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We analyze a randomized version of the deterministic linear programming (DLP) method for
computing network bid prices. The method consists of simulating a sequence of realizations of
itinerary demand and solving deterministic linear programs to allocate capacity to itineraries
for each realization. The dual prices from this sequence are then averaged to form a bid price
approximation. This randomized linear programming (RLP) method is only slightly more
complicated to implement than the DLP method. We show that the RLP method can be viewed
as a procedure for estimating the gradient of the expected perfect information (PI) network
revenue. That is, the expected revenue obtained with full information on future demand
realizations. The expected PI revenue can, in turn, be viewed as an approximation to the optimal
value function. We establish conditions under which the RLP procedure provides an unbiased
estimator of the gradient of the expected PI revenue. Computational tests are performed to
evaluate the revenue performance of the RLP method compared to the DLP.

A central problem in network revenue manage-
ment is determining optimal decision rules for se-
quentially accepting or denying itinerary requests.
Bid-price controls are one such class of decision
rules. In a bid price control, threshold values (called
bid prices) are set for each leg of a network, and an
itinerary (path on the network) is accepted only if its
fare exceeds the sum of the bid prices along the path.
SIMPSON (1989) and WILLIAMSON (1992) first stud-
ied this method and proposed approximations to
generate bid prices based on dual prices of various
mathematical programming formulations of the
problem.

1. INTRODUCTION AND OVERVIEW

IN TALLURI AND VAN RYZIN (1996), we analyzed the
structure of an optimal policy for a dynamic stochas-
tic model of network revenue management. The
same model is used in this paper. Time is discrete.
We consider an m-leg network, and let x � (x1, . . . ,
xm) denote the (integer) vector of remaining leg ca-
pacities and k denote the number of time periods

remaining. As a convention, we use superscripts to
index components of a vector and use subscripts to
denote time or elements of a sequence. We use xT to
denote the transpose of a vector x.

As in Talluri and van Ryzin (1996), we model
demand as a sequence of requests for itineraries
(paths) over time. An itinerary consists of a collec-
tion of legs together with an associated fare. To
model multiple fare classes, we define several itin-
eraries (one for each fare class), each having an
identical set of legs but different fares. As a simpli-
fication, we assume itineraries that are rejected are
lost to the network. In particular, we do not model
diversion among itineraries.

Define A � [aij] where aij � 1 if itinerary j uses
leg i and aij � 0 otherwise; the jth column of A, Aj,
is the incidence vector for itinerary j. Abusing this
notation somewhat, we shall also use i � Aj to
indicate the legs i that are used by itinerary j. We
assume Aj has at least one nonzero component, i.e.,
all itineraries use at least one leg. Each itinerary j
contributes revenue rj. Define r � (r1, . . . , rn).

In this paper, we will not need to specify the
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arrival process in detail; the only demand informa-
tion we need is the distribution of total demand to
come at each point in time. However, as a canonical
example of an arrival process, one can consider the
case where only one itinerary arrives in a period and
the probability that itinerary j arrives in period k is
pk

j , where �j�1
n pk

j � 1 for all k. Let Yj denote the
total number of requests for itinerary j in the re-
maining time k, and define Y � (Y1, . . . , Yn). To
avoid excessive notation, we do not explicitly index
Y with the remaining time k; however, Y will always
represent the total demand to come over the remain-
ing k units of time.

Let Jk(x) denote the value function (optimal ex-
pected revenue give x and k). This function is de-
fined formally for a general network model with
Markovian arrivals in Talluri and van Ryzin (1996).
However, for our purposes, an informal definition of
Jk(x) will suffice. In Talluri and van Ryzin (1996),
we showed that it is optimal to accept a reservation
for itinerary j with a revenue rj in period k if and
only if

rj � Jk�1� x� � Jk�1� x � Aj�. (1)

This condition is intuitive: rj � Jk�1(x � Aj) is the
expected revenue if we accept the reservation, and
Jk�1(x) is the expected revenue if we do not; there-
fore, if the former is greater than the latter, it makes
sense to accept the reservation.

