��l � 0, 1, . . . }, {V̂l � Z�

m�l � 0,
1, . . . }, and {R̂l � Z�

m�l � 0, 1, . . . } as follows:

T̂ l
def
� �

k�1

N

T N�l�1��k ,

V̂ l
def
� R̂ l�1 	 �

k�1

N

V N�l�1��k 
 R̂ l ,

R̂ l
def
� mod� R̂ l�1 	 �

k�1

N

V N�l�1��k , q1� . (7)

T̂l is the interarrival time between the (l � 1)st and lth
batches, V̂l is the vector of loads making up the lth batch,
and R̂l is the set of loads remaining in the accumulator
after the lth batching epoch. For all batches, l � 1, each
element of V̂l is an integral multiple of q and each element
of R̂l is an integer between 0 and q � 1. Note that R̂0

specifies an initial system backlog at time zero.
In turn, we define the sequence of random variables,

{Ŝl � R��l � 0, 1, . . . }, to be the processing times de-
rived by substituting each V̂l in the right-hand side of (2)
and solving the LP. Thus, the batch server behaves as a
GI/G/1 queue with interarrival times {T̂l} and service
times {Ŝl}.

5.3. An Upper Bound on the Expected Backlog

To develop an upper bound on E�qN
[W] we will separately

bound the time averages of the work found in the accumu-
lator and in the batch server. The sum of these two bounds
provides a crude upper bound on total average system
work.

We begin with the accumulator. Under policy �qN
the

quantity of loads in the accumulator starts at R̂l�1 at the
beginning of the lth batching cycle, increases throughout
the cycle, and reaches its peak, V̂l � R̂l, as the Nth arrival
of the batch occurs and the batch is dispatched to the
batch server. Therefore, the processing time of the backlog
in the accumulator peaks at the end of any cycle.

Recall from Section 2.2 that the time required to pro-
cess an arbitrary arrival Vk is bounded above by mC11��.
Similarly, recall that 1�� is an upper bound on the time
required to process a unit of the backlog of arbitrary type
and that each element of R̂l�1 is bounded above by q.
Because the backlog in the accumulator at the lth batching
epoch is V̂l � R̂l � R̂l�1 � ¥k�1

N VN(l�1)�k, we can define

C 3
def
� �mC 1 	 q�1 �� , (8)
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so that NC3 is an upper bound on the time required to
process the backlog in the accumulator at any time during
an arbitrary cycle.

Our next task is to find an appropriate upper bound on
the average time required to process the backlog at the
batch server. Under policy �qN

the batch server processes
incoming batches on a first in, first out (FIFO) basis.
While the batch server behaves as a single-server queue
with i.i.d. interarrival times {T̂l}, service times {Ŝl} are not
independent of each other. In particular, V̂l depends on
the size of the previous batch through the remainder term,
R̂l�1. Note that if {R̂l} is asymptotically stationary, the
sequence of distribution times {Ŝl} is stationary as well.

Suppose {R̂l} is stationary and let D̂ be the delay that a
batch finds upon arrival to the batch server. Then the
following lemma provides an upper bound on E[D̂].

LEMMA 1 (found in Daley et al. 1992, p. 187). Let D be the
delay found upon arrival in a GI/G/1 queue with i.i.d.
interarrival times T, stationary service times S, and {S}
independent of {T}. If there exist dependencies among ser-
vice times, then whenever E[S] � E[T] and E[D2] � � the
following bound holds: E[D] � E[(S � T)2]/2(E[T] �
E[S]).

In the case of the batch server, with service times Ŝl and
interarrival times T̂l, Lemma 1 is equivalent to

E�D̂� 

var�Ŝ l � 	 var�T̂ l �

2�E�T̂ l � 
 E�Ŝ l ��
	

E�T̂ l � 
 E�Ŝ l �

2 .

In turn, the following well-known relationship between the
time average of system work and expected delay upon ar-
rival will allow us to characterize an upper bound on time-
average work waiting at the batch server.

LEMMA 2 (found in Wolff 1989, p. 279). Let E[D] be the
expected delay found upon arrival and E[W] be the time
average of system work in a stable, work-conserving G/G/1
queue with stationary interarrival times T and stationary
service times S. Then

E�W� �
E�SD�

E�T�
	

E�S 2�

2E�T�
.

Unfortunately, we cannot immediately use Lemmas 1
and 2 to develop a simple upper bound on E�qN[W]. While
interarrival times to the batch server are i.i.d. with

E�T̂ l � � N/� and var�T̂ l � � N� T
2, (9)

an analysis of the sequence of service times {Ŝl} is much
more difficult. In particular, each Ŝl is the solution to an
LP. Furthermore, dependencies among service times make
the moments of Ŝl, as well as E[ŜlD̂l], difficult to calculate.

Therefore, rather than attempting to calculate moments
directly, we take the approach of Gans and van Ryzin
(1997) and define a sequence of service times {S� l: l � 1,
2, . . . }, which is easier to analyze and provides a sample-
path upper bound on the sequence {Ŝl}. The expected

delay upon arrival to the batch server under policy �qN
can

then be bounded by

E�D̂� 

var�S� l � 	 var�T̂ l �

2�E�T̂ l � 
 E�S� l ��
	

E�T̂ l � 
 E�S� l �

2 . (10)

Similarly, the time average of work in a system with batch
service times {S� l} will provide an upper bound on the
average system work under �qn

.
We begin the construction of S� l by noting that for some

batches Ŝl � y*�V̂l and the processing time achieves the
lower bound. This happens when V̂l lies within the cone of
the optimal basis B of (5). More formally, if the solution to
(3) is unique, then (5) is nondegenerate, and there exists
an � � 0 such that y* remains the vector of dual prices for
all backlogs Q � �(�, �) that are substituted in the right-
hand side of (2) (see Bazaraa et al. 1990, p. 260). Since
LPs are homogeneous of degree one in their right-hand
sides, y* is the optimal vector of dual prices for all V̂l �
�(N�, N�). Thus, Ŝl � y*�V̂l for any batch, l for which
V̂l � �(N�, N�).

