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We give a unified probabilistic analysis for a general class of bin packing problems by dircctly analyzing corresponding mathematical
programs. In this general class of packing problems, objects are described by a given number of attribute values. (Some attributes
may be discrete; others may be continuous.) Bins are sets of objects, and the collection of feasible bins is merely required to satisfy
some general consistency properties. We characterize the asymptotic optimal value as the value of an easily specified linear program
whose size is independent of the number of objects to be packed, or as the limit of a sequence of such linear program values. We also
provide bounds for the rate of convergence of the average cost to its asymptotic value. The analysis suggests an (a.s.) asymptotically
e-optimal heuristic that runs in linear time. The heuristics can be designed to be asymptotically optimal while still running in
polynomial time. We also show that in several important cases, the algorithm has both polynomially fast convergence and polynomial
running time. This heuristic consists of solving a linear program and rounding its solution up to the nearest integer vector. We show

how our results can be used to analyze a general vehicle routing model with capacity and time window constraints.

Many discrete planning problems can be formulated
as, or are closely related to, bin packing problems in
which a set of objects, defined by a finite number of at-
tributes, needs to be packed into a minimal number of
feasible bins. See Coffman et al. (1984, 1988) for surveys.
In the simplest version, n objects with sizes {w,, ..., w,},
0<w;,<1,i=1,...,nneed to be packed in a minimum
number of bins of unit size. Even this simplest version is
NP-complete, see Karp (1972). Hence, attempts have been
made to provide probabilistic analyses of the solution
value of heuristic algorithms as well as the optimal solu-
tion value itself. Using this probabilistic approach, Rhee
and Talagrand (1987) have established remarkably general
results that characterize the convergence of the minimum
cost value for a large class of combinatorial problems.

However, the actual heuristics that one is able to ana-
lyze probabilistically are typically less general, often re-
quiring stylized problem formulations and restrictive
probabilistic assumptions, see, e.g., Frederickson (1980),
Knodel (1981), Lueker (1982), Karp (1982), and the recent
book of Coffman and Lueker (1991). These heuristics typ-
ically exploit geometrical properties of the model or sym-
metry properties of the underlying distributions. It would
thus appear that analytical tractability is achieved at the
expense of model realism.

In contrast, the mathematical programming approaches
used in practice employ a unified set of tools that can
incorporate a diversity of easily adaptable constraints and
do not require up-front knowledge of any specific statisti-
cal patterns among the model parameters. However, it has
often been difficult to give rigorous performance guaran-
tees for suboptimal solution approaches to math program-
ming formulations and instead numerical testing was relied
on for assessing solution quality.

Our objective is to demonstrate that these characteris-
tics can be combined; that is, we propose heuristics based
on general and versatile math programming approaches,
which are computationally efficient and have provable per-
formance guarantees under very general probabilistic as-
sumptions. Our approach is to discretize attributes to
reduce the dimensionality of the original problem. A fea-
sible solution for the resulting reduced integer program is
constructed by solving its linear programming relaxation
and rounding the solution up to the nearest integer vector.
Probabilistic analysis is then used to characterize the qual-
ity of the resulting solution.

Elements of this approach have been used before. Coff-
man and Lueker (1991, §2.6) suggest discretization and
analysis of bin packing problems as integer programs as an
interesting analysis technique. Karmarkar and Karp (1982)
describe an efficient e-approximation scheme for one-
dimensional bin packing problems based on “grouping”
objects into one of a small number of types. Similarly,
Courcoubetis and Weber (1986) use this discrete model! in
analyzing a bin packing system in which each type of object
arrives according to a renewal process. Our contribution is
to use probabilistic analysis to characterize the solution
quality and complexity of combined discretization and in-
teger programming approaches for a wide class of packing
problems.

Specifically, we obtain the following results: We charac-
terize the asymptotic optimal value as the value of an easily
specified linear program whose size is independent of the
number of objects, or as the limit of a sequence of such
linear program values. For discrete distributions of the
attribute values, we obtain the exact limiting distribution
of the minimum cost value. We also obtain upper bounds
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for the rate of convergence of the average cost to its as-
ymptotic value. Our heuristic can be designed to be (a.s.)
e-optimal while running in linear time, or (a.s.) asymptoti-
cally optimal while still running in polynomial time. In
important special cases (e.g., classical bin packing, vector
packing and a packing problem arising from a time win-
dow VRP), the heuristic has both low complexity and poly-
nomially fast convergence.

Rhee and Talagrand (1989a and 1989b) showed that the
asymptotic optimal solution value of a one-dimensional
bin packing problem is characterized by the expected value
of a transformation, u(-), of the object sizes which is dual
feasible, i.e., any bin which is feasible under the original
object sizes remains feasible under the transformed sizes.
We establish the existence of a dual feasible transforma-
tion function for our general d-dimensional problem using
duality properties of the underlying linear programs.

We also apply all the above results to a general vehicle
routing model with capacity and time window constraints.
A planning period of T units of time is available during
which all on-site service must start and end. A customer is
characterized by four attributes (demand, service time,
earliest and latest delivery time) in addition to its location.
This model generalizes all previous vehicle routing models
for which probabilistic analyses have been given. See So-
lomon (1987) and Solomon and Desrosiers (1988) for re-
cent survey articles and Kolen et al. (1987) for a recent
attractive branch-and-bound method. Bramel et al. (1993)
recently provided a probabilistic analysis for a more re-
stricted version of the problem in which the planning pe-
riod of T time units is divided into P equally long intervals,
such that each customer’s earliest and latest delivery times
are given by the end points of one of these P intervals, the
service times are uniformly distributed on the interval (0,
T/p) and no capacity considerations prevail. Bramel and
Simchi-Levi (1997) independently address the general
model we analyze, characterize its asymptotic solution
value by analyzing a randomized algorithm, and develop
an exponential time, asymptotically optimal heuristic.

The plan of the paper is as follows: In Section 1 we
specify the Generalized Bin Packing Problem (GBPP), dis-
cuss examples and review known results for this class of
models. In Section 2 we analyze the discrete GBPP in
which the distribution of the attribute values is discrete. In
Section 3 we address continuous attribute distributions.
Our approach is to approximate the continuous distribu-
tion by a sequence of progressively finer discretizations,
thus allowing us to employ the integer programming anal-
ysis of Section 2. Our results on the GBPP are used, in
Section 4, to analyze the above general routing model with
capacity and time window constraints. In Section 5 we
briefly discuss efficient implementations using column gen-
eration techniques. These can be used in conjunction with
the ellipsoid method (Groétschel et al. 1981, 1988) to show
that the complexity of the entire heuristic is often a low
order polynomial, while maintaining asymptotic optimality.
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1. THE GENERALIZED BIN PACKING PROBLEM
(GBPP)

1.1. Problem Definition and Examples

We define a generalized version of the classical bin pack-
ing problem as follows. Objects are described by a d-

dimensional vector w = (w',..., w?) of bounded
attributes, without loss of generality (w.l.o.g.), shifted and
scaled so that w' € [0, 1],j = 1,..., d. Let £ denote the

collection of all feasible bins, i.e., sets of objects B that can
be packed using one bin. We assume that this collection
satisfies the following properties:

P1. Every set of objects can be packed in some collection
of feasible bins.