A bid price control, as defined in Talluri and van
Ryzin (1996), specifies an m-vector of values (bid
prices), �k(x), for each remaining capacity x and
remaining time k, such that an itinerary j is ac-
cepted if and only if

rj � �
i�A j

�k
i � x�.

That is, itinerary j is accepted if and only if its
revenue exceeds the sum of the bid prices on the legs
it uses. This type of control is appealing on both
intuitive and practical grounds. Intuitively, bid
prices represent the marginal value of capacity (also
called displacement cost) on each leg; if the current
request exceeds the sum of the expected marginal
values of the legs it requires, then it makes intuitive
sense to accept it, because the current revenue is
larger than our estimate of the next best use for the
same capacity. Bid price controls are also appealing
from an implementation standpoint, because they
require only a small number of control values (one
bid price for each leg), and the decisions to accept or
reject arriving requests are trivial to determine
given these values.

However, in general, the optimality condition, Eq.

1, does not lead to a bid price control. (See Talluri
and van Ryzin (1996) for counter examples.) At the
same time, it is easy to see how condition 1 moti-
vates a bid price structure. Indeed, if we imagine x is
a real vector and Jk�1(x) is a differentiable function
of x, then a first-order approximation to Eq. 1 yields

rj � Jk�1� x� � Jk�1� x � Aj�

� �x
T Jk�1� x� Aj � �

i�Aj

�

� xi Jk�1� x�. (2)

If this first-order approximation is good, then using
the gradient �xJk�1(x) as a vector of bid prices
should produce close-to-optimal decisions. Although
this reasoning is very informal, it lies at the heart of
the concept of bid price controls. Moreover, it was
proved in Talluri and van Ryzin (1996) that a bid
price policy is, in fact, asymptotically optimal as the
demand volume and leg capacities tend to infinity,
which provides theoretical support for the use of bid
price controls.

1.1 Approximation Methods

To implement a bid price control strategy, one needs
a method for generating bid price values. Computing
Jk(�) is not feasible in practice because of the enor-
mous size of the state space. (The state space is of
size O(Cm), where C is the maximum leg capacity
and m is the number of legs. Typical numbers for a
major airline network are C � 300 and m � 5000
or more.) Therefore, the only realistic option in prac-
tice is to use approximation methods.

Such methods can generally be interpreted as con-
sisting of two steps: 1) approximate the value func-
tion Jk(x); and 2) use the associated gradient (or
subgradient) information from the approximation as
a vector of bid prices. That is, form an approxima-
tion Jk

A(x) to the value function and use �Jk
A(x) (or a

subgradient if �Jk
A(x) does not exist) for the vector of

bid prices. Typically, these approximations are re-
computed periodically throughout the booking hori-
zon in response to changes in the remaining capacity
or demand forecast.

Perhaps the simplest example of such an approx-
imation is the deterministic linear programming
(DLP) method, which was initially investigated by
Williamson (1992). The DLP approximation to the
value function is obtained by finding a tentative
itinerary allocation, y, that solves

Jk
LP� x� � max rTy (3)

Ay � x (4)

0 � y � EY. (5)
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Note this approximation corresponds to assuming
that demand to come, Y, is always equal to its mean,
EY. The primal itinerary allocation, y, is not used
directly. Rather, let � � (�1, . . . , �m) denote the
dual prices associated with constraint (4). Provided
the linear program is not degenerate at the optimal
solution, �Jk

LP(x) exists and is equal to �. Therefore,
the vector of dual prices � is used for the bid prices.

Although this method is quite simple and intui-
tive, it has several obvious weaknesses. First, it only
uses the mean demand and ignores all other distri-
butional information on Y. This is clearly unrealis-
tic, because it is known that, for single leg problems,
the expected marginal value of seat capacity de-
pends on the entire distribution of future demand
BELOBABA (1989), BRUMELLE and MCGILL (1993),
LITTLEWOOD (1972), ROBINSON (1991), and
WOLLMER (1992). As a result, the DLP can produce
poor approximations to the true marginal expected
value. For example, one can easily show that, if the
expected demand on a leg is strictly less than the
capacity, then the deterministic linear program will
return a zero bid price for the leg. Yet, with highly
variable demand, the expected marginal value can
be much higher than zero—higher than the fares of
some of the lower fare classes perhaps—even
though the mean demand is less than capacity. Such
discrepancies can lead to poor accept/deny decisions.