For other batches, V̂l � �(N�, N�) and the dual
prices y* may not apply. NC3 provides a uniform upper
bound on the processing time of these batches. Let {El}
def
� {V̂l � �(N�, N�)}. The following proposition shows
that the probability that {El} occurs is exponentially
decreasing in N.

PROPOSITION 1. If y* is the unique solution to (3), then
there exists a � � 0 such that P{El} � O(e��N).

Using the bounds on the processing times of V̂l and the
definition of {El} we then define the upper bound on Ŝl:

S� l
def
� y* �V̂ l 	 NC 3 1 
El �

. (11)

In turn, we use (11) to derive the following upper bound
on time-average system work under �qn

:

PROPOSITION 2. If y* is the unique solution to (3), then for
any � � 1 there exists an integer N*1 � � such that for all
N � N*1, E�qN

[W] � E[D̂] � O(N).

The proofs of Propositions 1 and 2 may be found in the
Appendix.

Before we can demonstrate the asymptotic optimality of
the policies {�qN

}, we must solve two problems. First, (10)
holds only for stationary queues for which E[D̂2] � �. We
must show that, without loss of generality, we may analyze
a stationary version of the batch server and must bound
the second moment of its delay. Second, to use (10) to
prove asymptotic optimality we must find sufficiently tight
upper bounds on the first two moments of S� l. To do this
we must address the dependence among elements of the
sequence {S� l}. We accomplish both tasks by viewing the
sequence of service times at the batch server as a function
of a discrete-time Markov chain.
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5.4. The Batch Service Queue as a Mixing Process

We recall that the service time of the lth batch is linked to
that of previous batches through the remainder term, R̂l�1.
Not only does this remainder term have a direct effect on
the size of the following batch, it also has an indirect effect
on subsequent batches, through later remainder terms.
Still, we might imagine that the farther out in the sequence
of V̂ls we look, the less effect the realization of R̂l�1 has on
batch sizes, particularly if the number of arrivals included
in a batch N dwarfs q � 1, the maximum value that R̂l�1

may obtain.
For a stationary sequence of random variables, this

asymptotic independence among terms is made precise us-
ing the notion of a mixing process. Specifically, suppose
{S1, S2, . . . } is a stationary sequence of random variables.
For a � b define �a

b to be the �-field generated by
{Sa, . . . , Sb}. Then {Sk} is �-mixing if there exists a se-
quence {�1, �2, . . . } for which limn3� �n � 0 such that

	P
F 1 � F 2 � 
 P
F 1 �P
F 2 � 	 
 � n P
F 1 � (12)

for all events F1 � �0
k and F2 � �k�n

� .
It is not difficult to show that the arrival process to the

batch server is asymptotically �-mixing. The underlying se-
quence of interarrival times {Tk} is i.i.d. and therefore
stationary and �-mixing with �n � 0 for all n.

To demonstrate that the sequence of distribution times
is asymptotically �-mixing we represent the distribution
times at the batch server as a function of the evolution of a
discrete-time Markov chain with a 2m-dimensional state
space. It is well known that a finite, homogeneous, aperi-
odic Markov chain is asymptotically stationary. It is also
known (c.f. Billingsley 1968, p. 167–168), that a finite, ho-
mogeneous, stationary Markov chain is �-mixing with

� n � �� n (13)

for some fixed constants � � 0 and � � (0, 1).
We describe the Markov chain. Each arrival epoch tk in

the original system corresponds to a transition of this em-
bedded Markov chain. At each transition, the first m ele-
ments of the Markov chain are assigned the values realized
by Vk; we will continue to refer to these first m elements as
Vk. We call the second set of m elements of the state space
Rk � Z�

m, and at each transition, we define

R k
def
� mod�R k�1 	 V k , q1� ,

where R0
def
� R̂0. Thus, {Rk: k � 0, 1, . . . } describes the

evolution of the remainder term at each arrival epoch, and
at each batching epoch l, RNl � R̂l.

For 0 � a � b we call �a
b the �-field generated by states

a through b of the Markov chain. Then V̂l � �N(l�1)
Nl , and

Ŝl � �N(l�1)
Nl as well, since it is a function of V̂l. Thus, for

stationary {V̂l} the sequence {Ŝl} is �-mixing with �n de-
fined as in (13). We note that a stationary version of the
batch service system initializes the starting backlog R0 ac-
cording to the Markov chain’s stationary distribution for
Rk.

The asymptotically �-mixing property of the arrival pro-
cess suggests that we should be able to use such a station-
ary version of the batch server to determine the upper
bound for E[D̂] and that the result should hold, no matter
what the actual initial backlog, R0. In particular, Szczotka
(1990, p. 233) notes that the limiting waiting time distri-
bution of a G/G/1 queueing system is the same as that of
the stationary version of the system whenever: (a) the
interarrival and service times of the original system can
be defined as functions of a homogeneous, positive re-
current Markov chain; and (b) the stationary version has
E[Ŝl] � E[T̂l].

We have developed just such a Markov chain as re-
quired by (a), and the following proposition demonstrates
how we can maintain (b) by construction.

PROPOSITION 3. If y* is the unique solution to (3), then for
the stationary sequence of distribution times {S� l},

E�S� l � � Ny* �� 	 O�Ne ��N�.

In turn, for any � � �y*�� � 1 there exists an integer,
N*2 � � such that E[S� l] � E[T̂l] for all batch sizes N � N*2.

Thus, by choosing a large enough batch size, we can
ensure that the stationary version of the (upper bound S� of
the) batch server maintains condition (b). We can similarly
demonstrate the finiteness of E[D̂2] whenever � � 1.

PROPOSITION 4. For any fixed � � 1, there exists an integer
N*3 � � such that E[D̂2] � � for all batch sizes N � N*3.

Given a stationary sequence of batch distribution times,
{S� l}, we can then use (12) to develop the following bound
on var(S� l).