P2. If B € Q, then for every w € B, B — {w} € Q.

P3. If the vector of attributes w is restricted to a finite set,
then the collection of feasible bins in Q is also finite.

Property P1 assures the existence of a feasible solution.
Property P2 says that removing an object from a feasible
bin always results in another feasible bin. P3 excludes null
objects, i.e., objects that feasibly can be added to any fea-
sible bin (e.g., a zero weight object in the classical bin packing
problem), since an infinite number of distinct feasible bins
arises by adding an arbitrary number of null objects to any
given feasible bin. P3 is w.l.o.g. since all null objects can be
eliminated from a problem instance and added arbitrarily
to the solution of the remaining problem.

For problems in which the attributes take on a contin-
uum of values, we will need one additional property:

P4. Let B € Q be a feasible bin, w € [0, 1]¢ be any object in
B,and 0 = « < 1 and j be a continuous attribute. Let W
denote the vector defined by W/ = aw and W' = w', i # j.
Then, B — {w} + {W} € Q.

Property P4 says that replacing an object in a feasible
bin by one with smaller attribute values preserves feasibil-
ity. (P4 is related to the definition of a lower set in Rhee
and Talagrand 1991.) For physical attributes (e.g., size,
weight, service time) P4 usually holds; however, this can de-
pend on the choice of variables used to represent the prob-
lem (see, e.g., Section 4). In cases where some of the
attributes are discrete and others are continuous, P4 needs
to hold for the latter only.

For probabilistic analyses, we shall assume instances are
formed by drawing objects independently with attribute
vectors distributed according to a probability measure p
having bounded support. We emphasize that p is a joint
measure on the attributes; specifically, we shall not require
independence among the various attributes.

Frequently, we need to examine the case where w is
restricted to a finite set. In this case, any set of objects §
can be represented by a vector z = (zy,..., z;) € ¥,
where i = 1, ..., I indexes the fype of object (i.e., a type is
a particular vector of discrete attribute values (w,, ...,
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w,)) and z; denotes the number of objects of type-i con-
tained in the set S. Also in this case, u is a probability mass
function, denoted by = = (7, ..., m).

The generalized bin packing problem (GBPP) is the prob-
lem of finding 5*(S), the minimum number of feasible bins
necessary to pack a given set of objects S. There are many
applications of generalized bin packing problems that sat-
isfy P1-P4:

Example 1. Vector Packing. Karp et al. (1984) (see also
Rhee and Talagrand 1991) generalize the classical bin
packing problem as follows. An object i is described by a
d-vector of nonnegative weights a;, j = 1,...,d. Abin B
is feasible if it satisfies the inequalities 2,cp a; < 1,j =
l,....d.

Example 2. Rectangular Packing. Object i is a rectangle
described by two dimensions, (x;, y;). These rectangles are
to be packed into a minimum number of unit squares so
that they do not overlap and are contained by the squares.
Generalizations include packing objects in a variety of
shapes or into d-dimensional unit cubes (Karp et al. 1984).

Example 3. Automobile Hauling. A collection of automo-
biles has to be distributed from assembly plants to individ-
ual dealer locations by a minimum number of trailers.
Automobiles have a size index, small (1), mid-size (2) and
full-size (3). Trailers for hauling the automobiles can be
configured in one of a finite number of ways by adjusting
various platforms. Each configuration specifies which size
automobile can fit in any particular slot on the trailer. The
geometry of the platforms is complex, and thus feasibility
is determined by more than a simple total size or total
weight constraint. In general, one has to enumerate the
various platform settings to generate the set of feasible
configurations.

Example 4. A Lower Bound for a Simplified VRP with
Time Windows. Consider a version of the time window
model of Bramel et al. (1993). Items represent locations
where deliveries on a given day need to be made. A service
time is associated with each location and the day is divided
into P disjoint time intervals of unit length. Items are thus
described by a weight w,, a service time s, and an index p,

of the time period p = 1, ..., P during which the location
must be served. A feasible bin B is one that satisfies
EiES:pIZP S; = la P = ]’ LRI P and EiES w; = 1

The number of vehicles needed to service any given set
of customers is no less than the optimal value of this
GBPP. P4 is satisfied since only the weight and service
time are continuous. See Section 4 for a more general
version of the VRP with time windows.

1.2. Known Results for the GBPP

Many probabilistic analysis results from classical bin pack-
ing can be generalized to the GBPP. In particular, let $
be a set formed by taking n iid. objects distributed

according to w. Since the GBPP is subadditive, Kingman’s
(1976) theory of subadditive processes implies

) b*(S(n,))
lim
n

n—x

=v (as.), (D

where the constant y depends on u and 1/y is interpreted
as the average number of objects per bin in the optimal
GBPP solution. Since 0 < b*/n < 1, by the bounded con-
vergence theorem (Royden 1968) we also have

E[b*(§"™
i ELO7S™T "

n—x R

as well. These results show that the number of bins used in
the optimal solution is highly predictable for large problem
instances.

The optimal solution to the GBPP has the I-conservative
property (Coffman and Lueker 1991), i.e., adding an object
to a set cannot increase the optimal number of bins by
more than one. (Note P1 and repeated application of P2
imply that every single item bin is feasible.) Rhee and
Talagrand (1987) showed, using Azuma'’s Lemma for
Martingale difference sequences, that if »* is 1-conserv-
ative, then

P{Ib*(S(n)) _ E[b*(S(”))]l > 1} < 2e 7213,’71' (3)

(The above result includes sharper constants due to
McDiarmid 1989.) Combining (2) and (3), they showed the
following theorem:

Theorem 1 (Rhee and Talagrand 1987). For every € > 0, a
> 0, there exists a constant ny = ny(e, o) such that,

Lk (n)
p{ 1026
n

_ ‘Yi > E} < Q¢ —2:15‘/(l+<x),
forall n = ny,.

Note that Theorem 1 implies the complete convergence
of b*/n to y by the Borel-Cantelli Lemma and thus is a
stronger result than (1).

However, these results give few insights into heuristic
algorithms. The constant vy also remains unknown. As
shown below, we can use discrete approximation and the
theory of linear programming to address both of these
issues.

2. THE DISCRETE GBPP

In the discrete GBPP, each attribute can take on only a
finite number of values. Thus, there are a finite number of
possible vectors w or object fypes, indexed by i,i = 1,...,
I. We can represent any set S by a vector z € ¥’ where z;
denotes the number of type i objects in S. By Property P3,
let j,j = 1,...,J index the finitely many feasible bins
and let a; denote the number of type i objects in a type j
bin. Define the matrix 4 = [q,], and let 4’ denote its jth
column. Though 7 and J can be quite large, this problem is
still polynomial in the number of objects n = 2, z, for fixed
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[ and J, which one can show using the dynamic program
b*(z) = min{b*(z — A’) + 1}. The GBPP is equivalent to:

J
b*(z) = min 2, X;
=t 4)
S.t.
Ax =z, x =10, x integer.
We will frequently use the linear programming relaxation
of (4),
J
b"*(z) = min X
\ & ) jé:l i (5)
S.t.
Ax =z, x = 0. (6)

The next lemma summarizes some useful properties
about b* and b*”. We provide a brief proof; parts (d) and
(e) are proved in greater generality by Blair and Jeroslow
(1982, Proposition 2.17 and Corollary 4.7), showing that b*
is a subadditive, Gomory function. Throughout the paper,
[x] denotes the /;-norm of the vector x.

