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We consider a general class of queueing systems with multiple job types and a flexible service facility. The arrival times and sizes
of incoming jobs are random, and correlations among the sizes of arriving job types are allowed. By choosing among a finite set of
configurations, the facility can dynamically control the rates at which it serves the various job types. We define system work at any
given time as the minimum time required to process all jobs currently in the backlog. This quantity is determined by solving a linear

program defined by the set of processing configurations.

The problem we study is how to dynamically choose configurations to minimize the time average system work. Using bounds and
heuristics, we analyze a class of service policies that is provably asymptotically optimal as system utilization approaches one, as well
as a policy that in numerical studies performs near-optimally in moderate traffic. Our analysis also yields a closed-form expression for

the optimal, average work in heavy traffic.

This general problem has a number of applications in job shop and flexible manufacturing, in service organizations, and in the

management of parallel processing and distributed database systems.

In many operating systems, jobs competing for the lim-
ited capacity of a service facility cause congestion. Clas-
sical queueing models have provided a great deal of insight
into this phenomenon (see Wolff 1989 and Kleinrock
1976). In particular, they reveal the nonlinear, unbounded
growth in queue lengths as utilization increases and the
important role that variation plays in determining system
performance. However, the traditional models of the ser-
vice facility and of the processing requirements of jobs are
quite simplified; the facility is modeled as a single serv-
er—or perhaps a collection of identical servers—and job
requirements are defined only by scalar processing times.

In reality, many operating systems are considerably
more complex. The service facility often has a complicated
structure with a variety of resources such as pools of spe-
cialized labor, production equipment, data processing fa-
cilities, and supplies of material or energy. Jobs too are
varied and complex, each one potentially requiring a dif-
ferent mix of the facility’s resources. Moreover, the facility
is often able to dynamically reallocate its resources in re-
sponse to the size and mix of the backlog of jobs.

Yet most people who know queueing theory regularly
extend the insights from basic queueing models to these
more complicated settings. For example, students of
queueing theory are not surprised if a plant manager re-
ports a marked rise in backlogs as order volume increases,
even though the plant is operating at less than full capac-
ity. Likewise, they understand the reduction in customer
service that a fast food outlet might suffer due to the

increased variability caused by additions to its menu. Nev-
ertheless, when pressed to extend these qualitative insights
using quantitative queueing models, one is often con-
fronted with a plethora of operational details that can
confound even the most basic analysis. 4
One approach for extending queueing models to more
complex systems is to consider networks of queues. In
queueing network models, jobs of various classes follow
either fixed or randomized routes through a network of
processing nodes. Jobs wait for processing at each node
and, when processed, move on to the next node on their
routes. Over the past several decades, a vast literature and
rich theory has been developed in this direction (for exam-
ple, see Gelenbe and Pujolle 1987 and Walrand 1988).
While capturing considerably more processing complex-
ity than classical queueing models, queueing networks
have their own deficiencies as models of complex service
facilities. The fixed or randomized routing ignores the sig-
nificant control managers have over work flow in actual
systems. In a flexible system, processing rates and work
flows can often be adjusted by reallocating resources (la-
bor, machinery, etc.) based on the current backlog of jobs.
Several researchers have addressed these limitations by
considering control issues in queueing networks (for recent
reviews of manufacturing applications see Bitran and Dasu
1992 and Buzacott and Shanthikumar 1992). However, do-
ing so introduces significant analytical difficulties into an
already intricate theory. Moreover, most queueing control
formulations assume that the only management control is
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over which classes of jobs to process at the various nodes
in the network, rather than how resources are allocated
over production areas to achieve a mix of processing rates.

For example, in a classical job shop, jobs require certain
machine tools and properly trained workers to operate the
tools. Both resources—Ilabor and equipment—are needed
to complete a job, and there is a high degree of flexibility
in pairing workers with equipment. A “processing
node”—in the sense of a piece of equipment which is per-
petually manned by an operator—does not really exist in a
job shop setting. In addition, the processing rate of a job
may depend on which set of resources (operators and
equipment) is assigned to it. That is, the resource require-
ments of a job need not be unique, and hence an optimal
assignment of resources to job types at any point in time
will depend on the state of the backlog. Clearly, modeling
the entire facility as a single node that services jobs with
scalar processing requirements does not adequately cap-
ture the system’s complexity.

Another example of this sort of complexity is found in
parallel computing, where arriving jobs require simulta-
neous access to several processors in order to be served. A
job type may be served equally well by a number of differ-
ent subsets of a pool of processors, different types requir-
ing different subsets from the pool. Again, the idea of a
network of nodes breaks down. Are jobs-in-service at sev-
eral nodes simultaneously? Does the network change each
time a job enters or completes service? At the same time,
a model that includes only a single node does not ade-
quately capture the capacity to dynamically schedule the
jobs being processed.

A flexible manufacturing system (FMS) provides a third
example. An FMS consists of a set of numerically con-
trolled machine tools connected by an automated convey-
ance system. The dynamics of the flow of individual parts
through the system are quite complex. While there may be
precedence constraints on the tasks required to complete a
job, these tasks can often be performed by more than one
machine. In addition, there may be limited parts storage at
the input and output of each machine tool, and the con-
veyance system usually has limited capacity. As a result,
blocking and othér complex contentions can arise as parts
move through the system. A traditional network model
may fail to capture these complexities or prove intractable
if all the details of the flow and control of part-movements
are represented. Still, modeling the entire FMS as a single-
node queue is clearly too simplistic.

Our model of a flexible service system attempts to
bridge this gap between realism and analytical tractability.
We use an aggregate representation of a flexible facility
that serves randomly arriving jobs of m different classes.
The arrival process is quite general as well, allowing for
dependencies among various arriving job classes. The ser-
vice facility is described by a collection of n processing
configurations, each specifying a set of rates at which the m
job classes are processed. The performance measure we
consider is the total work in the system, defined as the

minimal time needed to clear the current backlog of jobs
using the collection of feasible configurations.

The problem we analyze is how to operate the facility—
that is, choose processing configurations to use at any
given point in time—so as to keep the long-run average
work in the system as small as possible. We also seek
insights into the performance of the system. Under what
conditions is the system stable? How does the optimal
average work depend on the model parameters, such as
the collection of available processing configurations and the
statistics of the job arrival process?

Our model is an aggregate representation of how a fa-
cility operates, and our definition of work is an aggregate
measure of system performance. As such, our formulation
suppresses much of the detail concerning how work is ac-
tually processed within the facility and how performance
varies across job classes. This is clearly a limitation. The
payoff, however, is that minimal structure is needed to
represent the problem, and this provides significant mod-
eling flexibility.

For example, in a job shop a configuration would specify
the rates at which jobs are processed under a specific as-
signment of operators and equipment to each type of job.
A job type (e.g., a machined engine part) might be pro-
cessed at one rate on an automated machine tool requiring
no operator, and at a different rate using a manually oper-
ated tool. In the case of an FMS, a configuration might
correspond to one cyclic pattern of production that—
based on actual past operating experience—we know can
be achieved. Other such patterns might be identified as
well. All of these would form the collection of processing
configurations. Similarly, in the parallel processing exam-
ple, configurations would represent feasible concurrent as-
signments of job types to processors; no particular
structure on these feasible assignments is required. Thus, it
does not matter how feasibility is determined in a given
application; our model requires only a list of the feasible
configurations themselves.

This modeling approach is directly analogous to—and
indeed is strongly motivated by—set covering formulations
in mathematical programming (for example, see Balinski
and Quandt 1964 and Charnes 1956). The appeal of these
formulations is their tremendous generality in handling a
wide range of practical constraints, combined with their
computational efficiency. (See Desrochers et al. 1992 and
Ceria et al. 1995 for recent effective algorithms based on
the set-covering formulation.) Our approach transfers
many of these modeling and computational advantages to
the domain of queueing control problems.

Our model has analytical advantages as well. Specifi-
cally, we are able to obtain bounds and provably good
policies for operating the facility. These results, in turn,
yield succinct, closed-form expressions for optimal system
performance in heavy traffic. The simple equations provide
insights into what drives system performance that general-
ize and reinforce the insights obtained from classical
queueing models. Furthermore, the analysis also suggests



additional heuristics that, in computational experiments,
perform very well even in moderate traffic.