PROPOSITION 5. If y* is the unique solution to (3), then
there exists an integer N*4 � � and a real 0 � C2 � �, such
that for any batch size N � N*4,

	var�S� 1 � 
 Ny* �	y* 	 
 C 2 .

With the first two moments of S� l at our disposal, we can
use (10) and Proposition 2 to find the upper bound on
E�qN

[W] shown in Theorem 2 (ii) and, in turn, to demon-
strate the asymptotic optimality of the class of policies
{�qN

} in heavy traffic. The proofs of Propositions 3, 4, and
5, as well as that of Theorem 2, may be found in the
Appendix.

6. PRACTICAL DISPATCHING HEURISTICS

As mentioned in Section 4, the batching policies {�qN
} are

designed primarily to provide analytically tractable upper
bounds, and, as simulation results in Gans and van Ryzin
(1997) have shown, they appear to have limited practical
potential. Nevertheless, we can use the insights from the
analysis in Section 5 to develop practical policies that ap-
pear to perform well in simulation experiments.

In this section, we describe four heuristic dispatching
policies. Two are “straw” policies that are intended to
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mimic naive heuristics that might be used in practice. An-
other two are practical policies constructed using insights
from our asymptotic analysis. All four policies dynamically
choose the next route to be used each time a route com-
pletes execution. Hence, unlike the batching policies, they
do not require a large backlog to be present in the system
to begin dispatching routes.

6.1. Two Straw Policies

One simple heuristic policy is to choose the route that will
process the greatest number of loads per unit of time. The
NUMBER policy follows this approach. Each time it com-
pletes the execution of a column, NUMBER uses the cur-
rent backlog, Q, to calculate

� j
�11 � min
Q, a j � , (14)

for each column, j. NUMBER then selects the column, k,
that maximizes (14).

NUMBER is a variant of the “shortest processing time
first” (SPT) scheduling rule, because (14) measures the num-
ber of loads delivered per unit time. The SPT rule, when
applied preemptively, is known to minimize the expected de-
lay in single-server systems (see Wolff 1989, p. 445–446).

A variant of NUMBER assigns a weight to each type of
load and chooses the route that processes the maximum
amount of weight per unit of time. For the WEIGHT
policy, the user inputs a weight parameter wi for each type
of load before the simulation begins. To decide which col-
umn to process, WEIGHT then uses w � Rm to calculate

� j
�1w � min
Q, a j �, (15)

for each column j and selects the column k that maximizes
(15). The weights may represent some measure of the ship-
ping capacity used by the different types of loads, such as
physical weight or volume. Alternatively, the weights may
represent some exogenous measure of the relative desir-
ability of delivering each of the different types of loads.

For both policies it is possible that more than one col-
umn maximizes (14) or (15). In these cases both policies
use the same set of three tiebreaking rules: (a), if column k
dominates column j,

min
Q, a j � � min
Q , a k � ,

then choose column k; otherwise (b), if test (a) results in a
tie, then if the maximum residual backlog left by column k
is less than that left by column j,

max
1�i�m


max
0, Q i 
 a ik �� � max
1�i�m


max
0, Q i 
 a ij �� ,

then choose column k; or (c), if tests (a) and (b) both
result in ties, then flip a coin. Note that test (b) acts as a
check that the backlogs of the different types of loads
remain roughly in balance.

6.2. Two Policies Motivated by the Analysis

Our definition of work, the minimum time required by the
distribution facility to clear the system backlog, suggests a
greedy heuristic as a natural choice. Following this objec-

tive, the GREEDY policy always seeks to deliver the cur-
rent system backlog as quickly as possible, without regard
for future arrivals.

Each time it completes the execution of a column,
GREEDY substitutes the current backlog, Q, in the right-
hand side of (2) and solves the LP. The result of (2) deter-
mines a direct path back to the origin that requires a
minimum of delivery time. GREEDY then uses the dual
prices from the optimal solution of the LP (2) to select the
next column it will use to process the backlog. Specifically,
GREEDY chooses a column with minimum effective re-
duced cost. That is, for each column, j, GREEDY calcu-
lates the effective reduced cost as

� j 
 y t
�min
Q t , a j �, (16)

where yt � R�
m is the vector of dual prices associated with

the optimal solution to (2). GREEDY then selects the
column, k, that minimizes (16) as the next route it will use
to process the backlog. The column runs for �k units of
time, and when it completes execution, the selection pro-
cess begins anew. If more than one column minimizes (16),
GREEDY uses the same tiebreaking rules described for
NUMBER and WEIGHT to select the next route. We
note that GREEDY does not make use of the optimal
basis, B, nor of any information concerning the distribu-
tions of V and T.

The last policy, CENTER, uses additional insights from
our asymptotic analysis. In particular, the analysis of the
batching policies suggests two objectives that a dispatching
rule must accomplish if it is to be effective for high-
utilization systems: (a) the policy should use the columns
of B (or, more generally, zero reduced cost columns) as
much as possible; (b) the policy should try to maintain the
backlog “centered” within the cone of B, so it can continue
to use the columns of B in the future.

Like GREEDY, at each epoch that a column completes
execution, CENTER “prices out” columns to decide which
route will be used next. Rather than using the “greedy”
dual prices yt as in (16), however, CENTER uses the dual
prices generated by (3), y*. That is, for each column j,
CENTER calculates the effective reduced cost as

� j 
 y* � min
Q t , a j � (17)

and selects the column k that minimizes (17). By using the
dual prices from (3), y*, CENTER increases the likelihood
that the optimal basis B will be used. In particular, if the
solution to (5) has a unique optimal basis then whenever
at least one column, j � B, has min{Qt, aj} � Qt, CEN-
TER will choose a column of B.

To ensure that the backlog remains “centered” within
the cone of B, CENTER uses a tiebreaking rule that dif-
fers from the rules used by the other three heuristics. The
rule selects the column which minimizes the L2 norm to a
“centering” ray, C � R�

m, that represents a favorable ratio
of load types.