However, the linear programming method is ap-
pealing precisely because it is so simple and compu-
tationally efficient. It is desirable, therefore, to have
a method that is nearly as simple and efficient as the
deterministic linear programming method but
which also captures more distributional information
about future demand.

1.2 A Randomized Linear Programming
Method

One idea for incorporating more stochastic infor-
mation into the linear programming method is to
replace the expected value of Y in constraint (5) by
the random vector Y itself. Then, the expected value
of the resulting optimal solution can be used as an
approximation to the value function. That is, define

vk� x, Y� � max rTy (6)

Ay � x (7)

0 � y � Y. (8)

The optimal value vk(x, Y) is a random variable. Let
�(x, Y) denote an optimal vector of dual prices for
the set of constraints (7), and note that �(x, Y) is
also a random vector.

Next, consider the approximation to the value
function,

Jk
PI� x� � Evk� x, Y�. (9)

We call this the perfect information (PI) approxima-
tion, because it corresponds to a case in which future
allocations (and revenues) are based on perfect
knowledge of Y; however, at time k, Y is not yet
realized. Assuming the gradient exists, we then use
�xEvk(x, Y) as our vector of bid prices.

However, this method is viable only if we can
efficiently compute �xEvk(x, Y). One appealing ap-
proach is to consider interchanging differentiation
and expectation. Assuming such an interchange is
justified (sufficient conditions are given in Lemma 1
below), we have

�xEvk� x, Y� � E �xvk� x, Y�. (10)

This interchange, in turn, suggests a procedure for
estimating �xEvk(x, Y). Simply simulate N inde-
pendent samples of the demand vector, Y1, . . . , YN,
and solve Eqs. 6–8 for each sample. Then estimate
the gradient using

1
N �

i�1

N

�� x, Yi�. (11)

That is, simply average the dual prices from the PI
allocation over a series of randomly generated de-
mands. We call this idea the randomized linear pro-
gramming (RLP) method.

The RLP method has several appealing features.
First, it is a simple modification to the DLP method,
so it can be easily incorporated into production rev-
enue management systems that use DLP. Second, it
has the flexibility to model very general demand
distributions, because one only needs the ability to
simulate demand to apply the method (e.g., one
could allow for different coefficients of variation
and/or correlations among the components of Y).
Finally, it incorporates distributional information
on future demand.

To see why, consider the simple case where m � 1
(a single leg) and A � [1] (one itinerary). In this
case, r, x, Y, and � are all scalars, and it is easy to
see that �(x, Y) � r if Y 	 x and �(x, Y) � 0 if Y 

x, so if Y has a continuous distribution, then

d
dx Evk� x, Y� � E�� x, Y� � rP�Y � x�,

which is Littlewood’s (1972) expression for the ex-
pected marginal value of capacity. That is, in this
simple case, the RLP method produces the correct
expected marginal value. In contrast, the DLP
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method produces a marginal value of zero if EY 
 x
and a marginal value of r if EY 	 x. This example
suggests why the RLP method may produce a some-
what better approximation of the marginal value of
capacity than the DLP method.

It turns out that the RLP method, in fact, received
some brief attention over a decade ago in a study of
network control methods at American Airlines con-
ducted by SMITH and PENN (1988). However, the
idea is not widely known, and we are not aware of
any extensive study of its theoretical properties or
practical performance.1 In the remainder of the pa-
per, we provide such a study. In particular, in Sec-
tion 2, we give sufficient conditions under which
both Eq. 10 is justified and Eq. 11 is an unbiased
(and consistent) estimator of the gradient of the
expected PI revenue. These conditions also guaran-
tee the existence of �xEvk(x, Y). In Section 3, we
examine the situation where �xEvk(x, Y) fails to
exist. In Section 4, we then perform a series of com-
putational tests to assess the revenue performance
of the RLP method relative to the DLP method. Our
conclusions are presented in Section 5.