Lemma 1. (a) b*(z) and b""(z) are, component-wise, non-
decreasing in z.

(b) b**(z2) is convex in z.

(c) b"(az) = ab™"(z) for all z = 0 and a = 0.

(d) b"7(2) = |z = b"(z + z) < b""(2) + lzo| and
b*(2) — |zol < b*(z + z) < b*(2) + |z¢| for all nonnegative
z, 2z,

(e) b"*(2) = b*(z) < b""(2) + L

Proof. Part (a) follows from (4) and (5) since 4 = 0; (b) is
a standard result for right-hand-side parametric pro-
gramming, while (c) follows easily from (5) by consider-
ing the change of variables x/ = ax;. We get (d) from the
1-conservative property. The first inequality in (e) is obvi-
ous, while the second one is obtained by noting that if x is
the optimal solution to (5), then {y/ = [x/1,j =1,...,J}
is a feasible solution for (4). Since there are at most [/
nonzero (basic) variables in (5), and these are increased by
at most one, the result follows. []

2.1. Almost Sure Convergence

Lemma 1 suggests a simple proof of (1) which also charac-
terizes the constant y. Recall = = (m, ..., 7,) denotes
the probability measure on the set of possible item types.
Let $™ denote a set of n i.i.d. objects distributed accord-
ing to 7 and z denote its vector representation. Then,

Theorem 2.

b*(’zlm
lim — )

n—%

— bLF(’TT)

(a.s.).

Proof. For the stochastic sequence z'") we have by the
strong law of large numbers that z"/n — m (a.s.). Thus, by
the continuity of b7(), b(z/n) — b-F(m) (as.). By
Lemma 1, we have

lbI,P(fZ(m) < l_b-,‘,c(zun) < lbLP(Z““) + L,
n n n R
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s0 lim,_. 1/n b*(z"") = lim, .. 1n b"(z™) = bP(m)

(as). [

Lemma 1(a) implies that solving the linear program (5)
and rounding its solution up is an asymptotically optimal
heuristic. Moreover, this linear program takes constant
time under the uniform model of computation since its
dimensions are fixed (and is O(log(n)) on a machine with
finite word length since the magnitude of the numbers 2
increases linearly with n (a.s.)).

Note that the sequence of attribute vectors need only
satisfy the strong law of large numbers and therefore the
assumption that the sequence is i.i.d. can be weakened
(Revesz 1968). Finally, one can obtain a tail probability
result analogous to Theorem 1 using a direct analysis of
the mathematical program (4) as well; see Federgruen and
van Ryzin (1994).

2.2. The Asymptotic Distribution of b*

In the discrete case, it is possible to characterize the full
asymptotic distribution of 5*(z") and hence find bounds
for its moments. Let V" denote the I X [ matrix with V; =
m(l — m)and V; = —am fori # j.

Theorem 3. Assume the linear program b™"(m) has a
unique optimal dual vector y. Then (b*(z™) — ny'm)/

VnyTVy converges in distribution to a standard normal
random variable, i.c.,

b* (2 — T v 2y
limp{ng}: LJ e gE (7
n—x \nyTVy N2

ny < E[b*(z"™)] < nyTm + O(1), ®)
and
lvar[b*(z")] — nyTVy| = O(1). (9)

Moreover, (7) continues to hold with b*(z") replaced by
b*(2"), the value of the heuristic solution obtained by rounding
up the solution of the linear programming relaxation (5).

Proof. Since the linear program b*“(7) has a unique, op-
timal dual solution y, there exists a non-empty polyhedron
P in R’ with 7 an interior point of P, such that b*"(7) =
y"a for all w € P. Since z/n — = (a.s.), with probability
one there exists an integer n, such that for all n = n,,
z"/n € P; hence,

bLP(z(n)) — nbl,P(z(n)/n) — ”yTZ(n)/n =y sz)
Vu=ng. (10)

Let u* denote the unit I-vector indicating the identity of
object &, i.e., u¥ = 1 if object k is a type i object and uf =
0 otherwise. By assumption, we have that the vectors
{u',..., u"} are iid. with mean = and variance-
covariance matrix V. Let N(0, V) denote a multivariate
normal with mean 0 and variance-covariance matrix V. It
then follows from the multivariate central limit theorem
(Theorem 30, Chapter 3 of Pollard 1984) that (" —
nm)/\Vn — N(0, V) in distribution. This implies that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



600 / FEDERGRUEN AND VAN RYZIN

yTZ!n) - ny T1T

T N, . (11
vay Vy

Note from Lemma 1 that
bLP(zini) < b*(z(nl) < bLP(Z(n)) + I (12)

The results of the theorem then follow from (10), (11), and
(12). ]

Remark. The requirement that y be unique is essential for
the analysis above. It is well known that b*7() is a piece-
wise linear function. As demonstrated in the above proof,
z™/n is almost surely confined to the interior of one of
the linear domains for all but finitely many #, provided the
linear program b“*(7) has a unique dual solution. On
the other hand, if the dual solution to b“F(w) is not
unique, then infinitely many values of z/n may be con-
tained in two or more linear domains. If so, b7 (z"/n)
and b*(z'") would converge to a piece-wise linear trans-
formation of a multivariate normal random variable, a dis-
tribution which is difficult to characterize.

3. THE CONTINUOUS GBPP

We next consider the case where the attribute vector w €
[0, 1]# is continuous, Property P4 holds and the probability
measure p has a continuous density almost everywhere.
The case where p consists of a mixture of continuous and
discrete distributions is handled by combining the results
for the purely discrete and continuous GBPP.

Our approach is to discretize the unit d-cube using a
grid and to round the attributes to its points. We then
analyze a sequence of discretized problems letting the grid
size tend to zero.

3.1. Discretization Based on the Cubic Histogram

To form a cubic histogram, we divide each coordinate in-
terval [0, 1] into [ intervals, each of length &7 = 1/, for I a
nonnegative integer. This produces I subcubes with sides
of length 4. Henceforth, interpret # — 0 to mean [ — x.
This scheme induces a set of grid points {0, 1, ..., I}%
Index these points by i, with w(i) the ith grid point, i =
1,..., I, where I' = (I + 1)¢ = O(1/h%).

Let s,(s4,) denote the subcube of all points which are
transformed into grid point i when their components are
rounded up (down) to the nearest multiple of 4. That is,

d;={w=w', ..., w9):

nTwlynl, ..o Twih D) = w(i)},

Ay ={w=(w!, ..., wi:

alwinl, ..., Lwih]) = w()l.

We extend this definition to include subcubes that are not
subsets of [0, 1]¢ (see Figure 1).

We define two probability measures, 7 and a1, on the I’
grid points by 7, = p(d,) and m; = p(d), i = 1,..., I

We write m(h) and 7(h) when we want to make the depen-
dence on & explicit. Note that this scheme defines a dis-
cretized version of the continuous GBPP which, by
Property P3, has a finite set of feasible bins in {} and can
thus be solved using the integer program (4).