Before the simulation begins, the policy uses � and B to
construct C as follows: (a) let d � Rm equal B�1�; (b) let
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e � Rm be the “inverse” of d, where for each element, i,
ei � 1/di; then (c) let C � Be. Thus, if the ray of � is near
a boundary of the cone of B, then C is placed near the
opposite boundary.

Now suppose that the policy maintains the backlog so
that Qt remains near C. By placing C near the boundary of
the cone of B opposite to �, the probability that an arrival
drives the backlog out of the cone of B is reduced (for an
example in two dimensions, see Figure 1).

The revised tiebreaking rules for CENTER are as fol-
lows: (a), if column k dominates column j then choose
column k; (b), if test (a) results in a tie, then if the L2

norm from the backlog to C after dispatching route k is
smaller than that after dispatching route j,

min
�


�
i�1

m

��C i 
 max
0, Q t
i 
 a ik �� 2

� min
�


�
i�1

m

��C i 
 max
0, Q t
i 
 a ij ��

2,

then choose column k; otherwise (c), if tests (a) and (b)
both result in ties, then if the maximum residual backlog
left by column k is less than that left by column j then
choose column k; or (d), if tests (a), (b), and (c) all result
in ties, then flip a coin. Rules (a), (c), and (d) for CEN-
TER are defined as (a), (b), and (c) were defined for the
other heuristics.

7. NUMERICAL ANALYSIS

This section reports the results of three sets of simulation
experiments which test the performance of the four heuris-
tics describes in Section 6. The simulations sample the LP
lower bound on system work found upon arrival under the
heuristics, {W tk

�
� : k � 1, 2, . . . }, as well as the analogous

quantities for the lower bound process defined by the GI/
GI/1 queue described in Section 4.2 (which in this section
we will call LOWER).

In each simulation run, we use the method of “batch
means” (see Law and Kelton 1982, p. 295–297) with
batches of size

M � 10
� 2� T

2 	 y* �	y*/� y* ��� 2

�1 
 �� 2 (18)

(see Whitt 1989, p. 1355–1357). For the lower bound and
each of the three policies, the sample points of the work
process that fall within each batch are averaged. The sim-
ulation run terminates when the 95% confidence intervals
for the estimates of the population means (the average of
the averages) are less than or equal to �10% of the esti-
mate of the population means themselves. Policies which
appear to be unstable—because their population means
increase with every new batch—are excluded from the
�10% stopping requirement.

In all simulation runs, we use i.i.d. exponential interar-
rival times. Then by PASTA (see Wolff 1989, p. 293–297)
we may interpret the arrival averages calculated by the
simulation to be unbiased estimates for the analogous time
averages, E�[W]. Within each of the three sets of simula-
tion experiments, we vary only the mean of the interarrival
time distribution T to achieve ��s of 0.8, 0.9, 0.95, and 0.99.

7.1. Simulation Examples

An Example Load Consolidation Problem. The first two
sets of experiments simulate a load consolidation problem.
In the problem, four types of loads—“sizes” 51, 26, 12, and
3—arrive at random intervals to a source location and wait
for delivery to a destination. A truck of capacity 100 deliv-
ers the backlog of loads waiting to be shipped by traveling
from the source to the destination and back. The time
required to complete the round trip is one. The set of
feasible routes is defined by the set of all packings of the
truck for which the aggregate size of the loads being
packed does not exceed the truck’s capacity. While there
are 367 feasible packings of the truck, only 30 are not
dominated (if aj � ak then j dominates k).

An Example One-Warehouse, Multiple-Retailer Problem.
The third set of experiments simulates a one-warehouse,
multiple-retailer problem. In the problem, there are seven
retailers, whose locations are shown in Figure 2. Each of
the seven retailers experiences random demand for two
types of products, one of size 2 and the other of size 3.
Therefore, there are 14 distinct load types enumerated in
the set covering model, one for each product-location pair.
The warehouse has one truck of capacity 5 with which it
replenishes all seven retailers. Again, feasible delivery
routes are ones which ship products whose aggregate size
does not exceed the truck’s capacity. In total there are 91
feasible routes that visit one or two locations, 77 of which
are not dominated. In this problem the various routes re-
quired different amounts of time to execute. The time re-
quired to complete a route equals the length of the TSP
tour that visits the route’s locations.

Figure 1. Examples of the expected effect of an arrival
on the backlog.
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In all three sets of simulations the WEIGHT policy uses
the loads’ sizes as their weights when it decides which
loads in the backlog to deliver. All other aspects of
WEIGHT, as well as the other policies, are implemented
as previously described.

Arrival Statistics. For all three examples, exactly one load
arrives into the system at an arrival epoch. Therefore, each
�i equals simply the conditional probability that a type-i
load arrives, given there has been an arrival (see Table 1).
In addition, the coefficient of variation of each type of
load’s arriving quantity, calculated as �(1 � �i)/�i, is
greater than or equal to 1.5 for all loads except type 4 in
Example 1. The fact that only one type arrives at a time
also implies that for all examples, the arriving quantities
are negatively correlated across types, with correlation for
types i and j equal to ���i�j/(1 � �i)(1 � �j).

In Example 1, the arrival probabilities obtain dual prices
that are directly proportional to the loads’ sizes. In this
case, we expect the performance of WEIGHT to be similar
to that of CENTER, since both policies effectively use the

same primary decision-making rule. In turn, we can at-
tribute differences between the two policies’ performances
to the effect of their different tiebreaking rules.
The probabilities for Example 2 lead to zero dual prices
for loads types 2, 3, and 4. Here, the smaller loads are not
“in heavy traffic.” That is, as it attempts to minimize the
backlogs of the largest loads, the vehicle has ample capac-
ity to deliver the smaller loads. Finally, note that Example
3’s arrival probabilities are all of the same order of magni-
tude. At the same time they are constructed not to be
perfectly symmetric across types. (See Table 1.)

7.2. Simulation Results

The simulation results are summarized in Tables 2 and 3.
Note that the CENTER policy consistently outperforms both
the two straw policies and the GREEDY policy. Further-
more, as system utilization increases, the LP lower bound on
the policy’s expected backlog appears to approach the perfor-
mance of the lower bound process, though the optimality
gap in Example 3 is quite wide, even at � � 0.99.