2. PROPERTIES OF THE RLP ESTIMATOR

WE NEXT ESTABLISH conditions under which the RLP
estimator gives an unbiased estimate of the gradient
of Evk(x, Y). This is important because, in general,
E�(x, Y) is only a subgradient of Evk(x, Y). If
E�(x, Y) is not a gradient, then the logic derived
from Eq. 2 for using E�(x, Y) as a vector of bid
prices fails because the directional derivative (if it
exists),

D� x; d� � lim
h30

1
h �Evk� x � hd, Y� � Evk� x, Y��,

(12)

is no longer given by E�T(x, Y)d. The following two
conditions, however, are sufficient to both justify Eq.
10 and to guarantee that Eq. 11 is an unbiased
estimator of the gradient:

CONDITION 1. If x � �j�S 	jAj, then {Aj: j � S}
must have rank m. That is, x does not lie in any
subspace defined by a subset of fewer than m col-
umns of A.

CONDITION 2. P(Yj � y) is continuous in y, for all
j � 1, . . . , n.

(Examples of failures of these conditions are pro-
vided in Section 2.2.) Our main result is summarized
in Theorem 1 below. The proof of the theorem re-
quires a sequence of lemmas, which we present next.

2.1 Proof of Unbiasedness

First, we require a lemma by GLASSERMAN (1994),
which provides sufficient conditions for interchang-
ing expectation and differentiation.

LEMMA 1. (Glasserman, 1994). Let X(
) be a random
function satisfying the Lipschitz condition: There ex-
ists a K 
 0 such that

�X�
 � h� � X�
 � � � Kh, for all h � 0.

Suppose that X(
) is differentiable at 
 (a.s.). Then
(d/d
)EX(
) exists and

d
d


EX�
 � � E
d

d

X�
 �.

The first condition of the lemma is easy to estab-
lish for the RLP method. Indeed, it is easy to see that
if r� � max{rj: j � 1, . . . , n} and ei is the ith unit
vector, then, from Eqs. 6–8 and the fact that ele-
ments of A are 0 or 1, �vk(x � hei, Y) � vk(x, Y)� �
hr� for all x and i. That is, increasing xi by h allows
at most an increase of h in �j�1

n yj, which contrib-
utes at most r�h to the objective function value.
Therefore, we have

LEMMA 2. The function vk(x, Y) defined in Eqs. 6–8
satisfies the Lipschitz condition in Lemma 1.

From Lemma 1, it then follows that if �xvk(x, Y)
exits with probability one, Eq. 10 is justified. Note
that �xvk(x, Y) exists if and only if the dual price
�(Y) is unique. Therefore, we must establish condi-
tions under which �(Y) is unique with probability
one.

To do so, consider the Lagrangian dual of the
linear program, Eqs. 6–8,

L� x, �� � max
0�y�Y

�
j�1

n

yj�rj � �TAj� � �Tx

� �
j�1

n

Yj�rj � �TAj�� � �Tx, (13)

where (x)� � max{0, x}. Note that L(x, �) is convex
in �. Let �* denote a solution to the problem

min
�
0

L� x, ��. (14)
1Smith and Penn (1988) concluded that the RLP method was

too time consuming relative to the improvement it provided, and
they focused their testing on the DLP method.
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By strong duality, vk(x, Y) � L(x, �*) and �* is
always a subgradient of vk(x, Y). If �* is unique,
then it is also a gradient, and �xvk(x, Y) exists. [See
Chapter 6 of Bazaraa, Sherali, and Shetty (1993).]
Therefore, we must show that �* is unique with
probability one.

To this end, let d � 0 denote a feasible direction
from �*, i.e., there exists an � 	 0 such that

�* � hd � 0, h � �0, ��. (15)

Define the sets

E0 � � j: rj � �*
TAj � 0�, (16)

E1 � � j: rj � �*
TAj � 0, rj � �*

TAj � hdTAj � 0�,
(17)

E2 � � j: rj � �TAj � 0, rj � �*
TAj � hdTAj � 0�,

(18)

and note from Eq. 13 that

L� x, �* � hd� � L� x, �*�

� hdT� x � �
j�E0�E1

YjAj� . (19)

The solution �* is unique if the right hand side
above is strictly positive for all feasible directions d.