We will need a lemma relating these two probability
distributions. First, define a density to be Lipschitz contin-
uous of order s on a set s{ C R if

fx) = f < Clx = yI°

where f(w) = 0 for w & [0, 1]°. For example, any triangu-
lar density on [0, 1] is Lipschitz continuous of order one
everywhere; the uniform density is Lipschitz continuous of
all orders on the interior of the unit cube but not on R¥
since it is discontinuous at the boundary of the unit cube.

Vx,yed,

Lemma 2. (a) If the probability measure w has a density f
that is bounded and continuous almost everywhere, then

|7(h) — w(h)| =0 ash—0.

(b) If fis Lipschitz continuous of order one on the interior
of [0, 1]%, then

|7(h) — 7(h)| = O(h).

() If fis Lipschitz continuous of order s everywhere on R?
then

|7(h) — w(h)| = O(hY).

Proof. If fis continuous everywhere, the mean value the-
orem implies 7; = h%f(x,) and 7, = h’f(%,) for some x, €
o, and some ¥; € sd,. Thus, |m; — @] = h9|f(%) — f(x)).
Since continuity of f implies uniform continuity over the
bounded region [—A, 1 + A]? and |%; — x,| < dh, for every
€ > 0 we can select a & > 0 such that [f(¥) — f(x;)| <
€/(1 + h)? foralliif h < &. Thus, forh < 8, |m — 7| =
S m - ) < en®(Uh + 141 + h)Y = e Thus, (a)
follows if fis continuous everywhere.

Suppose now that f has discontinuities on a set D C [0,
1] with Lebesgue measure zero. Define %, to be the set of
indices i for which either &f; or &, intersect @ and €, =
{1,...,I'} — %,. Then we can write
lr—a| = 2 |m —m|+ > |m — 7l
- e, — i€
Since f is continuous over both &, and &, for i € 6,,
by the same argument as above we can select an A such
that the second sum above is no more than €/ 2. Further,
since f is bounded, 2, |m; — | < MhY%,| for some
finite M. But the fact that & has measure zero implies that
for sufficiently small 4, 4¢|6,| can be made arbitrarily small
since this quantity is the area of a set circumscribing @ in a
partition of mesh size #/Vd (see Buck 1978, Theorem 2, p.
172). Thus, & can be chosen small enough so that MA%|€,]
< ¢/2 as well, which together with the bound on the sec-
ond sum above, implies |w — 7| < e. This completes the
proof of part (a).

To prove part (b), note that if f is Lipschitz continuous
of order one on the interior of [0, 1]", then for all points i
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1

Figure 1. Examples of the regions s, and ..

with both &{; and s, subsets of [0, 1]", we have as before
lm;, — 7| = hf(x;) — f(x;)] < Ch**". Since there are at
most I' = O(1/k“) interior points, the total contribution
from these points to |w — 7| is O(h). For points on the
boundary, the boundedness of f implies |m; — ;| < M~
and since there are O(J"!) = O(1/h“~") boundary points,
these contribute at most O(#) as well.

For part (c), note that if f is Lipschitz continuous of
order s everywhere, then |m, — ;| < Ch?™ for all i and
the result follows as in the previous cases. [ ]

Remark. The condition of part (b) is satisfied whenever
the density f is continuously differentiable on the interior
of the unit cube or even when f has discontinuities on the
interior, provided they occur only on a finite number of
sufficiently smooth surfaces (Buck 1978).

Remark. Part (c¢) shows that the rate of convergence is a
function of the smoothness of the density f, paralleling the
results in Devroye and Gyorfi (1985) for the convergence
rate of density estimators.

3.2. Aimost Sure Convergence

We next characterize the asymptotic value of the GBPP.

Theorem 4. Let S denote a set of n i.i.d. objects distrib-
uted according to . If u has a density f that is bounded
and continuous almost everywhere, then lim,_,.. b*(§™)/
n = v, a.s. where y = lim,_, b**(m(h)).

Proof. For a given & > 0 consider the pair of discretiza-
tion schemes, with (k) and m(h) the associated probabil-
ity distributions on {i:i = 1,..., [I'}. Fori = 1,..., I,
define z (z{™) as the number of objects in S” which are
rounded up (down) to the ith grid point, and let 2" =
(2/) and 2 = (z\"). In the upper (lower) discretization
scheme every object is replaced by one with larger (small-
er) attribute values; thus, by P4 and Lemma 1, b*(z"") <
b*(8™y = b*(z") = b*(z2™) + |2 — z|. Dividing
these inequalities by #, taking limits, and using Theorem 2
and the strong law of large numbers we obtain

b* S(n}
b P(s(k)) < lim inf (T)

b*(S™
< lim sup ~—(n )

n-—x

< b P(m(h))

+|m(h) — w(h)| (a.s.). (13)
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We know from Lemma 2 that if f is bounded and contin-
uous almost everywhere, then for every € > 0 we can find a
8; > 0 such that for & < §,, |m(h) — @(h)| < €2. It
therefore suffices to verify that b7 (m(h)) converges mono-
tonically to a constant y as 4 — 0 so that we can find a 8,
with [b*(ar(h)) — y| < €/2 for all h < §, and then take
h = min{8,, 6,}. To show this, note that for i, < h,,
Property P4 implies b*(z""(h,)) < b*(z"’(h,)). Dividing
by n, taking n — = and invoking Theorem 2 we obtain
b (m(hy)) < bP(m(h))), i.e. b (m(h)) is nondecreasing
in # and converging since b*"(m(h)) < 1. []

Observe from the proof that an asymptotically e-optimal
heuristic H can be designed by applying the upper discreti-
zation grid size h, solving the linear program and round-
ing, and, as in the discrete case, A runs in linear time.
However, we can say more. Lemma 2 shows that the error
term |m(h) — (h)| in (13) approaches zero as A — 0.
Moreover, one can show that z'"/n converges to m(h) as
h — 0 provided nh? — . (See Devroye and Gyorfi 1985
for a proof in the context of convergence of histogram
estimators.) Therefore, it follows that one can choose £ to
decrease as a function of n slowly enough so that the
heuristic H is asymptotically optimal (a.s.). Of course, as A
decreases the size of the linear program increases, so the
running time of A will increase with n. The rate of increase
depends on the problem structure (i.e., how many columns
are introduced as & becomes smaller). However, we have
the following general result:

Theorem 5. Suppose w has a density f that is bounded and
continuous almost everywhere. Then the heuristic H is both
polynomial in n and asymptotically optimal (a.s.) as long
as nh* — =,

Proof. Let M denote the maximum number of objects with
the attribute vector 0 that can be feasibly packed in one
bin. By Property P3, M < +. By Property P4, M is also
an upper bound for the number of objects in any feasible
bin. Recall that I’ = O(h~“). The number of columns in
the linear program, J, is bounded by the number of ways
in which M objects can be spread over I' types, i.e. I'M.
Then using any of a number of interior point methods (see
Goldfarb and Todd 1989) the dual of the linear program can
be solved in O(I"*L), where L is the length of the input string,
which is O("™*"). Therefore, the complexity is O(I"™*?) =
O(h~ ™M) = o(n™*3) since nh? — =, [

Note, however, convergence to optimality could be slow
and/or the complexity (though polynomial) could be high
because M is usually large. In the next subsection, we ob-
tain bounds on the rate of convergence. In Section 5, we
use these convergence bounds together with a column gen-
eration approach to show that the heuristic  has both fast
convergence and reasonable running times for some spe-
cial cases of the GBPP. Lastly, we note that using Theo-
rems 2 and 4 these results can extend to finite mixtures of

discrete distributions and distributions with a density
which is continuous almost everywhere.