Table 2 presents the raw simulation results: confidence
intervals for LOWER and for the LP lower bounds on
expected work under the four policies. Note that for each
example, crude upper bounds on system performance un-
der all of the policies can be calculated from Table 2 by
adding the sum of the m largest �j’s to the lower bounds.
For Examples 1 and 2, this sum equals 4 (m 
 1), and for
Example 3 it equals 219.2.

With exponential interarrival times, the lower bound
process behaves as an M/G/1 queue. Therefore, as a check
on the validity of the simulation results for the lower
bound process, we compare LOWER to its corresponding
analytical expectation. Table 2 shows that in all cases the
M/G/1 expectation falls within the 95% confidence interval
of the simulation mean for LOWER.

For each simulation run, Table 3 shows the relative fre-
quency with which each policy uses the columns of the
optimal basis B, as well as the relative frequency with which it
uses any column whose reduced cost in (5) equals zero (�j �
y*�aj � 0). While the columns of B are always included in
this second set, there will be zero-reduced-cost columns
which are not a part of B whenever multiple optimal solu-
tions to (5) exist. Indeed, in Examples 1 and 2 the solution of
(5) has multiple optimal solutions; for these examples we
use this larger set to capture the use of all of the columns
which efficiently deliver the backlog of system work.

In Example 1, in which the loads’ dual prices are propor-
tional to their sizes, the WEIGHT, GREEDY, and CEN-
TER policies all perform well. As utilization increases, all
three policies’ LP lower bounds continue to converge to
LOWER. As noted earlier, CENTER’s advantage over
WEIGHT can be explained by its “centering” tie-breaking
rule, which actively seeks to maintain an advantageous mix of
load types in the backlog. GREEDY’s ability to dynamically
redefine its “preferred” routes, based on the mix of load
types in the backlog, evidently allows it to manage the mix of
loads in the backlog better than WEIGHT as well.

Figure 2. One-warehouse, multiple-retailer problem
used in simulations.

Table 1. �s used in simulations and their associated
y*s.

Type
i

Example 1 Example 2 Example 3

�i y*i �i y*i �i y*i
1 0.0413 0.5152 0.3 1.0 0.066 3.61
2 0.0810 0.2576 0.2 0.0 0.073 3.61
3 0.1755 0.1212 0.3 0.0 0.067 2.56
4 0.7021 0.0303 0.2 0.0 0.081 3.00
5 — — — — 0.063 2.24
6 — — — — 0.074 3.42
7 — — — — 0.083 3.00
8 — — — — 0.064 3.61
9 — — — — 0.072 3.61

10 — — — — 0.083 8.21
11 — — — — 0.051 3.00
12 — — — — 0.085 6.71
13 — — — — 0.056 5.06
14 — — — — 0.082 3.00
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Observe that the fraction of instances in which WEIGHT,
GREEDY, and CENTER use zero-reduced-cost columns
continues to grow as � increases in Example 1, exceeding
94% for all three policies at � � 0.99. In contrast, the use of
these columns stalls at about 65% for NUMBER, and this
policy quickly becomes unstable. Also note that fraction of
instances in which any of the policies uses the columns of B is
quite low, typically under 5% of the total. Indeed, because
the dual prices are proportional to the loads’ weights, ev-
ery column in the A-matrix has a reduced cost equal to or
close to zero. In total there are 19 columns with reduced
costs of zero, only four of which are included in B.

In Example 2, GREEDY and CENTER appear to con-
verge quickly to the lower bound, falling within 1% to 3% of
LOWER at � � 0.99. Furthermore, they are the only policies
that remain stable at this utilization. It is not surprising that
NUMBER and WEIGHT do not perform well in this case
because their weighting schemes do not correspond to the
loads’ dual prices.

Again, Table 3 shows that as system utilization in-
creases, GREEDY and CENTER increasingly use zero-
reduced-cost columns, exceeding 99% at � � 0.99, while

NUMBER’s and WEIGHT’s use of these columns does
not grow consistently with increases in �, stalling out at
about 90% and 95%, respectively. In Example 2 there are
two classes of routes: those that ship a large load and have
a reduced cost of zero, and those that do not and have a
reduced cost of one. The columns of B represent four of
the seven columns of A that have a reduced cost of zero.

In Example 3 the performance of all of the policies is
poorest when compared to LOWER. At � � 0.99 the average
lower bound on CENTER’s backlog is significantly above
LOWER, and the other three policies are unstable. Never-
theless, CENTER’s performance, though poor with respect
to the lower bound, is strongest relative to that of the other
three heuristics. From Table 3 we see that CENTER’s use of
the optimal basis is high, surpassing 99% at � � 0.99, while
that of the second-best, GREEDY, does not exceed 96%.

The results of Table 3 confirm the insights provided by our
heavy traffic analysis: the greater the load on the distribution
system, the more critical it becomes to use zero-reduced-cost
delivery routes (such as those in the optimal basis B) as much
as possible. Indeed, the results of Example 3 show that at
high utilization, even a 3% discrepancy in the use of these

Table 2. Simulation results for LOWER and the four policies.