1. LITERATURE REVIEW AND OVERVIEW

There is previous research on more traditional queueing
models that has sought to characterize the steady state
backlog in systems with complex service requirements or
constraints. Green (1980, 1984) and Brill and Green
(1984) characterize three related versions of an M/M/c
queue in which arriving jobs require a random number of
servers. In these papers the authors develop analytical
characterizations of the distribution of waiting times, num-
ber in queue, and number of busy servers. Federgruen and
Green (1984) develop approximations to the waiting time
and number-in-queue distributions for an analogous
M|G/c queue. In all these analyses the queue discipline is
first-in-first-out (FIFO); for systems with priority classes,
the discipline is FIFO within class.

For three cases of the Markovian version of the prob-
lem, Green (1981) also compares FIFO to other service
disciplines. For two of these, she shows that variations of a
“smallest number of servers” priority policy outperforms
FIFO in a number of performance measures.

Green (1984) extends the model she developed in 1980
to accommodate two classes of server, and in 1985 she
studies the related “toll-booth problem,” in which general-
service and special-purpose servers serve two classes of
jobs, one of which can use either type of server and an-
other of which can only use general-purpose servers. For
the former problem, she develops approximations to the
mean delay and blocking probabilities for customers,
and for the latter, approximations to the waiting time and
number-in-queue distributions.

In the computer science and electrical engineering liter-
ature a number of papers address issues of simultaneous
resource possession. Examples include time-sharing com-
puter systems in which jobs require concurrent access to a
partition of memory and the CPU, and telephone circuits
in which calls require simultaneous possession of memory
buffers and transmission links. Sauer (1981) and Jacobson
and Lazowska (1982) develop approximations to first-
order performance measures for examples of these com-
puter systems. Whitt (1985) develops bounds and
approximations for blocking probabilities in a generic loss
system, which is intended to model the performance of
packet-switched communication networks.

Kaufman and Wang (1989) analyze a simple variation of
a two-class M/M/1 queue in which each job of one of the
classes must possess one of a limited number of tokens to
be processed by the server. For FIFO and processor-
sharing service disciplines they develop approximations for
the mean sojourn time in the system.

Courcoubetis et al. (1987) analyze stability conditions of
the FIFO service discipline for a system with N servers in
which there are blocking jobs (requiring all N servers)
and simple jobs (requiring only one server). Courcoubetis
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and Reiman (1987) prove the optimality of a simple
threshold policy for a variant of this system with an infinite
supply of simple jobs, rewards for job completion, and
holding costs. In comparison to our work, this model is
more specialized; throughput is an important issue and the
cost structure is more detailed. However, the dynamic ele-
ment of control and the focus on optimal policies in this
problem is quite similar in spirit to our work.

Ross and Tsang (1989) and Ross and Yao (1990) inves-
tigate the stochastic knapsack problem, a dynamic and sto-
chastic version of the classic knapsack problem in
combinatorial optimization. In the stochastic version, &
classes of objects arrive at random intervals to a knapsack
of fixed capacity. Arrivals for all object types are Poisson,
the rate varying by class as well as with the state of the
system. Every object within a class is of the same size,
earns revenue at the same fixed rate, and has the same
probability distribution for the length of time it stays in the
knapsack, should it be packed. The knapsack is a loss sys-
tem: if an arriving object cannot fit in the unused capacity
of the knapsack, it is immediately lost. An optimal packing
policy seeks to accept arriving objects to maximize the
average rate of revenue accrual.

The stochastic knapsack differs from our work, however,
both in its performance objective and in the complexity of
the systems it models. While the knapsack is a revenue-
maximizing loss system, we minimize system backlogs.
While the knapsack represents systems whose performance
is largely driven by a single shared resource, we seek to
model systems which may have resource-sharing of arbi-
trary complexity.

There exists an extensive body of literature, beginning
with Harrison (1988), which uses “Brownian network” ap-
proximations to queueing networks. The Brownian models
explicitly allow for dynamic scheduling of different job
classes at network nodes, and their analysis typically yields
scheduling policies which are optimal for the approxima-
tions. Optimal policies for these Brownian networks, in
turn, are interpreted in the context of the original queue-
ing networks to provide effective policies for the original
systems (for example, see Wein 1992).

These Brownian network models include a number of
features, such as activity matrices and workload formula-
tions, that are similar to the features of our model. As we
noted in the introduction, however, the queueing networks
which the Brownian models approximate are themselves
restrictive in form. While we do not represent internal
work flows, our model describes a more general class of
service systems.

In the FMS literature, Kimemia and Gershwin (1983) use
an aggregate representation of a flexible production facil-
ity that is similar to our approach. The FMS can process a
mix of parts at deterministic rates, which are described by
a polyhedral constraint set. In their work, variability is
caused by the repair state of machines (working or not-
working), and the polyhedron changes depending on the re-
pair state. The objective is to control production rates to
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meet a set of planned output rates for the various parts, while
minimizing a combination of inventory and shortage costs.

Exact results using this approach are analytically difficult
to achieve and have been obtained only for the single
part-type case (see Akella and Kumar 1986). Approximate
methods, however, can handle quite complex systems.
Sethi and Zhang (1994) and Chapter 9 in Gershwin (1994)
provide surveys of results in this area.

While the polyhedral representation in these models is
similar to ours, its source of uncertainty and the perfor-
mance objectives are different. Our model corresponds
more closely to a make-to-order or service system in which
there is considerable demand uncertainty, and our objec-
tives are to minimize order backlogs and to characterize
optimal backlog performance.

Stability issues in multiclass systems similar to ours have
been investigated in the past. Courcoubetis and Rothblum
(1991) model a bin-packing system in which the server can
decide the types of bins into which randomly arriving objects
should be placed. These bins are analogous to our service
configurations. Courcoubetis and Weber (1994) analyze a
discrete-time production system in which both the quantities
of arriving jobs and the service rates are stochastic. In both
articles, the authors use polyhedral cones to define condi-
tions for system stability. This linear algebraic approach is
quite similar to some of the concepts used in our analysis.
Just as their analyses extend the queueing concept of sys-
tem stability to more complicated settings, our analysis
extends the classical queueing characterization of expected
system work. Bambos and Walrand (1993) analyze an elab-
oration of the parallel-processing system described in our
introduction. Their work also concentrates on finding sys-
tem stability conditions, and the stability results we present
in this paper are a special case of theirs. However, they do
not analyze other measures of system performance.

Finally, Krichagina et al. (1992) consider a cutting stock
problem in which demands for different sizes of paper
sheets arrive stochastically. The cutting facility can dynam-
ically start and stop production of sheets, subject to a shut-
down cost, and it can dynamically alter the cutting pattern.
Using a linear program, the authors identify a fixed subset
of the cutting patterns with which they construct a policy for
operating the system. Due to the complexity of the problem,
the authors rely on simulation to evaluate the effectiveness
of the proposed policy. In our somewhat simpler setting,
we are able to employ linear programming in a similar
fashion to analytically characterize system performance
and find provably good policies.

The remainder of this paper is organized as follows.
Section 2 defines the model. Sections 3 and 4 then present
the detailed analyses: lower and upper bounds on expected
system work and a proof of asymptotic optimality for a
class of heuristic policies. Section 5 then presents two ad-
ditional heuristics, which we analyze numerically in Section
6. Finally, Section 7 presents four extensions that broaden
the scope of the original model.

[] job type 2

Figure 1. Example arrival process.

2. PROBLEM DEFINITION

In this section we define the queueing model and the mea-
sure of performance. After a brief summary of notational
conventions, we present the elements of the arrival pro-
cess, a model of the service facility, and a definition of
admissible service policies. We then define work as a mea-
sure of system performance and the optimality of policies
in terms the steady state expectation of system work.

2.1. Notation

When describing vectors, we use the following conven-
tions. R™ is m-dimensional Euclidean space, and R is its
nonnegative orthant. Boldface 0 € R™ represents a vector
of zeroes, and boldface 1 €& R™ a vector of ones. The
vector e/ € R7 has a one in the jth element and zeroes
elsewhere. For x € R™ and real € > 0, N(x, ;) & {y €
R"y, € (x; — €, x; + ¢€);i =1,..., m} is the L,-
neighborhood of x.