3.3. Rates of Convergence

In this section, we derive upper bounds for the rate of
convergence of E[b*(SY)] to its asymptotic limit n+y.

Theorem 6. (a) If w has a density f that is Lipschitz of
order one on the interior of [0, 1]%, then

ny gE[b*(S('”)] <sny+ O(Hd/(dﬂ').

(b) If u has a density f that is Lipschitz continuous of
order s everywhere, then

ny SE[b*(S(m)] < ny + O(n max(l/ld/(dﬂl))'

Proof. For the lower bounds, fix # and note that b*(S)
= pLP(2) and since -7(-) is convex, Jensen’s inequality
implies E[b*(2")] = b*(E[2"]) = nb""(m(h)). The re-
sult then follows by letting # — 0.

To prove the upper bounds, we employ a modification
of a construction originally proposed by Coffman and Lu-
eker (1991). Consider the upper discretization correspond-
ing with the grid size A, let F denote the c.d.f. associated
with p.d.f. 7 and F=1-Fits complement. Also, let

1
F,w)y=-|{W,eS":wl<swl, . ., Wiswi
n

=23

noiwiiysw

denote the associated empirical distribution of the set S
Define the Kolmogorov-Smirnov statistic, D,, by D, =
maxwe[[,,lrrll_’,,(w) — F(w)|. It is well known (see Kiefer
1961) that a constant K exists, independent of F (and
hence 4) such that E[D,] < K/Vn. (See also Serfling 1986,
Massart 1986, and Talagrand 1994 for improved bounds
for the tail behavior of D,,.)

Now, for each attribute j, remove the [nD, ] largest ob-
jects with respect to that attribute. Put each of these items
into its own bin and let S denote the set of remaining
objects and Z denote its vector representation. Note this
procedure removes at most dl nD, | < dnD, + d objects.
Further, for all w = (w', ..., w), {W, € S:hiWiih] <
wl, ..., I W4n] < w?}| < nF(w). This implies by P4 and
Lemma 1(a), that b“7(Z) < b“’(n). Therefore we have,
bHP(z") < nb™(7) + dnD, + d, and hence by Lemma
I(e)

b* (2" s nb!P(7) + dnD, +d + I'. (14)

Taking expectations and using Lemma 1(d) we obtain

E[b*(S")] < nb*"(m) + n|m — 7| + E[dnD,,]
+O(1/hY).

Note that b“"(ar) < y and E[dnD,] < K\Vn for every h.
Also, by Lemma 2, if p has a density that is Lipschitz of
order one on the interior, [ — 7| = O(h). Combining
these bounds we have E[p*(S")] < ny + O(nh) +
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On"?) + O(1/h). Choosing & = O(n~"“*") minimizes
the right-hand side asymptotically and proves the first part
of the theorem. Part (b) follows in a similar manner by
noting from Lemma 2 that [w — 7| = O(h°) and taking
h = O(nil'/(d“‘)). O

The bounds in part (a) continue to apply even when the
distribution p does not possess a Lipschitz continuous den-
sity provided the attributes are independently distributed.
Consider the following equal-probability discretization of a
GBPP with d attributes, which is a generalization of a con-
struction in Coffman and Lueker (1991): If the attributes
are independent, F(w) = [I_; F,(w') where F,(w’) denotes
the marginal distribution of attribute j. Let F; '(x) =
min{w:Fj»(w) = x} define the inverse of F;. Consider now
the discretization scheme defined by the I' = (1 + I)*
(perhaps nondistinct) grid points Hj‘-’:] {FJI’](ih):i = 0,
1,...,I}. We index these points by i = 1,...,[".

As we did for the cubic histogram, for a set of objects
5@ let 2 (resp. z™) denote the set of objects formed by
rounding up (resp. down) all attributes to the nearest grid
point and let & (resp. ) denote the corresponding proba-
bility vectors. A nice property of this discretization scheme
is that |77 — @] = O(h) for any product-form distribution
F

Lemma 3. If F = F,F,---F, then for the equal-
probability discretization scheme defined above |m — =| =
O(h).

Proof. Note that selecting a random object W from a dis-
tribution F = F,F, - - - F, and rounding up its attributes to
the nearest grid point is equivalent to taking an indepen-
dent sequence of U[0, 1] random variables, {U’; j = 1},
and forming the vector (Fy '(A[U'RY), ..., F7 (W UYR));
likewise, rounding down to the nearest grid point is equiv-
alent to forming the vector (Fy'(hLUYRD), ...,
F7'(hLU¥/h])). Thus, it follows that 7, = @, = h” except
perhaps for grid points i on the boundary (i.e., points with
values w/ = 0 or w/ = 1 along some dimension j) for which
|7, — m,| = kY. Since there are only O(J*"") = O(1/h*"")
of these boundary points, the lemma follows. []

Again, solving the integer program (4) with z = z gives
an upper bound on b*. Lemma 3 implies that Theorem 4
holds as well. Finally, using the fact that |7 — @] = O(h)
and repeating the argument in Theorem 6, we obtain the
following result:

Theorem 7. If F = F\F5---
ny + O(nd”r(d‘l)).

F,, then ny < E[b*(S®)] <

Remark. Note this equal probability scheme requires ex-
plicit knowledge of the distribution F and independence
among the attributes, neither of which is needed for the
cubic histogram scheme.
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Remark. If F has a density f that is Lipschitz continuous
of order s > 1 everywhere, then the bound in Theorem 6 is
stronger than that of Theorem 7.

3.4. Dual Feasible Functions

Coffman (1982) introduced the notion of dual feasible
functions for the classical bin packing problem. A dual
feasible function is a function u:[0, 1] — [0, 1] satisfying

U

1]

k
=122 ux) =1, (15)
1 i=1

1

for all finite sequences {x,, ..., x,} of positive real num-
bers. If object weights are distributed like some nonegative
random variable X, one can easily show that

y = Elu(X)], (16)

for all dual feasible functions u, where <y is the optimal bin
packing constant in (1). Rhee and Talagrand (1989a and
1989b) subsequently showed that when X is distributed
according to an arbitrary probability measure u, then there
is a dual feasible function u for which

y(w) = J' u(x)pfdx} = Efu(x)]. (17)

One can think of « as a function that transforms sizes so
that the resulting problem is perfectly packable. Thus,
knowing u is equivalent to knowing the packing constant .
The proof of this result requires a fairly sophisticated ar-
gument based on the Hahn-Banach theorem. A generali-
zation to vector and rectangular packing is given in Rhee
and Talagrand (1991), where the authors also show that

y(u) = Sup{ J f(X)M«{dx}}, (18)

with the supremum taken over all continuous, dual feasible
functions f. In this subsection, we generalize the notion of
dual feasible functions to the GBPP and give simple proofs
of the corresponding results for the GBPP.

We say a function u:[0, 1]* — [0, 1] is dual feasible for
the GBPP if for any finite collection of objects {w, ...,
wih,

k
Wi, ..., Wit €EQY ulw,) = 1. (19)
i=1

One can view u as a function that maps the GBPP into a
classical bin packing problem. We will show that such a map-
ping exists into a classical bin packing problem that is
perfectly packable, but first we need the following lemma
due to Rhee (1993).