We need the following lemma.

LEMMA 3. Suppose that C1 holds, dTAj � 0, @j �
E0 � E1, and dTx � 0. Then d � 0.

Proof. By Eq. 19 and the optimality of �*, it must
be true that the system,

�TAj � 0, j � E0 � E1

�Tx 
 0,

is unsolvable, else � is a strictly improving direction.
Thus, by Farka’s lemma, the system

�
j�E0�E1

	 jAj � x (20)

is solvable. But, by condition C1, {Aj: j � E0 � E1}
has rank m, so dTAj � 0, @j � E0 � E1 implies
d � 0. e

The almost sure existence of the gradient is estab-
lished in the next lemma.

LEMMA 4. Suppose C1 and C2 hold. Then �xvk(x, Y)
exists with probability one.

Proof. As mentioned above, it suffices to show
that �* is a unique optimal solution to Eq. 14 with
probability one. To do so, we must show that, with

probability one, there are no directions d � 0 for
which L(x, � � hd) � L(x, �). The proof is by
contradiction.

Indeed, if d � 0 and L(x, � � hd) � L(x, �), then,
from Eq. 19, we must have

dT� x � �
j�E0�E1

YjAj� � 0.

By Condition 2, it is clear that P(x � �j�E0
�

E1 YjAj) � 0. Hence, the only way the above equal-
ity can hold with positive probability is if dTx � 0
and dTAj � 0, j � E0 � E1. But then, Lemma 3
implies d � 0, a contradiction. e

THEOREM 1. Suppose conditions C1 and C2 hold,
then �xEvk(x, Y) exists and

�xEvk� x, Y� � E �xvk� x, Y� � E�� x, Y�.

Proof. This follows directly from Lemmas 1, 2,
and 4. e

Theorem 1 shows that, under C1 and C2, the RLP
estimator, Eq. 11, is indeed an unbiased estimator of
the gradient �xEvk(x, Y); by the strong law of large
numbers, the estimator is also consistent.

2.2 Examples of Nondifferentiability

To gain some insight into Conditions 1 and 2, it is
useful to consider simple examples in which the
linear program, Eqs. 6–8 is degenerate with positive
probability, and thus �xEvk(x, Y) does not exist.

First, consider the following example which vio-
lates Condition 1.

r � �100, 1, 1� x � �2, 2�

A � � 1 0 1
1 1 0 � .

Note x � 2A1, so Condition 1 is violated as claimed.
Assume Condition 2 holds, however, and that
P(Y1 	 2) � 1⁄2. Then, for realizations with Y1 	 2,
it is clear that the optimal solution is y � (2, 0, 0),
a degenerate optimal solution. Therefore, the linear
program is degenerate with probability at least 1⁄2.

Next, suppose

r � �100, 1000, 1� x � �2, 3�

A � � 1 0 1
1 1 0 � ,

so Condition 1 is satisfied, but suppose P(Y2 � 1) �
1⁄2, so Condition 2 is violated. Also, assume P(Y2 	
2) � 1⁄2. Then, when Y2 � 1 and Y2 	 2, the linear
program has optimal solution x � (1, 1, 0), which is
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degenerate. Therefore, the linear program is degen-
erate with probability at least 1⁄4.

3. SOME COMMENTS ON THE NONDIFFERENTIABLE
CASE

LET � � Rn DENOTE the set of demand vectors Y for
which the linear program, Eqs. 6–8, is degenerate.
Let �c � Rn � �, i.e., �c is the complement of �.
The nondifferentiable case occurs when P(Y � �) 	
0. In this section, we discuss some issues related to
this case.

3.1 Convergence to a Subgradient Estimator

If the linear program, Eqs. 6–8, is degenerate for
some Y, then the dual solution �(x, Y) will depend
on the solution algorithm (e.g., interior point meth-
ods may return a different dual solution than sim-
plex-based methods). Thus, we consider �(x, Y) to
be defined as the dual solution returned by a given
linear programming algorithm.