For vectors and matrices that are members of a se-
quence we use the following notation: a subscript denotes
the vector’s or matrix’s place within the sequence, while a
superscript indexes individual elements within the vector
or matrix. For example, for the sequence of matrices {B, €
R™*™: | = 1}, BY denotes the ijth element of the Ith
matrix.

We follow these conventions when describing probabilis-
tic events: { -} represents an event; 1., denotes the indi-
cator function of an event; and P{-} designates the
probability of an event. The abbreviations i.i.d. and a.s.,
respectively, stand for “independent and identically distrib-
uted” and “almost surely.”

2.2. Job Arrival Process

Consider an arrival stream of jobs to be processed. There
are m types of jobs, and at arrival epochs, {f,: k = 1,
2,...}, real vectors V,, = (V, ..., V) of job quantities
arrive to the system. The quantity associated with an arriv-
ing job is the amount of service effort required to process
the arrival. That is, for a fixed rate of service, quantities
are directly proportional to processing times. (Figure 1
shows a sample path of an arrival process for m = 2.)
Arrival epochs form a renewal process; if we set t, = 0
and let T, %, — #,_, denote the interarrival times, then



T, T,, ... are iid. We assume E[7] = 1/A > 0 and that
the variance of T, denoted o2, is finite.

The sequence {V;: k = 1, 2, ...} is also assumed to be
iid. with expectation E[}J] = y € R} and variance-
covariance matrix I' € R”*"”. We require that y > 0 € R”
and that the distribution of V" has bounded support, i.e.,
there exists a real number C, such that IV'< C;1 (a.s.); this
of course implies that y and I' are finite. There are no
other restrictions on vy and I'. In particular, we note that
there may be dependencies among the components of V.
For example, more than one component of V; may be
positive, which would correspond to the simultaneous ar-
rival of several types of jobs. Finally, we assume that the
sequences {V,} and {7} are independent of each other.

2.3. The Service Facility

The service facility has » service configurations available to
process jobs. Each configuration, j, simultaneously pro-
cesses the m types of jobs at constant rates given by a real
vector, a; € R. That is, each element, a;, represents the
quantity of job type i that is processed in one unit of time
under configuration j. The matrix A € R defines all n
possible service configurations. We require only that 4 be
nonnegative and have rank m.

At any time ¢ = 0 the service facility can use a mixture
(convex combination) of service configurations or be idle.
In practice, this simply means the service facility is able to
switch among its » configurations arbitrarily quickly. For-
mally, we represent the control action at time ¢ by a vector
U, € R, which is restricted to the set {u: 1'u < 1, u =
0}. For example, if the service facility is idle, then U, f 0;
if the facility allocates its total effort to configuration j,
then U, ¢/,

The set of arrivals up to time ¢, {(#, V): #, < t}, along
with the sample path of processing configurations used by
the service facility up to ¢, {U,: r < t}, is called the history
of the process up to ¢, and is denoted #,.

The history of the process determines the system back-
log as follows. Let Q, = (Q}, ..., Q") be the quantities of
jobs in the system at ¢. Note that at arrival epochs, ¢, there
is a discontinuity in Q, due to the arrival of the kth vector
of jobs, V. As a convention, we include V in Q,, and we
denote by Q- the quantities of jobs that the kth arriving
vector finds in the system. {Q,: t = 0} obeys the recursion

QO EOy

t +
(th _Af Ur dl") N tk<t<tk+1,
Q: = ()
(th —A J' U, dr)++Vt,(H’

Lk

P =1trs1.

Note that in (1), 4 [} U, dr may exceed Q, in one or more
of its components. One should think of the term A4 [ ﬁk U, dras
the capacity—or service potential—of the system over (¢, ¢],
rather than as the actual quantity of jobs processed.

A service policy, , is a rule which, given ¥, allows
the service facility to determine which processing

GANs AND VAN RyzIN /681

configurations to use at . We consider only those service
policies 7 for which U} is adapted to ¥, (i.e. U/ is nonan-
ticipating and #,-measurable), and let II denote the class
of all such #,-adapted policies.

2.4. System Work and Optimization

Our basic measure of performance is the total work in the
system, denoted W,, where

n
W, = min >, Xj,
j=1
s.t.
Ax = Qt>

x=0. 2

W, is the minimum time required by the service facility to
clear the system starting at time ¢, assuming that no addi-
tional orders arrive after ¢. This definition of work is the
same as that of completion time in Bambos and Walrand
(1993) and is a direct generalization of the definition of
work in system for simple single-server queues in Wolff
(1989).

There are several reasons why we focus on system work
(2) as a measure of performance. First, it is a natural and
tangible measure of aggregate system congestion, describ-
ing, for example, how much time would be needed (under
an optimal processing schedule) to clear the current back-
log of jobs. Second, it is amenable to analysis, and hence
helps provide insights into how system parameters affect
congestion. However, in contrast to classical queueing
models, finding policies that minimize work is not trivial in
this model.

Finally, it appears that a characterization of system work
is important in the analysis of other cost and service level
measures. Indeed, we show in Section 7 that, for a wide
class of cost measures, work forms the basis of a lower
bound on system cost. As utilization grows in these cases,
the service facility cannot control these costs without also
effectively controlling system work.

Note that the sample paths of {Q,: ¢t = 0} and {W,: ¢t =
0} depend on the service policy, m, as well as on the sam-
ple sequences of interarrival times {T;: k = 1, 2,... } and
arrival quantities {V;: k = 1, 2,...}. When we wish to
emphasize the dependence of Q, and W, on m, we will
write Q7 and W

The linear program (2) which defines W, leads directly
to a useful lower bound on the amount of work in the
system at any time, £:

Lemma 1. Let y* € R™ be the optimal solution to

maxvy 'y, 3)
s.t.

Then for any policy w € I1
y*ror<wr.
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Proof. Consider the dual of (2) for an arbitrary policy
max{Q7"y: y'A < 1, y = 0}. Clearly, y* is a feasible
solution for this problem. Therefore, by weak duality for
linear programs, y* Q7 < W7. []

The linear program (3) is the dual of

n

min D, X,
j=1

s.t.
Ax
by

Ys
0, C))

which minimizes the total time required to process an “ex-
pected” vector (vy) of arriving work. One can interpret y*,
the dual solution of (4), to be an allocation of work-
content, or processing time, to the different classes of jobs.
This allocation is important in characterizing system per-
formance. In particular, we will show that y* Ty represents
the expected amount of work that enters the system at
each arrival and that p %f \y* Ty is an appropriate measure
of utilization for the service facility. Note from (3) and (4)
that y > 0 implies that y* Ty > 0 as well.
We say that a policy m, is stable if

Vv

def 1
EW[W] - tll_)rg? W ds,
0

exists and is finite. We define

def

and ideally we would like to find a stable policy, 7*, (if one
exists) that achieves the infinum above. A weaker but more
tractable notion of optimality than (5) is asymptotic opti-
mality. Specifically, we call a policy, #°, asymptotically opti-
mal in heavy traffic if

tim 227 _
ptt  W*
where p 1 1 indicates we approach the limit from below.
In general, the limit p 1 1 is shorthand for describing a
sequence of stable queueing systems (indexed by n) for
which V,, and T, both converge in distribution and p, 1 1.
(See Lemma 6 in the appendix.) To simplify the exposi-
tion, however, we will henceforth consider the distribution
of the arrival sequence {V;; k£ = 1} (i.e., the mix of job
quantities) to be fixed, and interpret p 7 1 to mean an
increase in the rate at which these job quantities arrive.

L

2.5. An Example

We next provide a brief example to illustrate the model. In
Section 7 we return to this example for our numerical exper-
iments. In our example (see Figure 2), a make-to-order
flexible production system processes two job types. Type 1
jobs are processed at station S1 and then station S2;
type 2 jobs are processed at station S1 and then station
§3. Station S1 can process seven units of either job type 1
or 2 in a unit of time, station S2 can process four units of

Y

------ .s\‘ ’;’ 52
"~ ., Pid

job type 1 RN . e
\A S-I 'l

— / S3

job type 2

2

service facility

Figure 2. Example Service Facility.

job type 1 in a unit of time, and station $3 can process five
units of job type 2 in a unit of time. We assume there is a
continuous flow of parts throughout the system and that
no work in process is allowed between stations. In our
model, this entire system of three stations is considered a
single service facility, with each processing configuration
defining a different pair of rates at which the facility can
process job types 1 and 2. '

In this example, we can construct the columns of 4 in a
two-step process. First, we define the polyhedron of feasible
processing rates as shown in Figure 3. Points in the polyhe-
dron represent feasible sets of rates at which the service facil-
ity may simultaneously process the two types of jobs. Second,
we use the extreme points as the columns of A, since any
point in the polyhedron can be described as a convex combi-
nation of its extreme points (note that we exclude the column
(0, 0)" from A, since we consider an idle facility not to be
actively using any processing configuration). The resulting 4
matrix is shown in Figure 3.