Lemma 4. Consider a sequence { f,} of dual feasible func-
tions. If | f.w)u{dw} is nondecreasing in n and
lim, .. [ f,(w)pnldw} = (), then there exists a dual
feasible function f such that [ fiw)uldw} = y(u).

Proof. Let L,(u) denote the space of all real-valued func-
tions f on [0, 1]* such that |f(w)|* is p-measurable. Endow
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this space with the norm ||f]| = (f]f(w)|*u{dw})"?. Define
thesets C, = {f:f =2, o f, 2, a, = 1, ., = 0 Vr},
i.e. C, is the closed convex hull of the functions f,,
fa+1s - ... Itis easy to verify that every function fin C, is
dual feasible; The sets C,, are subsets of the unit sphere,
which is compact in the weak topology on L,(u) (Alaoglu’s
Theorem, Royden 1968, p. 202). One can verify that the
sets C,, are closed and therefore compact in the weak to-
pology as well. Note that {C,} has the finite intersection
property, i.e., any finite subfamily of the sequence has a
nonempty intersection. Since C; is compact, this implies
there exists a function f € N;;_; C, (Royden 1968, Prop-
osition 1, p. 158). Since f € C,, it is dual feasible and f =
2, a.f, for some vector o, which implies, by the mono-
tone convergence theorem that for all n

x

y(p) = J fuldwl =2 a, J frufdw} = J Fore{dw}.

r=n

The lemma now follows by letting n — <. []

Theorem 8. If (i) w has a density f that is bounded and
continuous almost everywhere, or (ii) p has a finite distri-
bution, or (iii) p is a finite mixture of measures of the types
in (i) and (ii), then a dual feasible function u:[0, 1]9 —
[0, 1] exists with [ u(w)u{dw} = y(p).

Proof. We first consider the problem in which w is a prob-
ability mass function on a finite set of points, whose values
are denoted w(1), . .., w(l). Lety; denote the optimal dual
variables of (5) with z = =. By dual feasibility, these sat-
isfy, with 4 = [a;] (see (5)) 2/, yia; < 1V}, and by dual
optimality they satisfy 2/_, y,m, = b*(m) = y(u). Thus, if
the objects have a discrete distribution, the dual function
for the GBPP is exactly u(w) = y;, w = w(i).

Now consider the case where w has only a continuous
part with a bounded, continuous density f. Form the cubic
histogram with a given grid size # and let y(k) denote the
optimal dual variables in the solution to (5) with z = .
Define u,(w) = y,(h), w € A,(h). Recall that s (h) de-
notes the set of points in R? that, when rounded down,
correspond to grid point i. We claim that u,(x) is dual
feasible for all 4 > 0. To see this, take any finite collection
{wy, ..., wit of objects that form a feasible bin and form
a new set of objects w, = hlw/hl, i = 1,..., k. By Prop-
erty P4, this collection of rounded down objects also forms
a feasible bin, which corresponds to some column A" in the
linear program (5) for grid size h. Further, 3%, u,(w,) =
yI(h)A” < 1 by the dual feasibility of y(h). Thus, u, is a
dual feasible function.

Let {A,},,-; be a sequence which decreases to zero.
Consider the sequence of dual feasible functions {u,, },_;.
Now, [ u, (w)u{dw} = b""(m(h,)), which is nondecreas-
ing in n as shown in the proof of Theorem 4. Thus, the
sequence {uy, },_; satisfies the properties of Lemma 4.

The case where w is a mixture of a finite, discrete part
and continuous parts follows by defining a fixed number of
types of objects corresponding to the discrete sizes, applying

the discretization to the remaining items and combining the
above arguments. [ ]

Remark. Equation (18) can be obtained in the case where
@ is continuous with a bounded density. The idea is to
decrease the dual feasible functions u, to zero near the
boundaries of the subregions s4, to make them continuous.
The resulting function is dual feasible, and a sequence of
such functions establishes (18).

4. THE CAPACITATED VEHICLE ROUTING
PROBLEM WITH TIME WINDOWS

We next apply the GBPP results to the probabilistic anal-
ysis of the vehicle routing problem (VRP) with time win-
dow constraints, where customer k& has a location x,
demand w,, a service time s, for loading/unloading the
vehicle, and a time window specified by an earliest delivery
time e, and a latest delivery time /,, k = 1,..., n. A
planning period of T units of time is available during which
all on-site service must start and end. (Vehicle travel is not
necessarily restricted to this window, and can begin and
end trips outside the interval.) An unlimited number of
vehicles is available, each of which has capacity C and
travels at a constant velocity v. The problem is to find a
feasible collection of tours of minimum total length that
visit all customers. We assume w.Lo.g. that distance, time,
and size are scaled sothat 7= 1, v =1and C = 1.

To guarantee the existence of a feasible solution, we
must have 0 < e, + 5, </, < 1. So that all attribute values
satisfy property P4, we make a change of variables and
specify the end of a window by a variable r, = 1 — [, i.e,,
the time between the latest completion time /, and the end
of the planning period. Note reducing the values e, s;, and
r, relaxes the problem. With this transformation, we must
have s, + ¢, + r, = 1 to guarantee feasibility.

We first consider a somewhat simpler scheduling prob-
lem in which the travel time between customers is ignored
(assumed to be zero). The minimum number of vehicles in
this case is a lower bound on the number needed when
travel time is included. Further, this scheduling problem is
an instance of a GBPP, where (2 is the collection of all sets
of objects B = {(wy, sy, e, re):k = 1,..., K} that satisfy

K_1 we < 1, and whose processing can be scheduled
within one unit of time. That is, there exists some set of
start times {¢,, . . ., tx} such that processing takes place in
the allowable time windows, i.e., e, < ¢, and ¢, + s, + 7, <
1 for allk = 1,..., K, and the processing is nonoverlap-
ping, i.e., if customer i precedes customer j, ¢; + s5; < f;.
We associate one such feasible schedule with every feasible
bin. Observe that a customer’s attributes are represented
by a point in the four-dimensional compact set C =
{w,s,e,r)0sw=<1l,5s=0,e=0r=0s+e+r=
1}. As in the general GBPP, we shall apply a discretization
scheme to solve this continuous problem.

With these definitions, we are now ready to state our
main theorem:
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Theorem 9. Let {x,:k = 1,..., n} be a sequence of inde-
pendent random variables in R* with distribution ., that
has compact support. Let d(y) denote the Euclidean dis-
tance from a point y € R* to the depot and let

E[d] = J “d(y)poldy}.
"

Let § = {(wy, 5y, €, 1e):k = 1,..., n} be a set of
independent vectors with distribution u, which possesses a
bounded density f that is continuous almost everywhere on
the interior of C. Let b* denote the optimal value of the
associated GBPP, and y(p) = lim,_,.. b*(S"™)/n. Finally,
let Z denote the optimal value of the time-window VRP for
n customers with locations {x,:k = 1, ..., n} and attributes
S such that x, and (wy, s, e, 1) are independent of each
another. Then,

* (n)
258 gy(w ELd]

lim

27—

(a.s.).