Note that, for any realization of demand Y,
�(x, Y) is a subgradient of vk(x, Y), i.e.,

vk� z, Y� � vk� x, Y� � �T� x, Y�� z � x�

for all z. Because all terms above are uniformly
bounded in Y, taking expectations on both sides
implies

Jk
PI� z� � Jk

PI� x� � E�T� x, Y�� z � y�,

and hence E�(x, Y) is a subgradient of Jk
PI(x).

However, the existence of limN3�(1/N)
�i�1

N �(x, Yi) will depend on how Eqs. 6–8 is solved
at each step i. For example, it is possible that the
linear programming algorithm is initialized with a
previous solution (warm started), and hence
�(x, Yi) becomes a function of the history of the
sequence of demand vectors {Y1, . . . , Yi�1}. [Our
experience in numerical testing is that such warm
starts significantly speed up the computation of
�(x, Yi).] Under such conditions, it is possible that
the estimator, Eq. 11 does not converge. However,
the following proposition is clearly true.

PROPOSITION 1. Let A denote the linear program-
ming algorithm used to solve Eqs. 6–8. If algorithm
A is initialized with the same data on each run (e.g.,
it is not warm started with data from prior solu-
tions), then limN3�(1/N) �i�1

N �(x, Yi) always exists
and is a subgradient of Evk(x, Y).

3.2 Directional Derivatives

As mentioned, when E�(x, Y) is only a subgradi-
ent, then the logic derived from Eq. 2 for using
E�(x, Y) as a vector of bid prices fails because the

directional derivative (if it exists) is no longer given
by E�T(x, Y)d. We next show that the directional
derivatives D(x; d) (see Eq. 12) always exist. The
proof leads to a natural algorithmic modification to
the estimator, Eq. 11, to make it an unbiased esti-
mator of directional derivatives.

Define u(x, Y; d) as the optimal value of the lin-
ear program

u� x, Y; d� � min dT� (22)

�Tx � vk� x, Y�

�TA � r

� � 0.

Then we have

PROPOSITION 2. The directional derivative, D(x; d),
exists and

D� x; d� � Eu� x, Y; d�.

Proof. Let �vk(x, Y) denote the set of subgradi-
ents of vk(x, Y) and note that �vk(x, Y) � {�: �Tx �
vk(x, Y), �TA � r, � 
 0}. Observe that �vk(x, Y) is
uniformly bounded for all Y, provided there are no
zero columns of A. It is well known (Bazaraa,
Sherali, and Shetty (1993), page 218.) that the di-
rectional derivative, D(x, Y; d), satisfies

D� x, Y; d� � lim
h30

1
h �vk� x � hd, Y� � vk� x, Y��

� inf�dT�: � � �vk� x, Y��.

Note the right hand side above is simply u(x, Y; d).
Because �vk(x, Y) is uniformly bounded for all Y, it
follows that the D(x, Y; d) exists for all Y and is also
uniformly bounded. Applying Lemma 1 establishes
the result. e

Proposition 2 shows that, by solving the auxiliary
linear program, Eq. 22 for each sample, we can
obtain the unbiased estimator of the directional de-
rivative,

1
N �

i�1

N

u� x, Yi ; d�.

The disadvantage of this approach, of course, is that
this estimator is for a single direction d. To make
effective use of such information in network revenue
management, we need to evaluate the derivative for
every itinerary j (i.e., every direction Aj) by solving
a separate sequence of linear programs. For a large
airline network, the number of itineraries, n, can be
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on the order of 100,000, making such an approach
somewhat impractical.

4. SIMULATION EXPERIMENTS

OUR ANALYSIS THUS FAR provides a formal basis for
interpreting the estimator, Eq. 11, and the RLP
method in general. However, what ultimately mat-
ters in practice is how well the RLP method per-
forms on real-world networks. In this section, we
describe a series of simulation experiments compar-
ing the revenue performance of the DLP and RLP
methods. We first describe the simulation method-
ology and the test networks used in our tests. We
then present and discuss the numerical results. Our
conclusion is that the RLP method provides a small
but significant improvement over DLP and, thus,
warrants further consideration.