Remark. In this production system example, processing
configurations are defined by the extreme points induced
by the intersection of several linear resource constraints. -
Therefore, the number of extreme points can grow expo-
nentially in the number of job types and resources. An
alternative formulation can reduce the size of the LP in
this case. Let M = [m,;], where m;; is the amount of station

processing rate
of type 2 jobs

capacity constraints
feasible region [T

(=2 -
o
W b
anN

~ processing rate
of type 1 jobs

Server configurations

Figure 3. Model of example service facility.



i time required to process a unit of job type j, so M has
one column for every job type and one row for every re-
source. For the example of Figure 2,
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The work in the system is then given by
W, = min{s: Mx <1s;x = Q,; s = 0},

where s is the total time to process the backlog Q, and x,,
j = 1, 2 represents the quantity of job type j processed.
Though more concise, the formulation above is less gen-
eral than the set covering representation (2), which allows
for an essentially arbitrary structure among the columns of
A.

3. LOWER BOUND PROCESS

We next use Lemma 1 to develop a stochastic process that
is a sample-path lower bound on the work process under
any policy, 7. Define {W,: t = 0} according to the
recursion:

Wy =0,

w A{(%k — (=),
- W, = (teer = 8) T+ y* "WV, t=tes.

Lemma 2. For all policies w € 11, for all t = 0, W, < Wy

(6)

Proof. We will prove by induction that for any policy, r,
y*TQF = W, at all times. Together with Lemma 1 we then
have W[ = y*TQ7 = W, for all # € Il and ¢ = 0.

Fort = 0, W, = W[ = 0. As an induction assumption,
suppose that for some arbitrary arrival epoch #,, {y*TQT
= W 0 < s < t;}, and consider the times up through the
next arrival epoch, ¢t € (t;, 1] First we consider ¢, <t <
tr+1- Equation (1) gives us

t +

y* TQ?=y*T<Q;Z—AJ U,dr)

tk

t
=y* T(Q;Z —A J U, dr).

173
From the induction assumption, y* Q] = W, - y*TA [ ﬁk
U, dr, and from (3) we know that y* "4 < 1 so that y*"Qf
=W, — 17 [ U, dr. Finally, 17U, < 1 implies that 17 [}
U dr<t—s,sothaty*"QfF = W, — (¢ — t). Since both
y* and Q] are greater than or equal to zero, we conclude
that for 1, <t < t,4,
y*TQtWB(_W_/zk —(t‘“tk))+=_t- (7)
Similarly, consider time #; ;:
y*ror =y (O + Vi)

From (7) we then have y*"Q7 = (W, — (i1 — )" +
y*'V,,, = W, Since the proof relies only on sample

paths, it cleazﬁy holds for any policy at all times. []
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Note that {W,: t = 0} is the work in system process
(Wolff 1989, p. 291) for a classical GI/GI/1 queue with
i.i.d. interarrival times {7,: k = 1, 2, ... } and i.i.d. service
times {Z,: k = 1, 2,...}, where

def

Z=y*7V,
E[Z]=E[y* "V]l=y* "y, and
o% = var(y* V) = y* TI'y*, (8)

We define E[W] &f E[lim, %] to be the expected work
found in the lower bound system in equilibrium. Again, if
{W,: t = 0} is a regenerative process, then

E[W] = lim L Jt W, ds, )

t—o0 [

0

as well.

For the original queueing system, {W,-: k = 1, 2,...}
represents a sample path lower bound on the work found
upon arrival by the sequence of arriving vectors of job
quantities. We define

def k
E[D] = lim B > W,-, (10)
k—o k j=1 -’
so that E[D] is a lower bound on the expected work found
by a new arrival to the original system, in equilibrium.
Since the lower bound is a GI/GI/1 queue, it immedi-
ately follows that when p > 1, E[D] is unbounded. This
leads to the following result, which is a special case of
Theorem 1 in Bambos and Walrand (1993) (we omit the
proof):

Theorem 1. If p ©f \y*Ty > 1 then E_[W] = « for any
policy m € 1L

Note that y* in the above theorem is a function of both
the processing capabilities of the facility, as given by 4,
and the product mix, as given by 7. Indeed, this stability
result is equivalent to saying that if the system

Ay Ty <1,
yA<1,
y=0,
is not solvable in y, then no stable policy exists.
The GI/GI/1 structure of the lower bound also leads

directly to the next theorem, which follows from Lemmas 6
and 7 in the appendix (we omit the proof):

Theorem 2. If we scale T as in Lemma 6 so that p 7 1 as
A1 1y* Ty, then

AMaF +y* TTy*)
2 b

lim(1 - p) E[W] =
Pl
which implies that for any policy

Aoz +y* TTy*)
5 .

lim inf(1 — p) E[WT™] =
pl1



684 / GANS AND VAN RYZIN

Q.

basis columns

Figure 4. The cone of B.

4. A CLASS OF POLICIES AND AN
UPPER BOUND

Our strategy in designing an effective heuristic policy is
based on the following observations. First, the optimal ba-
sis, B, of the LP (4) identifies a set of efficient processing
configurations. These efficient columns have reduced costs
of zero, meaning in a unit of time they process one unit of
work (as defined by the allocation y*). Columns with pos-
itive reduced costs process less than a unit of work in one
unit of time and hence are inefficient in this sense. Indeed,
one can show that if, during a busy period, Q, remains in
the cone of the basis B and the service facility only uses
columns of B for processing, then W, will equal the lower
bound W, throughout the busy period.

Second, as shown in Figure 4, if Q, lies in the cone of B,
then x = B7'Q, is a feasible solution to (2), and the
associated processing time is 1'x = y*'Q,, which equals
the lower bound of Lemma 1. More precisely, if (3) has a
unique solution, then (4) is nondegenerate, so there exists
an e > 0 such that y* remains the vector of optimal dual
prices of (4) for all right-hand-side vectors in N(v, €) (see
Bazaraa et al. 1990, p. 260). Because (4) is homogeneous
of degree one in its right-hand side, this means whenever
there exists an « > 0 such that for all O, € N(avy, «ae), y*
is an optimal dual solution of (2), and hence the system
work W, equals the lower bound y*TQ,.

These observations suggest that a policy should try to
satisfy two objectives: (1) use the efficient configuration in
B as much as possible, and (2) maintain the backlog O,
close to the ray defined by y. To accomplish these objec-
tives, we propose a class of policies, {mp }, in which the
service facility processes arrivals in batches. First we de-
scribe the mechanics of how the policy operates. Then we
demonstrate that the class of policies is asymptotically op-
timal in heavy traffic.

For the class {mp }, the service facility acts as a bulk
service queue in which the individual arrival vectors, {V:
k =1,2,...}, are served in batches of N. We may think
of bulk service as operating in two stages (see Figure 5). In
the first stage, an accumulator collects batches of N

batch server
(N=3)

accumulator

processed jobs leave system
accumulated batches transferred to server

individual arrivals enter accumulator

Figure 5. The bulk service queue under policy 75,

arrivals. In the second, the batch server processes these
batches of N.

For the policy g, in particular, a batch is formed every
Nth arrival, where N may depend on p and will be deter-
mined later. We call every Nth arrival epoch a batching
epoch, since these are times at which the accumulator
passes batches to the batch server. To facilitate the analy-
si§ of mp , we define two sequences of random variables,
Vel=1,2,...}yand {71 =1,2,...}, where

def N def N

A

Vi=2Vye-n+x and T/ = 2 Tyg-nyx. (1)
k=1 k=1
Thus, ¥, is the vector of job quantities making up the /th
batch and 7 is the interarrival time between the (I — 1)*
and /th batches. Like {V}} and {7}, {17,} and {T,} are
sequences of i.i.d. random variables and are independent
of each other.