Our proof is based on a modification of the analysis of
Bramel et al. (1992) for the Capacitated VRP with unsplit
demands. Indeed, we have the following lower bound,
which we state without proof since it follows directly from
Theorem 4 and Bramel et al. (1992):

Lemma 5. Under the conditions of Theorem 9, lim,_,.
Z™Min = 2y(w)E[d] (as.).

For the upper bound, we consider the region partitioning
scheme described in Bramel et al. (1992). Fix # > 0 and let
G(h) denote the grid of squares with sides #/\/2 and edges
parallel to the coordinate system. Let j, j = 1,..., t(h)
index those squares in the grid that have nonzero probabil-
ity of containing a point drawn from the distribution w,,
and let n(j) be the number of customers in region j. Bra-
mel et al. (1992) show the following:

Lemma 6. Suppose we have some upper bound, b(j), on
the minimum number of vehicles needed to service the
customers in region j that satisfies lim,_,.. b(j)/n(j) = ¥(u)
(as),j=1,...,th). Then,

_Z*(S“”)

lim < 2¥(w)E[d] + 2h (a.s.).

Using Lemmas 5 and 6, we can prove the theorem pro-
vided we can find a y(u) that is arbitrarily close to y(u) for
small values of 4. To do this, consider the following heu-

ristic to construct feasible tours in each subregion j:

GBPP Heuristic. Apply the region partitioning scheme
using a partition with squares of sides #/V/2, for a given
h > 0 as described above. Discretize the attributes (w, s, e,
r) of customers using a cubic histogram of the same grid
size h. Leti, i = 1,...,I' = (1 + 1/h)* denote the types
of objects formed by this discretization. For each subre-
gion j, form tours as follows:
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1. Remove customers k with s, + ¢, + 7, € (1 — 4k, 1].
Assign each of these customers to a separate vehicle.

2. For customers & with s, + ¢, + r, € [0, 1 — 4h],
modify the service time to s, = s, + h.

3. Form the vector z' where Z; denotes the number of
customers in the subregion for which (Alw,/h],
Wl si/h, Wl ey /il Bl rdh1) corresponds to a type i ob-
ject in the associated GBPP.

4. Solve the linear program b*”(z") and round the solu-
tion up to obtain an integer vector. Assign one vehi-
cle to each resulting bin.

S. Have the vehicle visit the customers in each bin ac-
cording to one of its corresponding feasible sched-
ules.

We are now ready to prove Theorem 9:

Proof. First, we claim that the GBPP heuristic produces a
feasible collection of tours. To see this, note that the tours
that serve individual customers are clearly feasible. For the
remaining customers, we have that Alsi/h| + hleyh] +
hr/hl) < 1 so the associated GBPP is always feasible.
Also, for each tour that serves a set of customers B,
Sies Wi = 1, and since s, = 5, + h and & is the maximum
distance between any two points in a subregion, by follow-
ing the feasible schedule associated with each bin we can
visit and service all demands in no more than one unit of
time. Hence, the tours associated with any feasible bin in
the associated GBPP with shifted service times are
feasible.

Let b"(S(j)) denote the total number of tours the heu-
ristic generates for the set of customers S(j) in region j
and let §;(h) = [{k € S(j):5; + e, + 1y > 1 — 4h}| be the
number of customers in region j placed in their own tours
by Step 1. Then b”(S(j)) satisfies

bH(S(j)) = b*(2') + 8;(h)
<bMP(z) + 1" + 8;(h)
< n(HbL(") + n(jlz'in(j) — @'l
+ 1"+ §;(h),

and therefore

bHSGY _ 1 I
8 (h)
n(j)

Noting that as n — =, n(j) — % (a.s.) and thus by the

strong law of large numbers |Z'/n(j) — #'| — 0 (a.s.) and

di(h) HkeES()isp +e+rp>1- 4h}|

n(j) n(j)
—>Pl{s; +te, +r,>1~ 4k}

(as.),

we obtain
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b"(S(j))

bIS ()

im-—— m =g b (g + | —
n—e  n(J) ntjv—r n{f) (m) + |z

+ Plsy +ep +rp>1—4h} (as.).

Now |7 — #'| < |7 — & + |& — #'[. If u has a bounded
density f that is continuous almost everywhere, we have
from Lemma 2 that for every € > 0, we can choose /1 so
that |mw — @ =< €3. Similarly, noting that 7, and 7/ are
obtained by integrating f over adjacent subregions s, and
4., we can make |7 — 7’| < ¢3 for all sufficiently small 4
as well. Also, the boundedness of f and the fact that f has
its support on C implies P{s;, + ¢, + r. > 1 — 4h} =
P{l =s, +e, +r.>1— 4h} = O(h) so this term too
can be made less than ¢/3 for all sufficiently small #. Com-
bining these observations, we have that for every € > 0,
there exists a 8, e = 8 > 0 such that for all 7 < §,

b"(S(j))

PYS(Y) e
Nm =) mj[]_nC () - b (m) + e (as).

Now, using the fact that 5*"(7) < y(x) and combining this
with Lemmas 5 and 6, we obtain

Z* 'Sux))
2y(p)E[d] < lim (

n—% n
= 2(y(p) + e)E[d] + 2¢  (as.).
Since this holds for every € > 0, Theorem 9 follows. []

The running time of the heuristic for a fixed € > 0
(equivalently, fixed 1 > 0) is O(n), since it takes O(n) time
to determine each of the n customers’ subregion j and
object type i and construct the vector z’, the linear pro-
gram is solved in O(log(n)) time and the routes are con-
structed from this solution in linear time. We discuss
complexity and convergence rates further in Section 5.

One can view the GBPP heuristic as an efficient aggrega-
tion scheme for solving VRPs as set covering problems,
which is one of the oldest approaches to these problems due
originally to Balinski and Quandt (1964) (see also Mag-
nanti 1981). In the set covering approach, each of the n
customers is treated as a separate “type,” and the objective
is to cover these n types by a subset of @/l feasible tours. In
our scheme, we use cubic histograms to drastically reduce
the number of customer types, and, by only considering
tours of customers in the same region, we similarly reduce
the number of feasible tours to be considered. Thus, the
GBPP heuristic can be viewed as a combined row aggrega-
tion and column restriction scheme.

Lastly, Theorem 9 remains valid for measures w that are
a mixture of a continuous distribution and a finite distribu-
tion, provided the marginal distribution for the service
time has only a continuous density. This is needed to en-
sure that |7 — 7’| — 0 as 4 — 0 in the proof of Theorem
9. In particular, this generalization includes as a subcase
models in which only a finite set of possible time windows
is allowed; see, e¢.g., Bramel et al. 1993.

5. COMPUTATIONAL ISSUES IN SOLVING THE
LINEAR PROGRAMMING RELAXATION OF A
GBPP

We next analyze and discuss column generations tech-
niques for solving the linear programming relaxation (5)
and analyze the complexity of the resulting heuristic H.