4.1 Simulation Methodology

To evaluate the performance of the RLP method,
we conducted a series of simulation tests using both
real-world and randomly generated networks. In our
simulations, each request is for one seat (no group
bookings) and we did not simulate cancellations or
no-shows (no overbooking effects). Each day consists
of 1000 minutes (roughly 18 hours) of booking time.
Booking requests are generated over a booking ho-
rizon of approximately 20 days.

Booking requests are randomly generated for each
instance using a two-step process. First, the final
demand for an itinerary is generated based on a
given distribution. We used both a Poisson distribu-
tion and a truncated normal distribution with a
fixed coefficient of variation in our tests. Each itin-
erary has an associated booking curve, that specifies
the fraction of total demand observed as a function
of time. In the second step, this booking curve is
used as a probability distribution to determine the
arrival time of a request. That is, for each one of the
generated requests, we generate a uniform random
number between 0 and 1, and the arrival time of the
request is then determined from the inverse of the
booking curve function. Note that this process pro-
duces a (nonhomogeneous) Poisson process when the
final distribution is Poisson; for non-Poisson cases, it
produces demand that statistically conforms to both
the final demand distribution and the booking
curve.

The resulting stream of itinerary requests is then
sorted based on their arrival times and processed
sequentially by a simulated reservation system that
uses a bid-price control rule to make each accept/
deny decision. Bid prices are constant for each sim-
ulated day, but are recalculated at the start of each

simulated day by rerunning the bid price optimiza-
tion (either DLP or RLP) using updated forecasts
and capacities. This procedure mimics the overnight
processing performed by airlines in practice.

Although actual arrivals were generated accord-
ing to these discrete distributions, within the RLP
we used continuous, truncated-normal distribu-
tions. That is, each component of Y in Eq. 8 within
our RLP computations was modeled as a truncated-
normal random variable with the appropriate mean
and standard deviation. We did this because contin-
uous distributions better match the assumptions of
the linear programming model (e.g., continuous al-
location of continuous capacity) and they also tend to
produce less degeneracy.

To make the test more realistic, we also simulated
a simple forecasting process. That is, the optimiza-
tion did not use actual demand means and vari-
ances; rather, estimates of the means and variances
were determined based on observations of past sim-
ulated demand. In this way, we tried to mimic the
effect of forecast error on the control policy.

Forecasts were obtained as follows. Twenty files of
arrival histories were generated according to the
given distributions, corresponding to twenty past
departures of each itinerary. These twenty histories
were used to estimate means and variances for the
first simulation run. Then, a new demand process
was simulated and added to the history. These
twenty-one history files were then used to estimate
means and variances for the second simulation run,
and so on. This forecasting methodology basically
assumes stationarity and independence of demand.
Given that there is no seasonality or trend in the
sequence of historical files being generated, this is
an accurate forecasting method. In practice, fore-
casting methods would need to take into account
nonstationarities in the demand process.

This process was used to generate 20 simulated
departure days of each network under both the RLP
and DLP policy. The same sample paths of data were
used for each method (coupled simulations) to re-
duce the variance in our performance comparisons.
It appeared that 20 runs were sufficient to get a
reasonably accurate estimate of the revenue differ-
ences, because increasing the number of runs
showed little difference in the relative performance
of the methods.

For our RLP implementation, 30 samples of the
dual prices �(Y) were averaged on each call to the
optimization module. Based on some preliminary
testing, it did not seem that the performance of the
RLP method improved much with larger samples,
though this behavior could very well be problem
dependent.
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4.2 Test Networks

We used three different test networks for our sim-
ulations. The first one (Network 1) is based on data
from a hub-bank (a set of arriving flights connecting
to a set of departing flights) of a major international
airline with 102 flight legs, 1066 itineraries, 7 fare
classes, and 1 compartment. The forecast of the de-
mand means for each itinerary (called an origin–
destination fare class, or ODF) were given along
with capacities for each flight leg. Booking curves
based on historical observations were provided for
each itinerary.