Ex � M/G/11 LOWER2 NUMBER3 WEIGHT3 GREEDY3 CENTER3

1 0.80 0.462 0.458 (�0.036) 2.62 (�0.26) 1.37 (�0.06) 1.33 (�0.05) 1.30 (�0.04)
0.90 1.04 1.05 (�0.06) 550 (�54.8) 2.32 (�0.12) 2.03 (�0.07) 1.95 (�0.07)
0.95 2.19 2.32 (�0.23) —4 4.47 (�0.41) 3.38 (�0.25) 3.26 (�0.24)
0.99 11.4 12.2 (�1.22) —5 20.6 (�1.87) 13.5 (�1.23) 13.1 (�1.22)

2 0.80 2.00 2.16 (�0.19) 3.82 (�0.38) 3.15 (�0.27) 2.80 (�0.20) 2.70 (�0.19)
0.90 4.50 4.63 (�0.25) 27.5 (�2.74) 9.10 (�0.66) 5.44 (�0.25) 5.18 (�0.25)
0.95 9.49 9.31 (�0.65) 12,200 (�1,220) 334 (�33.3) 10.41 (�0.67) 9.85 (�0.65)
0.99 49.5 51.5 (�5.08) —4 —4 53.0 (�5.09) 52.0 (�5.08)

3 0.80 9.40 9.07 (�0.68) 79.0 (�7.87) 48.1 (�4.60) 55.1 (�4.43) 46.3 (�3.36)
0.90 21.2 20.6 (�1.43) 9,790 (�959) 5,570 (�557) 185 (�10.8) 108 (�7.70)
0.95 44.7 44.1 (�4.39) —4 —4 522 (�38.3) 202 (�13.7)
0.996 232 221 (�23.4) —5 —5 —4 765 (�68.3)

1Solution to the Pollaczek-Khintchine formula for an M/G/1 queue with the same statistics as LOWERs.
295% confidence interval for the steady state expectation of system work.
395% confidence interval for the steady state expectation of the LP lower bound on system work.
4System appears to be unstable.
5Policy not included in the simulation.
6Simulation run terminated after running for 168 hours on an HP 9000/735 work station.

Table 3. Relative frequency with which efficient columns are used.

Ex �

NUMBER WEIGHT GREEDY CENTER

B all B all B all B all

1 0.80 3.6% 63.9% 2.7% 60.9% 2.6% 60.9% 3.1% 61.4%
0.90 3.7% 66.8% 2.9% 72.2% 2.7% 71.9% 3.3% 73.7%
0.95 3.8% 65.3% 5.2% 81.9% 3.2% 81.4% 3.8% 84.9%
0.99 — — 16.4% 95.0% 3.3% 94.3% 4.1% 96.7%

2 0.80 53.7% 83.0% 55.7% 83.6% 57.0% 84.1% 57.7% 83.9%
0.90 59.8% 90.1% 63.0% 91.0% 65.9% 91.2% 66.7% 91.4%
0.95 60.5% 90.5% 66.6% 95.0% 71.1% 95.4% 72.1% 95.4%
0.99 60.2% 89.6% 66.7% 94.4% 76.5% 99.3% 77.0% 99.2%

3 0.80 78.2% 78.2% 81.0% 81.0% 79.6% 79.6% 90.8% 90.8%
0.90 86.9% 86.9% 87.8% 87.8% 86.2% 86.2% 94.2% 94.2%
0.95 92.9% 92.9% 91.4% 91.4% 91.6% 91.6% 96.5% 96.5%
0.99 — — — — 95.7% 95.7% 99.1% 99.1%
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“efficient” columns may make the difference between a stable
and an unstable system (e.g., Example 3 at � � 0.99). By this
measure, the CENTER policy performs quite well.

8. CONCLUSIONS AND PRACTICAL IMPLICATIONS

We believe that our approach to stochastic distribution prob-
lems is promising. It offers the broad modeling flexibility
inherent in set-covering formulations and is able to accom-
modate essentially arbitrarily complex routing constraints.
Moreover, set-covering formulations are used frequently in
many practical implementations of routing algorithms (see
for example Balinsky and Quandt 1964, Ceria et al. 1995,
Cullen et al. 1981, Desrochers et al. 1992), so our results fit
naturally within the current state of practice. Similarly, we
are able to capture a wide array of distribution policies. The
only significant restriction is that dynamically altering routes
during the course of execution (as is done in Dror et al. 1989
and Jaillet and Odoni 1988, for example) is not allowed.

Our analysis also provides significant insights. The as-
ymptotic analysis succinctly reveals the factors that drive
congestion at high system utilization. The vector of dual
prices y* defines a simple stability condition, and they play
a central role in characterizing the optimal system work in
heavy traffic. Indeed, our analysis demonstrates that as the
offered load grows to match the distribution network’s ca-
pacity (as measured by �), the incremental burden placed
on the system by the arrival of each load is described
exactly by the dual prices y*.

In addition, the analysis has implications for the design
of effective dispatching heuristics. The asymptotic analysis
shows that to stabilize and minimize the backlog in high-
utilization systems, an effective dispatching policy must (1)
consistently use routes whose reduced cost, �j � y*�aj, is
zero (efficient routes); and (2) maintain a mix of loads
which is roughly centered in the cone of the optimal basis
B, so that efficient routes can be used in the future.

These rules are quite practical in a number of ways.
First, while the number of feasible routes for a distribution
facility n may be large (in fact, it may grow exponentially
quickly with the number of load types), the number of
efficient routes will typically be much smaller, on the order
of the number of load types. Moreover, these routes can
be generated and evaluated on-line, using the dual prices
y* and column-generation-like techniques. Thus, it is easy
to maintain a list of efficient routes. Then, simple dispatch-
ing rules, such as those used by CENTER, can be used to
select those routes in the list that best direct the backlog
toward the center of the cone. Second, computing the in-
put data for these rules is straightforward. To compute the
dual prices y* and find the optimal basis B, one solves the
m 
 n LP, (3), once. This preprocessing step requires only
an estimate of �, as well as � and the columns of A. Again,
not all n routes need be explicitly enumerated to solve the
LP; rather, column generation techniques may be used.

We believe these simple rules can be used to enhance
the performance of traditional, static routing algorithms

without the need for drastic changes in solution methodol-
ogy. Often static problems are solved repeatedly, in a roll-
ing horizon fashion, and only a subset of the routes
generated by the algorithm are actually dispatched. By es-
timating the long-run statistics of arriving loads and solving
for y* using (3), one can easily estimate the “time efficiency”
of each route using the reduced cost �j � y*�aj. This estimate
of time efficiency can then be combined with traditional cost
and service-level criteria to evaluate which routes are most
attractive to dispatch. Without such congestion information,
however, one runs the risk of poor long-run service perfor-
mance. Indeed, our simulation results show that simply add-
ing a sensible throughput-oriented criterion (such as
NUMBER and WEIGHT) does not even guarantee sys-
tem stability. The dual information y* and the concept of
centering appear to be critical for controlling congestion.