Under policy g, the batch server processes incoming
batches on a FCFS basis. It determines which configura-
tion it will use to process a given batch, /, by substituting 7,
for Q, in (2) and solving the linear program. Accordingly,
we define the sequence of random variables {S’,: Il =1,
2,...} to be the processing times derived from {V;: [ = 1,
2,...}. Thus, the batch server behaves as a GI/GI/1
queue with interarrival times {7): / = 1, 2,...} and ser-
vice times {S‘,: I=1,2,...}

The strategy behind using the class {mp } is to pick a
large N so that every v, is likely to fall inside the cone of B.
Then the processing times of all batches are likely to
achieve the lower bound, y* T¥,. If the solution to (4) is not
degenerate, then v lies in the interior of the cone of the
basis, and as N grows large, the probability that ¥, falls
outside of the cone decreases rapidly.

To develop an upper bound on E, \[W] we will sepa-
rately bound the expected quantities of work found, in
equilibrium, in the accumulator and in the batch server.
First, we define E[D] to be the expected amount of work
an arriving batch finds waiting at the batch server. Because
the batch server acts a GI/GI/1 queue the following
lemma, Kingman’s upper bound, provides an upper bound
on E[D].

Lemma 3. (Kingman, from Wolff 1989, p. 476.) For a GI/
GI/1 queue with interarrival times T and service times S,
such that E[SYE[T] < 1



. §$— T
E[D] < ] var(S [ ) .
2E[T](1 — E[S)/E[T))
To use this bound we, in turn, must find bounds on the

first two moments of 7 and S. The moments of 7 follow
directly from the definitions of {7} and {7;}:

E[T]= NE[T] = jx\’ and

var(T) = N var(T) = No2.

Since $ is the solution to the linear program (2), however,
its moments are less straightforward to derive.

For some batches, S, = y*T¥, and the processing time
achieves the lower bound. Recall that this happens when
¥, lies within the cone of the optimal basis, B, of (4). More
formally, if the solution to (3) is unique, then S, =y,
for any batch, [ in which ¥, € N(Nv, Ne).

For other batches, ¥, & N(Nv, Ne) and the dual prices,
y*, may not apply. Still, because the elements of V' are
uniformly bounded by C;, we can find a finite upper bound
on §,. In this case, let C, & mC, max{a; :a;>0,1<i<m,
1 < j < n}. Then since A is nonnegative and has rank
m by assumption, for each type, i, there exists a configura-
tion, j(i), with a;; > 0. Hence,

A
3

. i
S <2 a;pVi

1l
—-

m N

=X a;i 2 Vie-1+x
i=1 k=1
N m

=2 Y aiiVia-1+x
k=1 i=1
N

=X C,
k=1

:NC2

Let {E;} &f {I, & N(Nv, Ne)}. The following lemma
shows that the probability that {E;} occurs is exponentially
decreasing in V.

Lemma 4. There exists a 6 > 0 such that P{E;} =
O(e™ ™).

Proof.
P{E)} = P{V, € N(Ny, Ne)}
=P{3Ai€{l,...,m}st Vi
& [N(y; — €), N(v;: + €)1}
< 3 PV [Ny - o, N(ys + )

m A . m A
< ;P{V; < N(y;, — €)} + %P{V; = N(y; + e)}.

We recall that V' is nonnegative and uniformly bounded
above by C,, so that E[e®""] < o for all |a] < . For each
type, i, we let X 4 17 S, 4f 14 g, df 5. — e and b, f , + ¢,

and we apply the Chernoff bounds in Corollary 2 of
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Lemma 9 (see the appendix) to find o; > 0 and 3; > 0
such that

3

e—ouN + % e_ﬁiN.

i=1

PE} <

1]
—_

Letting 6 %f min{min,{«;}, min,{B;}}, we have found a 6 >
0 such that

e —6N

M=z

—6N +

n
Mz

P{El} e

l

It
—
5
—_

me =N,

Il
)

which completes the proof. []

Rather than directly analyze the first two moments of S,
we define a sequence of random variables {S;: [ = 1,
2, ...} in which
— def A
S =y* TV, + NCyl,. (12)

We note that for any sample path, 8, < §,, for all /. There-
fore, any upper bound on the work found in a GI/GI/1
queue which uses the sequences {S;: / = 1, 2,...} and
{?‘,: I =1,2,...} for service and interarrival times will
also be an upper bound for the batch server under policy
g, We can readily provide an upper bound on the first
two moments of § using Lemma 4:

E[S]=E[y* TV, + NCy1z,]

=y* TE[V}] + NC2E[1;z,]

= Ny* Ty + NC,P{E}

=Ny* Ty + ON)P{E,},
and
var(S) = var(y* TV, + NC, 1)

= var(y* TV,) + var(NC, 1ig,y)
+ 2cov(y* TV, NCalg ).

For the first term we have var(y*T¥;) = Ny* I'y*, and for
the second we have

var(NC, 1z y) = N*C3 var(1g )
= N’C3(E[1{z,] — P{E}?)
SNZC%E[I{ZE,}]
= N2C2P{E,}.
Finally, we find that
cov(y* TV, NCy1(z,) = NC, cov(y* TV, 1))
= NC,(E[y* "Vi1iz,]
— Ny* TyP{E.})
= NC,E[y* "Vi1g,]
= N2Coy* TyP{E}.
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Then
E[y* "Vi1p] = E[y* " Vi1 {E }IP{E |}
+ E[y* "V, 1 {E,}IP{E )}
< Ny* T1C, P{E,}, |
where {E;} is the complement of {E;}. This implies that
cov(y* TV, NC21iz,y) < NC,Ny* T1C, P{E}}
Therefore, we have
var(S) < Ny* TTy* + N2C3P{E,}
+ 2N2C,C,y* T1P{E}} -
= Ny* TT'y* + O(N?) P{E,}.

With the first two moments of 7" and § at our disposal,
we are ready to prove an upper bound. We present the
first part of the proof as a lemma.

Lemma 5. Suppose y* is unique. If p < 1 then there exists
an integer N, such that for all N = N,

E[8] <L,

and

Ao} +y* TTy* + O(Ne™™))
2(1 = p = A0(e™™))

Proof. The fact that E[S] < 1/A for a sufficiently large N,
follows from (12) and Lemma 4. Then from Lemma 3, we
know that for all N = N,

E[D] =<

R var(S — 7)
E[D] < - — —.
2E[T](1 — E[SVE[T])
Furthermore, for any sample path S =< S,{l=1,2,...}

1
Substituting {S;: I = 1,2,...} for {8:1=1,2,...} we
see that

E[D]<— var(§ — 1) .
2E[T](1 - E[SVE[T])
_ var(S) + var(7)
2E[T1(1 — E[SVE[T])
_ Wy TTy* + O(N*>) P{E} + No?}
(M) (4 - W Lyt OWPE)
A N/A
_ Mot +y* TTy* + ON) P{E})
2(1 — p— AP{E})
_ Mot +y* TTy* + O(Ne ™))
2(1 = p = 20(e™™))
While the lemma offers a bound on the expected work that
an arriving batch finds at the batch server, we seek a
bound on the total amount of work found in both the

accumulator and the batch server at an arbitrary time. To
this end, we extend the previous lemma:

O

Theorem 3. Suppose y* is unique. If p < 1 then there exists

a policy g that is stable and for which

(of +y* TTy* + O(Ne™™))
2(1 = p—A0(e ™)

E,, [W]s A + O(N).
Proof. The proof proceeds in three steps. First, we bound
the work found in the accumulator at an arbitrary point in
time. Then we find a bound on the work found waiting at
the batch server at an arbitrary point in time in terms of
E[D]. To finish, we put the two bounds together.

Step 1. Under g the quantity of jobs in the accumula-
tor starts at zero at the beginning of each batching cycle,
increases throughout the cycle, and reaches its peak as the
Nth job of the batch arrives and the batch is dispatched to
the batch server. Similarly, the amount of work in the
accumulator peaks at the end of any cycle, so for a given
cycle, I, S, provides a uniform upper bound on the work
found in the accumulator during the cycle. Since the se-
quences {T:k =1,2,...}and {V: k =1,2,...} are
independent and N is constant, it follows that E[S] is an
upper bound on the expected amount of work in the accu-
mulator at an arbitrary time.