From these data, we generated two different de-
mand scenarios: one with Poisson demand for each
ODF and another in which demand for each ODF
has a rounded and truncated normal distribution
(truncated by 0 on the left) with a coefficient of
variation (CV) of 1.414. The parameters of the nor-
mal distribution are determined so that the mean
and the standard deviation of its truncated version
match the desired mean and standard deviation.

The second dataset (Network 2) comes from a
large U.S. airline’s domestic hub-bank with 62 legs,
517 itineraries, 11 fare classes, and 1 compartment.
The fare structure for this network was quite differ-
ent from Network 1, exhibiting significantly lower
fare dispersion. Again, both Poisson and truncated
normal demand were simulated for this network.

Finally, we generated a random airline network
with a hub-and-spoke topology (Network 3), consist-
ing of 20 legs, 120 itineraries, and 8 fare classes. The
demand means for each ODF were randomly gener-
ated, uniformly spread between 0.0 and 3.0. The
fares for each ODF were also randomly generated
from a uniform distribution in specific ranges for
each fare class. The fares varied between $30 and
$1,100. The booking curves enforced a strict low-
before-high fare pattern for each O–D pair. Only the
Poisson demand case was simulated for Network 3.

For each network, various load factors were sim-
ulated by scaling the mean demands by a constant.
We generated load factors approximately between
60 and 85%.

For each run, an upper bound on the maximum
achievable revenue was also calculated by solving
the linear programming relaxation of the so-called
perfect-hindsight integer program. (That is, the lin-
ear program that allocates capacity based on perfect
information on the total realized demand.) This
bound is likely to be loose for two reasons. First, it
assumes perfect information on future demand,
which is clearly overly optimistic. Second, for a hub-
and-spoke network, there may be a gap between the
optimal value of the integer program and its linear-

programming relaxation. Nevertheless, the perfect-
hindsight upper bound does give some measure of
the absolute optimality gap.

4.3 Results

The results of our simulation experiments are
shown in Figs. 1–4. These graphs show both the
RLP and perfect-hindsight upper bound revenue,
expressed as a percentage difference from the DLP
revenue. The numbers in parentheses are the reve-
nue upper bounds expressed as a percentage differ-
ence from the DLP revenue.

The RLP generates a slight improvement in reve-
nue over the DLP policy for the two airline networks
(Networks 1 and 2). The revenue improvement

Fig. 1. Network 1 with Poisson demand: percent improvement
over DLP.

Fig. 2. Network 1 with demand from a truncated normal dis-
tribution (CV � 1.414): percent improvement over DLP.
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ranges from 0.04 to �0.32%. Although small in ab-
solute terms, these improvements are significant,
especially at the higher load factors.

The performance of the RLP method on the ran-
domly generated network, however, is somewhat er-
ratic and does not uniformly dominate the DLP
method. However, it seems to be at least comparable
to DLP. One factor that could explain such behavior
on this network is the difference in the arrival pro-
cess of bookings. The real-world datasets from Net-
works 1 and 2 have booking curves that are closer to
being uniform over time. In the random network
(Network 3), bookings were generated using a strict
low-before-high fare booking pattern. It is plausible
that the expected perfect information revenue is a

better approximation of the value function in the
former case. That is, assuming perfect future allo-
cations is a particularly optimistic assumption in
the low-before-high case.

Finally, we note that, on these three networks, we
almost never encountered degeneracy of the linear
programs of the RLP method. We attribute this to
the continuous distributions used in our RLP com-
putations combined with the irregular network ca-
pacities and itineraries on these networks. Again,
however, such behavior is likely to be highly prob-
lem dependent.

5. CONCLUSIONS

THE RLP METHOD is a simple and appealing alter-
native to DLP for large-scale network revenue man-
agement applications. Overall, our numerical tests
indicate that RLP provides a small but significant
improvement over DLP, though this conclusion is
preliminary and warrants further investigation.

It would be interesting to see if there are other
variations of this approach that would improve rev-
enue performance further. Also, there may be some
interesting work in using variance reduction tech-
niques to improve the efficiency of the estimator, Eq.
11. More generally, simulation-based optimization
techniques may prove to be a fruitful approximation
approach for future research in this area.
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