5.1. Column Generation Techniques

Consider first the classical bin packing problem. In a dis-
cretization of this problem, each type i corresponds to a
weight w, = i/h, i = 0, 1,..., I = 1/h and a feasible bin
A; = (ay; ..., ay) is one that satisfies

1
> a;w;, < 1.
i=1

As mentioned in Section 1, we can ignore zero weight
(null) objects; thus, we shall consider only weights w; = i/h,
i=1,...,1= 1/

Suppose we have an initial feasible basis for the linear
program (5). (Recall that putting each type of item in its
own bin is always feasible; thus the identity matrix is al-
ways a feasible basis.) Associated with this basis is a dual
price y. The basis is optimal if and only if y74’ < 1 for all
feasible bins j. One can check this condition by solving the
knapsack problem, max{y“x:Z/_; xw, < 1,x € ¥' }. This
can be solved by the dynamic program, V(k) =
max,.,.{V(k — 1)) + y;}, 0 < k < [ with boundary condi-
tion V(0) = 0, where V(k) is the maximum value of a set
of objects whose total weight is no more than kA. If V(J) <
1, the current basis is optimal; if (/) > 1, the solution
provides a column of A with a negative reduced cost that
can be brought into the basis. Repeating this process, one can
generate columns until an optimal basis is found. This col-
umn generation approach for solving the relaxation of classi-
cal bin packing problems dates back to the work of
Gilmore and Gomory (1961) and has proved to be quite
efficient in practice. Note the complexity of generating a
column (finding V(7)) is only O(f*) = O(h~?). It is there-
fore polynomial in the discretization level 1/h.

A similar approach can be used to generate columns for
the vector packing problem. For this we let V(k,, ..., k,)
denote the maximum value of a set of objects whose total
weight in the jth dimension does not exceed kA, | =
1,...,d. V() is found by the recursion,

V(kls---ak(/): - max {V(kl_ll, :k([_itf)
=k, Isj=d}
+y(i], [P I‘,j)},
with boundary condition V(0, ..., 0) = 0, where 0 < k; <
I,i=1,...,dand y(iy, ..., ;) denotes the current dual

value for an object with attributes (i A, ..., i /). This dy-
namic program takes O(I'?) = O(h~*) time.

One can also generate columns for the time window
VRP in time polynomial in 1/4. Let V(k, u) be the maxi-
mum value of a set of objects which can be scheduled in kA
units of time and whose total weight does not exceed uh.
The decision variables in the recursion are ¢, the delay
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until the start of the next job after time k, and (w, s, e, r),
the type of job started at time ¢. Then V{(k, u) satisfies

¥(0, 0) = 0, (20)
Vik, u)= max Vk—t—s,u—w)+ylw, s, e, r}
(21)
O<k=<l, Osus<l,

where U(k, u) denotes the set of values (¢, w, s, e, r)
satisfying
t+1—-k=e,
t+s+r<k,
Tw < u,

(ta w,s,e, r) € 354»1

and y(w, s, e, r) denotes the current dual value for objects
with attributes (wh, sh, eh, rh). The running time for this
procedure is O(I’) = O(h™7).

Other schemes can be employed to speed up the solu-
tion of the linear program. For example, one need not
solve the column generating problems exactly. In practice,
it may be better to use a fast heuristic to generate feasible
solutions and resort to an exact algorithm only when the
heuristic fails to produce a column with positive reduced
cost. If the problem has to be solved repeatedly for many
instances drawn from the same known distribution y, e.g.,
as in the partitioning scheme used for the time window
problem, we can use a hierarchical, two-stage approach. In
stage one, we solve the full linear program once off-line
using the stationary vector m. This generates an optimal
basis, which one can interpret as a set of bins that are
“good” candidates to use when packing objects drawn
from the distribution . At the second level, each instance
is solved on-line using the considerably reduced set of col-
umns (equivalently, using only the restricted collection of
“good” bins). It is not hard to show that this approach is
also asymptotically optimal and has the same convergence
rates as before.

5.2. Complexity of the Heuristic H

In addition to providing a practical approach to solving the
linear programming relaxation of a GBPP, the column
generation approach can be used to establish complexity
bounds on the linear program (5) as a function of the
discretization level 1/4. Combining these bounds with The-
orem 6, we are able to provide attractive bounds on both
the convergence and complexity of the heuristic H for
some specific cases of the GBPP. The analysis follows the
approach used by Karmarkar and Karp (1982) for the worst-
case analysis of classical bin packing problems.

We use the Grotschel-Lovasz-Schrijver  (GLS)
(Grotschel et al. 1981 and 1988) central-cut ellipsoid algo-
rithm in our analysis. The GLS algorithm takes as input a
rational number € > 0, a polyhedron P C R¥, cost vector
¢, balls B(xy, r), B(x,, R) satisfying B(x, r) C P C B(x,,
R) and a separating hyperplane oracle that, given a vector y,
either (i) determines thaty € P or (ii) provides a vector a
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such that @’y > a’x for all x € P, and generates as output
a point y* € P satisfying ¢’y* = max,cpc’y ~ e The
algorithm makes at most N = O(k? log(Rz/(re)) calls to
the separating hyperplane oracle. Thus, if the oracle runs
in polynomial time, then so does the GLS algorithm.

We apply the GLS algorithm to the dual of the linear
programming relaxation (5):

max y’z

S.t.
y'a=1,
y=0,

where 1 denotes the vector of ones. For a given discretiza-
tion, the dimension of y is k = O(1/h*) and in the heuristic
H, we would have z = 2", the vector of discrete sizes
produced by rounding up. In this case, the separating hy-
perplane oracle corresponds exactly to a column genera-
tion routine; that is, given a price vector y, if the optimal
value obtained from the subproblem is at most one, theny
is a feasible price (y € P); otherwise, the solution vector a
satisfies a’y > 1 = a’x, Vx € P, so a is a separating
hyperplane. Since the number of calls to the hyperplane
oracle is polynomial in 1/A, polynomiality (in 1/&) of the
column generating procedure implies polynomiality (in
1/h) of the overall linear program.

The precise complexity and convergence rate depends
on the problem. For example, consider the classical bin
packing problem. Suppose the distribution p of the sizes
has a density that is Lipschitz of order one on the interior
of [0, 1]. Then if we select &~ = n~ "2, Theorem 6 shows the
error in our heuristic H is O(\Vn), so that

E[p" .
_H.[..;/;(_’.’l_)l < 'Y(,LL) + O(n —1/_).

For this problem, one can show that i <y, < 1 so that the
balls B(x,, r) = B(0, 1) and B(x,, R) = B(0, \V'1/h) satisfy
B(x;, r) C P C B(x,, R). Thus, since the dimension k =
1/h = n'?, the GLS algorithm makes at most O(n log n)
calls to the column generating routine. Since the complex-
ity of the dynamic program to generate columns is
O(h™?) = O(n), as shown above, the overall complexity of
the heuristic H is O(n? log n). This complexity and conver-
gence rate compare favorably with more specialized ap-
proaches (Coffman and Lueker 1991).

As the dimension of the problem, d, grows both the
convergence and complexity worsen. For example, the same
analysis of the vector packing problem in the case where
the density is Lipschitz of order one shows that if h =
M+ then the error term is O(n“““* V) and the run-
ning time is O(n*¥“* " log n). If the density is smoother,
both convergence and complexity improve. For example, if
the density is Lipschitz order s < d everywhere in the
vector packing problem, then choosing i = n~'“**) yields
an error term O(n*@*%)) and a complexity of O(n*"“**
log n); if s = d, the error is O(Vn) with the same
complexity.
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