Step 2. For a stable, work-conserving GI/GI/1 queue
with service times {S} and interarrival times {7} it is well
known (see Wolff 1989, p. 279) that the following relation-
ship holds between the time average of system work, E[W],
and expected delay upon arrival E[D]:

E[S?%]
2E[T]"

E[W] = pE[D] +

For our problem this immediately leads to a simple upper
bound on work found waiting at the batch server at an
arbitrary time:

AE[S?]
2N

Step 3. Putting together the results from first two steps
we have

E[D] +

AE[S§?
25\, ] ) (13)

Lemma 5 implies that for any p < 1 this quantity is
bounded for large integers N and the queue is stable. Fur-
thermore, NC, is an upper bound on §, which gives us

A% +y* TTy* + O(Ne %))
2(1 — p— AO(e %))

E,, [W]<E[D]+E[S]+

E., [W]< +OWN). O

Theorem 3 establishes the sufficiency of p < 1 for stabil-
ity. As before, the condition p < 1 can be expressed in an
equivalent vector form that better illustrates its depen-
dency on the product mix, v, and the system capabilities,
A; namely, a stable policy exists if the system

Ay Ty <1,
y4s<1,
y=0,



is solvable in y.

We next relate the expected work of the heuristic to the
lower bound of Theorem 2 under heavy traffic conditions.
First, note that as the batch size N increases without
bound, the expected work found by a batch arriving to the
batch server approaches the lower bound. The expected
work found in the accumulator, however, increases linearly
with N. From Theorem 2 we recall that in heavy traffic the
lower bound on W* is O(1/(1 — p)). Therefore, if we let
N —> o sublinearly with 1/(1 — p), the expected work in the
system under the policies {mp } will converge to optimal
levels. Theorem 4 formalizes this idea.

Theorem 4. Suppose y* is unique. Let N €[ (1 — p)~°1for
some arbitrary, fixed b € (0, 1). If we scale T as in Lemma
6 so that p 1 1by letting A 1 1/y* "y, we find that
E, M
M T
Proof. From Theorem 3,
(1-=pE,, [W<(1-p)
[)\(0'% +y* TTy* + O(Ne ~%))
2(1 = p = 10(e™™))
- 1-p
1—p—A0(e™)
o Ao} +y* TTy* + O(Ne %))
2
+ (1 = p)O(N).
For N ©[(1 — p)~*1for any fixed b € (0, 1), lim,, 1 ,(1 —
p)O(N) = 0, and

(14)

+ O(N)}

lim 1-p = lim 1 -
pt11 — p— rA0(e ™) pTll_)\O(e'oN)
1-p

Also note that whenever N — «© as p 1 1, lim,,,
O(Ne~®) = 0. Therefore,

A 2+ *TI" *
lim(1 ~ p) En, [W]< (o7 4 )
; N

Dividing this limit by that of Theorem 2 completes the
proof. [

5. OTHER HEURISTICS

The batching policies in the previous section are designed
primarily to provide analytically tractable upper bounds.
As our simulation results below show, in moderate traffic
the batching policies do not perform well. In this section
we examine two alternative policies motivated by our anal-
ysis, which, although not provably good, are more appeal-
ing on a practical level. In simulation experiments they
also perform well relative to the lower bound of Theorem
2.

Our definition of work, the minimum time required by
the service facility to clear the system backlog, suggests a
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Q,

Q,

k

TN

path GREEDY takes
as it eliminates backlog

Q,
Figure 6. Example sample path of GREEDY policy.

greedy policy (GREEDY) as a natural choice. A greedy
policy would always seek to serve the current system back-
log as quickly as possible, without regard for future arriv-
als. At arrival epochs, f;, GREEDY substitutes Q, in the
right-hand side of (2) and solves the linear program.
GREEDY then uses the result of (2) to determine a direct
path back to the origin that requires a minimum of pro-
cessing time (see left side of Figure 6). We note that
GREEDY does not make use of the optimality of process-
ing using B, nor of any information concerning the distri-
butions of ¥ and T.

The second policy, CENTER, uses the insights from the
batching policies but applies them more dynamically. Re-
call, there were two objectives of a good policy suggested
by our earlier analysis: (1) the policy should process using
the columns of B as much as possible; (2) it should try to
maintain the backlog “centered” within the cone of B at all
times. Like GREEDY, CENTER reevaluates which pro-
cessing configurations the service facility should be using
at each arrival epoch, #,. When the system backlog at an
arrival epoch, Q,, is in the cone of B, CENTER processes
the backlog by using the columns of B to first move to a
center line, C, and then move down C to the origin (see
right side of Figure 7). When Q, is not in the cone of B,
CENTER processes the backlog by first processing as
much work as possible using columns of B, and then using
whatever remaining columns of 4 will return the backlog
to the origin as quickly as possible (see Figure 7).

Since the CENTER policy aims to keep the backlog
within the cone of B as much as possible, we construct the
centering ray, C, to reduce the probability that, given
the backlog at some ¢, is near to C, the arrival that occurs
at t; forces the backlog out of the cone. In particular, we
note that if the ray of vy is near a boundary of the cone of
B, then by placing C near the opposite boundary, we can
reduce the probability that this event occurs (see Figure 8).

For a detailed description of the GREEDY and CEN-
TER policies, we refer the reader to the appendix.



688 / GANS AND VAN RYZIN

Q.

Q4

@&

Figure 7. Example sample paths of CENTER policy.

6. NUMERICAL ANALYSIS

This section reports the results of four sets of simulation
experiments that test the performance of the GREEDY
and CENTER policies, as well as that of the batching
policies, which we will call BATCH. The simulations sam-
ple the system work found upon arrival, {W};: k=1,
2,...}, under the three heuristics, as well as the analo-
gous quantities for the lower bound process, {W;: k = 1,
2, ...}, which in this section we will call LOWER.

In each simulation run, we use the method of “batch
means” (see Law and Kelton 1982, p. 295-297) with
batches of size

2 2+ *TF * *T 2
Aor+y* Ty /Z(y ) . (15)
(1-p)

(See Whitt 1989, p. 1355-1357.) For the lower bound and
each of the three policies, the sample points of the work
process that fall within each batch are averaged. The sim-
ulation run terminates when the 95% confidence intervals

M =10

next arrival expected to move the
backlog to the center of the cone

( next arrival expected to keep the
backlog at the edge of the cone
Q,

Figure 8. Examples of the expected effect of an arrival on
the backlog.

for the estimates of all four population means (the average
of the averages) are less than or equal to =10% of the
estimate of the population means themselves—or after
the simulation has run for twenty-four hours (on an Intel
486 DX2/66-based microcomputer), whichever comes first.

In all simulation runs, we use i.i.d. exponential interar-
rival times. Then by PASTA (see Wolff 1989, p. 293-297)
we may interpret the arrival averages calculated by the
simulation to be unbiased estimates for the analogous time
averages, E_[W].

6.1. Simulation Input Data

All four sets of simulations use the same model of a ser-
vice facility described in Section 2. We recall that the A
matrix from this example is

[4402]
0 3 5 5°

Within each of the four sets, we vary only the mean of the
interarrival time distribution, 7, to achieve ps of 0.8, 0.9,
0.95, and 0.99.

In the first two sets of simulations, called Examples 1
and 2, we let y" = (10, 10). In these cases, the solution to
3) isy* = (¥4, V), station S1 is the bottleneck, and both
job types contribute equally to the congestion at S1. In
addition, the basis for the optimal solution to (4) is

5 3l
3 5F

In the remaining two sets of experiments, called Exam-
ples 3 and 4, we let y" = (16, 6). In these cases, station S2
is the bottleneck, and only job type 1 contributes to the

congestion. In these two cases, the solution to (3) is y* =
(Va, 0) and the optimal basis for (4) is

o 3]
0 37r

Examples 1 and 3 are distinguished from the Examples 2
and 4 by the correlation between the arrival quantities of



Table I
Data for V' in Examples 1 through 4
Example (V15 72) (CVy, CV) cc
1 (10, 10) (0.86, 0.86) 0.34
2 (10, 10) (1.22,1.22) -0.17
3 (16, 6) (0.94, 0.85) 0.26
4 (16, 6) (1.26,2.27) -0.27

the two job types. In the former, the correlation is positive,
and in the latter it is negative. Table I describes the first
two moments—means, coefficients of variation (CV), and
correlation coefficient (CC)—of V' in each of the four
cases:

As p increases from 0.8 to 0.99, we scale the batch size,
N, in the BATCH policy so that N ~ 2.5(1 — p)*7,
where the parameters 2.5 and 0.75 were chosen based on a
series of shorter simulation runs. Specifically, at each utili-
zation we performed several runs in which we varied N in
order to minimize the expected backlogs of BATCH. After
finding “good” Ns for utilizations of 0.8, 0.9, 0.95, and 0.99,
we then chose an g and b so that they would loosely fit
N = a(1 — p)~" for these “good” Ns.