Finally, the assumption of a single vehicle is not restrictive.
Indeed, with m identical vehicles we can consider policies
which only dispatch all m vehicles simultaneously on the
same route. This effectively increases each element aij by a
factor of m, and hence reduces the resulting y* by a factor
1/m. The lower bound can similarly be modified to prove
asymptotic optimality in the m-vehicle case. Again, these dual
prices can then be used in more practical policies like the
CENTER policy to dynamically price out routes to dis-
patch as each vehicle becomes available. While we have
not tested this policy in simulations, we believe its behavior
would be similar to that of the single-vehicle case.

APPENDIX: PROOFS OF PROPOSITIONS

The proofs of Propositions 1 and 4 use Chernoff’s bounds
on the tail probabilities of sums of i.i.d. random variables.

LEMMA 3 (from Chernoff, found in Gans and van Ryzin
1997). Let X be a random variable with 0 � X � C, a.s.,
for some C � �. Suppose Sn is the sum of n i.i.d. samples
of X. Then (i) for each a � E[X] there exists a � � 0 such
that P{Sn � na} � O(e��n); (ii) for each a � E[X] there
exists a � � 0 such that P{Sn � na} � O(e��n).

Proof of Proposition 1
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Now for any i, P{¥k�1
N VN(l�1)�k

i � q � N(�i � �)} � P{¥k�1
N

VN(l�1)�k
i � N(�i � (� � q/N))}, and for N � 2q/� , � �

q/N � �/2. Then for all N �  2q/� we have
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 q � N�� i 
 ���
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and the same argument shows that whenever N �  2q/�
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Together, Equations (19), (20), and (21) give us
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for all N �  2q/� . Because E[Vk
i ] � �i, we may apply

the Chernoff bounds of Lemma 3 to complete the
proof. □

The proofs of Propositions 2 and 4 also use the follow-
ing corollary to Proposition 1.

COROLLARY 1. Given the conditions of Proposition 1, there
exists a sequence of independent events, {Fl: l � 1, 2, . . . },
such that for any batch, l, {El} � {Fl} and P{Fl} �
O(e��N).

PROOF. Let {Fl} def
� {?i: ¥k�1

N VN(l�1)�k
i � q � N(�i � �)

� ¥k�1
N VN(l�1)�k

i � q � N(�i � �)}. Then {El} � {Fl}
and the right-hand side of (19) is also an upper bound on
{Fl}. □

Proof of Proposition 2

Recall that for policy �qN
, S� l � NC3 a.s. and that NC3

provides an upper bound on the time required to clear the
accumulator at any arbitrary epoch. In addition, Lemma 2
can be used to provide a bound on the average time re-
quired to clear the backlog at the batch server. Using these
bounds together, we find
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Observe that in Corollary 1 the event {Fl} is independent
of D̂l, therefore

E�S� l D̂ l � � E�� y* �V̂ l 	 NC 3 1 
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Expanding V̂l and using 0 � R̂l � 1q, we then find

E�S� l D̂ l � 
 E� y* �� R̂ l�1 	 �
k�1

N

V �l�1� N�k 
 R̂ l� D̂ l

	 O�Ne ��N� E�D̂ l �

� Ny* ��E�D̂ l � 	 E� y* ��R̂ l�1 
 R̂ l �D̂ l �

	 O�Ne ��N� E�D̂ l �


 Ny*��E�D̂l ��y*�1qE�D̂l ��O�Ne��N�E�D̂l �

� �Ny* �� 	 y* �1q 	 O�Ne ��N�� E�D̂ l �. (24)

Then substituting the right-hand side of (24) for E[S� lD̂l] in
(23) we find
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Then for any fixed � � 1 we can find a finite integer N*1 so
that for all N � N*1, we have � � �y*�1q/N � O(e��N) �
1, and E�qN[W] � E[D̂] � O(N). □

Proof of Proposition 3

From Proposition 1 we know that P{El} � O(e��N). Then
given stationary {R̂l}, we have
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Then for any � � �y*�� � 1 there exists an integer, N*2 �
0 such that �O(e��N*2) � (1 � �) and E[S� l] � Ny*�� �
O(Ne��N) � N/� � E[T̂l] for all N � N*2. □

Proof of Proposition 4

A simple sample-path upper bound on the delay of an
arbitrary batch arriving to the batch server, D̂l, is the
length of the busy period, B, into which the batch arrived.
Then E[D̂l

2] � E[B2] � E[(¥l�1
n̂ Ŝl)

2], where the random
variable n̂ equals the number of batches served in the busy
period into which the delayed batch arrives. For batches of
size N, the crude bound Ŝl � NC3 allows us to write E[D̂l

2]
� N2C3

2E[n̂2].
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Now defining the random variable n to be the num-
ber of batches served in an arbitrary busy period, we
have

P
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Thus, if we can show that for any fixed � � 1, P{n �
m} � O(e��m) for some � � 0, we will have shown
that E[n̂2] � � and in turn that E[D̂2] � � as well.
Then
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m�1� T̂ l � �
k�1

N

y* �V �l�1� N�k 
 NC 3 1 
El ��
� y* ��R̂ 0 
 R̂ m�1 ��


 P� �
l�1

m�1� T̂ l � �
k�1

N

y* �V �l�1� N�k 
 NC 3 1 
El ��
� y* �1q� . (25)

Now Corollary 1 shows that a sample-path upper bound on
the right-hand side of (25) may be constructed by replacing
the indicator functions of the events {E1, . . . , Em�1} by those
of the independent events {F1, . . . , Fm�1}, which gives us
P{n � m} � P{¥l�1

m�1 (T̂l � ¥k�1
N y*�V(l�1)N�k � NC31{Fl}

) �
y*�1q}.

Observe that the left-hand side of the inequality inside
the bounding probability is the sum of (m � 1) i.i.d. ran-
dom variables Xl

def
� T̂l � ¥k�1

N y*�V(l�1) N�k � NC31{Fl}

with expectation E[X] � N(� � y*�� � C3O(e��N)).
Then we have P{n � m} � P{¥l�1

m�1 Xl � y*�1q} �
P{¥l�1

m�1 Xl � (m � 1) y*�1q/(m � 1)}.
Finally, we note that there exists an N*3 � � such that

E[X] � 0 for all N � N*3. For any arbitrary N � N*3, in
turn, there exists an m* � � such that for all m � m*
we have 0 � y*�1q/(m � 1) � a for some a � (0, E[X]).
Then we write P{n � m} � P{¥l�1

m�1 Xl � (m � 1)a}.
Applying the Chernoff bounds of Lemma 3 we complete
the proof. □

Proof of Proposition 5

var�S� 1 �

� var� �
k�1

N

y*�V k 	 y* �R 0 
 y* �R N 	 NC 3 1 
E1 ��
� var� �

k�1

N

y* �V k� 	 var� y* �R 0 � 	 var� y* �R N �

	 var�NC 3 1 
E1 � � 	 2 cov� �
k�1

N

y* �V k , y* �R 0�

 2 cov� �

k�1

N

y* �V k , y* �R N�
	 2 cov��

k�1

N

y*�Vk , NC3 1
E1 ���2 cov�y*�R0 , y*�RN �

	 2 cov�y*�R0 , NC3 1
E1 � � 
 2 cov�y*�RN , NC3 1
E1 � �.

We proceed to bound each term of the right-hand side.
For the first variance we have var(¥k�1

N y*�Vk) �
Ny*�	y*, because the Vks are independent of each other.
For the next two variances we recall that {Rk} is stationary
so that var( y*�R0) � var( y*�RN). Furthermore, because
each Rk is bounded by q � 1, and y* is nonnegative,
var( y*�R0) � E[( y*�R0)2] � ( y*�1q)2. Similarly, for the
fourth covariance term, we have 	cov( y*�R0, y*�RN)	 �
( y*�1q)2, because again, both R0 and RN are bounded by
q � 1. For the last variance we see that var(NC31{E1}) �
N2C3

2 var(1{E1}) � N2C3
2P{E1} � O(N2e��N). For the first

covariance term, we have cov(¥k�1
N y*�Vk, y*�R0) � 0,

because arriving quantities are independent of previous
remainder terms. The third covariance term yields

�cov� �
k�1

N

y* �V k , NC 3 1 
E1 �� �


 NC 3 �
k�1

N �
i�1

m

y*i 	cov�V k
i , 1 
E1 � � 	


 NC 3 �
k�1

N �
i�1

m

y*i E�V k
i 1 
E1 � � 
 N 2C 1 C 3 y* �1P
E 1 �

� O�N 2e ��N�,

because each Vk
i is bounded above by C1. The same analy-

sis for the last two covariance terms yields 	cov( y*�R0,
NC31{E1})	 � O(Ne��N), and 	cov( y*�RN, NC31{E1})	 �
O(Ne��N). Finally, we bound the second covariance term.
We have

�cov� �
k�1

N

y* �V k , y* �R N� �

 �

k�1

N �
i�1

m �
j�1

m

y*i y*j 	E�V k
i R N

j � 
 E�V k
i �E�R N

j � 	


 �
k�1

N �
i�1

m �
j�1

m

y*i y*j �
s�0

C1 �
t�0

q�1

s � t 	P
V k
i � s � R N

j � t�


 P
V k
i � s�P
R N

j � t� 	
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 �
k�1

N �
i�1

m �
j�1

m

y*i y*j �
s�0

C1 �
t�0

q�1

s � t�� N�kP
V k
i � s� ,
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because Vk � �0
k, RN � �N

�, and {(Vk, Rk)} is �-mixing
with �k � ��k. Then using the trivial bound P{Vk

i � s} �
1 we have

�cov� �
k�1

N

y* �V k , y* �R N� �


 �� y* �1� 2C 1 q �
k�1

N

� N�k 

�� y* �1� 2C 1 q

1 
 �
.

Collecting the bounds on the absolute values of all terms
except for the first variance, we note that we can find a
C2 � 0 and an integer N*4 � � such that for all N � N*4 the
sums of the absolute values of the terms are less than C2.
Then for all N � N*4 we have 	var(S� 1) � Ny*�	y*	 � C2.
This completes the proof. □

Proof of Theorem 2

Part (i). Suppose there exists a unique optimal solution, y*,
to (3). Then from Proposition 3, Proposition 5, and (9) we
know that for any fixed � � �y*�� � 1 we can find an
N* def

� max{N*1, N*2, N*3, N*4} such that for all batch sizes
N � N* (10) is well-defined and the system is stable. In
turn, from (10) and Proposition 2 we have

E �q N

�W� 

var�S� l � 	 var�T̂ l �

2�E�T̂ l � 
 E�S� l ��
	

E�T̂ l � 
 E�S� l �

2 	 O�N�



Ny* �	y* 	 C 2 	 N� T

2

2�N
�


 Ny* �� 	 O�Ne ��N��

	
N�1 
 ��

2�
	 O�N�

�
�� y* �	y* 	 � T

2�

2�1 
 � 
 �O�e ��N��

	
C 2

N�1 
 � 
 �O�e ��N��
	 O�N� .

Part (ii): From part (i) we have

�1 
 �� E �q N

�W� 

�� y* �	y* �� T

2�
2

� � 1 ��

1 �� ��O�e ��N�
 	
C 2

N

� � 1 ��

1 �� ��O�e ��N�
 ��1 ���O�N�.

Then setting N def
�  (1 � �)�b for some fixed b � (0, 1)

and letting �3 1 by scaling T so that �3 1/y*��, we have

lim
�31� 1 
 �

1 
 � 
 �O�e ��N�
 � 1,

lim
�31

C 2

N � � 1 
 �

1 
 � 
 �O�e ��N�
 � 0,

and lim�31(1 � �)O(N) � 0. This completes the
proof. □
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