6.2. Simulation Results

The simulation results, presented in Table II, reveal a
number of interesting phenomena. First of all, the CEN-
TER policy performs quite well. For example, in simula-
tions with p = 0.99, the expected system work under
CENTER is between 0% and 1% above the LOWER
bound. While in one case the GREEDY policy performed
nearly optimally, its results were generally inferior to those
of. CENTER. Furthermore, whenever CENTER’s results
rose above the lower bound, the performance of
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GREEDY deteriorated even more sharply. As we noted
previously, the BATCH policy does not fare well; in all
cases its backlog remains at least 60% above that of the
lower bound.

Note that the heuristics fared worse with respect to the
lower bound when the correlations were negative (Exam-
ples 2 and 4) than when the correlations were positive
(Examples 1 and 3). Indeed, it appears from our observa-
tions of some sample paths that the positive correlation
actually kelps the backlog stay inside the cone of the basis,
B, resulting in better performance relative to the lower
bound (see Figure 8). Further evidence of this phenome-
non is that the relative performance of GREEDY is closer
to that of CENTER when the correlation is positive than
when it is negative. Again, when the correlation is positive,
the backlog also stays in the cone of B with GREEDY, and
there is less of a difference between the performance of
the two heuristics. When the correlation is negative, how-
ever, the CENTER policy keeps the backlog inside the
cone of B more effectively than GREEDY, and CENTER’s
relative performance deteriorates more slowly than
GREEDY’s. However, the examples with negative correla-
tions also have higher coefficients of variation for the indi-
vidual jobs, and this factor may be contributing to the
effect as well.

We point out that these observations concern the heu-
ristics’ performance relative to the lower bound. It is also
important to note that since y* > 0, negative correlation
among the elements of the arrival vector tends to reduce
the expected backlogs of all the heuristics through the
term y* "I'y*. Thus, negative correlation tends to improve
the absolute performance of the heuristics, even though
their performance relative to the lower bound may suffer.

Table 11
Simulation Results for the Lower Bound and Three Policies
CENTER GREEDY BATCH
Example p M/G/1} LOWER interval® premium?> interval® premium?® interval® premium?
1 080 857 854(+0.85)  896(+0.85)  49%  9.53(x090) 11.6% 2664 (x124) 211.9%
090 1929 19.74(+1.97) 20.12(=x196)  19%  21.36(+2.05)  82%  52.89(£2.44) 167.9%
0.95 4072 41.75(%4.12) 4206 (+4.14)  07%  44.19(x424)  58% 102.30 (x4.76)  145.0%
0.99* 212.16 203.62 (*£24.27) 203.83 (£24.26) 0.1%  207.01 (+24.28) 1.7% 41232 (£25.03) 102.5%
2 0.80 9.29 9.43 (+0.94) 12.13 (£1.04) 28.6% 14.01 (£1.26) 48.6% 31.98 (+£2.22) 239.1%
0.90 20.89  22.86 (*+2.28) 26.04 (+2.30) 13.9% 31.36 (£2.77) 37.2% 70.18 (+4.87) 207.0%
0.95 44.11  43.44 (*=4.28) 46.39 (*£4.25) 6.8% 56.71 (=4.70) 30.5%  132.81 (=9.98) 205.7%
0.99* 229.84 227.77 (£29.74) 230.13 (£29.77) 1.0%  254.57(x29.66) 11.8%  560.10 (*57.42) 145.9%
3 0.80 15.06 14.47 (x1.44) 14.52 (=1.44) 0.3% 14.58 (=1.44) 0.8% 36.38 (=1.70) 151.4%
090 33.89 3225(+320) 3229(%+320)  01%  3241(+320)  05%  76.10 (*3.49)  136.0%
095 7156 69.81(+6.85) 69.82(+6.85)  0.0%  69.94(+685)  02% 149.83 (x7.24) 114.6%
0.99 372.83 346.99 (+34.68) 346.99 (+34.68)  0.0% 347.15(%34.67) 0.0% 634.46(+34.83) 82.8%
4 0.80 20.69  19.94 (=1.98) 20.89 (£1.96) 4.8% 21.48 (=2.00) 7.7% 44.59 (+£2.61) 123.6%
090 4655 49.86(+4.94) 50.67(x491)  1.6% 5220 (*4.94)  47%  99.86(=6.09)  100.3%
095 9828 90.71(£8.99) 91.32(+895)  07% 9434 (+898)  4.0% 182.62(*11.86) 101.3%
0.99 51207 50257 (+49.94) 50273 (£49.93)  0.0% 507.91(+49.99)  1.1% 80216 (+53.43)  59.6%

! Analytical expectation of steady state system work for an M/G/1 queue with the same arrival and service statistics as LOWER’s.

295% confidence interval for expected system work.
*Expected system work’s percentage premium over LOWER.
4Simulation run terminated after twenty-four hours, before the confidence intervals reached =10% of the estimated mean.
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Finally, the performance of all of the policies improves
relative to the lower bound as system utilization increases.
This improvement is also likely due to an increase in the
probability that the backlog is in the cone of B as
the number of arrivals waiting to be processed grows and is
consistent with our theoretical analysis.

In addition to the results of the simulation experiments,
Table II presents the analytically derived expectation for
the steady state work in an M/G/1 queue with interarrival
times T and service times y* TV (labeled “M/G/1”). In this
case we have

_ AMog+y* TTy*)

E = )

L] 2(1 - p)
not only in heavy traffic,-but for all p < 1 (see Wolff 1989,
p. 280).

With exponential interarrival times, the lower bound
process becomes just such an M/G/1 queue. Therefore, as
a check on the validity of the simulation results for the
lower bound, we compare LOWER to the corresponding
analytical expectation in M/G/1. In fact, in all cases the
M]/G/1 expectation falls within the 95% confidence interval
of the simulated mean for LOWER.

7. EXTENSIONS
We next present four simple extensions.
7.1. Processing Costs

Consider the case in which the operation of the service
facility under configuration j incurs costs at rate c;. Sup-
pose there is a fixed operating budget, which we model as a
limit, C, on the rate the facility can spend per unit of time.
We can modify (2) to include this budget constraint as
follows:

W, = min X x;, (16)
j=1

s.t.
Ax = Qh

n
cTx<C Xy,
j=1

x=0.

Similarly, (3) becomes

max y 'y, (17)
s.t.
[y Tul[ 4l =1,

y=0,

u<0ao.

For any fixed C we can use y* and the optimal basis to
the dual of (17), B, as before. The resulting bounds are
then valid for policies which generate costs at fixed rate C.
As we vary C, we trace an efficient frontier for which we can
view the tradeoff between the rate at which the service

facility incurs expense and long run expected system work
when operating optimally under the expense constraint.

7.2. Backlog Costs

Suppose the backlog at time ¢ incurs cost at the rate C, %f
f(Q,), where f( - ) is nondecreasing. Then it is not difficult
to show that, given a lower bound on the system work at
time ¢, W,,

C, = min f(Q), (18)
s.t.
y* i Q = Kt:
Q = 0:

is a lower bound on C,, and, in turn, the process {C,: t = 0} is
a lower bound on {C,: ¢t = 0}. Similarly, the accumulated
discounted cost ([ C,e™* ds) and the average cost (™! [
C, ds) generated by {I¥,: t = 0} and (18) are lower bounds
on the corresponding costs for the original system {Q,: ¢ =
0}. We are currently using this lower bound to investigate
the performance of cost-minimizing heuristics.

We note that (18) and its associated average cost mea-
sure are closely related to the workload formulation and
solution presented in Wein (1992), Equations (24)-(27)
and (31)—(32). (See also Harrison 1988 for the develop-
ment of this approach.)

7.3. Changes to the Service Facility

The intimate connection of the heavy traffic limit

Ao} +y* TTy*)
2(1-p) ’

to the linear program (4) allows one to apply standard
linear programming sensitivity analysis to evaluate changes
in the system. For example, the addition of a new process-
ing configuration would have no effect on the expected
backlog if the new column of 4 were not a part of the
optimal basis in the solution to (3). New configurations can
therefore be “priced-out” to decide how they would effect
the optimal backlog.

7.4. Adaptive Policies

Adaptive versions of the policies can be implemented in
cases where the demand statistics are not known. Indeed,
very little data are needed to execute the three heuristics
presented. GREEDY requires only the A matrix and the
sample path of arrivals. In addition to these, CENTER
requires only y to determine the basis, B, and the center
line, C; and BATCH requires only y and A to determine
y*, p, and, in turn, the batch size, N.

To apply these policies adaptively, we might begin with
estimates of the two parameters, y, and A, and update
our estimates as the sample path evolves. If the arrival
process is truly stationary, then after the kth arrival we
could update our estimates to be



e k41
A = ———,

1 k
E + Ej:l T]

; def vh+ 2 Vi
Yem o pe1

and know that, as k — o, the behavior of the adaptive
versions of the policies converge to the behavior of the
policies when vy and A are known.

To implement CENTER in this situation, we can recal-
culate C after each arrival and use the new C for next
arrival. Similarly, we can re-solve (3) and, if the basis of
the optimal solution changes, use the new basis, B. For
BATCH, we can recalculate N after each arrival. Then, if
the number of arrivals in the accumulator equals or ex-
ceeds N, a new batch can be formed and passed to the
batch processor.

If the arrival process is not stationary, we can use mov-
ing averages, exponential smoothing, or regression tech-
niques to update the estimates of y and A. Furthermore, if
the arrival process exhibits seasonal fluctuations, a “mov-
ing” estimate of y would allow us to recompute a new B
and C that should move appropriately as demand charac-
teristics vary.

8. SUMMARY AND CONCLUSIONS

Our queueing model has a number of appealing features.
The definition of the arrival process is quite general and
allows for correlation among the arriving quantities of the
different job types. The representation of the service facil-
ity as a matrix of processing configurations provides signif-
icant flexibility in how one models service facilities. The
definition of system work is a natural one, and the use of a
linear program in determining the work gives a great deal
of information on the sources of system congestion. More
specifically, the linear program identifies an optimal basis
for the service facility to use, as well as a set of dual prices
that provides information on the work content of the vari-
ous job types.

We make use of these insights to construct the batching
policy, which performs asymptotically optimally in heavy
traffic, and the CENTER policy, which performs nearly
optimally in moderate traffic. Moreover, we are able to
obtain a closed form characterization of the optimal work
in heavy traffic.

As we noted in the introduction, however, our model of
the service facility suppresses much of the detail concern-
ing how work is actually processed within the facility. In-
deed, there may be restrictions on service which the
“processor sharing” assumption does not address. In many
systems jobs may require non-preemptive service: service
which, once it commences, is not interrupted until it com-
pletes. In others, such as logistics systems (in which the
configurations correspond to various delivery routes),
the server may only use integral multiples of configurations
to feasible serve the system backlog. Systems for which
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these restrictions apply are the subject of two forthcoming
papers (Gans and van Ryzin 1996a and 1996b).

APPENDIX
Lemmas

Lemma 6. (Asmussen, cited in Wolff 1989, p. 518.) Con-
sider a sequence of stable GI/GI/1 queues in which the nth
queue in the sequence has all random variables indexed by
n. In particular, the nth queue has interarrival times T,,
service times Z,, and waiting times (customer delay in the
system) D,,. Suppose as n — o, T, 2T and 7, 2 7. Ifin
addition, as n — o,
Dpp—p=1
(ii) E[Z%] — E[Z?] and E[T?] — E[T?];
(iii) var(Z — T) > 0;

then as n — oo,

2(1 - pn)Dn

1)
Avarz, — 1,) 0

an exponential random variable with mean 1.

Lemma 7. (Wolff 1989, p. 291.) Given a G/G/1 queue with
interarrival times T, service times Z, let E[W] and E[D] be
defined as in (9) and (10). If A = 1/E[T] and E[D] exist
and are finite, then E[W)] exists, is finite, and

\E[ZY]

5
Lemma 8. (Chernoff, cited in Coffman and Lueker 1991,
p. 16.) Suppose X is a random variable and that p = E[X]
exists and is finite. Let S, be the sum of n independent
samples of X. Then, defining

E[W] =E[zZD] +

def
u(a) = inf E[e*X ~ 7],

we have
(i) a = u> P{S, = na} < u(a)
(i) a < p=> P{S, < na} <u(a)".

Lemma 9. (Durrett 1991, Lemma 9.4, p. 59.) Suppose X is
a random variable and there exists some o > 0 such that
E[e*X] is finite. Let w = E[X]. Then for a > w and small «

E[e**~9] < 1.

Corollary 1. If X is a random variable, p = E[X], and
there exists some a < 0 such that E[e**] is finite, then for
a < wand small o« <0

E[e®® - @] <1,

Proof. Let Y & —X, b &f —g, g &f —q, and apply Lemma
9. O

Corollary 2. Let X be a random variable with 0 < X < C,
as., for some C < . Suppose S, is the sum of n i.id.
samples of X. Then
(i) for each a > E[X] there exists a 6 > 0 such that
P{S, = na} = O(e™");
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(ii) for each a < E[X] there exists a 0 > 0 such that
P{S, < na} = O(e™™).

Proof. Since 0 < X < o, |u % E[X]| < « and E[e**] < o for
all || < . From Lemma 8, we then know that a > y implies
that P{S,, = na} < u(a)” and a < p implies that P{S, <
na} < u(a)”. In turn, from Lemma 9 and its corollary, we
know that in both cases u(a) < 1. But u(a) < 1 implies
that there exists a 8 > 0 such that u(a) = e °. []

Detailed Descriptions of Heuristics

The GREEDY Policy. At each arrival epoch, #;: (1) substi-
tute O, in the right-hand side of (2) and solve; call the
optimal solution to this linear program x; (2) starting at z;,
use a convex combination of configurations in which U7} %!
x;/1'x; (3) process the backlog using U, until (f, +
min{1"x, T;.}), the earlier of the time of next arrival
epoch and the time that the queue is cleared.

The CENTER Policy. Before the simulation begins, define
a “center ray”, C € R™, in the interior of the cone of B:
(1) letd € R™ equal B 'y; (2) let e € R™ be the “inverse”
of d, where for each element, i, ¢; = 1/d;; then (3) let C =
Be.

Then at each arrival epoch, #;:

e if O, is in the cone of B, then (A) solve the linear
program:

m
We = min > Xj,
j=1
s.t.
Bx + aC =0, ,
x =0, (19)

and call the optimal solution to (19) (x, @) € R™*'; (B)
starting at #,, process the backlog using a convex combina-
tion of configurations in which U, 4 x;/17x; (C) process
the backlog using U, until time (¢, + min{W, T;,}), the
earlier of the time of the next arrival and the time
the backlog equals aC; (D) if, in turn, (W, < Ty, ;), then

(a) let x € R" equal B~'C; (b) process the backlog using
a convex combination of configurations in which U} %! x;/
17x; (c) process the remaining backlog using U, until the
next arrival epoch or the backlog is eliminated, whichever
time comes first.

e if, however, Q, is not in the cone of B, then: (A) solve

the linear program:
m

W o = max 21 X;
i=

s.t.
Bx<Q,,
x=0; (20)
(if the optimal solution is not unique, choose an optimal
solution that maximizes y* "Bx) and call the optimal solu-

tion to (20) x € R™; (B) starting at #,, process the backlog
using a convex combination of configurations in which

U, & x;/17x; (C) process the backlog using U, until, (¢, +
min{W,,,, Ti.1}), the earlier of the next arrival epoch and
the time that the server can no longer use any column of B
to process the backlog; (D) if, in turn, (W, < Ti,), then
call Q,,, the remaining backlog at time (¢, + W,,,):

(a) put Q,,,, in the right-hand side of (2), solve, and call
the optimal solution of the linear program x € R"; (b)
process the remaining backlog, using a convex combination
of configurations in which U, % x;/17x; (c) process the
backlog using U, until either the backlog is exhausted or
the next arrival occurs, whichever time comes first.
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